KNIGHT'S Amerigan

 MECHANICAL DIOTIONARY

$$
\text { rampion xa } 21-1,0
$$

$$
\begin{aligned}
& \underline{5})+, 8 d \\
& 7+\pi=i s .
\end{aligned}
$$

$$
\begin{aligned}
& =3 q_{i} d \\
& =2=8 \\
& i \pi^{3} 3
\end{aligned}
$$

SUst'EN

BRIDGE.

SD NEW YORK CITY.

KNIGHT's

AMERICAN

MECHANICAL DICTIONARY.

A DESCRIPTION OF TOOLS, INSTRUMENTS, MACHINES, PROCESSES.
 and engineering; history of inventions; GENERAL TECHNOLOGICAL VOCABULARY;

AD
DIGEST OF MECHANICAL APPLIANCES IN SCIENCE AND THE ARTS.

> By ED W A R D H. KNIGHT,

THustratco
 WITH UPWARDS OF SEVEN THOUSAND ENGRAVINGS.

VOLUME I. - A-GAS.
"Thus Time brings all things, one by one, to sight,
And Skill evolves thẹm into perfect light." - Lucretius, Book V.

First Steam Engine.

> BOSTON:

HOUGHTON, MIFFLIN AND COMPANY.
The tibersior press, Cambriogr. 1882.

Copyrigit, 1872,
By J. B. FORD AND COMPANY.

Copybight, 1876, By HURD AND HOUGHTON.

RIVERSIDE, CAMBRIDGE:
ELECTROTYYEDAND PIINTED BT
11. O. IIOUOHTON AND COMPANX.

PREFACE.

More than trenty years ago the author commenced collecting memoranda of mechanical and scientific information with a view to forming a systematic digest, but without any well-defined prospect of its publication. Somewhat over four years ago he was requested by the present publishers to undertake the work which is now put forth, and since then has devoted to it the principal part of his time. While engaged in this duty, much encouragement has been afforded by repeated assurances that there was great need of such a work, and by ready and valualle assistance from personal friends of the author, experts in various departments of science and industry.

After carefully considering the mode of presentation, it was thonght best to adopt the form of a Dictionary, - a "word-book," which describes things in the alphabetical order of their names, - and not that of an Encyclopoedie, which considers them in the order of their scientific relation. A Dictionary answers directly the questions propounded ; an Encyclopedia is a collection of treatises.

The aim has bren to place the information in the most systematic order, so that any specific point of detail may be readily reached when required A look or a mind, though a closely packed repository, unless order has supplemented industry, is mavailable in an emergency, reminding one of "the fool i " the forest":-

> "And in his brain-
> Which is as dry as the remainder biscuit
> After a voyage - he hath strange places crammed With observation, the which he rents In mangled forms."

As to the general scope of the book and the method pursued in its preparation, it must, in the main, speak for itself. While the greater portion of the work is occupied, of course, by details of solid import, there is some little ronance and a great deal of interest in the study of the Hisfory of Inventions. Without deviating into irrelevancy, the author has sometimes become
"A snapper-up of unconsidered trifles,"
wortly of a more careful estimate.
"First the blade, then the ear, then the full corn in the ear," is the natural order in invention, as well as in other departments of mind and in the Kinglom of Grace. When we read Pliny's accomut of the reaping-machines in the plains of Rhretia, about A. D. 70, we wonder that, the idea once blocked out, the machine should after-
wards relapse into nitter oblivion. It was the time that was "out of joint." At the latter cud of the last century and the early fortion of the present, attention was again directed to the reaper, and the machine described ly Iliny, and hy Palladins three centuries later, was reinvented exactly: it yet survives in our clover-houder. This insture is by no means singular. One favorite form of rotary steam-engine, upon which treatises hase been written within two years past, is but a repronfuction of the aolipile of Hero, which revolved in the Serupeum of Alexandria in the second century I. C. Many similar examples might be cited, but this duty belongs to the hooly of the hook, mid not to the Preface.

Jn the adaptation of machinery to common use, our country excels all others: for instances, the reaper and the sewing-machine. These became nsefnl instrnments in American hands, not merely by facility of adaptation, lut, most distinctly, by the invention of those all-important points which constituter success. A reasomalle share of space in this work, therefore, has been devoted to the feature of Michunical Etcolution; the aim being to give not only the present state of the respective arts, hut also the various stages by which the relatively perfect appliances attained their development.

Subject-mutter Indeces are introdnced in their alphahetical order thronghont the borly of the work, and a list of the prineipal ones follows this Preface. These will afford means for ascertaning the names of the technical implements of the respective Arts, Manfactmes, and Trades, and also serve as cross-indexes for the terms so citel. The subjects indicated are necessarily considered in their alphabetical order ; for instance, the five humdred "Agricultural Implements" are not treated in a single article, - as they would be in an Encyclopmedia, - hut each in its own place muler its own name. Their assemblage, however, in a single list, or index, is conremient for many purposes, and it is estimated that over twenty thousand technical worls have heen thus gatherel in groups.

Eiery useful machine is an illustration of the laws which the Creator has impressed inon matter. There is a tonch of sullimity in the thought that while so much around us is mundane and fleeting, there are some things in which we are allied to the intelligences of other words. Mechanics is a science and an art, and Mathematios affords the statement of its laws. Whatever may be the terms and conditions of other existences, and in whatever mode their experiences and attainments may find expression, it is certain that we have a mutual interest in these allied sciences. As every thread of knowledge is a filament of the great central cluster and will lead thereto if rightly followed, so may each study form a che which will lead us towarls the Sonree whence emanates all that is worth knowing.

With these consictions, the anthor camot be otherwise than profoundly impressed with the majesty of his sulyject amb his own insufficiency, but the philosopher will consider leniently this attempt to summarize the meehanical appliances which have been developed by the experiences of at least forty centuries.

EUWAID H. KNIGHT.

Washingtun, D. C., December 15, 1873.

LIST OF SPECIFIC INDEXES.

The Specific Indexes in the following list are to be found in their alphabetical places in the body of the work. Each iudex embraces the technical appliances, etc., appertainiog to its subject.

[^0]Gages.
Gas Appliances.
Gearing.
Glass.
Graph.
Grinding and Polishing.
Grinding-Mills.
Hammers.
Hoisting-Machines.
Hooks.
Horological.
Hydraulic Engineering and Devices.
Ice, Manufacture and Uses of.
indicators.
Jacks.
Jaw Tools.
Joints.
Keys.
Knitting.
Knives.
Lamps.
Lathes and Appliances.
Leather, Tools, Machines, and Appliances.
Lenses.
Levels.
Lights and Photic Appliances.
Locks.
Looms (see Weaving).
Masonry and Architecture.
Measures.
Metallurgy.
Metal-Working Tools and Machines.
Meters.
Micrometers.
Mills.
Mining Appliances and Terms.
Musical instruments.
Nails.
Nautical Appliances.
Needles.
Optical Instruments.
Optical Toys, Scenes and Effects.
Ore (see Metallurgy).
Paper.
Photography
Piles.
Pipes.
Planes.
Plasterer's Tools and Work.
Plows.
Plumbing and Shect-Metal Work and Tools.
Pottery and Clay.
Presses.
Printing.
Projectiles.

Iropellers.
Pulleys.
Pumps.
I'unches.
I'roterlinies.
linils.
kailway Engineering and Plant.
Recyisters.
liegulators.
Rollers.
Sadellery and IIarness.
sails.
Saws.
'Sope.
Siwing-Machines and Ittachments.
Shears.
Shipwrighting.
Signals.
speculums.
Springs.
Stean- Fingine (Parts and Aplliances).
Steam-Engines (Varieties).
Stores and Heating Appliances.
Sugra- Wachinery.
Supporters.

Surgical Instruments and Appliances.
Syringes.
Telegraphs.
Telescopes.
Timman's Tools.
Tobaceo.
Traps.
Tubes.
Turning-Tools.
Type.
Valves.
Vehicles (Tools, Appliances and Parts of).
Vehicles (Varieties).
Ventilators.
Vessels.
Watches.
Water-Elevators.
Water-Wheels.
Weapons and Accouterments.
Weaving.
Whecls.
Wire-Working.
Wood-Working Tools and Machines.
Wrenches.

LIST OF FULL-PAGE PLATES.

Vol. I.

Plate. Subject. Page.
I. SUSPENSION BRIDGE. (East River, N. Y.) Frontispiece
II. PIER AND CAISSON. (Illinois and St. Louis Bridge.) 49
III. ARCHED-BEAM ROOF. (Hudson River and Harlem R. R. Depot, N. Y.) 139
IV. ARMOR-PLATED VESSELS. (English and American.). 152
V. ARTESIAN WELL. (Grenelle, Paris, France.) 163
VI. BATTERY-GUN. (Gatling's, - Egyptian Service.) 249
VII. ATMOSPHERIC RAILWAY-BRAKE. (IT estinghouse's) 356
VIII. KRUPP'S 1200-POUNDER BREECH-LOADING RIFLED GUN 448
IX. CHAIN-BRIDGE. (Over the River Dnieper, at Kieff, Russia.) • 518
X. COMPRESSED-AIR ENGINE. (Bardonneche, Mont Cenis Tunnel.). 602
XI. HOE'S TEN-CYLINDER TYPE-REVOLVING PRINTING-MACHINE 670
XII. SINGLE LARGE-CYLINDER FOUR-ROLLER PRINTING-MACHINE 671
XIII. FLOATING DERRICK. (New York Department of Publie Works.) 689
XIV. DIVING-BELL AND CORAL-DIVERS. (Gibraltar.) 714
XV. WORTHINGTON DUPLEX PUMPING-MACHINE. (Newark,N.J.) 763
XVI. BREECH-LOADING FIRE-ARAS. (A merican and European.) 851
XVII. BREECH-LOADING FIRE-ARMS. (Recommended by the United States Board, 18~3.) 852
XVIII. BREECH-LOADING FIRE-ARMS. (American and Swiss.) 853
XIX. ENGLISH FLOATING DOCK. (The "Bermuda.") 884

KNIGHT'S MECHANICAL DICTIONARY.

A.

Ab'a-cis'cus. A small s'luare stone or tessera for a tesselated pavement.
$\mathbf{A b}$ 'a-cus. An instrument used from time immemorial in performing the operations of addition and subtraction.

A smooth board with a marginal ledge formed the writing and calculating table of the Greek schoolboys and accountants. For writing, it was strewn with sand, upon which marks were made with a stylus; thus they leamed to write, and on this they executed geometrical figures. The primary use of the hoard is indicated lyy its nauze, which is derived from the first three letters of the Greek alphahet, A B Γ. It was called an $a b a x$, and retains the name, but slightly modified.

The abnes strewed with sand is the pulvis cruditus, or the Mensa Pythayorce of classic authors.

For arithmetical calculation, the sime hourd was used without the sand, to contain the counters, which were arranged thereon in parallel rows, representing respectively units, teus, hundreds, thousands, ete. Solon (about 600 B. C.) refers to the arhitrary denominations of the several lines, in a metaphor which compares the different grades of society to the different ralues of the counters in the severnl rows.
The counters were pebbles, beans, or coins, pspecially the former. The Greek word for the comnters of the abocus was derived from a word signifying a pebble. l'ythagoras, the great arithmetician, hated beans, - an antipathy he derived from the Egyptian priests, his instructors. About the same time Daniel was eating pulse in Babylon without grumbling, ant Horatins was hewing down the bridge of the Janienlum.

The Roman word calculus, from which we derive our worl calcutute, was the diminutive of calc, a stone, and referred to the pebbles which formed the counters of the abacus.

Sometimes the counters were slifted to the right in counting, sometimes to the left. It is stated that the Greek and Roman practices differed in this respect. Several varieties of instruments are represented on the ancient monuments.

The step was easy from a flat hoard with shifting comnters arranged in rows, to a board with grooves in which the prebbies were rolled. Afterwarts we find pellets strung upon wires, and thus the Chinese have used it for ages.

The illustration shows the last-mentioned form of the device, arranged for decimal counting. The number indicated by the beads on the right hanl of the frame is 198,764 , and it will he seen that by transposing the beads to one side or the other, as required, either addition or subtraction may be read-
ily performed. A person accustomed to the instrument will perform these operations with great rapidity and accuracy: The Chinese term the instrument a swan-puran, and are very dexterous in its use.

The original of the Cbinese abacus has been supposed to be the "knotted cord," used in China for kerning accounts before the invention of writing. The knots are made movable by sulstituting shiding beads. Hence like
 wise seems to have been derived the mode of keeping the Chinese Tung-fien, or perforated coins, which are strung upon a cord.

One form of the Chinese abacus bas two compartments, five heads in one and two in the other ; the fomer have the ralue of one each, the latter five cach. The wires are nine in nomber, and each rums through the two compartments.

The Romans, contrary to the customs of the Phoenicians and Greeks, from whom they received their alphabet. expressed their numbers $1,2,3$, not by the first letters of the aldhabet, but by strokes,

I lI 1I];

in this respect unconscionsly copring the Chinese numerals of the same value,

The difference in the direction of the figmres gives the mumerals in each the same position reross the column; for the Roman writug is in horizontal colum, the Chinese rertical.

The resemblance between the Chinese and Roman numera?s bxtends much further than the above, and shows a common origin.

Prehaps it may le accounted for by the studies of Pythagoras in hidia, and the subsequent instruction ot Numa in the school founded by the sage of Samos in Crotona, a city of Mlăna Græcia. (Plutarch.)

Hinlno \qquad	Roman.	Chinese
10	X	$+$
11	II	\pm
12	X11	\pm
13	XIII	\pm
20	XX	+r
30	XXX	+H

The resemblance cannot be accidental. Pythagoras and Kump-fu-tze (Confucius) were contemporaties.

Inother mode among the Clinese of expressing 27,30 , cte. was by placing 2,3 , etc. before the sign of ten ; so that they in some degree anticipated the Hindon where a numeral before the zero expressed so mimy tens, e. g.

$$
\begin{array}{cc}
\text { Chinese. } & \text { Arabic. } \\
\overline{\bar{\mp}} & 30
\end{array}
$$

The great advance in the Hindoo over the other systems of notation was ingiving a pluce value to tignres. In Sanscrit, the initial letters of the Sanserit names of the Indian numerals are enployed from 1 to 9. The original zero was a tot. The Greck letter omicron (o) was afterwards substituted, and forms our manght. It is amusing to see the comhination of Hindoo and Roman figures during the fourteenth ind fifteenth ceuturies, such as

(Written.)	(To be read.)
$\times 3$	13
x 4	14
401	41, etc.

Showing that the force of the zero and the value from position wre not nmlerstood at first, even when the new characters had beome eustomary.
The deeimal and duodecimal systems of arithmetic were in use in Lgypt at the carliest period of its known history. For the respective systems the numbers of counters in the rows would vary, each line representing a multiple by 10 or 12 of the line below it. There is $n o$ representation of the abacus for counting on the Egyptian monuments. "The Assyrians countel by 60^{\prime} 's as well as by 100 's. "- Rewolinson.
The instrument was probably invented by the Chinese, and pissen thence westwardly through India and Alahia to Europe. The evidences of ancient trale on this line are found at both ends and at intermediate pints. The glass bottles with Chinese inseriptions, found with the Egyptian mummies, prove the existence of trade relations butween those nations before the foumling of Athens, and also dissipate the myth of Pliny as to the discovery of glass by certain mariners of Phenicia, a few centuries previous to the time at which he made his curious collection of vargabomd infomation.

Over this famons route travelled the mariner's compass, gumplowr, the art of glazing pottery, of ma'sug piper of pulp, and much else that we valne. Feltiner of animal fiber was also derived from Λ sia, but puhably entered Europe by a more northern route.
the Greek and Ronsm nmurration was decimal, but their system of motation was very mufortunate, as any one may aseertain by trying a sum in multin'lication : $^{\text {l }}$

CONLY14
$\quad X L Y$

The Oriental system of notation was introduced by the Arabs, and was credited to them, but they more properly term them Indian mumerals, referring to their denivation from the llinduos. This system of
notation passed with the saracens along the northarn cosst of Africa, and was earried by them into Spain. "I'he raliphate of Cordova was established by Ablerahman, A. D. 755 , amd the university at that place was foumbed A. D. 968 . At this ilistinguished seat of learning was elucated the famons Gerbert of Auvergne. This enlightened ecelesibstic was successively a schoolmaster at Rheins (where he introduced the abneus, the Arabie mumerals, the clock, the organ, and the globe), arehbirhop of havenna, and, eventually, rope Sylvester h., 10 which position he was elovated by the deeree of the Emperor Otho III. Patron and prelate died of poison shortly after, about A. D. 1002.

Gerbert was probably the first to use in a Christian school the nine digits and a eipher, which provel, as William of Malmesbury said, "a great blessing to the sweating calculators."
A translation of Ptolemy, published in Spain in 1136, used the Hindoo notation. The Hindoo numerals were introduced into Eugland about A. 13. 1253.

The accounts of the kings of England, previnus to the Norman Conquest - and the same is probably truc of most contemporary European nations - were caleulatel hy rows of evin disposed as in the abacus, that is, lhaed in parallel rows which represented gradually increasing denominations in the ascending series. At the Comurest an amplification of the same iter was introluced, the calculations heing performed by the teller, at a large table calletl a succarium. This had a ledge around it, and was covered by a back eloth ruled with chequer lines. Hence the word Exchequer, as applied to Euglish national finances.

In the twellth century, this table was five by ten feet, and its cloth cover was divided by vertical and horizontal lines. The horizontal bars represented prence, shillings, pounds, tens, hundreds, thousamis of pounds. Coins were used for counters ; the hirst and lowest bar advanced, by dozens, the numbrr of pence in the shilling; the second, by scores, the number of shillings in the proml ; the higher denoninations by tens. This was a true abacus, and was usel dowa to a compraratively recent period.

The acconints of merchants were kept in Roman mumerals till the flose of the sixteenth century, and the use of the abocus was maintained to a much later date. Until 1600 its use was a branch of popular education.

Offices for changing money came to be indicaterl by a checker-board, and the sign was afterwards appropriated by the kecquers of inns and hostelicis. Tlis shows that people met at such places to sottle accounts, a friendly drink heing a tribute to "mine host." The derusalem and lloyd's collee-houses are noted in the history of trading companies; the latter espee ially. The chweker-board on the doorpost of the tavern is about the last phase of the abucus, in Europe at least.
The checkers on the posts of an inn iloor are to be seen upon a house in disentombed Pompeii.

The tally system was also introduced into England at the Norman Conymest. This was not for calculating, but for kecping aceounts. The name of the deviete came with it across the Channel, leing derived from the French tuiller, to ent, the tally-sticlis being eut and notehed with a knife. A syurred stick of hazel or ahler was prepared, and the money account was notched on the edre, small notches repursenting pronce; largur, shilfings; still larger, pounds. The stick was then split longitudinally, so as to leabe notch-marks on "ach portion; one part was laid away in the excherfuer strong rom, the
other was given to the ereditor of the government. When the person came for payment, his portion of the stick was laid against that in possession of the exchequer, and if they tallicel the claim was admitted, perhaps paid.

This system survived the introduction of Arabic numerals into England about 670 years. In 1826 the time cams for the venerable system to ablicate in favor of the other Oriental method which hal been asserting itself for so long. The pile of sticks, in companies, regiments, and brigates, that had by this time accumulated was something terrific. The question was, How to get rid of them? Prescriptive custom would prevent their being issued to the poor, or sold to bake the bread of the people, as the Alexandrian library heated the baths of that imperial city; so one fine day in 1834 they were to be privately burnt. A stove in the House of Lords was selected as a proper place for the incremation of another relic of the past; the wainscoting of the chamber protested by eatching fire, the llouse of Lords set fire to the House of Commons, and both were lurnt to the ground, - a grand funeral-pile.

The bakers insisted for some years in keeping tally-stick record of loaves purchased by their customers ; some of us recollect it.

The oldest surviving treatises on matheratics are by the famous Alexandrians, Euthl, abo.t 13. C. 300 ; Ptolemy, A. D. 130 ; and Dophantus, A. D. 156 .

Decimal fractions were invented 1432.
The first work on arithnstic published in England was by Tonstall, Bishop of London, 1523 . The Italians had been in that fied many years lefore.
(Architecturc.) The crown member of the capital of a column.

Ab'a-ka. A fiher from which Manilla-rope is made. Ropes and cables of this material Hoat in sea-water.

Ab'a-mu'rus. A buttress or second wall, built to strengthen another.
Ab'ap-tis'ton. (Surgical.) A trepan saw.
Ab'at-jour'. (Building.) A skylight, or aperture for the almission of light.
Ab'at-voix'. A sounding-hoard over a pulpit or rostrum.
Ab'at-tis. (Fortification.) An ohstale employed in military operations for delaying the approarli of an enemy and keeping him under fire as long as possible. It is formed of trees or large limbs havints the branches under two inches in diameter cholnud off, the larger ones being sharpened and interlaced, and pointed toward the cacmy. The butt ends

Fis. 2.

are secured hy pickets, and may be partially embedled in the earth to prevent them from being readily removed.

Abattis are usnally placed in front of the ditcla in fiell fortifications, but they may be placed in the ditch against the counterscarp: in the former case they should be protected from the enemy's fire by a small glacis.

In a wooded country an abattis is readily formed by felling the trees in such a way that their branches shall interlace, leaving the trunk connected to the stump by a portion not cut ; the stump should be ligh enough to protect a man behind it.

A small parapet formed of logs and backed by earth may be thrown up in the rear of the abattis, which thus constitutes a very efficient and available means of defence.

The abattis is referred to by Herodotus, Thucydides, and Xenophon, and was a common military dei'nce derived from savage life. An abattis of thomy shrubs or limbs is the usnal defence of an African K'r all against predatory beasts.

Abb . ($W_{\text {caving.) Yan for the warp. }}$
Ab-dom'i-nal Sup-port'er. A bandage for the compression of the relaxed abdominal walls, intended to assist the muscles in holding the viscera in place. The simplest are made of elastic rublur covered with silk or cotton ; they encircle the body from the navel to the pubes. Others are male of two steel springs passing over the crests of the pelvic bones, with a
small pad resting on either side of the spine, and a large frontal one; their position and action being similar to that of a person holding his ablomen witlz both hands. They are of various patterns and designs ; are used in cases of obesity, before and after 1 arturition, and sometimes in cases of umbilical hernia.

Aloody's Supporter, 1864, has a corspt A. with lacings $c d$ and air-bag B seenred by elastic plates b to the stays. The pail acts as an elastic trins.

There are various forms, pat- Astominal Supportcr. ented and otherwise.

A-bee!. (Fabric.) A woven stuff of wool and cotton made in Aleppo.
A-beam'. Opposite the center of the ship's sile; as, "the wind is abcam."
Ab'e-run'ca-tor. A weeding-machine.
A-bout'sledge. The largest hammer usel by blacksmiths; wielded by the helper, turin-about with the smaller hammer of the blacksmith himself.
A-bra'dant. A material, generally in powiler, for grinding. The term include's em $r v$, sand, glass, and many other materials. Lans, glaz'rs, rifles, paner, etc. are armed with abralants. See Emery; and Geinding and Polisiling Materials.

A-breu-voir'. (Arcinitecture.) The mortar-jwint or intortice betwen two vonssoirs of an arch or the stunio of a wall.
A'brid. I brushing-plate around a hole in which a pintle works.
Ab-sorb'ing-well. A well or shaft, dug, bore, or drivet through a retentive stratum to allow surfare or spring water to pass to a porons stratum below the fonture so as to form an outhet for drainase.
such wells are made at diseretion in England, but in franme are regarlal with jealonsy, and their use is culy ξ^{n} ruitted after an examination and report hy expurts as to their possible efliect upon watercomes, Arainag or irrigntion of other properties, ete.
In the t'nited states they are but little used, and sur not under mblie regulation.

Absurbing-wells are known as dead uclls in the South of Puglaml ; they are made in the gravel, the upper portion bring close-steened work and the lower otru-stecned work. The hottom is anpavem, to allow the water to infiltrate.

A-but'ting-joint. (Corpentry.) A joint in Which the filvers of one phece are perpendicular to those of the other.
(Machin m\%.) A joint in which the pieces meet at a richit anesk.
A-but'ment. A lixed point or surface, afforl. ing at matisely immovalde objert against which as hanly abuts or jursues while resisting or moving in the contrary dinetion. Se l'aek; Skewback.

Fig. 4.

Pier Abutment.

1. (Buileling.)

A structure which reccires the lateral thrust of an arch. The abutment may be a pier or wing walls forming a horizontal arels; orthe arch may be contimued to a piled or hewn foundation, which is then the abiutment.
2. (Machincry.) A solin or stationary surface against which a lluid reaets.
u. The welge which lifts the piston of ane form of rotary steam-engine, and which forms a surfice lor the steam to react aquinst as it wesses the piston forwarl in its cirentar path.
1). The werlen hark in a rotary pumm, where the piston traverses an annulay chaniner.

Fig. 5.

c. Wne of the cylimeter heads of a steatherngine, receiving thue Wark press. ure of the stram Which is math effrective urwn the piston.
3. (Rat) en(ry.) The junction ul two picees of timbber, whore the grain of one is at a right angle to that of the other, or nearly so.

Motable Abutment.
4. (Fire-arms.) The block at the rear of tine barrel of a firw-arm (especially a breech-loader), which receives the rearward force of the charge in firing.

It has the function of the brecel-pluy or brecth-pin in the mazalr-loading fire-arm.

Fig. 7.

sationary Abutment.
A similar term is applied to the eorresponding portion in brech-loading carnon.

In Fig. 6, the alutment D) is movable mon an axis so as to "xpose the rear of the hore for the insertion of the cartridge.

In Fig. 7, the whefment D is stationary, mlatively to the stock, and the harrel slips away fime the alatment to allow the insertion of the cartridge. The variations in the arrangempht are very numboms. anl the different devices form the subjects of numermis patents in the Tuited sitates and for-ign countrits.

5. (Suspensim Briely.) The masonry or natural rock in and to which the ends of a surpemsion calble are anchored.

Fig 8.

Suspension Fride Abutment
6. (Itydrautic Enginerring.) A dam is in somp sense an aboument, as it sustains the lateral thrust of water: See J.im.
A-but'ment Arch. An eme arch of a mridge.
A-can'tha-lus; Acan-tha'bo-lus. An instrument for extanting horms or splinters from a wound.

Ac-cel'er-a'tor. 1. I light van used in Eughand for rouvering mails between post-olfices and railwaystations, ite.
2. A camon, with several powder chambers, whose charges are exploted consecutively, in orler to give a constantly incrusing rate of progression to the projectile as it prasse's along the bore.

Ac'cent-ed Let'ters. Vowels haviursignsahove them (or below, in the case of the cedilla "c ") to indieate a specific pronunciation ; as:-

Acute,	á	Direresis,	ä
Grave,	à	Long,	\bar{a}
Circumflex,	\hat{a}	Slort,	ă

Ac-ciy'i-ter. (Sumpery.) A bandage applied orey the nose ; so callecl from its likeness to the claw of a lawk.
Ac-com'mo-da'tion Lad'der. (Jintical.) A ladder sumpended at the side of a ressel to facilitate the phasame to and from the boats alongide.
side la hins and stern ladders lang from these purt- of a ship.

Ac-cor'de-on. A frec-rerfinstrument introducel into England from Germany about 152s. The exterion form of this instrument is a parallelopijed. The actiou consists of a bank of vibrating reeds or tongues which are operated by the bellows. hiers open the air-lacts to the respective reeds as the bellows are expim:led and contracted. Damures are attachend to the enul, which is grasped by the left haml, while the other end is furnished with keys by which the notes are sounded by the fingers of the otherhand.
The concertina is an improved form of the accordeon.
A common form of the accordeon is shorm in" the engraving, which aflords three riews : -
A genrral exterior view ;
A sectional view in the plane of the key-board, and exhibiting the separate wind-cells ;

A sectional view at right angles to the latter, and exhibiting the parts concerned in the course of the air, - damper, bellows, ducts, and cells.
" $\&$ is a rectangular box, the lower portion of Which is of air-tight tlexible material forming the bellows and wind-chest ; c is a partition foming the top side of the wink-chest, and the lower suface of the large cell d, and the ten smaller cells $e c$. In the lottom of each cell are two apertures ent thrmerh the patition c; each of these apertures is corver on one side by a thin metallic plate, which has a long rectangular opening in which a frec reve plays as the air passes throngh the opening when the hillows is in action, and the appropriate key is lifted. See Free Reed.

On the side of each aperture, opposite to that occupied by the reen, is a dlap or valve of thin leat her, cunented by an elge to the partition c. The reends of carb cell are fixed one to the urler side of the partition and the other to the lower side; thr rewl the the partition is soumlerl when the hellows is extwendel, and that below the partition when the bellows is :ollajsed ; the thap of heather, in cach case, preents the soumling of the reed when the wind gons in a direction contrare to that described.
The large cell d has also apertures, which are provided with reets and vallees at the respective ends of the ilpertures, as just described. The plates of these reeds have two or three tongups of givater size and lower tone, forming a hase which chonds with the other notes by which the air is playent.
'The tops of the cells e ed, or the partition c, are avered with butl leather, against which the muler side of the cover i islides when it is pushed into closid position.

In the cover, ower eatlo of the small cells, is a hole closed by a key k, and over the large cell d are two holes, one at each rmb, closed by the keys $l l$, which are moved simultanconsly by the knoh m. The Valve n, at the hottom of the wind-chest, forms a damper ly which the bellows may bas pxtented or contractel, when reyuired, without somding a note.

Several notes may he soumded together, and, the reed of each small cell being ditfermt, the compass is equal, tones and semi-tones being comnted, to the number of reeds.

The accorlenn differs from the melorlenn more in size and the mode of manipulation than in min iple. The latter will be consilmed by itself, hat maty he stated to he of such size as to constitute a piese oi' stauling furniture, having its keys in a hank, like a hiano, and foat-pedals for the generation of wind, hy Which the reeds are vibrated as the action of the keys opens the corresponding valves. The same instrument is known in England as the harmoninm, and has hem known at rarious times by the mames of seraphine, zolophon, symphonium.

Fach, June 13, 155 t, combines, with the diatonic scale of the large keys, two othor seales, vi\%, one for producing all the intermediate motes on smattomes, and the other foundend upon the suluminant of the diatenic scale ; both arrangen so als to bur fringel hy a single sit of small keys, to rhathle the performer to protuce harmony in any key. The valves of the lower, or small, keys stop, two s ries of apertures opening from the wad-chest below. 'I he two series of apertures ane alternately opeand a!nl closed by means of a wiml-stop, with two rews ui apertures artanged in aiteruate onler. "these art governed by levers jointed to the wimd-stop and to one another.

A soumding-loarel gives strength and mesnonce to the tones, ani allows space for the described armurement of the valves.

Fids, August 12, 1856. Imuncdiately beneath the pertorated board through whose openings the air enters, is a thin sliding board with corresponding apertures. By means of a handle the operator adjusts the position of the board so as to vary the strength of the tones by regulating the quantity of air almitted to the reeds. Double keys close the aluertures of the base reeds, the smaller keys covering holes through the larger ones, by which arrangement an entire octave of base notes is produced.

Zemmermin, July 10, 1866, has certain distinguishing keys between the consecutive octares, Which give the same tone in either inflating or compressing the wind-chest.

Pries, Juue 21, 186t. The accordeon is so constructed as to admit of its being played in any key,

Fig. 10.

Pries's Accordeon.
to accompany an ochestra; this is accomplished by arranging double keyboards, ne on each side of the instrument, which admit the ad-ditionalnuuber of keys, conveniently arrangel for the alditional reeds necessary for the purpose. The keys in the respective banks of each end represent octaves, and the respective ends represent different chromatic scales.
The instrmment is called by the inventor an orchestron, and the banks of keys are placed at an angle with the side, so as to Irment the keys more conveniently to the fingers of the performer.
Ac-couple-ment. (Curpentry.) A timber tie or brace.
Ac-cou'ter-ments. (.IVilitams.) The devises hy which a soldier carries his arms, ammunition, ete. These vary in the different arms of the service, according to the exigencies of the case.
Those for intintry consist of a cartridge-box and platr, cartrilge-box belt and plate, waist-belt and plate, gun-sling, bayonet-scabbirt, aml cap-pouch ; to which, on a march, are added the knapsack; canteen, and haversack.
The infantry cartritge - box is made of black loridle-leather, with an outer llap which turns over, covering the top, and is fastened by a short stray to a briss button ; inside of this is a lighter leathern corer to protect the ammunition when, as in action, the outer tlap is necessarily left unfastemed. λ brass phate is generally affixed to the flap, hat is not essential, being rather omamental than useful. In the interior of the box are two tins, cach haviug an upper and a lower compartment, the former bund divided into two parts, one contitining six and the other four loose cartridges, while a bundle of ten is placed in the lower compartment, which is open at the side; the box thus contains forty cartridges wher filled. At the side is a small pocket, covered by a tlap, for containing the implements, or "appenduges," Trelonging to the lunsket, as the screw-driver and cone-wreneh, wiper, ball-screw, spring-vice, and tumbler-punch.

Two lonps are attached to the back for the passage of the cartridge-box belt, which passes diagonally across the body in front and rear from the left shoulder to the right side, where it passes beneath the waist-belt and is secured to the ear-tridge-box by two buckles. For ornament a round brass plate (in the United States service stamped with an eagle) is attached to this belt so as to tall about the centre of the chest of the wearer. The waist-belt, as its name imports, passes around the waist, and carries the bayonet-scabbard and capbouch ; it also serves to keep the cartridge-hox and belt in place close to the boly; it is fastened by a brass plate of oval shape, haring two studs and a hook, the stnds entering two holes in one end of the belt, which is drawn tight and the hook inserted in a hole at the other encl.
The bayonet-scalbard is made of black bridleleather ; it is triangular in shape, to fit the bayonet, and has a brass ferrule at its hottom for ormament and proteetion; its length is $19 \frac{1}{2}$ inches; a leather loop, or frog, is attached to the upper part of the scabbard for inserting the waist-belt.
The cap-pouch is also made of black bridle-leather, and has 'a tlay aud inner cover, the flap heing fastened by a brass hutton; the pouch is 3 inches in length and depth, and is lined with sheepreskin with the wool on, to prevent the caps from -heing jarred out and lost when the flap, is not buttoned. A conepick, of steel wire, bent so as to form a ring at one emel, is inserted in a loop in one comer of the capfouch.
The gun-sling is of russet bag-leather, $1 \neq$ inches wide and 46 inches long; it has a standing loop at one end and a hrass hook at the other, with a s'iding loop between. For use it is passed through the guard-bow and middle-band swivels of the inusket, the hooked end passed through the loops and inserted in one of a series of holes punched in the sling; the gun may then be slung across the back, leaving both hands free, or it may be suspended from any suitable olject.

All belts in the United States land service are black, and are made cither of leather or of a strong sjecies of felting, called buff, probably because belts were formerly made of that color.
Tntil within a very few years a separate belt was used for suspending the bayonet-scabhard, 1assing orer the left shoulder and crossing the cartridge-hox belt diagonally on the breast, which was ornamented with a plate at the crossing; the intersection of these two white lines, particularly when relieved against the dark-blue ground of the uniform, rendered the soldier as perfect a target as a marksman need desire, the plate representing the "bull's eye."

The cartridge-box belt has sometimes heen dis. pensed with, particularly for riflemen, the whole weight of the accouterments, with, in this case, the addition of a heary sword-bayonet and scabbard, being borne ly the waist-belt, which of course had to be drawn very tight, forcibly compressing the ahdomen, and cansing great and unnecessary fatigue or even lermanent injury.
This arragemment was, we believe, generally condemned lyy medieal men, and in fact by every one who thonght on the subject; but as the weapon above mentioned was in very limited use, toward the close of the war especially, the evil was not so gencral as it might have heen.
The eartrilge-box for cavalry resembles in extermal appearance that for the infantry, but is smaller, and its two loops are arranged so as to pass the saber-belt through them. Those used by our troops
duing the late war were variously arranged in the interior to suit the supposed necessities of the cartridges of each particular kind of carbine, as Burnside's, Merrill's, etc., etc. That adapted for a paper cartridge, as Sharp's, of which a greater number was issued than of any ather, appeared to answer rery well for others, though, no doubt, for metallic cartridges a special box is better.
The cavalryman is also provided with a small box or pouch for resolser cartridges and a cappouch.

The saber-belt, to which all the preceding are attached, consists of a waist-belt, with two brass rings for the shoulder-strap and saber-slings, and a brass loop sewed at one cad to receive the plate, which is rectangular and connects the two ends of the belt together. The shoulder-strap passes from a ring on the left side over the right shoulder, and returns, sulprorting the saber, which is suspended by two saber-slings passing from the brass ring at the waist-belt through two iron rings on the saberscabbard, and buttoned.

The accouterments for horse artillery merely consist of a pistol cartridge-pouch and a cap-pouch, both similar to those above described, and a saberbelt which differs from the cavalry-belt only in the omission of the shoulder-strap.

A number of patents hare been granted in the United States for improvements in the construction of, and in slinging accouterments. Since the commencement of the late war thirty-five patents have been granted in this branch of inventions. Attention has been directed to several points : -

First. The ease of the soldier in carrying his knapsack, etc. has been attempted to be secured : 1 . By ruaking one portion of his accouterments balance another, as in Mann's, Mizner's, and Wool's; 2. By a saddle-piece resting on the hips, as in Dickey's; 3. By suspension-hooks on the shoulders, as in Sweeney's; 4. By a frame reaching from the shoulders to the buttocks, as in Baxter's ; 5. By modes of shifting the weight occasionally to rary the point of pressure and reliere the otherwise constant strain, as in Short's and Siis's.

Sccomilly. In arrangements for making the knapsack do service as a sheiter, couch, or mattress.

Thirdly. In devices for the more compract arrangement of the compartments of the knapsack, haversack, or cartridge-box to increase their utility, readiness for duty, and lightness.
The accompanying cuts will render it unnecessary to give a lengthened de scription, and the examples are placed in the order stated, founded on the similarities of purpose and means.

Mans, December S, 1863. The cartridge-box is worn in front of the person, and acts as a counterbalance to the oth. er acconterments, the weight of the whole being thrown upon the shoulders.

Woon, May 15, 1866. The devices refer to the means for slinging the gun, bayonet, cartridgebox, and canteen so as to counterpoise each other and the knapsack. The gun is hung to hooks on the strap. A hook on the cartridge-box adapts it to be attached to any part of the equipment. The bayonet is also slung by a liook on its scabbard.

When the accouterments are slifted to the rear, the hind side of the belt is connected to a ring beneatk the kuapsack, to help sustain the belt.

Mitza:Ee, January 16, 186b. The haversack, which is carried on the shoulders, forms a counterpoise for the cartridgeboxes, which ame worn on the front of the belt; the upper portion of the divisional haversack is oceupied
 Acroultrments. by boxes, to contain three days' meat, coffee, sugar, and salt, in separate casus ; the lower or bag-like portion being adapted to contain an equivalent quantity of bread. A strap pasis-

Fig. 13.

Alizner's Cavairy Accouterments.
ing along the bottom and up one end of the cartridge-box affords the means for elevating the packages of cartridges, whick fit closely therein, and are difficult of renoral by the fingers.

Dickey, March 21, 1865. To reliere the sollier of the backward pnlling of the krapsack it is partially supprorted by adjustable stanlards rising from a saddle-piece, which rests mion the hips.
Sweenet, Febriary 4, 1862. The knapsack is so suspuended that an air space may intervene between it and the back of the soldier. The curved pads c rest upon the shoulder,

Fig. 15.

and the bars B descend therefrom to the hack plate 1 . The knapsack is secured by plates to these prarts, and rigidly luel at a distance from the back.

Baxtelt, March 17, 1863. This improvement is intenced to prevent the pressure of the knipsack upon the small of the back and the erumping of the movement of the arms, and it consists in supporting the salck by strijis of wool extending trom the shoulder to the hips; also in securing the chest-stra!'s so as to leave the tums free.
Short, Jumary 28, 1562 ; December 14, 1562. The mode of slinging the knapsack promits it to be lousened su as to fall away from the shoulders and spine of the wearer, as a neans of shifting the weight and ${ }^{\text {resessure, }}$ and allowing circulation of air against the back of the person. The armgement also pemits it to be raised

or lowered in a rettical line acomding to the convenience of the soldier. The neck and shoulder strap is conmerted to the upper part of the knapsitel by intermerliate strajs, and the lower part of the simbe is designod to prevent lateral swaying during 'fuick morements.

Süs, May 17,
1864. This invention consists in the employment of a pair ot suspending straps which pass over the

Weber's Inapsach:
shoulder in connection with another shorter pair of straps attachacl to the top of the knapsack near its center, and also a puir of strapss attached, one to each end of the knapsack, for the purpose of varying the position and shilting the weight of the sime when tessirable.

Weber, January 31, 1865. The trame of the kuapsack is caprable of bring changed into a concl, and the cover foms a shelter. The eentral section has jointed and folding siles.
licish, March 25, sita. The frame of the knepsuk is mate

Fuslis Inapsack.
At the thick enel of whe part are pivoted two arms, which, when thown ont, rest mon the alge of the knapsack, auel serve to hold the campais for forming a bed.

Fhodsham axd Levett, October 1, 1861. This invention ronsists of an india-rubber casing made water-ticht and containing a lag of linely cut conk or other filling, thas foming a life-presomer. A pooket is made in the rubber casing to contain articles of elothing, thus fonning a knapsacli, which whing mamed beeomes a bed, the contained artiches forming a pillow.

Manem, Normber 27, 1866. The knapsack is combined with a haversack. The strajs tlat secure the parts of the sack together, whers parked and folded, are not sewenl to the material, but are riveted to each other, and also to the sling-strajes. The latter pass fron the knapsack over the shoublers, beneath the ampits, and unite behind the back.

Aceror, Jamary 7, 1862. The boty is
Fig. 21.

Frodkam and Levett's Knapsach.

mate of wicker-work, anil has partitions and doors ; it is coverech with wateryroof material, and contians medicines, lint, handages, splints, and surgical instruments. It is designed to be carried by the surgeon's orderly in an engagement or during field duty.

Ac-cu'mu-lator. In india-rubber spring which accumalates lifting force, and is applied to many

specific pmrposes on board ship, in machine-
shons, ete. shons, ete.

An apparatus used in working lydraulic cranes and other machines where a steady and pow rful pressure of water is refuired. The acenmulator is intendel as a sulstitute for a natural head, as being more compact. Sir William Amstrong, in the first apmlications he made of this principle to hyilraulie cranes. employelt a natural head of water as the motive agent, obtaining the same by pumping water into tanks at an cleration of ahont 200 leet ; lut sulisequently he las always employed the accunulutor, as offering the adrantages of greatly increased capacity for pressure, and a less prime cost of ereetion. The acemmulator is shown in Fig. 2t ; it comsists of the large cast-iron cylinder a, fitted with the plungur b, which works water-tight liy means of the gland c, and packing. To this plunger is attachect, by means of the bolts f, and strong cast-iron censshead e, the loaded weight-case d. Thus a pressure is obtained upon the water in the eylinder, "yual to a column of water 1500 feet high, or 661 lhs . upon the square inch. As the water is promper into the cylinder by the pumping engines throngh the pipe h, the piston, with the weighted case, rises, being guided by the strong wooden framework !, and is mate to regulate the amount of water 1 rumped in, by actuating a throttle-value in the steam-pipe of the pumping engine, which it closes after having reached a certain height. When the cranes, etc. are in operation, the water passes from this evlinder through the pile i, to those actuating the motion of the cranes, and the weighted plunger maturally descents, always keeping up a constant pressure npon the water : in descending, the same causes the throt-tle-ralve to open again, and the water is again pumped in.

A'ces. (Frauticai.) Hooks for the chans.
A-cet'i-fi-er. An apparatus for exposing cider, wort, or other wash to the air to hasten the acetification of the fermented liquor. Siee Glankitor.
Ace-time-ter. See Acidimetels.
Ac'e-tom'e-ter. A hydrometer suitahly graduated for ascertaining the strength of acetic acid and vinegar:

Achro-mat'ic Con-dens'er. An achromatic lens or combination used to concentrate rays upon an object in a microscope. Sue carpenter on the Hicroscour. pp. 117-119. el. 1857.

Ach'ro-mat'ic Lens. Achromatic, literally colorless, lenses were first introdnced by John Dolloni, of London, about the Year 175 s. Ever since the invention of the telescope it had been a desideratum with astronomers and opticians to obtain a lens which would give a perfect image free from color with a moderate focal length, it laving heen fumd by experirace that it was necessary to increase the lengtl of focus of the object-glasse's of telescopes in the proportion of the square of the magnifying power desired, to obtain distinct vision. This was owiny in part to the distortion or spherical abernation, caused by the rays striking the lens at greater or less distances from its center, being refracted at different angles in proportion to the greater or less conrexity of the lens, and couverging to differ nt loci more or less distant from the latter ; lut principally to the dispersion or decomposition of the light, as in prisms, to two of which, joined at their bases, the lens is in fact equivalent. See Prism.
This fringel or colored appearance may be observed about the margin of aimost any oiject riewed throngh a lens of short local length, such as an ordinary microscope.

The excessive length which had to be giren to re-
fracting telescopes in order to obtain what is now considered a very moderate magnifying power, 100 feet for a power of 200, led Gregory and Newton to the ronstrnctiun of reflecting telescopes (see Telescupe), and these for many years were almost the culy kind in use. 'The dispersion of light, or the length of the spectinm formed by prisms having the same refracting angle, varies greatly in diflerent substances though their refracting powers may he equal or nearly so.
Newton had supposet that the dispersion was always proportional to the refraction, and it was in the course of a series of expriments undertaken in order to verify this theory of Newton, which had been controverted, that Dollont was led to his discovery:
He tound that a prism of white flint glass whose refracting angle was about 25 degrees refracted the light in a nearly equal degree with one of crown glass whose refracting angle was 29 degrees, but that the dispersive power of the former was much greatior ; so that, when they were applied together to refract contrary ways, a beam of light jassed through them was scparated into its component colors, although the ineident and emergent parts of the beam continued parallet.

From this he inferred that if two lenses, one convex and the other concave, - which are in effect equivalent to two prisms refracting in different ways, -were so arranged as that the dispersive power of the flint glass would he corrected by the crown glass, that the image produced by the excess of refraction of the latter would be sufficiently colorkess and distinct to bear an eye-glass of much shorter focal length and consequent magnifying power than could be applied to a non-achromatic, double-convex lens, formed of a single piece of glass; and by further experiment he ascertained the most advantageous foral lengths to be given to each glass in order to produce clearness and distinctness.
He adopted a combination of thee lenses, the middle one being of thint glass and double concave, and the two exterior ones of crown glass, doulle convex, believing that it produced better results and more effectually corrected the spherieal aberration; the combination of two glasses is now, however, universally atopted.

It has been proposed to use metallic solntions and other liquids which have a ligher dispersive power than flint glass, enclosed in glass disks of the proper eurvature liermetically sealerl at their edges, in place of that article for the concare lens, but though several of these substances apprar to have given excellent results experimentally; they have never been brought into general use.
On account of the ditficulty of obtaining a good article of flint glass, more particularly, and the trouble and skill required in grinding and polishing the faces of each piece so that they may have the proper curvature and fit accumately together, achromatic lenses have always heen and will probably continue to be very experisive, especially the larger sizes. Dr. Dick mentions onc of $5 \frac{1}{2}$ inehes apurture and $5 \frac{1}{2}$ feet focal length, whieh cost 200 guineas.

Plöhl, an optician of Vienna, has recently invented an improvement on the achromatic, which he ealls the dialytic telescope, in which the several different
kinds of glass composing the compound object-glass are not placed close together, lut at regulated distances apart. This arraugement allows a shortening of the tube.
Cbester More Hall, of Essex, England, invented the achromatic trlescope in 1729, but did not make it public. Dollond had to invent it over again.

Ac'id-im'e-ter. In instrument for determining the purity or strength of acids, foumted on the principle that the strength of any sample of acid is proportionate to the quantity of alkali which it will neutralize, or the quantity of carbonic acid gas which it disengages from a carbonate of soda or lotash. An accurate and economical apparatus for this purpose is proposed by Dr. Ure, as follows: a grahuated glass cylinder, having a discharge tube and capable of containing 10,000 grains of distilled water, is attached by a Hexible tube to a Florence thask containing a supersaturated solution of carbonate of soda or potash, in which is a test-tube containing a sufficient proportion of acid by weight to evolve carbonic acid gas equal in volume to the contents of the cylinder. Bicarbonate of soda is preferred, as one equivalent of any acid disengages tron it two equivalents of carbonie acit gas, and the quantities of various acids required to evolve a volume of gas equal to 10,000 grains of distilled watel are as follows:-

Anhydrous sulphuric acid,	16.80	grains.
Oil of vitriol,	20.58	"
Auhydrous nitric acid,	22.67	"
" hydrochloric acil,	15.33	"
" acetic acid,	21.42	"
Crystallized citrie acid,	80.64	"
" tartaric acid,	63.00	"

By tilting the flask the test-tube is upset and the aed brought in contact with the alkaline solution, liberating the carbonic acid gas, which passes over into the cylinder, displaciug a bulk of water equal to that of the gas evolved, the amount of which is shown by the graduations on the side of the cylinder. This indieates the strength of the aeit. For example, if the water should be depressed to the mark 50 on the cylinder, it shows that the sample contains but fifty per cent of pure acic. This apparatus is the converse of the alkalimeter, which see.

A-cis'cu-lis. A small mason's pick, with a flat face and pointed preen.

A-cock'bill. 1. The situation of the yards when they are topped up, at an angle with the deck.
2. The situation of an anchor when it hangs from the eat-head by the ring only.

A-cou'me-ter. An instrument inventel by Itard for measuring the degree or extent of hearing.

A-cous'tic In'stru-ments. Instruments or apparatus pertaining to the ears, the perception, measurement, or projection of sound.

1. Those appertaining to the ear are, -1. Prosthetic. 2. For erplorction. 3. For operation.
2. Of the prosillctic are the

Auricle.
Cane Trumpet.
Comet.
Conversntion Tube.
Ear' ; Artiticial.
Ear of Dionysius.
Ear Trumpet.
Sunifer:
Tympanum ; Artificial.
2. E.rploration.

Acommeter.
Bar speculum.
Otoscope.
3. Operation.

Ear Spoon.
Ear Syringe.
Eustachian Tube Instrument.
Meatus Kinife.
Organie Vibrator.
II. Instruments for making or conveying audible sounds.
(Not including those of a prosthetic nature cited in Class 1.)

Acoustic Telegraph.

Air $l^{\text {pipue. }}$
Alamms. (rarietics; see Alarms.)
Musical Instruments. (V'aricties, see Musical Instruments.)
Speaking Trumpet.
Speaking Tube.
Stean Whistle.
I1I. listruments for measuring the quality of soumd, the extent of hearing, the number of ribratious in a given time, etc.

Acoumeter.

Kalcidophone.
Mletronome.
Sirene.
Sonometer.
Tonometer.
IV. Auscultation Instruments.

Percussor.
Pleximeter.
Stethometer.
Stethoscopre.
(See the above in their alphabetical order.)
A-cous'tic Tel'e-graph. A telegraph making audible instead of visual signals.
In this sense - the most general - every sounder nay be included in the class, for it is capable of being, and is, used to conver information by an arrangement of repetitive blows and intervals.
The present common nse of the Morse instrument hrugs it within this category, the signals being read hy ear rather than by consulting the paper ribbon.

The speaking-tube may be considered another form, conducting a puff of air to the other end, where it operates a whistle, or the sound is recognizable as an audible expression.

Bright's (English Patent) is adapted to communicate phonetic signals. It consists of an axle haring a magnet and donble arm ; the magnet, when acted upon by electro-magnetic coils, causes the axle to viluate or deflect in one direction, thus sounding a bell by means of a hammer-head on one arm ; the subsequent reversal of the electric current causes a muffer on the other arm to stop the sound.
In a more perfect form, Bright's Acoustic Telegraph consists of is hammer in connection with a lever, which is acted upon by every polarization of a set of electro-magnets by the local current, and thereupon strikes a small bell. A pair of these bells are connected to each wire; one bell is struck by the passage of the positive, and the other of the negative current, the alphabet being readily formed by the ditference in their tones and the number of beats.
Another form of audible telegraph consists of a wire which is tapped and conducts the sound to a resmant diaphragni.
Wilson's Patents, 1866, refer to the production of a musical note by the action of a valve governed by the electro-magnetic eurrent. The sound is continuous or intermittent, and variable in tone or pitch, as may be required.

Ac'ro-ter. A small pedestal placed on a pediment and serving to support a statue

Ac-tin'o-graph. An instrmment for registering the variation of the chemical intensity of the sun's rays. As contrived by Mr. Hunt, it consists if a fixed cylinder on which is placed a prepred $\mathrm{p}^{\text {hoto- }}$ graphic paper corered by a revolring cylinder hasing a triangular opening divided by lars through which the direet rays of the sun pass; their effect upon the paper indicates their chensical intensity at ditlierent times.

Ac'ti-nom'e-ter. An instrmment for measuring the power of the sun's rays, inrented by Sir I. F. W. Herschel about 1825. A hollow cylinder of glass filled with a colored liquid is soldered to a themometer-tube blown into a ball at the upper end; being exposed alternately to the sun's rays and removed to the shade, a comparison of the differences of expansion of the liquid indicates the relative intensity of the solar radiation.

The discovery of the presence of another principle, associater with the light and heat derived from the sun, seems to have been made some years ago by Mr. P. Hunt in England.

Sir J. Herschel proposed to establish, as a unit for the intensity of solar heat, that value which woulh, in a minute of time, dissolve a thickness equal to one-millionth part of a metcr of a horizontal sheet of ice, when the sun's light falls vertically upon it. This he calls an actine, and from experiments made by him at the Cape of Good Hope he determined the ralue of a degree on the scale of one of his actinometers to be equivalent to 6.093 actines.
The actinometer is useful in determining the quantity of solar heat which is absorbed in passing through the different strata of the atmosphere, for which purpose the observations must be niade at stations differently elevated above the level of the earth or sea. It may also be emploved to determine the diminution of heat which takes place during eclipses of the sun.
See Munual of Scientific Inquiry, publi=hed by the English Board of Admiralty.

One form of actinometer is sometimes called a photometer. The former name indicates that its purpose is to determine the actinic power of the solar rays, while the latter name indicates a measurer of the intensity of the light.

One use of the actinometer is to aseertain the proper time for exposing a plate in the camera, or a sensitized paper in the printing-frane. The bor has a spring botton and a glass and wooden cover. On the under side of the glass are secured a series of thin strips of paper alranged in layers so that each layer projects over the edge of the strip above it, thus produeing a gradnated semi-transparent medium. The number of layers of any particular point is indicated by black figures on the lowest strips of paper. Upon this false bottom is spread a series of strips of paper rendered sensitive by saturating with alkaline chromate. The apparatus is then exposed to the light, and the strips of sensitive paper will be successively darkened according to the depth of over-lying paper. See Photometer.

Ac'tion. An exertion, applied in machinery to an effective motion ; as, -

A single action; illustrated in the ordinary liftpump, the atmospheric engine, etc.
A doulle action, in which the go and return motions are each made effective or are positively eflected by the motor: as the double-acting pump, throwing a stream at each course of the piston ; the orlinary high-pressure steam-engine, in which the piston is driven each way by the forec of stream.
(1/usic.) The movements or working prarts of a stringed or wind instrument, which is operated by
a key-hoard; sueh as an organ, piano-forte, meloleor., crte.
li includes the portion between the keys and th: snings, - the portion engated in strifining and culntriny.

The wetions are lonown, ly a peculiarity in the instrument, as gread, serpule, piccolo, single, doubls, ufright actions; or trom the inventors, as Brombnooil's, I'nl'amd's, Srasu's, Steinway's, ete. See l'IANO-FUliJL.

introduce it throngh the skin. The needles b are stocked in the piston B, whose stem l is slecred in the stem-sclew $c f$.

In Oriental rountries the needles are made of grolel or silver. In ('hina their mamutacture is regulated by law. They are of ditlerent sizes, some about fuur incles in length and having spipal hanthes to finditate their rotation after insertion. 'Jhey are driven in by a small, lead-luaded hammer with a leathern fice. Their use is very common in China ank Japan, and was commminated to Europe by the physician to the Duteh Embassy in the seventenntla century. It was reviven in France in 1810. The Fnglish needles are long, made of stecl, and have knobled heads to facilitate turning after introduction. The tumbency here, judging by the patents, is to have the needlas in chanters. 'The oucration is well jurformeal hy a tulanlar medle comnected with a syringe, hy which a Wrak solution of morblia is injevtid into a diseased tissue, proturing focal antesthesia.
 mic sirisige. For the reverse use of hol-
A is the key ; B, the hammer which falls back uphn the eheck, and a bar minl length of the stork, callol the hemmer-reit. C is an anljnstalile bar on winch is mountial the juck; wherely the hammer is actuzted. E ' is the rail to which the hammer is lingel.

Ac'u-punct'u-rator. Derivel fromacus (Lat.), a needhe. An accicular instrument for treating certain complaints, sum as healaehes, lethargies, ete. It is of great anticnity in the kast, and of late years it has been intrmined somewhat extensively into Europe and the Inited states. The essential apraratus employnd is simply a set of needles set in a handle, or letacheel ned des, which by a slight rotary movement are passed to the required depth beneath the tissues and alowed to 1 emain for a length of time varying fiom a few minutes to an hour.

In the sixternth centuny, aceorling to Jerome Cardan, the partitimers of this art thatelled from place to place, amb mhard thetir nemelles with a magmet or sulatance which they pretemend rendered their insertion painlas. Withme any such apmiation, however, the punctures are so minute that pain is not felt altur the tirst insertion of the needle.

The nerilles are sometimes nsed for conducting the galvanio current to parts at some distance beneath the smike of the skin, and are sometimes made hollow for the injection of a smlative into the tissues, fir the be in of newalgie allections. This latter monke of application was suggested by Ur. Alexamder Wool of lidinburgh, Scotiand. See Andemberm: Arbatatrs.

It is sumatimes callen a Dermonpathic
 Klee's Aer.
muncturator. or Lrritution Instrument, and is used to intronhere a vesicatory liguil heneath the erpidermis.

Finnminis instrument, March 18, 1862 , may lue considered a type of its class. Time piston containing the needles is adjustalle in its cylinder, which hohls the merlicinal preparation. The needles A broject throngh the diaphragm to the repuivel extent, and the ernispastic lipuid insinuates itself along with the needles into the pumetures.

Klee's acupumeturator, June 19, 1866, has a regulating nut !, to adjust the debth of puetration of the mealles which mojert through the diaphragn to conpacturator. cluet the liquid from the eylinder of and
low needles, see Thiocar.
A'cus. A nerelle. As, -
Acus Cermulutu: a trocar, or tubular needle for discharging lípuids.
Acus Inferpumforiu; a couching-needie used in opreations for cataract.

Acus ophthalmice; one used in operations for ophthalnia or catarart.

Acus Thiquetra: a trocar, or three-sided nevdle.
Actu-ten-ac'u-lum. A necile-holder or forceps: a metlle-hathe: a pmore-a iguille.
A-dapt'er. 1. A glass-tube open at both emes, and used to connect a ritort with its receiver.
2. A receiver with two opposite neeks, one of Which admits the neck of the retort while the other is joinel to another receiver. It is nseal in distillations to give more space to clastic vapors or to increase the lengeth of the neck of a retort. See Alcompl.
3. A tube to adapt or fit an accessory apparatus to the honly of the microscope, as the adigter' which carries the analyzer of the polazing alymatus, ete.
Ad'a-tis. A species of fine cotton cloth made in India.
Ad-den'dum. (rearing.) The difference between the recel and the geometrical ralius of a cireular cor-wherl; that is, hetween the radius of the pitch cirelr ant the outer circle which tonches the crests of the tineth.
Ad'dice. The obsolete name of an alze ; which
Add'ing Ma-chinet. An instrument or machine by which alding of munders is effected. See Abacts: Abimanmermi:
Ad-dress'ing Ma-chine'. A machine for addressing newspapers and magazines in which the same series of mames is repeated from time to time as the day of issue recurs. There are two molles. One is to print the addresses consecutively upon slips which are gummed on the back and fird intermittingly to the cutter which cuts off cach address. This is then pressed upon the lobled paper or pamphet, which is placed in position to receive its simetion. The uther mode is to sct up the type of "ach aldress in a form, and so arrange the forms that they are successively presented at a spot to which the enveloped papers are consecutively led.

Over wenty fatents have been granted in the United states on machines for this jurposi.
One of the carlier forms of this device is that de-
scribed in Moeseris patent, June 24, 1551. The different addresses are set up in columns in a galley, and are brought under the action of a stamp, being mored intermittingly by means of a slide; the aldresses are exposed scriation at a slit in a plate, allowing the paper or ohject to be printed to be pressed down upon the address beneath the slit of the plate, and shickding the paper from the adjoining lines. This series of addresses forms a mechanical record on which clanges may be made as ther become necessary. This patent was reiswind January 30,1566 , and was exteuded to the rear 157 -

Canpbell January 20, 1563. The addresses are set up in parallel columns, and are secured in a common chase. The machine is supported over the chase by end-pieces, and is autornatically adranced after each depression of the platen. Resting upon wars which spran the chase is a trarersing bed-piece with an upright, affording a pisotal attachment for a lever which alternately elerates and depresses a platen on the guide-rod. The elevation of the lever, liy means of the tomgle, actuates the wheel, which, mashing into a rack, adrances the platen to deliver another impression on an adranced point. Aiter exhansting all the addresses in a given columu, the bed-piece is moved laterally to bring the platen into correspondence with the next column. A paper is fed beneath the platen just. presions to the down stroke of the lever. The form is previonsly iuked so that each address is ready to deliver its impression when called on.

Tiffany and Solle, March E0, 1860. The type addresses are contained in a partitional galley or chase, which is moved by a paril dependent from the platen lever, as the latter is raised. A finion on the shaft, whose ratchet is thus actuated by the lever-parsl, is the means of forwarding the galler, a cog at a time, and each line of type as it comes to the wide pinion is separated from the rest br eleration so as to expose it at the slit in the plate above, in contact with the paper which is placed upon it below the de-

Tiff nny and Soule's didressing Machine.
scending platen. A slovet metal plate depresses the type after the impression is delivered.
socle, October 2,1560 . The forms of the addresses are arranged in columms in the chase F, and the plate moves intermittingly above it. The oscillating platen C is piroted to bearings D, on the plate A, which has a slit brought into correspondence with each address in turn. The plate is adrancel intermittingly, after each impression, hy the contact of the descending lever with an oblique end to one arm of the bell-crank which is piroted to the plate, the other end of the lever engaging a rack on the bed-plate.

Soule's didressing Machine.
Scuth, April 26, 1559. The hopper C contairs the docmments, which are discharged consecutively

N'huh's Addressing Machine.
by the novements of a sliling gate which is provided with a heel or step which drives the document before it from beneath the pile. The type addresses are fell down an inclined board II, and thence are forwarded along a level channel E, to the point beneath the platen P. On arrising at this point they are successively, raised br the action of a piston \dot{L}, which is raised by a cam on a horizoutal shaft beneath. The address is elerated to meet the descending platen P, and the paper introdnced between them receives the pressure from one and the impression from the other. The tyne is then forwarded by the trpe-shifter G, along the elevated cluannel g, from whence the addresses are remored in gangs. The notice-bell R is actuated by the trpe at intervals to annonnce that a certain galley is exhausted.

Dreis's A forscing linchine.

Divis, September 6, 1859. The blacks r on Which the addresses are cut or placed we attacherl in compact colmm, but indppernlently, to a lexible band which runs over two rollers $p t$, the lower one, t, being of small diameter so as to cause the outer edges of the blocks to separate at the lowest print of their revolution, as seeu in the figure. By this separation the lowest block for the time being is distinctly presented to the papre or envelope which is paced beneath it, and raised to the type by the treatle which raises the table u.

Bowhes's Addressing Mechine.
Bowlus, May 1, 1860 . The embless chain has type-boxes c, which have spring sides for clasping the forms, each of which constitutes an address. The forms are placed in a column in the feed-box A, are taken one at a time by the pockets in the feed-wheel B, and are trans-

Fig. 33. ferral to the type-boxes in

Doty's Addressing Maehine.
N, which rotates in the wash-tub 0 , and in contact with the type.

Dory, January 26, IS64. This machine is for cutting ofl athesses from a strip of paper previously printed and grmmed on the respective sides. Tlie strip is fetl from a spool O, and is drawn over the concave hed K by the oscillating arm F, whose finger i engages the paper. The gummenl sike of the paper leving molerneath is moistened by the wet sponge a, and passes between the stationary cutter E° and the descending cntter D, which is rlepressed by the spring plunger b, and so actuated by the spring d as to make a shear-cut upon the strip of parer as it removes the address. The feed levers F are pivoted to the frame, and actuated by projections fiom the descending plunger.

In Drck's machine, Octoher 4,1559 , the addresses are set nu in columms in a form, and the printed sheet is cut into strips, each of which has a column of aduresses. The reverse side is prasted, and the slip is fed forward one address at a lime; the descenting stamp-shear removes the arhlress and presses it uron the wrapper or the paperp, as the case may be. The pressure of the machine on the pile of wrappers operates the cutter and removes the label.

In Peck And Wrighr's machine, January 12, 1864, the woolen blocks upon which the adehesses are cut are bevclled upon one side, so that a series of then, when placel in a column galley, forms a continuous ratchet, of which each block is a separate tooth by which they are led forward, preserving the reruisite intervals.

In some cases the puads of the forms afford teeth by which the columin is mbaneed.

BanimigTuNs, June It, 1859. The cylinder has

Dirkis Addressing Machine.
grooved ribs for holding forms of type and presenting them consecutively at the proner point for delivering an impression.

Marshall, November 1, 1859. The "forms" constitute links of an endless chain, which unwints from one drum and winds on to another, being inked on their massage by one set of devices, and the consecutive links depressed by a stamp, on reaching a certain point of their progress at which is prusented the paper or envelope to be superscribed.

Nordyke, March 1, 1859. The envelopes on an enilless conveyer are fed beneath the forms which are feil upon one track and discharged upon another, being suljected at a given point to the action of a pressure-roller.

Carpenter, May 5, 1857. The forms are placed in pockets in the periphery of a wheel. The news-
paper being held above the form, the platen is depressed by a treadle and the impression obtained. On releasing the treadle the spring raises the platen, and the pawl turns the cylinder one tooth, bringing the next name in series beneath the platen.

Campbell, January 1ī, 1860, patented a machine for printing addresses on the margins of newspapers, simultaneously with the printing of the newspapers, by means of cells or loxes, containing the addresses set up in type and conreyed to the form by means of an endless apron haring an automatic, intermittent movement.

Batley, January 17, 1860. The type are arranged on slats, so connectel together as to be moved successively throngh the machine. The papers are fud into the machine by finger hars and spurs, and the addresses elerated in succession to make the impression.

Lord, September 7, 1858. The type forming the addresses are inserted in boxes secnred spiral y on the periphery of a revolving crlinder. The newspapers or enrelopes are successively pressed against the type in the boxes by a horizontally reciprocating platen whose action is in concert with the cylinder. The inking apparatus is caused to follow the spiral arrangement of the form, being gradually mored by a screw similar to a lathe-feed screw.

Harrilios machine (English) consists of a sliding groore of some length, in which is placed a galley containing as nany of the required directions as it will hold set np in type and locked up. A treadle mores it along, one notch at a time, under a parchment frisket, till a direction arrives just under the aperture cut in the frisket, the newspaper envelope is laid over it, and the treadle brings a platen down upon the newspaper.

The galley then passes along, notch by notch, till its directions are exhausted, when it is superseded by another.

Ad-he'sion Car. A car whose wheels are adapted to grasp a rail or to bear npon it in such a way as to have an adhesive or tractive power greater than that due merely to the weight of imposition.

Among the forms may he mentioned: -
The coygcd ruil. See Rallioad.
The center rail, with a horizontal pair of grippingwheels. See Failroad ; Certen Rail.

Another form is a wheel with an angularly grooved periphery, which bites the flanges of a douhle-headed rail.

In the early history of railroad engineering many derices, especially the cogged rail, were employed to give adhesion, or tractive grip upon the rail. These were eventually laid aside as more correct riews were attained. In climbing inclined planes, however, derices of this kind are yet found useful, and are noticel under the appropriate heads, cited above.

$$
\begin{aligned}
& \text { Coifficients of Adhesion of Locomstires per Ton upon the } \\
& \text { Driving-Wheels. } \\
& \text { Lbs. } \\
& \text { When the rails are rery dry, . . } 670 \\
& \text { When the rails are very wet, . } 600 \\
& \text { In misty weather, } 350 \\
& \text { In frost or snow, } 200
\end{aligned}
$$

In coupled engines the adhesion is due to the load upon all the wheels compled to the drivers.

The adhesion must exceed the traction of an engine upon the rails, otherwise the wheels will slip.

Ad'it. A drift, or nearly horizontal tunnel forming a road or drain in a mine, by which the ore is
extracted or water carried off. Its discharging end is at the natural snrface. A day-level, or sough.
The great aulit in Cornwall drains the waters from the Gwemap and Redruth mines, and is nearly thirty miles long. It discharges its waters iuto the sea, forty feet abore high-water mark.

Adits may be driven either along the course of a vein or bed or through an unproductive stratum of rock, and are frequently run in a direction transverse to the general bearings of the veins or lodes, mith a view to exploration; such au adit is termed a cross cut.

In the early working of a mine, the adit, from motives of economy, is made as short as practicable ; but as the operations progress it is often advisable to drive another at a lower level and of greater length, to avoid the difficulty of pmoping or lifting the water from a consilerable depth.

Ad-just'ing Screw. A set-screw of an instrument by which one part is moved upon another, either for focus, level, tension, or otherwise.

Ad-just'ing Tool. (Horology.) A tool by which the snail of the fusee is regulated so that its increase of diameter may exactly conntervail the decreased strength of the spring as it unwinds in the barrel. The object is to obtain an exactly equal power at all times upon the train.
Ad'mi-ral. A leading ship of a squadron. (From Sar. Emir, the Sea.)
"To be the mast
Of some grett ammiral." - Paradise Lost, B. L
A-do'be. Adobes, or unburnt bricks, are principally in vogue in thee plains of Shinar and Egypt, and in Chima and certain portions of North America iuhabited hy the Puebla Indians. If well burned, he clay forever loses its plasticity, and canuot again - reduced to a mortar. If it be merely drice, it will assume its original condition, as it came from the pug-mill. Such has lately (1871) been the experience of the Chinese in the vicinity of the Hoang-ho, whose houses of adobes are reduced to mul-heaps by the overflow of the river. Mr. Tomlinson, C. E., of London, has treated this matter more fully than any other author writing in our langquage, and he says: "The first action of heat is to drive off hygrometric water ; the clay then becomes dry, but is not chemically changed, it does not cease to he plastic. On contimuing to raise the heat, the chemically combined water is seprarated, and the clay undergoes a moleculat change which prevents it from taking ule water again excepit mechanically. With the loss of this chemically combined water clay ceases to be plastic."

In the directions which have been published for building with adobes, it is recommended that they should be guarded, by some material impervious to water, from absorbing moisture from the ground, and also that the roof should be made to project not less than two feet in order to shed the water and prevent its ruming down the walls. These directions seem to indicate the weak point, and the experiences derived from the dry plains of Asia and Africa, and the elevated arid regions of Northem Mexico and Lower California, do not apply so well to our more humid climate.

The mold for making alobes resembles the ordimary lrick-mold in having tour sides and having handles at the ends, but no top or bottom. It is much larger, however, and sometimes a pair are placed in a single frame. It is placed in position on the drying-ground, filled with clay, and when the top is smoothed by a striker, the mold is carefully raised, leaving the adole to dry for a few days, when it is turned to expose the other side. A few weeks of
favorable weather complete the drying. It is a cheap material and easily built up. It does not appear likely ever to become a fivorite mode of building in those prirts of the United States which are at present most thickly populated. It will not do to make too general a statement in a country whose climate varies between Alaska and Mexico.
Ad-vice'-boat. A fast-sailing vessel nsed for recannoitering. First used, say the authorities, in spying the operations of the French fleet in Brest, previons to the battle of La Hogne, 1692. Of course Themistoches and the consul Caius Duilius never had any light amphiproras to "overhanl" the Persims or the Carthaginians, "and when found make note on."

Adze. The adze is a very ancient tool, and has a curved blate whose edge is at right angles to the handle; differing from the a:ie, in which the blade is parallel to the handle. The forms and sizes ditfer

with the character of the work, and in some cases the bit is gongr-shaped in aldition to its enrve in the phane of its motion. It is swing in a path of about the sume curvature as the blade, the shonlderjoint beine the center of notion, and the entire arm and tool forming, as it were, an inflexible radius.

The above cut from Holtzapffel gives an idea

Fig. 36.

$A d z e$ of the presentation to their work of vanons wood-cutting tools. a a represent the axe or hatelaet, with two bevels; b, the broal-axe, or sin-gle-bevelled axe ; c, the adze ; d, the Indian angular-bitted adze ; e, the chisel ; f, the mode of presentation of a metaleutting tool, introduced for the sake of comparison.
Fig. 36 is the modern adze.
The adzes of ancient Egypt were of different forms ;

Fig. 37.

Egyptian Adze. (Thebes.)
the edges curved or stmight, the blade generally straight. -
The figutes in the accompanying cut are from a buiding in The bes; one is holding a carriage-pole or tongue, while the other is dressing it to shape with an adze.

In the other illustration the blate of the adze is shown contined by a band or straj to the helve. The

adzeappears often in the Egyptian rainting and sculpture, and was the prineipal tool in ancient Egypt for fashioniag articles of wood. Its blade was of bronze and the handle of tamarisk.
The lioman adze (ascice) is shown on many ancient monuments. Some have a ronnded edge, some a straight. It was then, as now, a ship-builder's tool.

The aciseutus han a similar romeded hearl, but was a stone-mason's tool, having a square face and pointed peen.

Among many of the West India Istanders adzes and axes of shell were used. When it was mocurable they were made of tlint ; this was worked into the shape of a tool and attached by sinews or cords to a helve, or fastened to a withe (see Axe), or, as in Figs. 39, 40, the cutting material of shell, flint, or obsidlian was lashed to a stock. Metal superseded the other materials in most parts of the worle, but many barbarons nations of America and Polynesia yet make their weapons of the material generally disearded at a very distant date in the Old World.
Fig. 39 represents three stone adzes of the Soath

Fig. 39.

South-Pacific Adzes.

Chalam Adze.

Pacific, and Fig. 40 a stone adze of the Chalam Indians, who occupy the shores of Puget Sound. It suggests the most ancient form of the tool, employed expecially for digging out the canoes from the solid log. These cances were common at a period before the discorery of iron in Europe, and their remains are there found associated with the implements of the stone and lironze ages.
The stone adze of the Tahitians, when risited by Captain Cuok, was similar to those represented in Fig. 39. Large ones for cutting down trees weighell from six to seven pounds; smaller ones, for carving, but a few ounces. All of them needed continual sharpening, for which purpose a stone was kept in readiness.
Adzes are known as
Flat, when the blade lias a straight edge ;
Rounding, when the edge is curved;
Notching, with a straight blade and straight edre.
$\not \approx$-o'Ti-an. A contrivance attached to pianos by which a wiud instrument may be introduced as an accessory at the pleasure of the performer, air being suppliel by a bellows worked by a petal.

正-o'li-an Harp. A species of musical in,trnment, the sounds of which are produced ly currents of air passing over its strings, which are commonly fifteen in number. Its principle may be familiarly

shown on a large scale by the action of the telegraph wires stretchid from one pole to another. On a windy day especially these will be found, by any one stationed near, to emit musical tones rising and falling in proportion to the strength of the wind, and more or less grave in proportion to the tension of the wires.
Were the number of wires increased, and their length and tension properly varied, these would constitute a perfect Eolian.
A common mode of construction is to make a hos of thin mood and ol suitable length, to set beneath a window-sash. It may be fire or six inehes in width and depth. At one end of the loa are pins equal in uumber to the strings employed, and at the other as nany pegs ; the strings, being made fast to the pins at one end, are tuned by turning the pegs at the other. The loos is open on the sides presented towards the room and to the exterior air, and the strings are sounded by the passage of the air throuch the box. Catgut is usually employed for the strings.

It is supposed to have been invented by John J. Schnell, musical-instrument maker to the Countess d'Artois. It was siggested by the vibration of the strings of a harp placed in a breezy situation. Exposed for sale in 1789 under the name of Ancmo Chorle.

Its use was revived by Kircher.
One of the Talmuds says that the harp of David sounded when the north-wind blew on it, and it has been suggested that lhe had an Eolian, as we understand it. The somnding of his happ by a gust ol' wind would be nothing extraorliuary if it stood near his north window, which was prolably open for air and ehosen for its coolness and slade in the climate of Judea. David wrote a gool deal in praise of shate and cool driuk.
正-o-li'na. (.ITusic.) A modification of the accordeon, by Wheatstnae, leading to the concertina.
\&t-ol'i-pile. Was iuvented or lirst described by Hero, of Alexandria. it was a rotary engine, in which steam issued trom the ends of bent arms and by reaction rotated the hollow shaft or splhere to which the arms were attachod. Hero's engine revolved in the Serapion about 150 B. C., and many aprlications for patents in the l'nited States and other countries have been muale for the same derice within a few years past. luventors seem loth to give up this simplest form of engine, but it is not probable that it will ever prove a useful
 or econonical one.
The above cut is copied from Hero's "Spiritalia," edited by Woaderoft, of London. See STEAMExgine.
Ely's Æolipile, 1867, is adapted for rotating a toy. It is loised with its hoiler on a central vertical pirot, and is connected by a band with the shaft on whose platform the toys are displayed.
A more serious attempt at applying the principle of the Eotipile is Bistu's Rotary Stean-Engine, May 28,1 sot. The hotlow arms rotate in closed cylinders, and their shafts are so connected as to be continuous, the pracking of the series being lurformed at one operation. The steam prasses in at the axis of each, and issules at a tangeut, driving the wheel by reaction.
It is attemptel to obtain the use of the stean in a number of suctessive clanibers, in apparent forgetfulness of the loss by back-pressure. The steam enters at the left, and, issuing from one pair of arms, escapes into the first chamher; from thence it passes to the second urioct, so called, and emerges into the second chamber, and so on. The huls' of the whocls are clutched together, so that their cumu-

Fig. 43.

lative effect is eventually utilized unon the main shaft, on which is the pinion. See Reaction Shem-Engive.
玉-ol'o-phon. The serapline ; the predecessor of the meluleon and parlor organ.
屏'o-lus. A small ventilating machine for renewind the air of apartments.

A er-a'tor. 1. An ajplaratus for moking aèrated waters. These consist simply of pure water impregmated either naturally or artificially with gases, and are used largely, when combined with vegetable acids and sugar, as refreshing refrigerating beverages in warm weather, and in medical practice during feverish emmlitions. The insipid taste of melted snow or rain-water is chiefly due to the small quantities of gases therein contained ; but when such water has come in contact with the atmosphere by trickline down a ledge of rocks, and rushing along a boiling, rapiol strean, or being dashed to and fro hy the wimts, it absorbs the gases from the air and is naturally aerrated. Ebullition dissipates the gases containel in spring-water, rendering it as flat and insipid to the taste as hefore it was aerated. The waters of many mineral-simings are aerated in a natural way by the gases arising from the decomposition of minerals washed together from their subterranean beds. The lirst attempt to prepare artificial aërated waters was male by M. Venel by dissolving in a pint of water two drachms of fossil alkali to which he added an equal quantity of muriatie acid. He used a vessel with a narrow neck to prevent the escape of gas, ilepositing the ingredients in such a manner that they would not communicate with each other until after the vessel was corked. In this case the gas evolvel in a vial nearly full and closely corke.] sulfirs such a degree of compression as to greatly promote its combination with the water, M. Vene] sulposerl that the real ingrediont to which it owerl these qualities was common air. Two memoirs of his experiments were read before the Royal Acalemy of Sciences in 1750. Dr. Priestley greatly improved upon the discoveriss made by Venel and others, amd in 1767 contrived an easy method of impreghating water with the principle then lenominated "fixeol air," by placing shallow pans of water near the surface of the fermenting vessels of a brewery, which in a few hons became pleasantly impregnated with the escapins gis. H: form upon experiment that the impregnation was aceelerated by pouring the water from cur vessel into another ; but it diel not oecur to him till the year 1772 that this conld be effecterd liy the gases disionged from deromporing chalk and other ealearems substanes confinel in an air-tight vessel. Hr. John North's 'ppuratus for inpregnat-
ing water with carbonic acid was invented in 1775. Betwern the years 1807 and 1852 thirty-one Euglish patconts were grantel for apparatus and methods for preparing aelrated water, and tifteen patents for vessels to hold stch waters, and for methods for bottling. The most common beverage is Curbonic Acid IV'uter, ginnerally spoken of as sodia-water, though it sethom contains any soda. It is prepared in large quantities by placing whitiog, chalk, or marble-dhast in an air-tight, lead-lined vessel with water and sulphurie acid. The sulphurie acid comhines with the lime to form sulphate of linse (plaster of Paris), and carbonic acid is evolved as gas. The latter is received in a reservoir, and is afterwarls forced into water agitated by machinery so that the latter alsorbs about five times its own volume of the gas. The water then constitutes a brisk sparkling liquil, with a pungeut but pleasant acidulons tiste. It may be preprared on a small scale, for fimily and medical purposes, hy using the apparatus known as the Gazogene or Scitzogenc.

The complete apparatus is shown in Fig. 45, and also the seprated prarts. The lower glole is filled with water by means of the long funcl, and then the tube is elosed hy the stopper, and the powders, consisting of hicarbonate of soda and tartaric acid, are then placed in the upper globe loy means of the small finmel. 'The stopper is then withdrawn, and the long tube is inserted and screwed closely

Portable Soda-Wrater Apparatus.
down. The apparatus is then inclinel so that the upper globe is about one third filled with water, then phaced ereet and allowed to stand two hours. If the serww stopeock at the top he oprened, the carbonated water will flow out readily into any vessel placed to receive it. Occasionally bisulphate of potash is usell instead of tartaric acid, to save the expense of the latter.
The devien's whieh are ordinarily ealleel Smbl-Water Apparahus, or Sodd-Frumbtains, are those used in drawing the lreverage and mingling it with the flavoring syrups, ete. See suda-Folintais.

In thu hottle for aèrated liquids, patented ly Warker, Mareh 18 , 1862 , the spont of the metallic fountain-head is lined with glass to kerep the lipuinl from contact with the metal. The shoulder on the top ellge of the neck, the altemate grooves, and the ridges on the neck are used to strengthen the attach-

Warker's Fottle for

Pratt's Actator.
ment of the metallic cap to which the fountain-lutad is screwed.

In Phart's apparatus for aërating liquils. September 10, 1867, the plunger has a coneavity whieh carries down the air ; the latter is expelled as the phunger reaclies the convex bottom, and is driven through the holes in the tulve and disseminated through the liquid in the onter vessel.

Meglode, August 14, 1866. The tube is introduced through the cork; the liquid enters holes at its lower end, and is discharged at the goose-neck, when the stoprcock is opened. The bottle may be charged by means of an auxiliary tube, also passing through the cork, and either remored or closed when the bottle is filled with the aërated liquil.

The liquid contents of these hottles
Fig. 48. may be aierated by means of a simple air-

Mrglons?s Suda-Water Botte. pump placed in ternporary connection with the tube when the eduction nozzle is removed; or chemicals may be introduced whose reaction liberates gas when they meet in solution. The aeration of sparkling champragne and Catawba is produced by adding a small amomnt of white sugar to the wine in bottling, the slight fermentation eliminating alcohol therefrom and liberating carbonic acid gas. The effervescing clrinks, such as ginger-beer, are also dependent for their cbullition upon the fermentation of the ingredients and the development of the same gas. Carbonic acil, in moderate quantities, has a very salutary eflect upon the stumach, while it is so fatal when breathed into the lungs. As the "alter damp," or "choke damp " of the miuer, it has often killed those who survived the explosion of the carbureted hyilrogen. At the Black Hole, near Calcutta, it killed one hundrel and twenty-four persons who were confined in a room eighteen feet square by order ol' Dowlah, Viceroy of Bengal, June 20, 1756 . As a gaseons result of the combustion of cirlhon, - as of charconl, for instance, - it has destrayed the lives of many who have gone to sleep in ill-rentilated rooms.

Machines are made on a large scale for charging soda-fonntains.

CANEHON's aerator has a gas-generato a mate of cast-iron, linell with sheet-lead to prevent the action of the sulphuric acill upon the iron. The ressel contains fifteen gallons, and is partially filled with water and whiting or other carbonate of lime. The agitator b is also corered with sheet-lead, and its stem passes through a stuffing-loox c, at the top of the ressel. The acid-holder c is formed of lea:l, and has a capacity of two gallons, and is partially filled with oil of vitriol. The acid is kept from rumning down into the generator by means of the conical jling f, which lits into a conica: seat in the learlen pipe 9%. This plug is attached to a rod, anl moves up and down through the stuffing-hox h, and is preventel from turning round hy means of a pin h, moving in a slit in the bitule l; the screw-nut is riveted lomsely into the top of the linille. The pipe a, which forms a communication between

the top of the acid-holder c ant the pipes in which the 1)log-rod moves, preserves an equiliurum of pressure, so as to prevent the acil from rising higher in the pipe s than the level of the avid in the acid-holder ; by which means the brass-work of the stulfing-lox is preserved from injury. To prevent any of the sulphuric acid from being carried over by the cflervescence, an intermediate vessel o, containing about three gallons, is lomaed of keal or lined with that metal. The intermediate vessel is tilld with water above the eduction-1 ipe from the gelimator a.

The impregnator x holds abont sixteen gallons, and is made of cast-iron lined with lead, or of tin-lined copler, and the agitator m is covered with lead or is made of woot. The impregnator is filled to the dotted line with water, to which, in making saline waters, the proper propertion of sestuiearbonate of soda, carbonate of magnesia, or other ingredients is achled.

For the ordinary soda-water no medicament is added. A pressure-gauge t is comnected by a leaden pipe.

The opreration is as follows:-
By turning the nut m the plug is raised, and avid is allowed to run into the generator a, when it acts upon the carbonate, disengaging the carlonic acid gas in quantity proportioned to the amume of acid admitted. The phog is again lowered when the ascertained proper amount has entered the generator. The gas passes by the intermediate vessel into the inpregnator r, where it is alsorhel by the water.

The aërated water is drawn off from the impregmator into glass lottles, and tightly corked; or is removel and placed in comnection with the ordinary soda-fountuin apparatus by which the lipuid is drawn into glasses.

Bakeweid's soda-water aplaratus (English) has the generator and impregnator in the same rissel, separated by a diaphragm, and connected lyy a pipe.

[^1]The vessel is on trumuions, and is oscillated so as to allow a perndulous stimer in the lower wessel to agitate the solution of the carhonate of lime. The gas pusses to the upper chamber, where it performs a circuitons conse in the water which absorbs it.

Apparatus for botlling at the Spring.
Other apraratus depents upor mechamical moans for injecting the gas into the water hy means of a pump or syringe.

Many other devices might be cited, but they contrin substantially the same parts under modified arrangements, -a generator with a means for adonitting the acitl, a conductor for the gas, andan impregnator in which the water is permeated by the gas evolved.

Thosas's appraratus for bottling mineral waters, Jume 18, 1867, is applied directly at the spring.

The water is drawn from a considerable depth throngh a pipe let down in the spring ; a perforated plate of elass is placed in the water below the mouth of the tube, and jets of gas from a reservoir are diseharged below the phate.
The object is to charge mineral-water with gas, or to add an extra supply of gas thereto.
2. A contrivance for fimigating grain in bulk, to destroy fungi and insects.

Fig. 51.

3. A car on an rlevated railway.

A-e'ri-al Rail'way. In attempt to govern the balloon or aërostat by guiding rails or wires stret $\cdot h e d$ between posts.

Fustase's Aêrial Railway, February 5, 1867, may be taken as a siumple.
The weight of the car' is comnterbataneed by an attached balloon. The cigar-siapued car is driven by steam, the deeply indented side-wherls travelling upon wires which rest upon brackets whose tlanges project into the circumicrential depressions in the wheels.
The wire-way sulported on posts has been adopted for carrying freight. Sie Whe-way.

A'e-ro-hy'dro-dy-nam'ic Wheel. A mode of transuitting power to great distances proposed hy a Belgian engineer, Mr. Calles. The plan of Mr. Calles is to make use of air moder a critain degree of compression as the velicle of the force to be transmitted, not ly accumulating the air thus employed in reservoirs, but by driving it, by the nueration of the original motor, directly into a tulve extending to the point of final application, where it is to be discharged beneath a wheel summerged in water, which it is to turn by its ascensional force. Sce An as a Dl faxs of randismiting Puwer.

A'er-om'e-ter. An instrument inventeal by Dr. MI. Hall, for awertaining the mean bulk of air or gases in pmeumatic experiments.

It consists of a bulb of glass of four and one haif eulic inches' capacity, blown at the chu of a long tube whose capacity is one cubic inch. This tube is inserted into another tube of nearly equal length, which is supported on a sole, and the first tube is sustained at any required height witlin the second by the pressure of a spring. Five euhic inches of atmospheric air, at a medium density and temperature, are introduced into the bulb and tube, of the latter of which it will occupy one halt. The other hall of this tube and part of the tube in whieln it is inserted are orcupied by the licpuid of the pheumatic trough. The point of the tube at which the air and liquid meet is marked by the figure 5 to denote five cubic inches. The upper and lower halyes of the tubes are each divided into five parts, representing tenths of a cubic inch. The external tube has a

Aer-o-phane'. (Fubric.) A light gauze or imi-

A'e-ro-steam En'gine. An engine in which the expransive power of combined heated air and steam is used in driving a piston.

The Jir Eagine followed closely in the wake of the Watt Steam-Engine.

Oliver Evans, during the latter portion of the last century, suggested the combination of the heated gases and air with the stean, as a motor. He called it a

A-e'ri-al Car. A car adipted for traveling in the air.
The name is somewhat loosely applied, and may mean one of three things : -

1. The basket or rereptacle of a hallonn.
2. A car whose weight is partially or entirely comuterbalancel by a balloon, ame which travels on wires by means of ilriven wheels. See next article.

Volcanic Exgine, which see.
Glazelrook used moistemel hot-air in his dir Engine, English Patent, 1797. See An ExGINF:
The air is moistened before reaching the cylinder in Pune's Engine, Thitud States latent, November 3n; 1558. In this case it is the cool refrigerated air that is moistened, and the amomen of moisture
would be very far below saturation when the air came to he heated.
The same may be said of Clazebrook's, 1707, with the additioual ruark that Glazebronk condensed the air in the preliminary process, before exposing it to moisture, so that the heat imejdent to its condensation would enable it to absorb more water, but still far less than would be sufficient to saturate it when it came to be heated by the furuace.

Fig. 59.

Bewnett, United States Patent, August 3,1838 , introduced, or at least adopted, two new fratures: 1. He eonduets the ineoming charge of air to the furnace, and makes it the means of maintaining eombustion under pressure ; 2 . The furnace is air-tight, and the volatile results pass through the steam-boiler, are washed, and pass, fully saturated, to the cylinder. See Ant Exalive
The stean and air might have been combined in any required relative ratio in this boiler, but the inventor cloes not appear to have supposed any specific proportion was necessary. a is a rertical cylinder constituting the slell of the boiler, $b b$ asmaller eylinder placed within the former and forning the furnace and ash-pit; this is entirely surrounded by water, c is a tube connected with a howing-machine, and having two branches d and e, the former of which admits a prortion of air above the fnel, and the latter a portion into the ash-pit below the fire-hars. Two throttle-valves, or dampers, $f f$, are provided to regulate the draft through each branch. g is a short cylindrical neck. through which the smoke and heated air pass into the steam-cham-
ber, where they mix with the steam, and with it pass to the working cylinders. The neek g is coverad with a valve h opening upward, the sides of which are turned down to cause the heated air to pass throngh the water, and thereby give out a portion of its heat to the latter : this also serves to Wash the leatell air and arest grit which wonld injure the cylinder aud piston. i, a safety-valve, k, a valve by which the pipe that convers the steam to the engine ean be closed when reguired; 1 , the pipe hy which the water is convesed to the boiler from the feed-pump: the end of this jiple enters the boiler and kelivers the water on to the top of the valve h; this is with a view to prevent the valve becowing excessively heated by the action of the fire. m is the fuel-spont by which coal is introdnced into the freplace ; on it is bolted the hopper n, laving at its upfer end a that stiding valve o, and another one p at its lower end; these valves slide in grooves, and are moved hy means of racks and pinions. Ther are ground to their seats so as to make air-tight joints, and eluring the whole time the engine is in operation the coal-hopper is kept closed by one or other of these valres. In kindling the fire the valves o and p are both opened, lighted kindling is drepped though the chute, and then a quantity of fuel. The valves are then closed, the blower started. When the engine is set to work, it forces air into the furnace both above and below the fuel at each stroke, which, having no vent to escape hut at the valre h, accumulates in the furnace until its pressure somewhat exceeds that of the steam upon the valve h, when it lifts the valve, and, rising up through the water, mixes with the steam, and passes along with it to the engines. t is a slider, by opening which the aslas from the fumace can be withdrawn: when this is requisite the dampers $f f$ must be first closed. r is the hlow-off coek, by which the water can be discharged from the boiler when recquired, and w is a hole covered ly a door for remoring any mud which may lare aceumulated. At x is a glass gage to show the height of the water in the boiler, and at y is a glass eyepiece through which the state of the fire can be assertained. z is the man-hole of the boiler.

Williag Must. Stoms's experiments in combined air and steam covered the period 1851-55, and perhaps later. His Clond Eugine, in which steam and air, in a condition resembling fog, were used to propel a piston, was exhibited at the fair of the American Institute, Newl York, in 1s55. The machine ajpuears to have failed to realize the expecta-

Tanger's Steam-Generator.
tions of the inventer. There was a lack of auljustnont somulnere, it may la: supposed, but the end is not yet.

In Washbursis Air-lleateramd Steam-Pancmator, United states l'atent, Sipetember 5, labis, the air is also introdued under firssure into the furnace, and then passed through a cleansing-tank lefore hoing added to the stan eword in the eoil of pipe which constitutes the stemm-generator. In this apparatus full saturation is obtained. Sie illustation in An Exiank.

Sthamac's Ilot Air and Steam Generator, Angust 9,1864 , has also the comhination of air and steme

Bhefonis's l'atent, June 6,1865 , may also be examinel in this comertion.

In Thwoents steam (icherator; Derember 4, 1866, the air is ingereted into the pine"s E and I ly means of a forve-pump, and after leing leatad whine passing throngh the convolutions of the pipes F and J, is forced into the loiler by nipples, as shown at K.

In T.nat's Aero-Stean Engine, 1867, the air is heated within the finmace, and is thence foreel throngh the pipe into the steam-chest, where it mingles with the steam coming through the pipe ; and the mixture of stean and hot air is by means of a slile-valve abmittel alternately above and below the piston in the ordinary way, so as to produce the usual reeciprocating motion.

Wansor's Engine (Enghish), 1869, is started by steam in the ordinary manner: A singleacting airpump, workel from the crank shaft, compresses air to a little more that the boilur pressure ; the air then insses through a long cirenit of straight and coilul pipe, which traverses the exhaust-pipe, makes several spinal coils in the chimey, then descends at one side of the fire-box, is exposed to the full fire, and tinally passes by a valved opening into the boiler at the hottom of the water-spaee.

Warsop's ohject is similar to that of several of his predecessors, to make stean assist the expansive force of air, and to avoid the diffienlties of lubrication incilent to the use of hot air alone. He attempts to obtain the maximum effect from mixed air and
stean by instituting a certain approved proportion lutwern the two. It is quite proballe that such a matio may be fonnel, and that it may seeme substantial eronnmienl alvantages.
The rin A, throngh whim the air is former into the builer ly the action of the air-pump, is of ion, and is $1 \frac{11}{16}$ inches in liameter outside, and $1 \frac{1}{4}$ inch hore. On leaving the pump the jipe is first led to the heater l, shown on the left of the engraving, wherem it is exposiel to the exhaust steam. The heater consists, as will tue seen, of a cast-iron eylindrical ressel placel in a rentical gosition and froviled with two brames - ond near the bottem and the other now the top-throngh which the exhanst steram respectively enters and escapes from the casing. At the top of the lewater is placell a small eylindrical tank 1 , exposed at the bottom and sides to the exhanst steam, aml perforated around the upher part of the sides, so that in the event of its recriving an excess of water the latter may owerflow and fall to the bottom of the heater: Through a stulting-box at the botton of the tank there passers a tube with a rose E at the lower ent, this tube being carried by a lloat F, which swims in the water at the bottom of the heater, as shown, and, lyy mans of a corl passing from the top of the tule, works a fock G, whith regulates the supply of water to the tank at the top of the heater.

The air-pipe A, alter leaving the heater just described, passes along the exhaust-pipe C to the chimnty Π, and, descending the latter spirally, as siown. passes into the tlue beneath the boiler. Fhere it is led harkward and forward, as shown in the plan, and after making several comvolutions in the smoke-hox, is led baek to the front of the boiler, where it conmmicates with a valve-hox, contaning an ordinary, light clack-valve. The ohjeet of this valve is to prevent water from entering the airpipe when the engine is stoppeal. From the valvebox a pipe is lel down within the boiler to the bottom of the latter, this pipe being perforated at intervals on the urper sile. The perforations are flaced closer together at the firther enel of the pipe than they are at the eud at which the air eu. ters, and by this means an cepuable distribution of the air at the liftercut parts of the boiler is insured.

The lengtlis of the various portions of the airpipe are as follows: In feedwater heater, 12 feet ; in exlanstpiju, 13 feet 6 inches; in chimney and tlues, inclutling eoils in smoke - box and mader hoiler, 58 feet; tutal, 83 leet 6 inches. The tontal extornal surfarce expoused by this jipe is thus ahout 36 ? square fert.

The principal dimensions of the
boiler are as follows: Length, 8 feet; diameter of shell, 3 feet 6 inches; thameter of fire-box the, 2 feet 2 inches; length of fire-hox and combustionchamber, 5 fert; and length of tubers, 3 feet. The tuhes are 41 in number, most of them beiug 25 inches, and some of them $\frac{25}{16}$ inehes dianeter. The total effective heating surtace exposed by the boiler is abont 130 sipure feet.

正'thi-ops Min'er-al. A conpound of sulplat and merviry, so cafled on account of its blackness. The black sulphuret of mercury, formed by triturating together mereury and sulphur mitil the two combine and form a black powder.

再'thri-o-scope. An instrunuent for measuring the degrees of cold arising from exposnre under different conditions of the sky. A highly polished metallic cul or concare minor is placed upon a pedestal uf convenient hight, and a differential thermometer is placed within it so that one of the bulbs of the thermometer shall he exactly in one focus of the mirror; the otlier bulb leing not in either focus is not affected by the pulsations, the effects of which on the cup are concentrated upen the first bulb, the air in which being suddenly contracted upon its exposure to a clear sky, the liguid in that branch of the stems is caused to rise. The cup is kept covered with a metallie plate, except at the moments of observation.
Affi-nage. The act of refining or making purer, as the attinage of metals.
Aft'er-rake. The part of the stern which overhangs the keel.
Aft'er-sail. (Vantical.) A sail whose center of effort is almilt the general center of eflourt of all the sails. Heal-sails are relatively before the said point, and by means of these lecad and after sails a ship may he maneurred.
Aft'er-tim'bers. (Shipluilding.) I. larlinting cant-frames, ahalt the fashion-pieces and below the wing-transom, steplem prartly on the dead-wood and partly on stepping-pieces bolted to the sides of the inner stern-post.
2. Those abalt the midship section.

Ag'a-ba'nee. (Fibric.) Cotton embroilered with silk, mate in Alepho.
Aghate. (lrinting.) 1. A size of type between Pearl and Noupareil ; callell luly in England.

> Pearl-
> Agate, or Ruby.
> Nonpareil.
2. The draw-plate of the gold-wire drawers ; so called becanse the drillat eye is an agate.
3. The pivotal cup of the compass-card.

Age'ing. (Pottry.) The storage of prepared clay, to allow it time to ferment and ripen luefore using. The slip, consisting of levigated clay and flint, is run in a thin solution thongh sieves and bronght to a creamy consistence. This is bileel down to give it more solidity, and is then stored away, sonetimes for years, being occasionally cut
out in chunks and slapped to expel air and develop the plasticity. Duriug the ancing process a slight fermentation occurs, carbonic a inf and sulphureted hydrogen are dismgaged, aml the mans is improveld iii texture and yuality. The clay is thus allowed to templer in cellars or under cover, sometimes for several years.
In Chima, a potter prepares the clay for the succeeding generation while working up that be"Iueathed to him by his aucestors.
(IVine and Liquors.) Devices for this purnose sulgipet the liquill to leat and asritation ; some of them using the combined action of heat, electricity, amd attrition. Sce Wrise-igeing Aprabatu's.
(Calico Printing.) The exposure of minted calicoes in a sufficiently moist and warm air to alow the colors to permeate and mature. In apparatus. was patented hy Thom, England, for applying air loaded with moisture of a given temperature to the printed falmie, wheh is then folded and allowed to rest for a few hours in that condition.
A-gist'ment. A like or embanknent to prevent the overffow of land abutting upon a stream or the sea.

Ag'i-ta'tor. A rotating beater or armend shaft for mixing and disturbing articles mechanically sns. pendeul in water, such as

The mulp in the stuff-chest of a paper-machine.
The mash in the mash-tul of a lirewery.
The mixture of starch, sugar, ete., anid water, in the wa hing process of starch-making.

Ag'ri-cult'ur-al Im'ple-ments. These are treated, as fully as the limits will permit, under their respective heals; it is necelless to repeat here the history of their progressive development or the order of their succession. See the followiug, under their resplective heals: -
Agricilutural ind Hy'sbandry Jmplements, etc.

Aberuncator.
Animal-clutel.
Animal-poke.
Apiary.
Atmosplzeric churn.
Auger: Earth-horing.
Aveler:
Averuncator.
Awner:
Barassi-dryer.
Bag-fisteller.
Bag-hohler.
Bay-tie.
Bale-tie.
Baling-press.
Band for haling.
Band for hinting grain.
Band-cutting machine.
Barking-tools.
Barley-chumper.
Parley-fork.
Parley-huller.
Bar-share plow.
Paskiet.
Buan-harvester.
Peran-mill.
Bee-fecder.
Pue-fumigrator.
Berdive.
Berhive, swarm-indicator Cattle-pump.
for
Bre-tax.
Belly-roll.
Bill.
Bill-hook.
Binder.

Cattle-leader.
linding attachuneut for harvesters.
Pinot.
Blate.
Bob-sled.
Bng-cutting plow.
Bott-hammer.
Bow: (1x
Braking-machine.
Branding-tool.
Breast-pilow.
Brier-scythe:
Broach.
1hroateast-sower.
Bruising-marthine.
Bunsh-puller.
Bugcy-culticator.
Butl-nose ding.
Pash-harrow.
Bush-scythe.
Butter-mokl.
lintacr-tongs.
Putter-worker.
('a!oritier.
Cane-harvester.
('ane-seraper.
Cane-stripper.
Cattle-feeder.

Cattle-stall.
Cattle-tie.
Caving-zake.
Chaff-cutter.
Clieese-cutter.
(1heese-hool.

Checse-knife.	Dmining-plow.	Gratss-harvester.	Laml-renderer.
Clreese-shiclf.	Drill. Barrow.	(irass-seed separator.	Lawn-mower.
Cheese-vat.	Drill. Grain.	Cromml auger.	Layroring inplements.
Chessel.	Jrill. Llarrow.	Crubber.	Leveler.
Chricken-raising appara-	1 ropper.	Cirubling-axe.	Lime-sjureader.
tus.	1)mпйing-reel.	Grubbins-hoe.	Manger.
Chopmess.	Dumsform.	Guard tingel.	Manuredrac.
Chopper.	Jung-look.	Hackling-machine.	Manure-drill. Liquid
Chunn.	Etging shears.	Hair-clipping shears.	Manure-fork.
Churn-lasher.	kge-hatching apparatus.	Hand-cultivator.	Manure-hook
Clum-1ower.	Expanding plow.	Hand-planter.	Mranur-loader.
Cider-mill.	Fanuing-mill.	Harle.	Manure-spreader.
Cilder-press.	Feerl-bag.	Harrow.	Marking-plow.
Clevis.	Feel-cutter.	Harvester rake.	Mattock.
Clod-ensher	Feel-rack.	Harvesting-1nacbinc.	Manl.
Clover-harvester	Fence.	Hasp.	M11k-can.
Clover-huller.	Fence-jack.	Hay-band machine.	Milk.cooler.
Clover-thasher.	Fence-post.	Hay-cutter.	Milking appratus.
Clutel for eatching ani-	Fence-post driver.	Hay-fork.	Milk-rack.
mals.	Fertilizer-sower.	Hay-knife.	Milk-shelf.
Cockle-seprator	Fildle.	Hay-loader.	Milk-strainer.
Colter.	Finger.	Hay-press.	Milk-vat.
Corn-coverer	Flail.	Hay-rack.	Mole-plow.
Corn-crib.	Flax-brake.	Hay-rake.	Molle bart.
Corn-cultivato	Flax-puller.	Hay-rikel and cocker.	Moth-trap.
Corn-cutter.	Flax-scutcher.	H:y-sprealcr.	Mower.
Corn-harp.	Flix-thrasher.	Hay-stacker.	Muck-fork.
Com-harrester.	Flax-wa her.	Hay-telker.	Muck-rake.
Corn-huller.	Flsece-folder.	Hay-unloader.	Muzzle.
Com-husker.	Flower-pot.	Heading-machine.	Nib.
Com-lusk splitter.	Fork.	Hedge-phanter.	Osier-peeler.
Corn-knife.	Fork. liorse hay-	Hedge-clipper.	Ox-shoe.
Corn-planter.	Fruit-dryer.	Hedge-shears.	Ox-yoke. (Sce Yoke.)
Complow.	Fruit-frame.	Hedying tools.	Paring-plow.
Corn-row marker.	Fruit-gatherer.	Hemp-brake.	Peanut-ligger.
Corn-sheller.	Fruit-ladier.	Hemp-harvester.	l'ea-rake.
Corn-shocking machine.	Fruit-picker.	Hen's-nest.	Peat-machine.
Corn-stalk eutter.	Fruit-preserving house.	Hink.	Peeling-iron.
Corn-stripping knife.	Fruit-press.	Hive.	Pickaxe.
Cotton-brush chopper.	Fumigator.	Hoe.	Picker. Cotton
Cotton-chopper.	Furrowing-plow.	Hoe. Horse.	Ticket.
Cotton-eultivator.	Gage wheel.	Hoe-plow.	Pitchfork.
Cotton-gin.	Gallows.	Hog-elevator.	Planter.
Cotton-picker.	Gang-eultivator.	Hog-look.	Plow (varieties; sce Plow).
Cotton-press.	Gang-plow.	Iog-nose-trimmer.	Plow-cleaner.
Cotton-seraper.	Garten lakder.	llog-ring.	Poke.
Cotton-seedl cleaner.	Giarlen shears.	ILog-scalding tub.	Portable fence.
Cotton-seel planter.	Garlen syringe.	Honey-strainer.	Post-auger.
Cotton-seed preparing.	Garlic-separator.	Hop-frame.	Post-driver.
Cotton-topper.	Gate.	Hopple.	Post-hole borer.
Cow-milker.	Gate-post.	Hop-pole.	Post-liole digger.
Craulle.	Gaveling attachment for	Hop-press.	Post-jack.
Cranherry-gatherer.	harvesters.	Horse hay-fork.	Post-puller.
Cream slice.	Grafting-chisel.	Horse-hoc.	Potato-digger.
Croom.	Grain-binder.	Horse-power.	Totato-hook.
Caltivator.	Grain-1ruiser.	Horse-rake.	Potato-planter.
Cultivator plow.	Grain-cleaner.	Horseshoe.	Potato-scoop.
Cureulio-trap.	Grain-conveyer.	Hot-bed frame.	Potato-sepratator.
Curl-breaker.	Grain-cradle.	ILumbug:	Poultry-leeder.
Curl-cutter.	Grain-drill.	Hummeling machine.	Powder-blower.
Cutter. Harvester	Grain-l ryer.	Hurdle.	Prairie-plow.
('utting-Jox.	Grain-fork.	Husker.	Proprating-box.
Diamond plow.	Grain-harvester.	Husking-peg.	Pruning-shears.
Diblle.	frain-rake	Incubator.	Pruning-tools.
Diblling-machine.	Grain-sacker.	Insect-exterminator.	Rack.
Vigger.	Grain-sereen.	Inseet trap.	Rake.
Diprcing-machine.	Grain-s parator.	Jumper.	Raker and loader.
Ditching-machinc.	Grain-shovel.	Kibbling-machine.	Rakc-larvester.
Ditching-plow.	Grain-thrasher.	Lactometer.	Rake. Horse hay.
Ditching-tools. Jouble flow.	(irain-wheel.	Lactoscope.	Feaper.
Double plow.	Graip.	Ladler.	Reaping-hook.
Wouble-mold-board plow.	Granary	Land-paring machine.	lieaping-machine.
Iouble shavel plow.	Crapery.	Lap-ring.	Reel. Harvester
Drag.	Grape-trellis.	Lard-entter.	lieversible plow:

Rice-cleaner.
Riddle.
Ridging-plow.
Ripule.
Roller. Land
Root-bruiser.
Root-cutter.
Root-ligger.
Root-grinder.
loot-washer.
Rotary cultivator.
Rotary digger.
Rotary harrow.
Rotary plow.
Rotary spader.
Rudter.
Sap-bucket.
Sap-bucket hook.
sap-spile.
Scaritier.
Scoop.
Scraper.
Scuffle-hoe.
Scuftler.
Scythe.
Seed-drill.
Scerting-machine.
Seeding-plow.
Seel-planter.
Seed-sower.
Separator.
Share.
Shears. Pruning
Shears. Sheep.
Sheep-dipping apparatus. Thatehing.
Sheen-foot trimmer. Thistle-digger.
Sheep-holder. Thrasher.
Sheep-rack.
Sheep-shearing machine.
-Sheep-shearing table.
Sheep-shears.
Sheep-washing apparatus. Treble-shorel plow.
Sheller. Corn
ShoreJ.
shorel plow.
Sickle.
Sile-hill plowr.
Single-shovel plow.
Skeleton plor.
skid.
Skim-colter plow.
skinning apparatus.
Slaughtering apparatus.
smoke-house.
Smut-machine.
Snath.
Snonter.
Snont-ring.
Snow-shorel.
Sod-cutter.
Sod-plow.
Sorghum-eraporator.
Sorghum-stripper.
Sower.
Spade.

Spading-machine.
spud.
stable-cleaner.
Stack-borer.
Stacker:
Stacking lerrick.
stack-stind.
Staddle.
Stalk-eutter.
Stalk-puller.
Stall.
Steam-cngine. Agricultural
Stean-plow.
Stock-feeder.
Stocks for refractory animals.
Stone-hoat.
Stone-gatherer.
Straddle-plow.
Straw-carrier.
Straw-cutter.
Stublle-turner.
Stump-extractor.
Subsoil plow.
Sugar-cane planter.
Sulky nlow.
Sward-cutter.
Swather.
Sweet-potato cultirator.
Swing-moldboard plow.
Swing plow.
Tedder.

Tobaceo-curing apparatus
Tormentor.
Track-clearer
Transplanter:
Tree-digger.
Tree-protector.
Tree-remover.
Tree-scraper.
Trellis.
Trowel.
Turf-cutter
Turnip-puller.
Turnwrest plow.
Vegetable-chopuer.
Vegetable-slicer.
Vegetable-washer.
Weeding-hoe.
Wheel-colter
Wheel-cultivator.
Wheel-plor.
Whitening-machine.
Willow-peeler.
Winnowing-machine.
Wool-packer.
Wool-packing tablc.
W ool-press.
Yoke.

Ag'ri-cult'ur-al Steam'-en'gine. A steamengine sprecifically adapted for use in thrashing and some other farm operations. Its principal peculiarity consists in compactness and prortability. See Portable Steam-Esgine.

Aich's Met'al. An alloy of copper, zinc, and iron, used for guns. Patented in Eugland, Febru-
ary 3, 1860, by Johann Aich, Imperial Arsenal, Venice. It is composed as follows : -

Copper,	\cdot	60.
Zine,		
lron,	\cdot	

It resembles the Kieir metal, English patent, December 10, 1779, which has, -
$\left.\begin{array}{llr}\text { Corper, } & . & 100 \\ \text { Zinc, } & . & 75 \\ \text { Iron, } & . & . \\ \hline\end{array}\right\}$ or, $\left\{\begin{array}{r}100 \\ 50 \\ 10\end{array}\right.$

Also the sterro-metal of Rosthom, Austria, 1861, which has, -
$\left.\begin{array}{llll}\text { Copper, } & & & 55.04 \\ \text { Tin, } & & - & 0.83 \\ \text { Zine, } & \cdot & & 42.36 \\ \text { lron, } & . & \cdot & 1.75\end{array}\right\}$ or, $\left\{\begin{array}{r}57.63 \\ 0.15 \\ 40.22 \\ 1.86\end{array}\right.$

Austrian nary brass has, -

Copper,	\cdot		60.
Zinc,	.	38.12	
Iron,	\cdot	.	1.8

Chinese Pack fong lias, -

Copper,	40.04
Zinc,	25.4
lron,	2.6
Nickel,	31.6

See Alloy.
Ai'guille. A needle. Among masons, a stoneboring toul. A priming-wire.

Ain-front'let. A piece of wood hollowed ont to fit the muzzle of a ginn, so as to make it level with the breeel, formerly in use among gumers. Wooden front-sights on a similar principle are still used on board ship in case of emergeney, as when an accident occurs to the proper metal sights.

Air and Steam En'gine. See A ̈̈ro-Stram Esgine.

Air Appliances and Machinery.

Acetifier.
Acoustic instruments.
Acoustic telegraph.
Eolus.
Aerator.
Aërial railway.
Aero - hydro - dynamic wheel.

Aërostat.

Aëro-steam-engine.
Air and steam engine.
Air as a means of transmitting power.
Air as a water-elerator. Air-bath.
Air bed and cushion.
Air-hlast.
Air-brick.
Air-carbureting.
Air-casing.
Air-chamber for pumps.
Air-compressing machine. Air-cooling apparatus.
Air-cushion for pipes.
Air-drain.
Air-dilll.
Air-engine. Air-escape.
Air-exhauster.
Air-filter.
Air-fountain.
Air-grating.
Air-gun.
Air-heater.
Air-holder:
Air-jacket.

Air-level.
Air-lock.
Air-machine.
Air-meter.
Airohydrogen blow-pipe.
Airometer.
Air-pipe.
Air-poise.
Air-pressure filter.
Air-pump.
Air-regulator
Air-scuttle.
Air-shaft.
Air-spring.
Air-stove.
Air-thermometer.
Air-trap.
Air-trunk.
Air-tube for conrerance.
Air-valve.
Air-vessel.
Anemograph.
Anemometer.
Anemoscope.
Aspirator.
Atmospheric alarm.
Atmospheric churn.
Atmosyheric engine.
Atmospheric governor.
Atmospheric hammer.
Atmospheric railway.
Atmospheric spring.
Atomizer.
Auricle.
Ralloon.
Bellows.

Blast.

Blast-machine.
Blast-nozzle.
Blowrr.
Blowing-machine.
Blowing-tube.
Blow-pipe.
Caloric engine.
Capitive billeon.
Carbonic-acill engine.
Carbureting-mathine.
Car-wntilator.
Cohl-hlast.
Compressed-air engine.
C'uping-pump.
('ylimen hlower.
Detonating tulue.
Dispatch-tube.
Dillinam-tube.
Disinfecting apparatus.
Far. Artiticial
Ear cornet.
Ear instruments.
Ea-trumper.
Becentric fan-Hower.
Ejuctor:
Endiometer.
Exhaust fan.
Fin.
Fan-blower.
Famer:
Faming-machinc.
Faming-mill.
Fan-ventilator:
Fire-extinguisher.
Plighter.
Flying-machine.
Foot-bellows.
Fumigator.
Gratuator.
Gunpowder engine.
llydrostatic bellows. luhater.
lusect exterminator.
Insutlator.
Leech. Artificial
Life-preserver.
Magdeburg hemispheres.
Mulguf.
Organ.
Pamelinte.
Pnemmatic drill.

Pnemmatic lever.
P'neumatic pile.
Prematic pump.
1'mumatic railway.
Pnemmatie spring.
Preumatic trough.
Puenmatic tube.
P'nermatic tubular disphatch.
Pnematic valve.
Purumatometer.
l'mikah.
Respirator.
Rotary blower.
Rotary fan.
sand-bellows.
Samb-blower.
Sirew ventilator.
Sirene.
Smoke-jack.
sonifer.
Sonometer.
Somind-board.
spraking-tube.
Speaking-trumpet.
Suirometer.
stencli-trap.
Thermometric ventilator.
Tonometer.
Thricellian vacnum.
Trompe.
Tuyre.
Vachum apparatus.
Vacuum-filter.
Vacnum-gage.
Vacuum-ban.
Vacuum-pump.
Vame.
Ventilating millstones.
Ventilator.
Water-bellows.
Wiad-ear.
Trind-chest.
Wrind-cutter.
Wind-fimate.
Wind-gage.
Windmill.
Windmill-propeller.
Wind-pump.
Winc-sail.
Wind-trunk.
Wind-wheel.

Air as a Means of transmitting Power.

 So far as our information extends, the lirst person to use compressed air as a moans of transmitting power was that ingenious Frenchman, Dr. l'apin of Blois, about A. D. 1700 . We shall have nceasion to refir to him in the History of the SteamEngine. He was the first to apply a piston in the steam-eylinder, and was the inventor of the digester, and the sterlyanl safety-valve, - the best and simplest effective form yet devised.Papin used a fall of water to compress air into a cylinder, and lad it thence by a pipe a distance of a mile. Haviur reached its destination, it was employed to drive a piston in a cylinder, the power heing intended to work a pump. The distance, the friction, and the leakage were too much for the Doctor, and the inversion of the process, making the primary phgim exhanst instead of condensing, had no better etliect. Thimking that it was the volum of air in the pip which mate the second eylinder maresponsive to the action of the primary cylinder,
he realuced the size of the pipe, lant still the fump-ing-marline would not move. In Anverghe and Westphalia the project was tried on an extensive seale, attempts leing made to drain mines loy these means.

About one hunderel years after the expreriment of the philosopher of Blois, a Welsh engineer used the power derived from a heary fall of water to work a blowing-cylinder from which air was conreyed to a blast-furnace a distaner of a mile and a hialf. Ther resulting blast was feehle.

Some forty years since, a Mr. Magne took ont an English patent for the application of compressed air to working-crames, hoisting-machines, and other machinery. The air was compressen ly an air-jump at a central location, and the air conducted by piples to the cranes and other machinery of a series of doeks ant warehouses.
The sime inventor also applied an air-exhaust to raising a tilt-hammer. See Atmospleme ILamMis.
The suljoined cut has a remarkably unpromising took, but must nct be condemuen because it resem-

Fig. 57.

Hes at first sight one attempit at the chimerical and impossible " prerpetual motion."
It is one mode of transmitting power by means of condensed air.
The following is from the Journal of the Society of German Engineers, and describes the apparatus represented in the cut, the invention of M . Calles of Belgium: -
"lt consists mainly of a whecl adapted with buekets similar to those in an orlinary water-wheel, and completely immersed in a tank filled with water. This wheel carries a toothed immer rim, which works a pinion adapted to the transmissionshaft.
"Inst transient risitors to the Paris Exposition, as they walked last this contrivance, hardly gave it a look, believing that it was the pinion that gave motion to the whel, and considetell it as some sort of stirring or washing machine; but the inverse was in reality the ease, as it was the immersed whed which gave motion to the finion by the direct action of slightly compressed air.
"The general disposition of parts will be readily understood by reference to the diagram:-
'The dimmeter of the wheel exhibitel was 9 feet ; its breadth $4 \frac{1}{2}$. It carrich 30 huckets, curvel in such a manner that 13 of them (figured to the left) always retained a certain quantity of air in their upper portion.
"The air was introluced under the bottom of the wheel, through a curved pipe. The air thus blown into the buckets had maturally a tendency to gain the surface of the water with a force equivalent to the weicht of displaced water, and this upward tenlency cansed the rotation of the wherl, and at the same time brought back the discharged buekets suceessix+ly before the oritice of the tuyere.
" The whee made six rerobations per minute, so that three bnckets were filled with air every seeond.
"The air rushed with a relicity of 32 metres 1 ur siecond throngh a pipe 0.095 metres in diametir. The quantity discharged was consequently 0.227 cubie metres per seconal, equivalent to 0.075 eubic metres for each bucket or cell. During every second of time, 13 buckets were thus piartly filled with air, their total capacity being 0.983 cubic metres. The same bulk of water being displaced, a constant power of approximately 983 kilogrammes, or 2,163 los., per second was obtained.
"The internal diancter of the wheel being 2.26 metres, its ammar surface 3.05 , and its wilth 1.5 , it is readily computed that the 30 buckets occupied a space of 4.585 cubic metres, and that each cell cubed 0.153 cubic metres, -a prortion of which space, epuivalent to one half, or to 0.075 , alone contained air.
"II' the application of force be supposell to have heen applied at one quarter of the depth of the whel under water as an average, then the speed of any point of its surface would have been 2.445% $6 \times u \div 60=0.75$ metres $=30$ inches.
" Multiplying this speed by the 983 kilogrammetres, we find the power transmitted per second to have amounted to 757 kilogrammetres. If we deduct herefrom 20 per cent for losses by friction, reaction of water, ete., there remain 600 kilagremmetres, or 260,000 foot-pounls, as available work-ing-power per minute, - equivalent to an 8 -horse power.
"The forcing of the air was effected hy means of a 9 -hors steam-engine, - the compression of the air being one quarter of an atinosphere. In the example exhibited, 83 per cent of the power of the engine wis thus transmitted to the wheel, and this through a pipe 510 feet long and presenting 14 elbows.
" The abov-described new method of transmission of motion may prove of rery great value in many situations where the application of belts and shaftius, puallel motions, such as are used in mines, and other similar contrivances, is impracticable. might also be applied with suceess to the driving of machinery in cities for the smaller branchess of industry, - the compressed air in such a case being conveyed througl mains and pipes hail below the surface of the streets in the same mamer as is at present practised for our water and gas supplies."

By reference to Wure Rope, several instances may be found where power is transmitterl to a distance much beyond what is possible with belting or shafting, the ordinary expedients. In one case, at Frankfort on the Main, the power is thas transmittel 3,200 feet. In a second case, at Scliathausen, in Switzerland, the power of a number of turhines, amounting in the aggregate to 6m-home power, is transnitter more than a mile, crossing the river Rhine to the place where the power is to be distributed.

Machinery in mines and tumels is fremuently driven hy the power of compressed air, which is condensed into a reservoir by steam or water power on the surface of the gromel, and comdured by ripes to the deep-seated spot where the drill or miningmachine is at work.
"At Blont Cenis the air-pipes most be as much as five miles in length, and the loss of pressure is not such as to impair the working of the drills; but 1 am without accurate information as to its extent. At Hoosac they are one and a hall miles long, and the loss is two pronds to the square inch. At Nespluehoning they are one third of a mile in lengtl, and there is no appreciable loss of pressure. In this rase the air is worked at about filly pounds per square inch; and the difference in pressure at the steam-valves, when the power is generated, and the air after it is compresserl, may he taken at about ten per cent when the hest compressors are nsed. It will then be seen that the loss of poter from the friction of the compussing machinery, and from the movment of air in the pipes, is not of a very scrious character, and, if the pipes are tight, the pressure is well maintained while the machinery is standing." - stecle.
". The compression of the air hy whieh the drills at the Hoasae Tonnel are driven in eflecterl at the east end of the tumuel by water-power fonr 20 -hore turhines being employed, which operate sixteen airpumps, each of $13 \frac{1}{2}$-inch hore and 20 -inch stroke.
"The air is compressed to 65 pounds to the square inch, or a little over four atmospheres, and conducted through an s-inels east-iron pipe to the drills at the tunnel heating, where branch pipes comnect several drill-cylinders with this 8 -inch pipe. With six of the ilrills at work and making 250 strukes per minute, the gage on the air-pipe at the heading of the tmanel shows a pressure of 63 pounds against 6.5 pounts at the pump-rooms, one mite and a half distant."
"The engineers of the Nont Cenis Tunnel have expressed themselves strongly in favor of the view that the plan is truly pronomical, and as their experience in the nse of this form of applying power has heen larger than any which has been misewhere enjoyed, their statements deserve consilemation. It the date of the report on the progress of the work in the tunnel during the year 1863, they were eugaged at a distance of nearly two thousami metres from their reservoirs of condensed air, and were driving nine howrs with a force of 21 , horse power each. The tube conveying the air to the perforators was two decimetres \{afally eight inches) in diameter. The air was under a pressure of six atmospheres, and its reloeity in the tuhe was nine slecimetres (three feet) per second, The transmission of the gower to this listance, and under these conditions, was attended with no sensible loss. The pressute was not percepitilly less at the working extremity of the tube when all the perforators were in oleration than when the machimery was entirely at rest.
"A series of experiments was instituted in 1837, by order of the Italian government, to detemine the resistance of tuhes to the flow of air through them. These experiments were made previously to the commencement of the work upon the tumnel, and while the feasibility of employing compressed air to furmish the motivi-power of the boring appitratus was considered still questionable. It was tle aim of the investigation not merely to ascertain the absolute loss of force oceurring in the transmission of air throngh tubes of certain particular dimensions, but to determine, if possible what are the
laws which govern the variations of resistapee, when the velocities of flow and the dametres of the tubes are vailich. From the results of the experiments wre deduced the three condusions following, n:1mely, -
"]. The resistance is directly as the length of the tube.
"II. It is directly as the square of the velocity of flow.
"III. It is inversely as the diameter of the tube." See Ricport of Jr. Barmurd, United States Commissioner ut the Paris Expusition.

This great work is happily completed. See Tusnel.

In the Ternilleux pump, water is made the means of transmitting power. See Fohe e-Pump.

The transmission of power by means of compressed air has now become an established fact, notwithstanding the elear decision which was rendered against it, from the supposml nature of the ease and the prinuiplss involved. Its use in the Hoosac and Mont Conis Tumels in driving the loring-machines is relimed to under Tuxibl. Its use in the Govan Colliery, Scothand, is referreal to moder Ah-Compessing Machines. Sie also Are-Enance, Comrressen. Its use as a liquid elevator is considered in the next article.
Air as a Water Elevator, Compressed. The first attemplt to raise water

Chemnitz Water-Elevator. by the pressure of a booly of compressed air, so lar as our present information extends, was that ly Dr. Papin, of Blois, France, about 1605 . His experiments were particularly directed to utilizing the power of a tall of water in compressing air which was conveyed a mile or mose to a eylimder at the mine, where it was intended to work a pump ly reciprocating a piston in the mamer of a steanengine. The experiment lailed, as has been alrenty stated (see AIr: As A Meanis uf transmitiong Power), but has since been successful in oprrating rock-tirills at lloosac Mountain, Mont Cenis, and many other places.

It does not alymar that Dr. Papin tried the direet pressure of a booly of air mon the water; in a namersimilar to the pressure of steam upon the surlace of the water in the so-celled steam-engines of Baptista Porta, 1600 : De Caus, 1620 ; Marynis of Woreester, 1655 ; Savery, 1698. SuStean-Exiline.

For many yeurs past - probably a century or more - water-elevators operating hy comlensed air have been used at the mines of Chemitz in 11 ungary. A high column of water is nsed to condmense a colum of air in a pipe, so that the power of the apparatus is proportioned to the vertical height of the full which is available. In the mountainous
distriets of Central Europe some remarkable falls are thus utilized, some of which are referred to under Turbine. In the Black Forest of Baden turlines are rumning with lalls of 72 and 354 feet, and having diameters of from 20 to 13 inches respectively:

In the figure, the vertieal elevation is out of all moportion small, but the principle involven is not afleeted thereby. It should be umberstond that the height of the fall above the surface of the ground should be as great as the depth below the surfare of the ground of the water to be clevated. If the fall he in excess of the lift, so much the butter.
u is the shaft of the mine, and c the surfiee of the earth : d is the penstock of the water at the top of the fall, amd k the pipe which Jeads the water to the air-tight loox f at the surface of the gromad. The closed box f communcates by an air-pipe with the air-tight box e which is submerged in the sump-hole at the bottom of the mine. The culuction waterpipe h has its lower end sulmerged in the water of the hox ϵ, and conducts the water to the surface c when the apparatus is in action. A cock l in the fall-pipe k is closed or opmed as the alternating to be described requires. The hox f lats also cocks at m and n, and the hox c an inlet valve y on its botton.
The operation is as follows:-
The cocks l and m being closed, the coek n is opened to allow the air to escape from box ε and the water to llow thereinto by the valve-way g. The cock a is then shut, the water-cock l opened, when the column oll water in the piper k will fill the chest f, expelling the air therein and driving it down the pipe i into the box c. expelling the water therefiom to a certain extent, that is, until the pressure of the condensed air in the box c is erpualled by the werght of the vertieal column in the discharger-pipe h_{1}; which should have a valve at its lower end opening upwardly. The cock l is now closed and the cork m opened, allowing the water to rum out of the hox f and the air from c to fill box f, while water enters the lower box hy valve-way a. The cock m being elosed and the cock l opened, the air is again forced from f into e, repeating the process just deseribed.
An early example of raising water by the tejeetion of a condensed hody of air is the patent of Up. मam, Jamary 6, 1809, of which the annexed cut is an illustratiou.

Pressure on the leellows injects a body of air into the chamber A in the well, and drives a body of water from thenee through the ednction-pipe which leats to tha discharge above the surface of the ground. When the bellows is raised, the valve at
the foot of the eduction-pipe closes aud water enters the chamber by the induction-valre. The repetition of the motion again ejects water, and so on. The required degree of pressure in the air-chamber is attained by means of an air-walse in the bellows; after that, if the level of the water remain the same, the same body of air is made the ageut, by its rertical pulsations, of ejeeting the water:

The use of compressed air in forcing liquids from deep wells or shafts has received a great accession from the oil enterprises in Western Pennsylvania and other places.

Fiz. 60.

Perhaps as many as fifty pratents have been granted for varions forms of Ejectolis, the different forms of which will be considered under that title. These are founded on the same principle as the Giffard injector, which is a favorite device for boiler supply. In the ejectors an annular strean of fluid under compression (air or steam) is emitted around an axial nozzle communicating with the liquid to be moved; or, conversely, a central stream of compressed flind to propel a film of liquid through an annular opening.
In the deen oil-wells, which consist of a vertical shaft of a few inches' diameter and several hundred feet Mowbray's Ejector. depth, it is advisable to have all the apparatus included within a single tube as in the two following cases:-

Mowblay, December 13, 1864. The current of compressed air from the engine abore descends the midule pipe B, and is emitted at the annular opening between the cup a and the bulb b on the central pipe. The area of the annular opening is adjustable, and the effect of the emission of the stream of compressed air is to draw up the liquid from the

Fig. 61.

Ancier and Crocker's Ejector.

Angier and rrocker's Ejector.
space C, and elevate it to the surace through the space intervening between the tubes D and A.
Axgier and Crocker, December 13, 1564, hare a derice for the same purpose. Fig. 61 shows a section of the wetl in which the seed-bag i (see Well-tebe Packing) is shown. Its purpose is to prevent the descent of the water from above to the bottom of the well whence the sumply of oil is drawn. The buthous deflector and eucireling enp are arranged for action as described in the preceding case. B is the air-descending, A the oil-ascending space. F is a perforated tubular foot for the well-tube.

Anger and Crocker, October 11, 1864. Fig. 62. The current of compressed air passes dorrn the tube $f c$, whose lower end is recurred upwardly and ends in a smalt orifice at which the air is
 emitted. As the air passes McEnight's Water-Kaiser. through the throat d into the pipe l, it tends to produce a partial racuum in its rear, and draws an annular tilm of water with it from the space A at the bottom of the well. The action is the same as in the former case, except that in this the moving fluid is a jet central to the film of water mored by it, and in the preceding cases the air and oil were annular arljacent films. The double set of pipes in the case under consideration and in the next following are not so conrenient in shafts of great denth and minimum diameter.

McKxight, November 1, 1864. Fig. 63. This is an ejector like the former, but allapted to a position where a lower chamber -4 is not fatal to its application. The air or steam pipe $C B$ recurses upwardly and penetrates the throat of the eduction-pipe D, which the water ascends. erly belong to Esectors, which are considered at

While these devices prop-

Pease's Oil-Ejector.
greater length umber that title, it will be useful to give a slight sketeh of the modes of utilizing the compressed air, the subject-matter of this article.

The ejectors described are direct-acting and the pussme continuons. It remains to cite one or two employing the pulsative or altemate action of air. This is accomplished by alternate pressure and exhanst, and is chanmed to be very effective.

Pense, March 23, 1865. The current of air is made to oscillate in the downcast tulue, acting like an elastic piston in its eflects umon the contents of the ehamber A^{\prime}, which is phaced low down in the well A. Fig. 64. The upper end of the pipe is connected altemately with two cylinders, in one of which is a body of compressed air, while in the other is a partial vacoum; the exhatust and pressure of the respective vesse's being athected by an air-pump. The rock-bar b is oscillated on its jivot, and acts altemately upon the valves, bringing the pipe " in commetion with the pressure and exhanst in turn, and givine the pmative movement to the column of air in the pipe: As the air rises thercin, the imluction-valve g, at the foot of the chamber, lifts and admits oil from the well to the chamber A^{\prime}, and as the column of air descends, the said valve closes and the oil is raised throngh the pipe m, the valve n rising to allow it to pilss to the upward discharge-pipee e. The seed-hag l acts as a packing between the exterior pipe and the wall of the well, and prevents access of water from fissures to the water, oil, or brine at the bottom of the well.

Wounwatis, May 30, 1865.

The piston reciprocates in the aircylinder, ami by aljustment of the valves $b b$, is the means of exhausting from the chamber A or of forcing air into the said chamber. As the air is withedrawn, the chamber is filled by the induc-tion-pipe, the valve u opening for that purpose. When the ait is compressed into the chamber, the water is cjected liy the pipe B. The action is not pulsative, as in the preceding case, hut is alternate by the operation of the same cylinter and piston, and is effected by changing the position of the cocks $b b$.

A Hydraulie Engine, so callerl, patented in England by Seidler some forty years since, may be elassed among the alternate-acting water-elevators operated by compressed air. The constronction will appear by reciting the series of opreations when it is in action. supposing the piston P to commence its upward stroke, the air in the eylinder C will be driven through the valve c in the upher head and by means of the pipe h into the submerged vessel k, forcing the water contained therein through the valve-way t und by means of the eduction-pipe o to the discharge-chates. dir will be supplied to the cylinder below the piston by the opening of the valve b.

When the piston descemls, the air will pass from the lonere to the upper side of it by means of the valve d, and the operation will be continned till the water is driven ont of k, when the twoway cock e will be turned to change the commmication; the air then passing by pipe g to the tank l.

The air which was forced into k is jermitted to reenter the cylinder thromuld the pipe u, as shown by the dotted lines in the cock ε, so that no air will be required to enter at the valve b except at the commencoment of the operation, or to make up for any air lost by leakage or discharged with the water. When the air is liberated from the tank k, it is again filled with water by the valve m, the valve t being shat by the pressure of water in the pipe 0 . While this is proceeding, the water is being disclarged from the tamk l hy the ralve-way u into the pilpe O, as before discribed in relation to the tank l. The cock c is turned by hand or by machinery, alter such a number of strokes as may be sullicient to empty a division of the tank.

Air'-bath. A therapentic apparatus for the application of air to the hody, in a jet or chamber, locally or generally, refrigerated or heated.
The compressed-air apratus is the reverse of the vacuum appliance, which proposes to increase the surface secretion and local "itulation by exhausting air; an operation analogous to dry cup. piny. See Depulatolt.
Ware's Compressed Air-bath is for subjecting a patient to an enveluping atmosphere of air moder pressure. The chamber A lias a non-conducting onter wall B, and a metallic inner wall, the intervening space being oecupiad by coils of pipe a, which may be stean-heated. A safety-valve in the floor limits the pressure. $I I$ is the door of entrance, willich shuts air-tight. The patient has command of the air and steam valves by which the chambrer is charged and the stean-eril heated. J^{\prime} is a seat, F a tie-rod, l an eduction water-pipe.

Ware's Compressed Air-Bath.
Air-bed and Air-cush'ion. These were known in the beginning of the eighteentla century, and were at first made of leather and afterward of airtight or Mackintosh eloth; at present they are made of vuleanized india-rubher. The bed is a sack in the form of a mattress, divided into a number of

Fig. 68.

Linden's Air-Bed. air-tight compartments, and laving a projection at one end forming a botster ; each compartment has a valve through which it is inflated by a bellows. Aircushions are merely small sacks filled with air through a tube at one comer or end, by means of an air-condenser or by expiration from the lungs : escape is prevented by a screw-stopcock. These articles are usefnl to travellers and inralits, being light and elastic, but are liable to be torn or punctured, and thus rendered worthless.

Linden, Oetober 7, 1862 , has adapted the elastic holl to be used as a part of the infintry equipment. The air-bed has an ontside hap of enamelled cloth or leather, cut longer and wider than the bed so as to form a coverlid for the preson who lies upon the inflated bed. Wben the bed is collapsed it can be folled in such a manner as to form a knapsack, and is provided with straps to enable it to be worn as such when on the march.

Hamiltos, July 16, 1867, ties the urper and lower surfaces of the bed, of air-proof material, by means of cords which are secured to button-hearled serews and cap-1uts, which clamp the material and make the joint air-tight.

Gilbert, February 11, 186s, stuffs the beds with elastic, hollow sharres of rubber. The same alevice was employed by a patentee in England, whose bed
is described in the English Cyclopredia, London, 1859. It was fornd to be too expensive for general use. An intlated air-bed is shown under BED; copied from a German work of A.D. 1511.

Air'-blast. See Blower.
Air'-brick. An irou box made of the size of a brick, and having a grated side. It is built into a wall, and forms a ventilating operning.

Air, Car'bu-ret-ing. Sce Carbureting Gas and Ahe.

Air'-cas'ing. A sheet-iron casing around the fumel on board a steam-vessel, to prevent the fransmission of hat to the deck.

Air'-cham'ber for Pumps. This was used by Dr. Fapin of France abont 1695, but had heen describerl nearly two thousand years previously by Hero in his "Spiritalia." It was attached by Perrault, in 1681, to the fire-engine (Pompe Portative) of Duperrier.

It is intended trequalize the flow of water from a reciprocatingpunip. The action of the pump being intermittent, the tendency is pulsative and the delivery in jerks. The body of air confined in the upper part of the chamber forms an elastic cushion against which the water impinges when lifted; when the pump-piston stops to comnence its return movement, the air again expands and continues the How of water during the interral of inaction of the piston; the valve falls as
 soon as water ceases to enter. the chamber, to prevent retum of the water by the indurtion- pipe, when the air expands.

Air'-com-press'ing Ma-chine'. A machine adaptel to condense air as a motor, or for ventilation in shafts and mines. For this purpose air is particmarly well adapted, because its exhanst in the mine shaft or tumel affords a direct means of ventilation by supply of vital air at the 1 oint where the work is umler way. The works at the Jont Cenis and Hoosac Tunnels are notable instances of the use of compressed air carried to a great distance. The aircompressing engine of Somneilleur at Bardonneche worked the rock-drills at the Italian end of the Mont Cenis Tumnel, and was operated by the displacement of air from a pipe ly a leavy cohmen of water oltained from the hills. See Compliessedahe Marmine; Tusisel. The escape of stem at the point of work is not so desirable as that of air for two reasons : the condensation of the former prevents its acting to praduce an outllow of air towards the month, as is produced by the escaling and expanding air ; and it only adils to the dampness and olscurity of the nsually wet shaft or dift, insteall of being a source of supply for breathing, from the healthy region of the exterior ail.
Many of the devices for merely assisting ventilation are no nore than howers (which see), but for use as a motor a more jositive condensation is required. By the law of Darintte, the elastic force of air varies in the proportion of its density ; the greater the pressure the snaller the rolume. Assuming the natmed pressure to be 15 promils to the square
inch, by reducing the volume to one half we shall have a pressure of 30 pounds to the square inch; to one quarter, 60 pounds ; to one tenth, 150 pounds ; to one fortieth, 600 pounds.
The stroke of a piston in its cylinder, therefore, if it reduce a bolly of air to one treentieth its original volume, will suliject it to a pressure of 300 ponnds to the square inch. The air is genemally allowed] to "scape loy a valve-way before the approaching piston, and is collected in a reservoir, whence it pasises to the machinery where its expansive force is to be applied. 'The circumstances of position and nse are so very varied that no general statement of its mode of application will apply. Sometimes it is stored in reservoirs at the point where it is used us a motor or a ventilator.

Fhak and Waterman, January 17 , 1865. The reservoirs for compressed air are located within the mine, and comected by comparatively large induc-tion-pipes with the air-foreing pump at the mouth of the mine. The olject is to exert a miform pressure at the working point, where compressed air is used as a motor, and to prevent a stoppage of the ventilation during a temporary stoppage of the com-pressing-engine at the month of the mine. The

Fist and Waterman's Compressed-Air Reservoir.
eduction-tubes by which the air is diseharged from the reservoir are of compratively small diameter, and are provided with stop-valves.

Hully, May 22, 1866. Water is urged by the pis-

Holly's Air-Compressing Pump. ton C and forced
 through the curved jipe into the reservoir L. As the piston recedes, the valve in the head of the air-eylinder T is opened, to supply the eylin. der with air. Water collecting in the reservoir is passed by a pipe to the cylimer T. Water between the pistom and the air permits a watertight instead of airtight packing to be used, the air retreating before the colnmm of water at each forward stroke of the piston and following it during its return stroke.

Raxson, August 8, 1865. The two eylinders are comected at hottom by a hollow bed-plate A, and bave a constant amount of water, which is made the intermediate between the piston in the eylinder B and the air which oconpies cylinder C. As the piston descemels, the colnm of water rises in cyhinder ('and ejects the air, which passes through the valve-way c into the clome D, the pressure closing the valve d. As the piston is raisel, the water retreats, the vaive c eloses, vaive d opens and admits
air by the dact E to the cylinder C'. The motion is repeated; the intervention of the water, as in the last-preceding case, obviating the neecessity for an airtight packing to the piston.

Wilielit, December 26, 1865. A pmup © r, of ordinary construetion, is euclosed within a large airchamber L, which has no bottom, but is suspended in an open vessel of water A, so that the water may rise high

Ransom's Air-Compressing Pump. in the chamber, and when driven back by the foree of the air may continue a pressure thereon and thus keep up a continuous hast. This may be better alapted for a blower, but, by arranging for a high vertical column of water, it may be applied to more jositive and highpressure purposes.

Patnic, April 18, 1865. This device is intended to be placed at the foot of a waterfall, the water acting in alternate compartments E, E, which are separated by a flexible diaplumgm connected to an adjusting-bar b, that operates the inlet and outlet watervalres e a of each chamber. When either compartment is emptied of the water contained therein.

an air-valre is opened and the air rushes in and fills the space vacated by the water, when, at the proper time, by the action of the floats F, and levers $f f^{\prime}$, acting upon the diaphragm, the inlet-valve is opucel, the water enters hy virtue of its gravity, and the air is compressed and forced out of that compartment to a suitahle reservoir, where it is reservel for use in any suitable engine.
The efficient force depends upon the height of the colum of water, and the consequent force with which the air was ajected by the water which displaced it.

Janeson, March 13, 1858. The air is compressed (or rarefied by the inversion of the process) by the successive action of pistons in cylinders commeeted

Patric's Air-Compressor.
by pipes, whose valves govern the direction of the flow. Each piston is connected to a crank on the common rotary-shaft beneath. As the air passes from one to the other, it receives an additional condensation, and is eventnally stored in the reservoir n, at the end of the series ; from thence it is drawn, as requived, to act as a motur, a blast, or for any other purpose for which it is adapted. The cylinders are enveloped by passages where a heater or re-
pressel to a certain tension. The amonnt of inerease in tension which the pmp is repuited to protuce need not exceed that at whieh it will work alvantageonsly. In the last reservoir in the series the air is further compressed by for ing water into the lower part thereof by means of another pump. The air is compressed more and more hy the successive operations, a single 1 momp being required. The promp is connected to such one of the rexervoirs as may be required, and discharges into another or others, the power requised to work the pump lowing only the difference between the pressure in the two.

Dennison, October 23, 1866. The pistons are attached to cranks set at 180° on the same shalt, and reciprocate in cylinders of varying diameters, the larger having an air induction-pipe, and diseharging into the snaller, which has an elluction-pipe. A water-jacket keeps the parts cool. By this means the air rectives a double condensation; the difference between the sectional areas of the cylinders is such that in earh a similar amount of power is ixerted. The induction and ednetion pipes of the single-acting cylinders are provided with valves which govern the direction of the air, opening and closing automatically. The pipe \vec{B} conducts water to the jackets aromul the cylinkers, to remove the heat evolved by the compression of the volume of帚the air: The pipe C removes the water. The abstraction of heat, of course, lessims the pressure. This is desirable for some purposes, not for others. Hot water or steam, acting in the reverse direction to a refrigerant, would he adapted to increase the effect of the air as an expansive motor. A1. ternate expansion anl contraction was the whole principle of the
frigerant may be placed to act upon the air. Air develops sensible heat as its volume is liminished by compression, and if it be used for cooling purposes, as in ice-making, its preliminary cooling brfore it is allowed to expand will make it more effective in absorbing sensible heat when freed.
Aritnue, July 25, 1865. An air-pump is combined with a series of air-vessels by means of pipes and stop-cocks, or valves, in such a manner that the air compressed into one air-vessel may be used to supply the pump when compressing air into one or more other air-vessels to a higher tension, the air entering the pump-barrel being thus already com-

Fig. 76.

Arthur's Air-Compressor.
M. I. Brunet, Gas-Engine Patent, Enrland, 1804.

Dennison's Air-Compressor

Heaterl carmonic-avid gas is preferable to air for develoning a targe fore in small stace. See fass-
 ExGNe; Ahe As a Wrateh-Flevatun.

Air'-cone. In marine engines; to recoive the gases which enter the hot-well from the air-p:amp, whene", after ascending, they eseape throngh a pipe at the top-Abmibib, sur rus.

Air'-cool'ing Ap pa-ra'tus. In this article will be considered the devices for cooling a current of air, for purposes of lualth and ventilation, and not those involved in producing aniesthesia by cold, the manufacture of ice, or the cooling of fruit and moat chambers. These will be considered umber their apropriate heads. The propose of the former two of these is to reduce the temperature bulow the freezing-point, and of the latter to relace it nearly to that point, whi'e for purposes of ventilation the aim is to reduce to a mollenate degree the passimg volume of air which eseapes and gives place to that which is following.
The circulation is not a necessary incident to icemaking on to the fruit-house, thongh in the latter there is no doubt that circulation of air is a valuble feature in retaining the purity of the atmosphere in the chamber.

Another large class of inventions in which an artificial blast of cold air is amployed is the becter and liquid coolers, which are of three kinds: thonse in which an artificial blast is driven throngh the arms of the stirrer to cool the contents of the mashtub; those in which the lipnil is passed throngh a religerating vessel and is cooled by contact therewith; those in which refrigerating effects are imparted to a ressel containing liguor on draft, to reduce its tendency to fermentation or to make it more palatable. See Liquid-coolen ; lee-m.nsrfacturing; Asesthetic Appaliates; Filete and Meat Chamber.
The East lurlian Tatta is a screen of finely woren bamboo in a fiame whieh fits into a window-operning. 1t is kept constantly moist ly trickling water, and thus cools the air as it enters the apmitment, while the screen also excludes insects.
The sume eflect is produced by an armagenent which keeps moist the mosquito-bar aronnd the heel.
The Alcaraza is a spanish lorm of the same device.

Somes's plan for ventilating ships, February 2 e, 1865. The design of the apmatns is to expose : current of air to contact with vessels or pipres tilled with water taken from a distance below the surface. The system of pipes is artanged at any convenient sulmerged point on the shiphs sides, and the air is forcerl in contact therewith by the motion of the vessel, or the action of the weves. The conled air is conducted by

Fig. 78.

Somes's Ship-Ventilator. pipes to cool and rentilat: the various apartments in the vensel, or the grain or other perishable ficight with which it may be loaded.
See also Tumers's Americin Pat. ENT, 1871. See Shir - venthatผ曰.

In Somrs's phan for ventilatins, cooling, and heatinge the C'apitol, the
air is introdnced into a vanlt so far beneath the surfiece as to be fire firom the ehanges of temperature incident to the srasons. The air is combeted hy a condhit, in which it is expused to pipers whost contonts have a warming or refigerating effect "pon the passing air. lumifying and moistming inthences are also bronght to bear unon the air.
ln his patent of October 15, 1567, vactum and compressing chambers are useal in combination with the pumps which create the enrent of air. Stomizing tulnes are added to reduce the trmperature and impart moisture, the disseminated liguid becoming vaporized and absorbing free caloric from the aif: Another phan is to force a boty of air thongh pipes which prass to the cold earth below the sultace, or to expose air to the contact of pipes filled with water which has been conducted to the said depth. It is suggested, in connection with this, that the air may be condensed in the cooler and become firther cooled as it expinnts.

Sultelis air-cooler, May 30, 1865. The case contains a series of cells so arrunged as to form a

Fig 79.

Slater's Air-cooling Apmaralus.
tortuons passacge. The chambers are filoel with ief, and the air is caused to circulate throngh the passare lyy menas of a fan.

In Manse's aplaatus for cooling and disinfecting air, December 4 , 1866 , a continuons apron of porons material is passed throngh the tank containing the disinfecting and cooling lignid, and thonce pases over rollers rotated by clock-work, its surface I ang (xplosed to a current of air, generated by a fim which is driwn by the samm notor as the rollers. Sep Air-filetere.

Air'-cusl2'ion for Pipes. The object is to aveit the jaw which occhm viluen a column of water in motion is suddenly anested. Vinious moms have been tried, prominent anong which are airechanbers. Air, however, is gradually almorbed low the w:itcr, and as a means of imprisoning it and stial al'owing it to contract when the jar combses, and afterwiuls to expand, it is enclosed in a hall of iudia-rubber. This is
shown in Bevan's pat(ut, March 14, 1865, and in some others. The ar-rangemental-

Du can's Ar-Cushion for Pipes. so allows the explansion of the water, in freezing, withont bursting the pipe. The sack is placed in an 'man gement of the pipe, and so caged as not to stop the flow. A montinmons twhe of the same material, and containing air, is artanem in the tube also.

Air'drain. (Building.) A eavity aromm the subterranean walls of a buidding, protected by at wall on the earth side, anl designol to prevent the ahsorntion of moisture by the wall.
Air'-arill. I ditll driven ly the elastic pressure
of condensin air. The construction usually resembles the reciprocating steam-engine, compressed air being substituted for the steam; the drill-stock is attached to the fintom-rod. It is usually termed the Peemaatic Drill, which see.

Air'-en'-gine. Formme tha: a century the attention of mechamiepans has bern directel to mans for making air and gases a a ailable in driving mabhinery. The inventions resulting from these efforts have led in different directions, or to difierent sets of specific means.

Anouros (France, 1699) had an atmospheric firewheel, or air-cngine, in which a hented column of air was mate to drive a wheel. A smoke-jack is a familiar instance of the same on a small scale. So are the toys now attached to store-pipes and representing incipiont men (monkers) sawing wool, pte.
$s m$ - hare attempted to make available the expinsion of air, previonsly mechanically condensel and stored in reservoirs. It was not understool, appurently, that the valuable effect woald only b, equal to the force employed in conkensing the air, minus some frietion, leakage, and oth $\cdot \mathrm{r}$ incidentals. This form settled clown into two chases of 1 m chines: 1. Thase which were loconotive in thew, character, as in Boupts's air-hriven curritge (English patent, 1823), where air wis conl onsed in tanks and admitted to the alternate enl; of a cylinder, which had a reciprosting piston, comest. I in the usual manner to the crank and drive-s'uft. The same device, substantially, was used hy Von Ruthen in 1543, at Putney, England, where he rin an airloconotire at the rate of ten or twelve miles an hour. See Cumplemsed-alf: Exgine. 2. Those in which a boly of air is con lensed into a reservoir, placell at the hottom of a shaft, or in a situation where the prime motor camot be set up. In this case the engine in the min: is ran by the air from the reservoir during a lull in the force of the prime motor. This was the snbject of a patent in Englanl. ts M:Dhlést, 1799. H \rightarrow condensel air to one fifteenth of its volum? anl storell it for this phrp)s: The air-veservoirs of Fisk (U. S. pitent, $185^{\circ 5}$) line a similar purpose. See Alti-compiamssing Machine.

Another form of air-engine has consistel of two chubers fille 1 with air or gas, and connectine ${ }^{2} 7$ pipes wit! the respective ends of a cylinder is which a pisto:n reciprocates as the hollies of air ia the sail cylimins are alternately expurned an 1 contracted. Streling's enzine (English patent, 152\%) was of this chameter, am! is state 1 by Chambers to have been uns?ccessful, owing to mechanical defec: and to "the minfores as.mmotinn of heat, - not fully extracted by the sieves or small presseges in the conl part of the regenerator, of which the external surface wis not salfibiently large to throw off the unrecor re:l heat when the engin was working with highly co mpressed air." Mr. Stirling was stated, ly the som: authority, to have been the orisinator (1313) of the regnerator wher-in the heat of the exhnusting air is mell to heat surfaws which communcate hout to the incoming air for the next chare . Tile distinetive form of apparatus was no doabt nes with Alt. Stirling, hut the min idea is me'? ollar, as it is fomel in the Englis's patent of 'ritz:lrook, 17.7. Stirling's regenerator is describ I as "consisting of a chamber or chamber, fille I wi h matallic sieves of wire-miluze, or minutely livite 1 metallis passages, thronghe which the air is ma le t pass on'roard from the cylimere, after hawi:n performel its work on the working-piston of the easime, lewing a great part of its hat in the siowes or auruor msoages, to be given out by them again
to the returning air, which is made to pass inurard through the same sieves or narrow passaghs, and by a slight accession of new heat fom the furnace, to profluce another efliective stroke of the piston. By repeating this process at each stroke of the engine, it is crident that a large portion of the heat that would otherwise go to waste will be usell many times over, and thins a smaller amount of new herat will requite to be supplied from the heating furmace of the engine, and a corresponding saring of furl ike effecterl."

Such is the descripion, but the statement is omen to oljections.

A further improrement of Messrs. Stirling was patenterl in England, in 1840.

In this cngine two strong air-tight vessels are connected with the opposite enils of a eylinder, in which a piston works in the usual mamer. Ahoat fimer tifths of the interior space in these vesscls is occupied by two similar air-vessels, or plungers, suspmaded to the opposite extremities of a hean, and "apalle of loing alternately moved up and down fin the extent of the remaining fifth. By the motion of t^{3} lesse i iterior ressels the air to le oprated upon is 1 oved from one cumb of the exterior resel to the 0 oher ; and as one emd is kept at a liyh temperature, and the other as rold as possible, when the air is hrought to the hot end it hecomes heated, and has is prensume increasel, whereas its leat and pressure are diminished when it is forced to the cold cmil. Sow, as the int rior ressils necessarily move in opmosite dinections, it follous that the pressure of the enclosed air in the one vessal is incrased, while that of the other is diminished; a diflerence of pressure is produced on opposite sides of the piston, which is made to move from one end of the cylinder to the other. The piston is comected with a HyWheel, and motion commmicatenl in the noral way.

In this comine the air recoivell beat at the temperature of 650° Fah., and discharged the lost heat at that of 1.50° Fah. The efliminney of a theoretically perfect engine with thow limits of tempreature would te 0.45 , and its consmmption of coal 0.73 of a Ih. per horse-puwer per hour. The actual consumprion of conl per horse-power per hour was ahont 2.2 Ils.s. heing there times the consmaption of a theoretially pertiet engine, and comesponding to ar acthal rithenery of 0.15 , or ons thind of the masi-
 therefore more economical than any existing do:b eaction stema-engine: The following is a comparison of the comsumpsion of hitmminots, (val of :I Mificd ytrality per horse-power ['er hour : -

> 1. For a theoretiealiy perfect engiue, wokiner tha hetween such limits of tringreature as is usual in a steanterngine
> 2. Forailouhle-actingsterna-thgine, inpelled to the itmost probalbe exent
> 2.50
> 3. For a well-constructell and poperly worked ortinary stean-enginn, on an a velage?
> 4.00

One fingme constructerl in this manner litul a chanke: 12 inches in diameter, 2 feet stroke, and is stated to have worked to 20 horserpower ; atother cugine with a cylinder 16 inches in diameter, 4 feet stru': worked up to t^{\prime} homserpowe. The latter, we are informent, did all the work of the Dumbere Fumitry Company for three yars: lising only ant fir $r l_{1}$ the amonnt of fuel previonsly consmued $1 y$ its predecessor, the steam-engine. It was then lail aside, owing to some ditficulty in renewing the heater. Porhaps it incured a henve expense in wear, tear, and the burning cort of rarts.

The construetion of the engine seems to have been essentially a duplication of the invention of Pabkinsos and Chosiey, English patent, $18: 27$.

In this engine the air-clamber is partly exposed, hy submergence in cold water, to external cold, and its mprer portion is heated by steam. An internal vessel moves up and slown in this elzamber, and in so doing tisplaces the air, alternately exposing it to the hot and cold influmees of the colil water and the bot steam, changing its temprature and exprasive condition. The fluetuations cause the reciprenation of a piston in a eylimin to whose ends the ain-ehamber is alternately commerted.

While treating of that form of air-engiue which depends unon the sariation in the themonnetrie connlition of a bolly or botles of air, whicle connect vith the opposite sides of the priston alternately, it may be well to mention the engine of Rouxdi, in which carbonic acid gas is stored in two chanbers, commanicating with the rospective ends of the eylinder and ofrerating the piston therein by thein thermometrice flactuations. Spe (ins-ENGiNE.

A thind form of the alpanatus embraces but few features, but these have lnem morlitied accorling to the convictions of imleprembent inventors to such an extont that they are represented by eighty pritints now before the witer.

These features may be describad as found in Glazebroor's English patent, 1797 ; a comdensed statement of which is as fullows : 1. A force-pump to compress the eool air ; 2 . a chamber in which the fluid is saturated with moistnre (this is not retained hy all the modern forms, but is by some) ; 3. A heater where its expansive force is increased ; 4. A eylimber in which its expansive force is utilized agrainst a piston ; 5. A mode of utilizing the heat of the ontgoing air, to heat the new charge of compressed cool air for another stroke. Ol this latter feature, more heresfter.

In Crlazebrook's, the piston of the working-eylinder and that of the punp-cylinter connect with the opposite ends of the working-beam. This inventor's statements of the prineiples of the operation of his machine are worthy of being gaoted at length, hut must be condensed for o'n mapuse and limits. His magine was of the differential ordir, and he states the measure of power to be the difleremoe of force exerem in the working and air-conupresingeylinders, of which the latter is much the smafler, aind thes extria foree in the former is dae to the acerssion of heat derivert from the furnace whemin the air is hate h alter comprassion in the smabler eylimber, amd brare it is aluitted to and allowed to expamd agranst the piston in the larger cylindar. Viewing the listory of the airengine for the seventy years succeenling Glazahook, we may at least say that he is a great anticipator.

Glazebrook's second patent, 1501, has a refricreratory, whose use is not, as in Rinvololpin's (Scotland, 1856), to cool the pmol wherein the air is condunsed (see ('usplemsen-air Evarne), but is used for depriving the escaping gas of its heat, in case a gas be used of so expronsive a character as to proelude its luing ejected into the atmosphere after nsing. This is probably the commencement of using the same air over and over again. He cite's earbonice acid and other giases and compounds. He only antedated by three years the engine of Bmand, which was inteuded to be used without any eseape of earbonic acid ; two volumes of which were made to fluctuate in tempreature alternately, and probluce a pulsation in the chamber placed between them, and in whiel the piston worked.

Lasley's air-rngine, English patent, 1819, may be simply noticed as in the same line of invention.

The air is compressed by mechanical force ; passed throngh heated tubes, expandel against a piston, and then escapes into the open air.

The first working-eylmulers of the Entesson were 168 inches in diameter, and the piston harl a stroke of 8 feet, the air being introduced at natural pressure into the heater. The inadequacy of the prower eleveloperd, and difficulties incident to the suale of the ntachinery induerl him to make it more compact by condensing the air merhanicaly, and reducing the size of the working-cylinders to 72 inchus diameter, and 6 feet stroke. This condensation lec did not claim as his own invention, as we understand; but it is claimed for Stirling at the date of his second pratent, 1827. This, however, is unt correct, for it is found in the specification of lilluy, Cinglish jatent, 1819, and in Glazebrook's, 1797. This patent of Glazehrook, in comection with his improvement of 1801 , may be consideled the most remarkabje one of the series, and has just beon mentioned. The action of Erissson gave a great impeths to the invention and building of airerngines ; examples will be citel pescontly. Air-engines on a small scale are extensivily used in driving printingpresses and such like work. It is belicved that they are especially suitable for positions wheme water is searce, and suggestions have heen mate for their use in prairie faming, without anything definite being reached in that direction.
The elaims put forwarl jor the Eriesson engine indieate that he expecterl to use the same jortion of heat in protueing mechanical power over and over arain. One who advocated the cause stated that "the basis of the caloric engine is that of returning the heat at each stroke of the piston, aml using it over and over aginu." "This result," he rematks, "Captain Friesson has attained by means of an alparatus which he styles a regencrator, and so profectly does it operate that the heat employed in first setting the engine in motion contimes to sustain it in full working-force, with no other renewal or addition than may be repuisite tu supply the ineonsiderable loss by radiation."
This would be the legitimate conclusion of the premises stated, and the reductio ad absurdum, me wond lave thonght, wonld have opened the ayes of the elamant. If the statement were true, the angine would become hotter and hotter, maless the dire was ahnost jut out when the engine commenced ymming, and the power would be used over açan to an extent which woula [mit to the blush the meehanical equivalent of a mit of heat in a theoretically perfect emgine; a consmmation unexpected, to say the least.

The eflece of the elam is, that the heat of the ontgoing air is perfectly withbrawn hy the regenerator and transfured to the chatge of inconing air on its way to the engine, and this withont the expenditure of power: The fallary of the statment, tor which Mr. Eriesson may not be responsible, is in supposing that the air could be passed into and through the regenmator in the manner proposed, without the expotion of power. The air, as it enters the regenelator, would expand with the inerement of hent aryuired therein, and a given volome would require the expenditure of a force to drive or draw it throngh egual to that which the heat thms absorbed, and expansive condition aequired, would be capable of exerting.

If no power were exerted to induct the air, nnder these cincumstances of expansion, only a part of thes charge required would pass into the chamber, and that whel reached the furnace would be already attemnated by expansion. Expansion presup-
poses the expenditure of power, and is produced by heat in this case ; the relation of heat to power, and conversely, must not he ignored. The interposition of the air-pump does not atfect the problem, for the attenuation of the air by heat will neecssitate a greatel power to condenst a body of air, of given normal volume, into the space where its expransive powers are to be exerted

The regremator was used by Stirling, 1816, and Glazebrook, 1797 , in airengines. The forms of the regenerators, however, ditler considembly: Stirling's is deseribed in this article, and Glazebrook's appears to have been like a modern air-heater in which the hot current heated pipes filled with the incoming air.

Mr. Eubank, spuaking of the Encesom regemerator, says: "The principle on whith this imention rests is the repeated use of the same culoric. In this engine, as in the steam-enginc, heat is the anmatiug principle; and in using over and orem again the same heat, he virtually uses over and over again the same power. He claims to have sneceeded in satying uphards of 90 per cent of the heat expument in rasing a loaded jiston, and in retaining aml compelling it to to the same work over again." Pasee in his Linited States pratent, November 30, 1858, moistens and refrigerates the inconing air so as to reluce its bulk, for the salie of getting a partially condensed volune for the supply of the air-pump.

A writer in the English Eucyelonædia states the Ericsson experiments as lollows: -
"In the summer of 1852 two of Ericsson"s caloric engines were at work in a factory at New lork; and as newspaper paragraphs frepuently appeared, presenting most favorahle accounts of the working of these engines, arrangements were plannel for buidding a ship of 1000 tons' burden, to be propelled by hot air instead of steam. It was antreipatel that the Atlantic might be crossed by stuch a ship) in fifteen days, at a vastly cheaper rate than by the super'b but costly Cumard steamers, thereby more than compensating for the quicker passage of the latter. The ship was 2.50 feet long, and had padde-whects 32 feet in diameter. On its first trialtrip, Jamary 4,1853 , the ship made twelve knots an hour with the wind, and answered her helm well; she only used six tons of fuel per day, and was pronounced a success by hur friends.
"On the second trial, the maximum speed attained was nine knots, - oltained, as asserted, at a cost only one sisth of that of steam. After this, unfavorable circumstances, one by one, came to light; and the ship mamed the 'Eriesson,' in honor of the inventor, failed to establish the validity of the primelpe inrolven. Influenced by the results of firther experiments made in $15 \overline{5}^{5}$, the indefatigable inventor took oat another patent in 15J5 for certain novelties in the apllaratus. In this new caloric mogine, the heated air, after performing its duty by raising the piston in the working-cylinder, is made to cir culate through a vessel containing a series of tubes: and the current of heated air, in passsing through this vessel or regenemator, is met by a emrent of cold air, circulating in an opposite direction through the series of tubes on its way to the working-evinder.
"Thus there is cold air within the tubes and hot air without, an interchauge takes place, or rather an equalization, by a transference of caloric from one to the other.
"The current of cold air, on its way to the workingcrlinder, after thus having leen partially heated by the transference of caloric, is made to prass throngh a series of tubes or ressels exposed to the fire of a furuace.
" The action of the engine itself is what is called
'differential,' the motive energy depending on the difference of areas in the working and suly'y eylinters. [And the superior energy of the chaige in the former due to its increment of heat derived from the furnace. - Eir.]
"The hater and regenerator are supplied with fresh compressed atmonpheric air at each stroke of the engint:
"In the year now moler notice [1855], the ohl caloric engrine was tak!n out of the 'Ericsson,' and ste:m-ngines sulntituted. Captan Eriesson would not admit, however, that this was an evidence of fialure in his plans; he still assertent the sounducse of the principle, and the economy in fuel.
"The first engine made was, he said, too cumbons for the available amount of power in the slip, and the losses by leakage and friction were greater than ham heen anticipated. A second was made ; lout the joints of the pipes of the heaters were not grool, and could not hear a greater pressure than such as would produce a speed of seven knots an hour. Sureharged or orerheated steam was used, because the hot air escapect, and then occurred a dislocation of the whole machinery by an explosion.
"This action led to the sulistitution of steamboilers; but even then Ericson wonld not almit that the principle of his caloric engine was proved to be unsound; seeing that the accident had arisen trom mechanical defects, and that the change consisted ouly in the use of steam-boilers instead of air-heaters." The English writer is lere in ornect, as she was sulplicd with steam-boilers rand chumes.
The "Ericsson" made a thip from New Yonk to Washington, and is said to have nsed an enomons quantity of tallow in lulnicating her marhinery. This difticulty is aroidel in sume of the smaller machines now built, by saturating the air with stram. Sire Aebro-stenm Exgine.

In a laper read by Al r. Rankine before the Britinh Association in Liver 1001 , selpmber, 185 f , is a succinct statement of the principles malerlying this sulyiect of invention ; from it we derive the follow-ing:-
"Heat acts as a source of mechanical jower by expanding bodies, and conversely, when mechanical power is expended in comprening lowlies, or in producing frition, heat is evolsed. This mutnal convertibility of heat and mechanical power is expressed in the following law: "That when mechanieal power is produceci hy the exprembitume of heat, a quantity of heat disapprars, bearing a fixel proportion to the power producell ; and comversely, that when heat is protuect by the expenliture of mechanial nower, the quantity of heat prontured hears a fixed proportion to the power exprathel. This law has hern established hiofly hy the expriments of Mr. Joale on the production of heat lye the triction of the particles of varions substances, solich, liquid, aml craseous, and he has aseretained the tixed proportion which heat and mechanieal gower bear to each other in eases of mutual cmiversion.
"The unit of heut - or so much heat its is sulficient to mise the temperature of one pound of water at ordinary temperatures by one dergec of Falneuheit's thomometer - requares for its prodnction, and proluces by its disippearance, or, in wher worls, is equivalent to, it2 Ins. of methameal power; that is, so much mechanical power fis is sufficient to lift a welyht of 1 lh . to a huright of $\widehat{1}=$ fect. This quantity is known as Joule's cquiruleut, or the dynamical sperific heat of water at ordinary tempratures. The dynmical spmeific heats of other substances may lie determined by direet experiment, or by ascertaining the ratio; to thit of
water. Thas, to heat 1 11. of atmosplueric air, natintaimel at a cosistant roloblee, by 1° Falnewhest, repuires the exproditure of 130.5 foot 11 s. of methanial pewer. This is the real dynamiat speritice luat of air: The upporme dymanieal sp cifie leat of 1 lh . of air, under tomsant presume, is, for 1° lomh., is 3.5 tout ths. ; the differeme, or 53.2 foot llis., being the meshanical jower exieted
 pressure notwithatanling the increase at its two proature by 1^{3}. The alp:arent specific heat of air at constant pressure exceeds the real suerific hait in the ratio of 3.41 : 1. All peatitices of hat maty thas lo expressed by equivalent in antitios of mechanical power. The leat repuirel to ainise I th. of water from the freezing to the boiliug point, and to examate it at the later tempreture is $1,117.5 \times 772=885,870$ font llis. : of which $180 \times 6=12=135,963$ foot lhs, is sensible heat, or that cmployed in mising the tempratine of the wa-
 foot lhis., is the latent leat of evapuation of 1 lh . water at 212° ľal., or the heat that disapyumes in overoning the mutual attraction of the particles of water, and the external pressure under which it evaporates. The merthanical equivalent of the available heat produced by 1 lb . of ordinary steam coal nay be taken on an average of that of the la resuirel to raise 7 I lus, of water from 50° to 211_{-}° Fah., and to evaluorate it at the latter temperatur", that is to say, in romel numbers, $6,000,000$ fiset bis. The total hout is much greater, lut there is a lass in the erases whinh ascemel the chimuri.
"Heat, heing convertille with mechanj al power, is convertible also with the ris mire of a horly in motion. The loritinh unit of heat, 1° Fah. in 11b. of water, is rynivalent to the vis view of a mass weighing I ll . H wing with a velocity of 23 fert per serond. bring the velocity acyuired in fialling through a himht of 7 Ti2 feet. A mass of water, of which coulh partices is in motion with this velocity, has its temprature elevated by 1^{3} of Fah. npui the extinetion of the motion, by the mutual friction of the partieles. Heat communieated to a sulnatance produces in gempral three kimp of eflects (omitting the chemis:al and cleetriea] phenomena): 1. An increase of temprature and expansive pressure. 2. A change of volume, nearly always an incrase. 3. A molerular change, as from the solid to the ligaik, or from the liguid or solid to the gaseous stats. The heat which prodnces the first kind of elferts is known as sonsible heat, and mokes the body hotter: In the second and thirit kinds of chliects lieat disapurars and beromes latent: but may he reprolucel hy reversing the change which causeil it to disapuear. ln evaporating 1 lb . of water at 212° a quantity of heat disappears equivalent to $-46,910$ loot lbs. The 1 ressure of the steam protheed is 2,116 . thes on the square foot. The volunte is probally about ebt cubic fert more than that of the liyuill water. Multiplying these two quantitios together, it appears that the heat exfremed in orereming external pressure is equivat lent to only $56,0 \mathrm{a} 5$ foot 11rs, leaving 690,825 font Hhes. for the meschanicel equivalent of the heat which
 pur:i lese of the water. Whereas the latent heat of copansion of a proment gas consists almost entirely of heat whith disamuars in overcoming the extemal firessire. Thus the liroluct of the volume in eubie tiect of 1 lb , of air, at ti50 0° Pah, ly its pressure in lus.
 air he "xpundel maler fressum to $\frac{1}{2}$ times its original rolunes and atill be maintained at the constant
temp rature of $6 . .0^{\circ}$ by being sumplinel whith bat tron an extermal somre, the work jerfonned hy it in c: panding will be $5!, 064 \times$ lyperlun uc logarith.1. of $1!=23,953$ foot los, aml this guantity will aloo
 the hat supplied, am? which disaphears during the expemen. It is this heat whelh disilpears in problecine intrase of volume under pressure, which is the wal viree of power in the proformane of a thar w-thyamic engine ; as it is a portion of this hasat hifh is actually conveltel into mechanical wink, whild the heat expurded in produring clevaliwn of temperature produces mernly a twhleney to the develophent of pawer. When an alastic suldstance has to perform 1arehanial work through the
 arors, which, takell together, constitute a single stroke of the engine.
" Process A. - The sul stance is raised to an elpratul temperature. This pocess may or maly not involve an altenation of volume.
" Froerss B. - The sulstanco, Deing natintaned at the wevated temperature, increases in volunte and popels a piston. During this frocess hat disinppars, ia:t an efuivalent quantity is suppliol from withent. so that the temperature fones not fall.
"Frore ss C. - The substane is rouled down to its orig' hal low temperature, with or without a change of rol:me.

- J meress D. - The subtance, luing manatament at its diphessed temperature, is compressed, ley the "turn of the piston, to its original colme. libring this p romess heat is problucel ; mal in under that it uay hut ervate the temperatire of the sulntan'r, and give rise to an incrasel pressure, impeding the return of the piston, it must be alistracted as rnickly as proluced, by some extomal means of 1. frigeration. The substance, being now brought lack to its original volume and temureature, is waly to malergo the eycle of 1 rocesses again ; or it may lo rejected, and a fresh portion of the subatance (mphoyed for the wat stroke. In the latter case the operation of exprelling the substanee may take the place of process D. In some eases the proeasses B, C^{\prime}, or D may be first in the order of time. buring the crobe of jroedsaes the womking substanno altermately increases and diminishes in volume in contact with a moving pistom. During the inervan: of volume the pressume of the sulstaner against the piston expends merhanical power in eomplesing the working substance. The increase of volume take's phace at a ligher tou.perature, and therefore at a higher 1 ressure, than the diminution of volume; conserpently, the mochanjeal power communitated to the piston exemels that taken away from it. The surplus is the power of the enoine, available for performing mechanical work. The efficieney of the thernmelymanic engine is the ratio which the availabh power bears to the mechanical "guivalent of the whole hat expenclet. If the lacat commmunioated to the working sulnstane contimly disajpuarent, the power probluced by that chene woud he the exact egnivalent of the loat expumbel, or 772 font 1 los for each unit of luat, amd its eflicieney woukd the reperented by unity. A berfect engine wonld produce pawer to the anount
 sumed ; and as a horse-power is 1,480 , (100 tont lus. per hour, the consumption of coal wonll he 0.33 lt . fre horsp-1wwer per hour. But of course thece is a waste of hatat ant power to be allowed for in every engine befor we ean arrive at its actual efficinere"

The efliciency of a theoretically perfert onquine, working between the same temperatures as Firiesson's,

AIf-ENGINE.

would be 0.404 , corresponding to a consmbition of a supporting combustion in the fumace, the volatile 0.82 lb . of coal per horse-porier per livur. The ac- portions $^{\text {palds }}$ off by the pipe D to the wash-box E, thal consumption was 1.57 lhs. of anthracite, or 2.8 lus. ot bituminous conl. "lhis is ahout 3.4 tinnes the constum,tion of a theoretically pertect engine, ant correspomes to an actinal efficiency of 0.118 , leing less than the maximun theretical efficieney in the ratio $0.2: 95$ to 1 . The waste of heat and power, therefore, in Ericsson's engine must have been very great, though it was economical of fuel as compared with stam-engines.

Many of the modern forms of aif-engines conduct the incoming charge of air to the furnace and make it the means of maintaining combustion. The volatile results, ahound ing in carbon and deprived more or tess pertectly of the oxygen, require washing to remove the dust and soot which would otherwise pass to the eylinder. Combustion is thus maintained umber pressure, a 'oodition considered by many to be very favorable to the ecomomical use of the fued.

Some of the air-emenes of late construction use a larger or smaller proportion of stam, partly as a motor and purtly as a lubricator of the / where the grit and soot are arrested. F is a wator-

Wasliburn's Air-Heater and Steam-Generatar.

Bennett's Air-Heater and Stram-Gencrator.
parts which are art to grint, working in the hot, dry air. See Amo-stean Exgise.

Bexnetr, Anghst 3, 1838. This is a combined air-heater and steam-gimprator, the combustion being mantaned amber pressure. The air is foreed in by a lump, and enters ahove and below the grates in quantities regulated by the dampers a, a, in the branches of the pipe B. Coal is introduceal through the charger C above, without allowing any notable amount of air to escape. 'the upper value c being withlrawn, a charge of coal is dropperl on to the lower valve, when the upper value is shat, and the withdrawal of the lower one allows the coal to fall into the furnace A. The volatile proutuets of combustion pass through the water-trap, 1 , and mingle with the steam generated in the jacket E. The calorie current is purgen of its grit and sont hy the water in the trap n, and the combined heated air, gases, and stian pass by the pile $F^{\prime \prime}$ to the engine. An equal pressure is mantained in the furnice and in the steam-gereratigg chamber.

Wasururx, September 5, 1865. The water passes hy pipe G to the coil B, where it is converted into steam which passes off ly pipe C. Air from a forcepump enters the ash-pit A by the pipe H, and after
 suply ${ }^{\text {pine }}$ and I a hand-hole for withdrawing accumulnted matter arrested in the bath. After being deprived ol impurities, the air passes by the pipe K, and joins the steam, the two passing hy pipe L to the engine. The pressure throughout the apparatus is equal, the air anl water being forced into it at a pressure equal to that of the ontgoing steam and air. The steam-generating tule B, heing exposed to equal pressure within and withont, may be of light material, and the hot-air curvent may vaporize a portion of the water in the cleanser E, which is also supplied under pressure. The strensth is in the onter walls.

StillafiN, Angnst 9, 1864. The airheating chamber is surounded by a steamgenerator, the stean from which is made the means, ly injretors, of introduring the supply of air below the grate of the furnace, and also at a higher point, where: it acts to assist the draft. For this purpuse the steam in the gen rator is maintained at a higher temperature than the air in the finman, and acts as a substitnte for the air-pump in affording a supply of air for combnstion of the fuel under pressure.

After the foregoing treatise on the early history of the air-engine and the consideration of the principles involved, the remainder of this article will he devoted to examp?es of the air-engines which have been introduced during the last twenty years. They are ahout eighty in mumber, and may be divided into five classes, in all of which the air is expanded by heat. (Aireugines into whose artion heat does no enter

Stillman's Hot-dir and stıam-Gtarrator.
as an effective agent are eonsidered under Com-magsed-alr Engine, which ser.)

1st. Those in whieli the air is compressel into a reservoir, emitted in graduated amounts, lurated, used eflectively against a piston in a eylimder, and then dischargel. This is the most numerons class. Sume of them pass their air-supply through the hirnace, and in others it is only licatest by the furnace. In the former the diseharge of th" air is a necessity, not so in the latter ; this brings us to the
30. Those in which the air or gas is not expended, lont the same air is caused to return to the heater and be again expruded and utilized. 'This is the suhbect of the English patent of Clazolnook, 1801, an I Lauberean, 1859; and the United States patent of the latter dated 1849.

3 ad. Those engines in whilh the air or gas is not expended, but oecupies two reservoirs commanicating with the cylinder on the respective sides of the piston: the air in said reservoir leing altemately heater and cooled to change its expansive fore and thus reciprocate the piston. This was the form of Brunel's engine, Bitish, 1804; and Stirling's, British, 18.27 ; and Peters's, 1862.

4th. Those engines in which water or steam is minghal with the air to moisten it and keep the worl.ing parts from abrasion ; in some cases being introduced in quantity to be positively co-nperative. These are Aerb-stram Engines, which see.
5th. Thase engines in which the power terived is trabsfermel to a fraly of water, to prevent buming the working prots and to obviate the necessity for air-tight joints.
It will be apparent that only a few representative exumples ean be shown within the limits assignable to this suhjeet, in which, as is commonly the case, some inventors have numerous pationts embracing details of construction, as the working of their engines developad defeets and elicited remedies.

The lirst elass is alter the similitude of the Glazebrook, 1797, aml Lilley, 1819.
Ericsson patented improwements in airengines in 1551, 1855, $1856,185 \mathrm{~s}$, and 1860 . The following allimeds an exumpte of one of his engines.
Eutcesux, np ceciiication patent of July 31, 1855, de-

Erirsson's Air-Entrine (135j).
seribes the invention substantially as follows (the illustration is relucel, from the official drawing, for thes work) : -
b is the working-piston ; c, the suply y-piston ; f, the exhaust-port; c, the induction-piort. The regenerator consists of tuloes k; m are the heatertubes. By means of a hand air-pump, applient to some part of the reguerator, a supply of atmonipheric air is introluced at ahout the pressure of the atmonphere, and then the engine is in a condition to bugin its oprepation. starting with the pistons of onf engine in the position represented in the lower view, Fig. 84, at the extremity of their outward stroke, as the crank s, noving in an upard timection is making that part of its circuit near the outer dead-point, and therefore imparting but little motion to the working-piston b, the supply-pistun c is carried lrom the working-piston and towarls the heal of the cylinder with a rapid motion ly the action of the cam on the roller of the arm g, the cam rotating in the direction aforestid, and its acting face being formed as represented, that the piston may be wradually started, rapidly accelditem, and, near the emb, graubally arrestem, and there retained in a state of rest as the extromity of the cam passes the roller. During this inwadi motion of the smplypiston, the working-piston will be opened by tho pressure of the atmosphere, to permit cold as to enter and fill that jart of the cylinter hetween the two pistons. So soon as the supply-piston stople, the exhanst-port closes, and the continued inward motion of the working piston begins to compress the cold air thus supplied, which of course clowes the self-acting valve d, through which the supply was admitted by atmosplieric pressure. Thus sup)pijerl, coll air contimues to be eomperssed ly the working-piston, until the end of its inwarl stroke; ancl, as the power for effecting this rompression is derived for the time being lion the other "ngine, it is important to olserve the condition of the comections. At the time the suphly-piston of one engine is startel, and the air is entering ly atmosplaric pressure, and when the anm o, on lock-shaft p, with which the working-piston is connceted by the rod n, is at its greatest leverage, the corresponding arm of the rock-shatt of the opposite rugine is at its shertest leverage, hut is movel inuments, and the sulp)-ply-air, ly reavon of beinf pradually compressed. inereasers the resistaner, the armo gralually shortens in leverases, anel the same am of the opposite mgine gradually, and in nearly the same ratio, inereases in leverage, on the principle of the bent lever ; thus apllying the power reguined to compress the sulp 1 yair to the lesest ail. vantage. It should be bame in mind, however, that the pown thas applied to cemprows the sup-ply-air is unt actmily expended. hut merely borrowed; lor it is so
much achled to the clastic foree of the air by which, when heated, the engine is impelled.
Just before the supply-piston begins the inward stroke, just described, the eductiou-valve y is opened, the induction-valve h having beeni previously closed so that the charge of the heated air, by which the previous stroke of the engine was eftected, is permitted to escape freely into the atmosphere, so that the power reguired to move the supply-piston inward is very slight, the air escaping freely to the atmosphere on one side, and entering by atmospheric pressure on the other, throagh the valve d; but as the heated air exhansts or escapes from the cylinder, it passes around and among the sories of small tubes h, of the regenerator, thus imparting its heat through the metal of the tuhes to the cold air contained inside of the tubes, which air is thas partially heated preparatory to being fually hated in passing through the heater-tubes. In this way much of the heat which wonld be otherwise wasted is saved. The supply of cold air having been introduced and compressed, the engine is propared to be impelled by the expansive force of the heated air. The eduction-valve !g, having been closed during the greater part of the inward motion of the working-piston, the inclaction-valve h is now opened, which almits the heatell air from the heater of the cylinter by which the supp! r-pistor is forced ontwards towards the working-piston. The form of the fall of the cam l is such as to canse the piston to be carried back with a rapid accelerated motion, until it comes nearly in contact with the working-piston; and, at first, in this outward motion of the supply-piston, the already conpressed supply-air butween the two pistons is still further compressed, not by the power of the engine, but by the elastic force of the heatend air, the supply-piston being as it were suspended between the heated air' from the heater on one sille and the cold air of the other, with the self-actives valve r (in the side of the eylinder) interysed between the two ; for it must be remombered that, as the heater and regenerator are in commanication, the air, whieh is a perfectly elastic Huid, will be under equal pressure in both, notwithstanding a portion is more highly heated than the other' ; and, as the suplly-air in the cylinder is simply separatel from the air in the regencrator by the interposed value r, in the side of the celinder, the stpll r-piston will be moved outwarls ly the heated air, until the supply-air is compresspd to an equal tension, and then the further motion of the supply-piston, effected by the cam l, as it approaches the workingpiston, will transler the suplp-air from the eylind r to the regenerator, through valve r. The onjy power expended by the engine in this transfer will be the shall amonnt required to move the sapplypiston, between two equal pressures, to give the slight preponderanes to the one mecessary to open the valve r, throngh which the transfer is maule. The moment the supply-piston passes this ralve and overtakes the working piston, the preponderance of juessure ceases, an the valve closes by gravity.

The specilication states: "I claim the mothod of supplying fresh air to the engine, compressing and transferring it to the regenerator and heater, or either, ly the action of the supply and working histuns within the one eylinder, operating on the prineiple and in the manner substantially as described, whereby the air is admitted, under atmospherie pressure, as the smplyy-pinton is moving from the working- piston, as the jrevions charge of heated air is exhausting ; so that the sail supply-piston moves in equilibrio, or nearly so, and by which
also the supply-air is finally compressed and then transferred to the regenerator and heater, or either, as the supply-piston moves between the supply-air and heated air, during the periods of the nearly stationary position of the working-piston.
"l also clam, in combination with the doublepiston moveluent of each cylinder, the methods of connecting the working-pistons of two single-acting engraes to constitute a dothble-acting engine, by mpans of two sets of vibratory arms attached to each other, and vibrating on a rommon center connected with the two working-pistons, and with the two tranks on opposite sides of the crank-shatt, the two suts of amms acting on the principle of the bentlever, and the crank-shaft being so located relatively to the cylinders and the centers of vibration of the arms, substantially as describect, that the workingpiston shall be at the end of its inward stroke at the time the crank is passing the dieal joint farthest from the point of connection of the connecting-rods with the vibrating-arm, as described, by which the power of that working-piston which is being impederl by the heated air is applied to the best adrantage to operate the other working-] inston elnring its retarn-stroke, and by which also the workingpistou remains nearly at rest during the time the supply-piston is making that part of its outward stroke, during which the partially compressed air is linally and fully compersed and transferred to the ragenerator and heater, or either, as deseribed."

Since the expriments on a large seale, a smaller size of the Eriesson engine has luen made efficient.
An Englishman, who was deputed to examine the engine, nade a pmblished report in which the following is fourd :-
"They all gave complete satisfaction and apparently ample prwer for the purposes to which they were applied; but without experiment it is impossible to say what ruantity of power they actually furnixh respectivelr, lut, judging hy the al pearance of things, they alf worked well and with sumprising regulatity, evidently developing a much larger manount of fower from a given puantity of coal than could be olitained from steam-engines, as at present constructed, of corresponding powers. And being sund that they may be placed in any lowation liom Which a chimney may be reachat, anid not repuiring water or skilled attendance, they are particularly desinatle as a driving power tor small manufacturers, who are therely enaliled to conduct their uprations in the business parts of the cities, by verupsing uly ure lofts.
"Nos attention is requires for them while running, beyond what is necensary to throw in a few coals occasionally, which is all that is requireed to k cep up a constant abd mifom motion, - which cunsilerations hecone of inmortance to those who require a small power only.

As to the alpreciation of this machine by the public, it may well be said that whereas it was a lew years ago looked upn as a mere mechanical curiasity, it is now regarded and acknowjedged as a reliable motive power:"

The "London Engineer " ahls: "That it is possille to eonstruct an air-engine which will bum less coal than an arerage stran-engine has been almost proved, bint it is wrong to argute from thas that the stemongine is 'used up.' Something more is wanted than coonony of thel. We need permanence, absence of wear and tear, compactness, simplicity, and safety. In every one of these points, except jerhaps the last, hot-air engines cannot bear a moment's comprison with the stean-engine. No large hot-air engines have ever been constructed and
worked with sueress. The mh?ing surfaces mast the friction of its stuffing-hox upou the holluw piston-
 impossibility, home friction is enomons. The dimensions of the working birts must he very great, or the temperathe of the air rery high. surfaces neally red hot cut into each other, and friction mans away with the power of the machine, the destruction of which is imminent rach day. Considerable inarrovements may be eflectel in lulpriation, hut experinese with the stean-engine conclusiwely grove that the limit of t amperature consistent wind Huactical working is rery shon passet. It is nut safe to use suprernented stean much hotter than 200 dertees, the cats-iro: of the eylinders and valve faces becoming disintegrated and spoiled at higher tempreatures. If air of no greater temprature is used, we have an ellective pressure of not mone than 7 lus., or thereabonts, per sithare inch. Harine

engines with cylingers of 10) inches in diancter minst be replated min for such at andition with oth ofs of 15 fect or 16 feet in dian tere. Then would ane hage air-pumps and regenematers. The machinuty wonld take up as much space as thilers and stean-chorines tugether ; and all this to save そer hajes a quatter of a jumind of conl per homse per how."
Sthlinas, June 2f, 1860. The air is compressen and worked in a single evlinder by a single piston. The air is compressed in the squace below the piston D, pisses by pije E to the heater, and thence by valve F to the effective space A ahove the piston. As the piston rives, air is drawn in hetwerest the hollow piston-renl $B^{\prime \prime}$ and the plungre O, combling the former, and is ajo., teal acsinn as the piston descernds. The in-duction-aireutersat pingene, as the piston rises, the anmala vathe lí leeng raised by
the pinton-rod b^{\prime}, and rises and fills therewith so
 ammalat space between it and the cylimber, for the prlpose of cooling the latter:

Rupxi, Inne ?, 15tis. The farmace is lind with hirebrick on all sides exaph the bottom. The air is con. densed in the prami alove and passes lown ly the jipe Z, being admitted alowe or below the grate in quantitios iropartioned to the reguirements of the furl. 'the air passes from the furmace d by an opering d, and is a haited, on the riomg of value a, to the sumee M, when it is rumderded etfective "gainst the piston E. The exhatistvalue b is raised to allow the descent of the piston,

Roper's Air-Lusine. the valves lecing antomatically worked hy the n:sual menns, and the cut-olf being adjustable as ratuired.

Balintis, February 14, lo6is. In this engine the air is driven out of the force-puns A by the descent of the jiston B, which is connerted ly 1 i :man C with the crank D. The air from the pram A passes, by passage's $I I$, to the tuyeres I aromid the furnace J, into which it issues by a series of openings on the inner faces of the anmula tuyeres. These air-passage rines are interchangeable with the movable rings which form the lining of the fanace. The air pasens from the pinary to a secomatry furnace, and thance ly pasames and valle-ways to the working-cylinder N, where it

Fig. 87.

Balduin's Air-Engine.
act. Muar the piston F to raise the walking veam E, and the latt.r comnects by pitman G with ti.e crathe 1%.

Tise disk-values are made of lexible material, a: al ar: gaided by marimal, verticu pins, which fom a cage to restain the dir... from la, coal movement, but jumit free, veltian liay. The air, after expandiag in the workingecimin, beromes smsibly edober and is exhastmil inte the atmonthere. is come tiug-rul ewentri a ly jumanded to the mainshaft opreates tor., which trip the inlet and exhaustvalve of the working ylinder:

Slemsi::, M, treh T, istiJ. The cylinder A, airpmons is, and finmace C^{\prime} ane on a phane, and the feedbux is owe the hatior. The preated portiens of the pinto. works in the upjer part of the cylinter, 1. nich is couled hy dir in the prassige h, lealithe tion
 passage presents the reius of air. The fommatanplate of the evgine has high sides m, and horms a watel-reservir in which stean is gencratel liy ra-
 the tor wi the reservoir, and the (ybinder is pros tected hy a dunh: Wall which prevints inmodera.e sunfiation of heat theretmon. Sir fiom the pum! circhates through hae holluw grate-bars. A pump is provided for injeciano combustible fiuid, to

Fig. SS

Mrsser's Air-Engine.

va're-rhest I. The raisisg of the velve :ub?:i's :is to the eflective slace bedore th, 1 i:tun, and i! w. by the tripling of the aljustalse cot-ail armane went ; this is effected late ot early in the struete, as may be requited.

The doors of the furnace and anlo-pit are secured by cranms and hollow Lalts to the walls, and are remorable to replenish the fuel, or for grinuling or packing to make an air-tight joint.

2 . The second class is as the prinriple of the Englinh fatents of Glazelnook, 1797°; and Parkinson and Cros!uy, 1-27.

Latbeneat, Apmil 10,1849 ; jatented in Eneland, 1847. This engine is the lirst which emborlies the peculiar features of a furmace in the air-heating chamber, and a hollow pilunger of ronresponding form.
The air is a termatrly dilated and contracted by abourbing and giving out caloric, the air when seprirated by heat forcing up a piston in a colinder, which is in turn fores down by the pressure of the atnunphate when the air is combensed by the alstraction of heat, tho air for the altemate dilatation and contraction being carried ower a luating and conlinit surface by the motion of a minger in a cylimer that commmicates with the cylin-
mix with the soind fucl in the fu:nate, a:n lall th. 1 volatile products of cominstion are piasien ti:rongh the working-cylinder, the indinction and eduction valves being workel in thie usinal mammer.
Wilcox, May lb, latio. This engine is sui)stantially on the principle of the migime of Sir Guorge Cayleys (abunt 1s:30). The firm is firl with air, under pressure of a pump, and the volatilu products of combustion are passel through the work-ing-rolinder

With (aeh descant of the piston air is drawn through the inhaling valve F, and fills the space thove the liston. On the aseent of the valve the air is hriven throngh the regmerator, and becomes partiaily heaterl by contact with the dncts carrying ont hat al exhanst-air. It thence passes hy pipe H to the firnace, a part entening above and a part Inlow the grate as regralated by the fancet-ralve. This valve is workel antumaticaliy by a themustatic arrangenemt, so that when the fire becomes unduly heatod the supply driven through. the furd is thecran d and combinstion thecked. The compressed and heated air thence passes, by pipe l, to the

Ber of the ingine. The plunger is male hollow, with its ix- + mat amd intermal surfaces mate of some good pomductor of e:loric separated by a non-cominetor, the sail plunger being adapted to move within a smmomaling conling-vessel amb so combined with a heatiug-vensel made of some good conductor of caloric, and leated ly the appliation of heat internathy, that the said hollow finger shall alternately cover and macorer it, and thus catuse the contamed
 dilate it, anil then over the coll surfaces to contract it, the said surromuding wossel beng in conmection with a crlimer to which is alippted a working-piston. The operation is as follows: brfore heat is applial, air is aumitted, muder the lressure of the atmasiblhere, through one of the Valves or cocks: fire is then mate in the furnace mutil the contained air is dilated; a prortion of which is then the valres or corks, which is then closed. The heat is then continued nutil the air has aequised sudficient clasticity to force ap the piston. This communicatesmotion to the crank-shaft, and toward
the end of the upward motion of the piston, the la this wity each stroke of the plunger causes the nir cam on the main shaft moves the phanger until it to pass over the lurated surfices to dilate it, and then covers the heater, and this motion of the plunger over the cold surfaces to condense it. The plunger
 also has the elliect to sluat in the heat of the heater, receiving heat therefrom in the mean time while its extemal surface is kept ruld by the surrounding ease. the non-ronturtor interposed betwern thempreventing the heat of the intello.is surtace from luotis transmittel to the extermal surfice.
This ugine has been simec monlified (pratent in Enoland, Jnly 22, 105.4) ly the introlurtion of a valve in the pas. sage betwren the heater and work-ing-cylinder, and at the eluction fiom thence into the pipes which rowthet the nir tak fiom the working-erlindep to the eool ent of the chamber.

This air-mgine is said to lue reming into great favor on the continn of Europe, and in the later
causes the air contained botween it to pass between its outer surface and the inner surface of the surrounding vessel, and to acrumulate at the back end of the plunger, so that, the heat being entirely shat in, the air is cooled by contart with the eold sarfice of the surroumbine case and outer surface of the plunger, the air thas contractell producing a partial vacmun wheh promits the pisto:l to be farced down ly the pressure of the atmosphere ahove. As the piston appoatches the end of it: downward stroke, the ean mores hack the plungry, which transfers the cold air from the oatsille to the inside, thus cansing it to pass in a thin filmover the surfare of the heater and the inner and heated surface of the plunger. It is thus again ililaten, that by its elasticity it may again force up the piston.

Fig. 91.

Lnub reau's Aır Eagine (1859).
form is rery compact. The operation of the engine is so similiar to the preceding that it does not call for a lengthy description. The jackot mound the reol cud of the air-elamber has a morrent of water, or some other meale of tefrigeration, so as to render it mone lrompt and (flective in its action on the air. The wowng-eylinder is comeented altematrly to the resinetive ends of the chamber bulow, by passalges whowe valves of"ti and close, according to the divection of the current.
SoHwal:Tz, becomber 20, 1864. This invention is thus described offerally: "Ithe ohject of this invention is to proluce an air-engine to work ujon the romprative system, and thus to use the same air orer and ovir. Its novelty consists, first, in the gemeralor, whith is emplosed of a strong flatsided wesid, with romuded neek at the top, whith is suspended over the tire in the furnace. From the lottom of this gementor frotrude downwarls siveral botthe-shaterel tuhes which are onen towerbls the inside space of the generator. Tiis gremerator is filled with al liguid Whose hoiling-point is very high, sily from 500° to 7100°. The air heated in the generator lasses through a piple to the eylinder, which constitutes ther sere ond novel fature of the ragine, and is (composed of threne distinct prirts, the central one of which is the workingeylimete the ent ones bebing filleal with small thlues, into which rods are fistened to the piston-neck for the pherpose of agitating the cutive hody of air during the process of expansion. The third
leature of norelty consists in passing the gas, after it has expended its force upon the piston, through the gomerator, which is constrncted rectangulaty, and has a dividing phate in its center. This vessel is fillul with horizontal tubes, which are closed at both ends, ant are partially filled with a fluid which is designed to extract the heat fon the air cr gas as it passes from the engine, and transmits it to the air which is passing to the opposite side of the piston."
3. The third class is on the prineiple of the Stirling engine, described in a preceding portion of this artiele.

Peters, November 18, 1862. The air is heatel
Fig. 92

Peters's Air Etm-In
in two ressels connectral with two opposite emls of the working-cylinder, and the invention consists in so operating the two plungers that the one in cither heating-vessel is stationary in its uppermost position, with the space below it full of heated air, while the workingpiston is naking the stroke from the end of the cylind r in connection with that vessel, the plumger in the other heating vessel mak: ing both its upwatel and downard stroke in the mean time, ant cansing the latter vessel to he filled with heated air to prollue the return stroke of the working-piston. The gland which is used to compress the packing in the stuf fing-hox is made with a deep eup in its upher part for the reception of oil, and around the upher edge of this cup is secured a leather collar in close contact with the plunger-roul, so as to prevent the escalue of air.
The engine of Napier and Raxinisf, patented in ! the United States, Septenber 19, 1854, and in England June 9,1553 , is of this class.
4. The fourth elass includes those whillh use steam to lubricate the parts; an example will he given, but it is not to be inferred that it is conimed to one. The immense expenditure of grease has induced the use, in many or perlapus most of the airengines, of moistrmed air as suggested hy Glazr. hrook 1797, Oliver Evans about the same time, and by Bennct 183 S .
BickFond, Jine 6, 1865. The air is compressed in the reservoir by an anmular piston; entering at the ralve D during the down stroke, and passing through the piston during the up stroke. It is moistened by passing through a hody of water B

Kritzer's Air-Engme.
jiston it will be filled with water, and as it rises will distribute the same upon the inside of the cylin ler.

Air'-en-gine Com-pressed'. Under the headings Air as a means uf transmitting Power, Compressed-atr Exgint, Aha as a Waten-eleVitor, reference has heen made to the use of comprussed air as a notor. The devices incident to the apllication of the air to ilrive machinery have usually been of a character similar to those of a steamAngine. A piston reciprocating in a cylinder by the impart of the air admitted to the sides alternately, the induction and eduction being governed by valres.

In the Govan Colliery, Scotland, the compressed air is made to drive a high-pressure engine at the
 at the Honste Tam the trills are driven liy comfu'siel air, and the satue is true of the tum lingmuchine used at Mont C'mis Tunnsl, lately wonpluted. Soe Tlewiel.

Air'-es-cape'. An air-frill whi lh allows air to ese.p." fro:n the" "plyer bend of a witer-pipe. It consits of a ball-ewk, which, in falling a rertain extent, "phes the ar-value, and closes when the water rises the law for which it is set.

Air'-ex-haust'er. An aio-trap, by whiclo collected air may esmap form water-mans, ett.

An air-pump, of vachum-fat, by which effet air is removed frpm at slaft, mine, mom, or ather ma...

A cencum ventilator in contradistanction to a premm. ventilator, which operates hy fine ing in air.

Air'-fil'ter. De. Stexnorse's air-filters were set np at the Minsion Hoasc, homdon, in 1ssu.

The mol: of filte:ins air is by a wire screen,
 nitade, and therl exposes the current of ail to the - witact of water.

The most common excmplifications of the devices are to be foand in tha railioul-car ventilators. In

Porrav's matent, Ianary 9,1 s66, the air is cauglat by hools above the car-woof, and led into a chamh ro w'ur the phathing wit.r absorls the dust and also

 wintw, in addition to this parifiention, the air is conducted throug? the heating - ehambers of a stove before beine disseminated inside the car.

Medcilfés apparatus for rentilating tail-roal-cias, Ianuary 22 , 185\%. The current of air is repoived hy a self remulating honinet on the enof, and romelacted by severial pussages to a water-rambler, whene it passes through a mum-
 of the car. The air is carri"d into the "ur throngh perpisters or ly fipes aromel the stow: From the wat it pasist through a simbar :hpmatus, devoin of water.

 a trmiz or hox, havius ware its asiare a dopessinu which forms a water-chambur, in which are mountel

Fis. 8.

Bowsman's Car-V+ntilator.
by the recistance of the air as the car moves :lhan : Ahove the fims is a water-chanhere, the hentom it which is proforated to allow the water to drop on t'r. fans. In the rear of the trunk is a rewister har mhnitting air to the ear, the air luyng divestent of dust in prssing throngh the spray causen by the ofwertion of the fims.
Prowis, september 17, 1861. Arranged within the Haring moutla of a case is a wiml-wheel comecterl with a slaft. Lpon the shaft are semed a seris of radiating arms and a perforated disk, which re-

volves in a water-chamber as the car moves atone so that the particles of dust coming in contart wit! the ams will adhere to the same, and the ain enter the car in a cond and phise state.
 ibon case contains a werwoir and a promated phate, and is provilend with a finmel-shaperd tulo, which jasses into the e ntilator a little helow saint perforated flate. Amother tule passes throngh the car and cuters the top of the ventilator. The fanm.

Ecardsiry: riz-V ntilator.
shaipurt tube by whieh the air euters the rentibator is adj ：sted by means of a rod prassing through the top，of the car，the open end being turned in the diesction in whirh the car is moving ；the other tube receives the foul air from the ear，whence it phese through the ventilator．liy reversing the fimmel－shajed tube the air is ejected from the car． Cinders and dust are prevented from entering the ear by coming in contact with the tube，whin is su：round with water．
In Whelpley and Stonen＇s apparatus for remor－ ing dust and gases from air，Mareh 6，1860，the spray－wheel and the clratt－wheel are placed in son－ rite and conmmnicating chambers．The oloject is to remove the dust and gases from air which issa＇s fiom the pulverizers and the chimneys of furnaces for

Fig． 100.

Whe＇n＇py zut 心nter＇s Drafi and Spray Wheel．
reducing in tal．The air is admitted by the trouk iato the chamber，where it is exposed to a dash of suay from the when，and thence passing to the fan－ chamhre is subje ted to jets of liquit，chem all ： prepred to act uron the grases present．The jut： proved from the hollow shaft，which is pierce．with holes for that purpose．

Hemas，Jamary 12，1858，attaches to tho pion－ pit or rostrion all air－pipe by whiels a suplp＇y of fresh， pure ni is affiorde to the speake：． The air in it： course is［assen］ through a trough and lenemath a plats which forms a trap． Waterin th trough imparts moisture to the air，and at the same time ar－ rests dust and such extrancous matters or vapors as are solnble in water． The latter may lre medieated to impart the desired quality to the realer or speak r ，aml the valve is adjustable to promit the free exit or turn the eurront through the water－ troogh as may be requirent．

Air＇－flue．A tube by which heated air is con－ veyed into an apartment．
Air＇－foun tain．A contrivance for producinor ？ jet of water by means of compressed air．

Air＇funnel．A eavity formed by the rminsion of a timber i：1 the nple，wo：ks of a vesore，so 10.
a duct for the admission of pure air and whe escaple of foul．

Air－far nacs．A tirm ned to signify a famace ！いバリ：
Air＇－grating．An iron grating in a wall，to allow ren iation．
Air＇－gun．The air－glu is a pmomatic engine for tivins luthets or ather projectiles by force of compussed air：The child＇s polgrin ill ristrates the principle of the air－gun ：a pellet is fincoll through a tube or quill be a ramner from the lager to the smaller end，where it stieks fast，and anollere pellet is fut in and prosed forward in the same manmer， coull in ing the air between them，when the pressure on the first pralet oreromes its frictimal adlesence to the sides of the tube，the pellet is released，and is pungeteal by the forer of the expanding air．The ancionts were acquainted with some kind of an
 whorter arm of a lever，while the longer anm impelled a projectile：and it is said that（＇tioniphus of Alex－ anctria，a celehnated mathematical philosoplere，who lived 13．C．120，constructed an instrmment in which the air，by its elastic fore，discharged an arrow from a tube．（Montucla，＂llistrire des Mathématiques，＂Vol．1．p．©it．）The first ac－ count of an air－gun is frume in Daviel Rivault＇s ＂Elémens d＇Artilleric．＂He was preceptor to Lonis Xlll．of Frame，and ascribes the invention to a certain Marin of Lisienx，who presenteld one to Henry IV．of Frapee，about A．1）．1bon．An instrument of this lime was invented ly Guter of Nuremberg al out ．1．1）． 1656 ．Various shapes have bern wiop ted，from that if the minary mas－ ket to a gun resemilhing a coninoh，sfout walking－ stick．It consists of a lork，stock，bamu，and man－ rod；and is I^{\prime} wiled with［roper corks $f 10$ flling it with compresell air $1 y$ means of a folecolunt The lock is only a valve whell lois into the land a portion of the wir comp ressed in at chatul or in the stork when the tripger is pullecl．The gun is luad I with wadding and 1 all in the ondinay way，in 1 when fired theme is lut litite moise，and nome of the other concomitants of fathpolder，stroke ：14ul
 a louldet is ficm sixty to eiflity yads．In than guns laving a shiling trigger，two or there biollets aresureessively and separately intruluewl，ani may be expernd he one mass of combensel air．Aipegus liave also lemionstructed uron the 1 riminle of 1 erolv－ ing pistuls，adnitting the expuldion of sireral ballets after once charging with ionmpersel air．St me vaneties have an air－pmop attiched by means of Whith a mote jowrflul eompressich of air may be prolucecl．One air－gum in the form of a cante las two harress，－one small ane fir the reception of bullets，amt one large lore for the rescroir of compressed air．Elastie gurings have alon been ussed in come tion with compres．od air，hut the latest improvenents are those of commlias Boria． The reservoirs of the gha are fallel with a mixture of oxygen and hylrogen in clu＂proprtion for producing water．The gum is provid el with a small electric hattery connecting with the trigger．The monint a protion of the gas is lit out，an＋lectric spank is frombeed，nceasioning the instamtaneons mombintin of the mixtu：e，and a lifh 1 ressume in
 ch．mical transfurmation．This fun is saill to Iropel a hullet as far as an or－linary muslect．The soise－ lessmess of ordinary air－guns is accompanied 1 y slisht projectile force，and the gun of Borda in exploding a body of gases in confinement would probably canse as mach sund as the coabustion of
grmpowder in quantity sullicient to generate the same projuetive force. .Shaw's air-gun, juitented in 1849, combines an endless band of valeanizal india-
thrnce into the barel, driving cut the pojectile. This s.mb the precorling are om y toy-guns.

Giffurd, Februaly 9, 1864. The harel is in communication with thre inside ol the triggrebox, in Hee interior of which is a ralcer-piston, consinting of is store] lood carrying a ringfitted with a enontchone diak for closing conmunication. Air enturs the harrel by a
rubler with an air-exhausting apparatus; the electricity is so applier] as to compress the air at a single stroke of the air-pump the moment before it is discharged. The staint-gun, exbibited in London a few years agro, excmplified a much more foreible agent than air for the propulsion of bullets.

In Fig. 102 the nuper chamber is the reservoir of air, which is condensel therein by means of the piston and valve in the stock. The lower tube is the barrel, and the ball is rammed down to its lower end as usual. The gran being sighted, the motion of the trigerer moves the valve, which admits a body of air to the rear of the ball and expels it from the barrel.

LINDNER, December 16, 1562. The lever confomms in shape to the stock of the gun, and is the

means of retracting the piston. The piston, when raleased by the thigrger, is driven forward hy the elastic foree of the comlensed spring, projecting the hullet from the barrel by further compresion of the air. The spring is a helieal ribbon, and condenses into a simple coil whan the pressure of the lever is applied. The barrel is breech-loading, tilting on a pivot so as to expose the rear for the reception of the ball, and being locked shut by a catch. A projecting inclia-rubber ring at the joint of the barrel makes an air-tight joint when the barrel is closed. The projectiles have an expancling portion, which enters the rifle-grooves of the barrel to increase the accuracy of the flight.

GedNEr, September 24, 1861 . The hollow handle is formed of india-mbuer or other dlexible air-

Fig. 104.

Gedney's Air
Pistol. tight material, and conmmanicates with a short tube phaced bruenth the bared and connected therewith by means of a passage. A valre of cork closes the passuge betwen the hollow handle and the tulue, anel is pressed into its seat liy a rod. To discharge the pistol, the rubler hand!e is compressul matil the messure of the air overconnes the athesion of the value to its seat, when it is chiven bank; the its seat, when it is chren bank; the
air then "seapes into the tube and
bell-shaped chamber. By pressing strongly on the extremity of the rod, the lisk is compressed and

Gifford's Air-Gun.
closes the reservoir orifice. By sumbenly relasing the $]^{n i s t o n-v a l u e ~ t h e ~ r l a s t i c i t y ~ o f ~ t h e ~ c a o u t a l i o n e, ~}$ combined with the pressure of the compressed air, causes the sudulen opening of the reservoir oritire and emits a blast of air to the rear of the projectile. The air is compressed into a resulvoir low neath the barrel, by means of a piston working longitudinally in a valved interior tube, and the valvular arrangement is to give an instantaneous tmission of air and an immediate closure, so as not to waste the air by a protracted opening of the valveway.

The south American Indians of the Anazon and Orinoco use a species of air-cun or how-pipe for propelling poisoned arrows. It consists of a long, straight tube in which an arrow is placed ami "xpelled ly the breath. Near l'ara, it is very inreniously made of two stems of a prain, of lifferent liameters, one fitted within the other to secme jerfeet straightness ; a sight is fitterl to it, near the end. Tlu arrows used are fifteen to eightern inches long, having a little hall of down, from the silk cotton-tree, twisted round the smaller end so as to make it fit elusely in the tube. In the lands of a proctised lndian this is a very deadly weapon, and as it makes no noise he fresfuently empties his yuiver hefore he gathers up his game.

Warburton, the eminent naturalist who wandered in these comntries, gives a good account ol their motes of lunting. Sce also Humboldt. and the liescarches of Sir liobert H. Sehomburgk in British Cuiana.

A similar weapon is fonnd anong some of the Malay tribes, and is callel by them the sumpitan.

Aristotle was acpuainterl with the fact that the air has weimht, stating that a bladeler intlated with air will weigh more than an empty one: as he was not acyuainted with grlas globes, which can be exhausted of air withont losing their shape, we may infer that his statement with regard to the hadder was intenderl to apply to a hypothetieal one which passessed the stilliness of glass, or else that the air was considerably eompressenl in the inflated bladiler.

Hero of Aleximdria, in his "Spiritalia," shows his k'rwledge of the elasticity of air, amd how it condl be used to produce many eflects. He shows the airpuinp.

Ctesibus developed the pump into an air-gnn.

$$
-=\quad-\quad-\pi=-\infty=
$$

I
ive
.

PIER AND CAISSON.

He was probably the tutor of Hero and the contemporary of Archimedes. Otto Gnericke rinvented and applied the air-pump; Boyw made it a raluable instrument.

Air'-heater. A stove or furnace so arranged as to lieat a current of passing iir, for wamin or wentilating purposes. Nee Hearian Flinace; Hear. ing Sture; Heating apratultis, ete.

Air'-hold'er. A vessel generally of a cylindrical form, with its open end plunged in a tank of water, and intemed to contain air or gas. Its use is common in a variety of machines and apparatus where a stealy and moderate current of air is required, as in machines :or carbureting air aml gas, aspirators, etc. Also in mochinery on a larger scal, such as blowers, reutilating-machines, etc.

The air is introduced hy a bent pipe turned upward inside the tank and holiler, and is educed in a similar manner. On a small seale the vessel may be charged with air by raising the upper valve and lifting the holder, and the air may he withdrawn by a tle:sible pipe attacled to the liolder. See Aspriamin; Carbureting Air; Blowele, etc.

Air'hole. (Fornding.) A hole or cavity in a casting produced by bubbles of air in the lipuid metal. A vent-hule in a moll for casting.
(Furnuce.) A draft-hole in a furnace. It is sometimes gnardenl by a register; sometimes stopped by a luting or plug of clay.

Air'ing-stage. A platform on which powder, etc., is urien by exposure to sun and air.

Air'-jack'et. An air-tight swimming-jacket capable of inflation.
A garment with inflatable lining or pockets to serve as a life-preserwer.

Air'-lev'el. (Surecying.) A goerletic instrument invented by M. Thevenot. The level is determined hy means of an air-bubble in a glass tube nearly filled with colored spirit. Generally termed a spiritlevel ; thongh the air-babble is the ilomimant feature. See Level.

Air'-lock. (Ifyd. E'ug.) A pnemmatic contrivance in a hollow caisson whose lower chamber is filled with compressed air to exclude the water. A trunk connects the submerged chamber with the external air, and has two valyes. The descending workman enters a chamber in the tube at the atmosplieric pressure ; the upper valve is closed, and his apartment is charged with air from the lower clanber ; the
lower valve is then operned to admit him to the working-chamber.

The cut on the page oprosite is a sectional view of the Eust Piar and Caissun of the lllinois and St. Louis Bridge, in course of constrnction by Captain James B. Lads, across the Mississippi. The view shows the interior of the main entiance-slaft and ain-chamber, and the working of one of the pumps. The caisson is represented as having descended through 60 feet of sand, silt, and gravel which form the sand-bed of the river ; 20 feet of excavation remaining before the bed-rock is reached.

The pier of masonry is luilt on a strong bulkheal of timber and iron, supported on a curb which rests on the sand-bed, and is strengthened and sustained by timber girdens whilh divide the working space beneath into several chamhers which commonnicate through holes in the partitions. The pirr is enclosed by an iron envelopu $/ I$, which is water-tight, and prevents access of water to the pier and the workmen. [ntil the curb of the caisson yeached the sand-bed it was sustained in erect position by screws from the trusses of the guide-piles, but was afterwards preserved erect by digging away the sand equally at all the points upon which it rested. $I I$ are timber haces which support the shell H. $K i$ are pontons alongsile, which sulplort the stram-engine, air-punp, mixing and hoisting machinery, and the offices and quarters for the stalf and hands. S is the steam-rugine which drives the air-pump Γ, and the air is conducted by the hose U down to the chambers $L B$, where the excavating is proceeding. The sand is loosened hy water and the pick, and is chriven hy condensed air u_{1} throngh the sand-pumpis $E E$, which discharge at D. The air-locks A A are chambers intervoning between the main entrance-shaft F, where the air is at the natural presmure, and the chambers $B B$, where it is in a much condensed connlition. The visitor steps from the shaft F intu the air-lock A, the door of ingress is closent, ant contersed air is then admitted. When an equilibrium is established between the chambers A and B, the door between is opened, and the visitor finds himself on the scene of action. As the eaisson descomls, accessive conrses of stone are laid on the $]$ ints ly mems of traveling-purchases O, which more on the wire ropes $M M$ by means of hoist-ing-ropes $I X, G$ are side shafts; $J J$ calinins for operators of purelases ; L L hydranlic jacks forlifting materials; I^{-}pipe for water to sand-punp; $V^{r} V$ trusses for guide-piles; Z mixing-room ; X office. Sce Catsino:

Air'-ma-chine'. A machine for ventilating mines.
Air'-met'cr. in apllaratus for measuring the quantity of air passing along a lipr, or $^{\text {phassing }}$ into or from a chamber.

There are various forms: the fan, rotating spiral rane, expanding bag, cylinder and piston, revolying partially submerged ineter-wheel, etc. As their principal adaptation is to measuring gas, to avoid umecessary reputition they are assembled under Gas-meter, which see.

Air'o-hy'dro-gen Blow'pipe. An aplaratus invented by Dr. Hare, in which the issuing air is assisted by a jet of hydrogen to intensily the flame. See Blowipipe.

It is esprecially used in autogenous soldering.
Air-om'e-ter. The term is applied to a hollow cylinder, closed above and open below, with its lower edge plunged in a tank, and nsed to contain air. The tem has been derived from its similarity in shape to a gasometer, the change in the lirst syllable indicating the different contents. Its use as a meter is unfiequent, and it is prop-
eny called an air-holder among experts. Sce Arrnolder.
Air'-pipe. (Steam-cnginc.) 1. A small copper pipe leading from the top of the hot-well through the ship's side, for the discharge of the air and uncomlensed vapor removed by the air-pump from the condenser.
2. A pipe used to withdraw foul air from or force pure air into ciose places.
Air'-poise. Aninstrument to measure the weight of air.

Air'-port. An opening in a ship's side for air ; c?osible by a slutter, side-light, or dead-light, ac--orling to circumstances.
Air'-press'-ure Fil'ter. A filter in which the percolation of the liguid is assisted by atmospheric pressure, indueed by a partial vacuum in the lower chamber.
Siencen's air-pressure filter, June 4, 1867, is particularly ad, ppted for the use of pharmaceutists. C is the air-punp, secured by a clamp to the edge

of the table. The filter A rests on a packing on the lip of the bottle B. The air is withdrawn from this latter to increase the rate of filtering.

Claim.- First, in an atmospheric filter composed of the tumnel A, bottle or jar B, and air-pump C, the employment of a packing h for the purpose of producing an air-tight joint between the tunnel and

bottle, the whole combined and operating as lereic set forth.

Second, the arrangement of the filtering medium d d with the removable perforated diaphragm f, when operating in connection with the shoulders $c c$, as herein set forth.
D is the air-eduction pipe. The vessel A stamls in the collar-piece f, the latter on the bottle, whose lip has a pracking-gasket.
la Greber's air-pressure filter, April 3, 1866, the filtration is assisted by an air-foreing and airexhausting pump, comnecting by pipes with the two chambers separated by the filtering substance. j nud k are the openings of the plenum and vacumm pipes into the chambers E and F. The lid is fastened on, and has an air-tight packing. The pump G draws air from chamber F, and impels it into chamher E. For Water-phessure Fiditer see Preswule-filter.

Air'-pump. Invented by Ctesibus of Alexandria, or previons to his time. Hero, of the same city, the author of the "Spiritalia," shows it in connection with several of his preumatic contrivances. He also shows a fire-engine with a pair of single-acting pistons attached to a walking-beam and operating aliernately in their respective cylinders.
February 15, 1605, Mr. Samuel Pepys, the gossiping author of the fanous Diary, was adnitted a member of the lioyal Society, the meetings of which were held at Gresham College. He says:-
"It is a most acceptable thing to hear their discourse, and sce their experiments; which were this day on fire, and how it goes out in a place where the ayre is not free, and sooner out when the ayre is exhausted, which they showed by an engine on purpose. , . . Ahoye all Mr. Boyle was at the meeting, and above him Mr. Hooke, who is the most, and promises the least, of any mam in the world that I ever sitw."
The air-pump was reinvented by Otto vou Guericke of Magdoluig, about A. D. 1650. Since then this instrument has been much improred by Hooke, Papin, Hawksbee, ant Boyle. Many varieties of structure have been devised, the principle of all being the sime. The basis or essential part in the air-pump is a metallic or glass tube answering to the barrel of a common pump or syringe, haring a valve at the bottom opening upwards: and a movable piston or embolus, answering to the sucker of a pump, the piston or cylinder being furnished likewise with a valve opening outward. The pump must be closely fitted by a metallic connecting-tube opening into or under the vessel which is to be exhausted, which is usually formed by placing a
 bell-glass, called the recciver, with the edges ground smooth, and smeared with lard or wax, on a lat, smooth plate or table. When the piston is at the bottom of the barrel, and is then drawn up, it lifts out the air from the barrel; and a portion of the air from the recciver ly its own expansive force passes through the commecting-tube, and occupies the place below the piston which would otherwise le a vacumm. The air in the receiver and harrel is thus rarefied; the piston is now foreed down, closing the valve placed at the mouth of the connecting-tube, and causing
the air in the barrel to eseaye througl the valve in the piston. This operation is again and again repeated until the receiver is so nearly exlausterl that the elastic force of the remaining air is uo longer sufficient to opren the valres. The form of the pump may consist of two barrels (each having a piston) haring a junction with each other at the point where the connecting-tube is attached, and oferated alternately by a lever attached to each piston and supported at a point midway leetreen them, or by means of teeth or cogs cut in the piston-rod, and operated hy a cog-wheel, as shown in the accompanging figure. The valves may be made of bladder, oiled silk, or gutta-percha, the best form of which is a small hollow cone with a slight cut at the top; stop-cocks must be attached so as to control the admission of air. The pressure of the atmosphere being about fifteen pounds to every square inch of surface, care must be taken that the receiver and barrels of the punp

Fig. 110.

Hauksbee's Air-Pump.
be so constructed as to bear this weight withont accident. A gage to ascertain the point of rarefaction ean be made by introducing the lower end of a graluated glass tube, connecting with the receiver, into a cup containing mercury; as the air in the receiver is exhausted, the pressure of the atmospherc on the surface of the mercury will force it up into the graduated tube, so that its rise an:l fall will

Sicmen's dir-Pump indirate the rarufaction. A perfect vacumm can never be made, for it is evident that the exhaustion car never he complete; even theoretically, there must always be a portion of air left, though that portion may be less than any assignable ipuantity. Many useful and interesting experiments can be performed with the airpump, illustrating the effects of atmo- p^{3} eric pressure and other mechanical properties of gases.

In Siemen's air-pump the tro cylinders or barrels differ in size and arrangement. The smaller barrel is applied either to the bottom or top of the larger, while the valved pistons belonging to each are attached to one and the same piston-rod. The air withdrawn from the receiver is condensed in the lower cylinder to
one fourth of its original volume, and thus has suffcient elasticity to pass though the discharging valve and escape. the opposing !ressure of the atmosphere on that valve being thus counteracted from within.

In the illustration, d is the exhansting-eylinder, B the second eylinder, equal in length to the first, and tixed to its lower prat, but hasing only one third or one fourth of its sectioual area, and consequently one third or one fourth of its cubical contents. The cylinders are separatel by a plate forming at once the bottom of the upper and top of the lower cylinder, the only passage between them being a silk ralve v^{\prime}. In each cylinder works a ralved piston, P and p, attached to a piston-rol common to imh , and passing through a stuffing-box in the plate. The distance between the pistons is such, that whell P is in contact with the top of the npper or cexhausting cylinder A, p is in contact with the top of the smaller or lower crlinder ; and when P is in contact with the lotton of the large cylinder, μ is in contact with that of the small eylinder. The table or pump-plate E, placed above the large cylinder A, supports the receiver A, or other ressel to be exhausted, from which the air thows thongh the ralve e, during tite descent of the piston. Thic motion of the pistons is effected by means of a short crank with a jointed connecting-rod, converting the circular motion piven by the lever-landle into a vertical one, which is maintained hy means of a cross-head, with rollers working between guides. The action of the pmop is as follows: The descent of the piston P tends to produce a vacuum in the exhausting-cylinder A, by causing a difference of pressure aloore and below the first ralve ε, in the top of A, so that the elasticity of the air in the receiver causes it to pass thronch the sa've r. At the same time the air below P is pressed though the valre x^{\prime}, in the plate which sepraves the erlinders, and enters B, in which a vacancy is simultaneously made for it hy the descent of the piston p; and in consequence of the diflerence of caparity of the two eylinders it becomes reduced to ane fourth of its original hulk, its elasticity lwing proportionally increasel. The air contained in the small cllinder below the piston p will in like manner be pressed through the ralves $v^{\prime \prime} v^{m \prime}$ into the extermal atmosphere. During the ascent of the pistons the ralves $v^{\prime} z^{\prime}$ will be closed and u u w^{\prime} opened by the downward pressure of the air in the cylinders, and $i^{\prime \prime \prime} z^{\prime \prime \prime}$ will be closed by the atmos. phere, thas allowing the air in each cylinder to pass through the pistons as they rise, in order that in the following downward movement the air, which during the previons stroke of the pump issued from the reeeiver into the exhausting-cylinder, may be withdrawn from that into the lower cylinder, while the air condensed in the latter may be finally expelled into the atmosphere. See Air-compressing Machine.

The air-pump of Boyle was inconvenient, as it demanded alternate opening and shuttiag of the stop-cock and ralve, and difficulty was also experienced in making the piston descend when the air within the pump was greatly rarefied.

Hawksbee's air-pump, previously cited, had the duplicate eylinders, with pistons which were morel hy means of a crank and pition. The piston-rols were toothed racks, which were engaged hy the pinion, to which a reciprocating rotary motion was imparted. The lottom of each cylinder communicated by a pipe with the receiver on the platform.

Smeator's air-pump was an improvement on Hawksbee's in two respects. Hawkshee had found considerable difficulty in opening the valves and ex-

hausting the air at the bottom of the barrels, owiug to the fact that the pistonsclid not shut down close on to the bottom. The first defect arose from the smallness of the orifice in the bottom of the cylinder through which the air entered ; the bladder being kept moist with oil adhered to the metal and resisted the upward prossure at so small an opening. This defect Smeaton cured by exposing a greater surface of bladder to the upward action of the air. He used a congeries of holes consisting of six hexagomal open-ingssurrounding a central one. The partitions hetween these holes were filed nearly to an edge, and the whule formed a grating on which the bladkervalve lay, of fering but slight cohesive opposition to the raising of the valve as the piston ascended and the air from the receiver pressed upward against it.

To prevent lodgment of the air in the lower part of the barrel, he removed the external pressure from the piston-valve, by making the piston move through a collar of leather, and forced the air out by a valve applied to the plate at the top of the barrel, which opened outwardly.
Cuthbertson of Amsterdam introduced the improvement of mechanically opening an escape for the air withont depending upon its elastic force to open the valve leading to the cylinders.

Air force-pumpls are used for the supply of aircarbureting machines. A cormon form of these consists of what is called a meter-wheel, from its resemblance to the measuring-wheel of a gas-meter. Fig. 113. In the illustration the buckets $I /$ are curved, and gather in the air of the chamber A. As the wheel rotates the air is discharged, near the axis, into chamber 0 , and is conducted by a pipe to the hollow trumion through which it is discharged.

Another form of air-pump used in carburetingmachines is on the principle of the gravitating airholder, which consists of a weighted inverted cylinder whose lower edge is submerged in a tank. See Air-holder.
A conversely acting device on a larger scalc is used for pumping air from mines.

In the Annales des Ponts ct Chaussics, an air-pump

is described, used to ventilate a shaft 5 fiet in diameter and 220 feet deep. The work had heen several times suspended, owing to the accumulation of carbonic acid gas, and the ordinary bellows had been found ineffectual.

A large tub (Fig. 114) was firmly placed on lalks on a level with the top of the shaft, and filled with water nearly to the brim.

An air-tight pipe from the bottom of the slaft was brought through the tub, and had its upper edge a very few inches above the water; it had a valve on the top.

A smaller tulb, reversed, was suspended within the lower tub by cords, which were made fast to the enids of the levers.

The upper tub had a very sloort pipe at top, with a valve opening upward.

The upper tuh being allowed to descend ly its own weight, the air within it was expelled through the upper valve; when again raised, by pulling the
handles attached to the rones, the air was drawn up through the valve-way at the upper end of the descendiug tube, and by continuing this reciprocating action, a circulation was created at the rery bottom of the shalt.

Bunsen's air-pump is a means of withdrawing air by entangling and carrying it with a falling body of water. It is sjecifically known as an aspirator in its uses to obtain atmospheric pressure in filtering, in removing effete or poisonous air from apartments or the ricinity of gangrenous wounds. See Arpiraтољ. The same principle is involved in the "waterpumps," so culled, which withdraw the air and steam from the evajorating and racum jans of sugar-refineries, the injection-chamber of the condensing steam-engine, etc. Air-jmmps are also constructed to act on the mincisle of the Giffard Injector, the active column being a body of water or steam. See Steant-jet ; Eiector.

Apraratus for compressing air as a motor, as a water-elevator, ete., are consilered under sereral hoals. See Air as a Wateh-elevator: Allcompreming Machive; Air as a Mleais of tj-ansmiting l'wfie ; Ait-engise, etc.
2. (S)cemcagine.) A lumpresed in condensing st tam-engines to remove the air and meondensed steam from the condenser in order to perfect the vacuum therein, and in the cylinder to which it is periodically connecterl.
B is the in-jection-chamber, which is submerged in the cisterm C. The uncondensed gases and water escape by the ralre-way G, called the foot-ralve, and ascend throngh the valve of the pump-lucket p as the latter descends. The next ascent of the bucket drives them ont at the va're-way Q into the hot-well.
Air-reg'u-la'tor. A conthirance for determining the 'plantity of air admitted in a given time.
Pegisters and dampers are the $w=u a l$ devices ; the former has usually a sliding and the other an oscillating motion. Furnaces, stoves, ovens, etc., sire usually furnishel with some means for regulating the supply of air; when the beat of the stove is made to regulate the register the derice is called a Thermostat (which see).

Air-degulators may be made to act on the principle of the gas-regulator, thedegree of pressuredetermining the area of the opening, so that a given quantity may pass in a given time inrespective of the pressure.
Air'-scuttle. (Ship-building.) An opening in a ship's side for the admission of air, closed in stormy weather by a shutter.

Air'shaft. A shaft in a mine, usually vertical, or nearly so, by which the mine is rentilated.

Air'-spring. An elastic device depending for its action upon the tension of an imprisoned body of compressed air.
dir-springs hare been made to act as brakes, to recrive recoil of guns, as buffers, and for other fimjoses. See Precmatic Spring.

Air'-stove. A heating stove which is employed to heat a stream of air directed against its sarface. Of this class are Heating Furnaces, and some kinds of Heating Stares.
There are two common forms, with a great rariety of each:-

1. The furnace such as is used iu churches, large halls, and some dwel'ings; consisting of a stove surronnded by a casing of metal or brickwork, into which the air is led, and from which, after being heated, it passes by air-ducts to the ajartmeat. S'e Heating Ftridie.
2. A store, a part of whose interior is occupied by passages in which air circulates against the firechamber and back, after which it is discharged into the room. See Heatisg Stote.

Air-ther-mom'e-ter. An instrument in which the contraction and expransion of air is male the measure of temperature it differs from the ordinary thermometer, which depends on the contraction and expansion of liquid in an hemetically sealed tube. The air-thermometer is the older torm, and its invention is ravionsly ascribed to Drebbel of Holland, about A. D. 1600 ; to Galileo; and to Santorio of Padua (1551-1636). The instrument was comstrmeted as follows: The air in a tube being slightly rarefied by heat, the lower end was plunged into a colored liquid, which, as the air cooled, was drawn into the tube. The expansion and contraction of the air, by changes of temperature, varied the height of the liquid in the graduated tule. It was a faulty arrangement, as changes in the atmosjheric pressure would rary the result, and the truth conld only he ascertained by
correction with reference to a barometer.

In the "Spiritalia" of Hero, B. C. 150, an instrument is lescribed wherein water is made to rise and fall by the changes of temperature. The Slomish saracens used a lorm of hydrometer todetect rariations in temurature. See Aneometer; Hybiometer; Thermunetel.

Heat expands the air, forring down the liguid, and cold has the contrary effect. The temperature is thus indicated by the height of the liquid in the tube.

Strymices diflerential air-thermometer cousists of two bulbs united by a tube which is heut to form twe legs, agaiust one of which is attached a graluated scale. A
 quantity of sulphurie acid colored with carmine is introduced into the tube so that its upper surface corresponds with zero min the scale. The hall abore the scale is termed the focal ball.
The amounts of air in the respective ends are so adjusted that when the bulhs are hoth exposed to the same tumperature the liquid will fill one leg and the horizontal portion of the tube, the level of the graduatel tube standing at zero. When both the bulls are exposed to the same temperature no change takes place in the prositiou of the liquid;

Differential AirThurmometer.
but when the focal ball is exposed to herating or cooling canses, the air will expand or contract, and the column of li, 1 uid in the graduated leg will ascend or descend as the case may lx . This themometer is particularly adanted for ascertaining the particulas degree of heat accumulated at a particular point, while the surroundiug atmosphore is hut little aflecten, as in the foons of a reflecting mirror, etc.

Leslie, in his experiments on lieat, made great use of this differential themometer: By coloring the focal ball aml leaving the other white, silvering or gilding one of the bills, covering one with a moistened envelope, ete., he constituted the instrument a photometer, rethrioscope, hygrometer, etc.

Air is more equable in its expansion than merenry with equal increments of temperature.

The following shows the indications on the tro scales at the same tenperatures; correction being made for the expransion of the glass.

dir Thermameter.	Merearial Thermometer.	Difference.
$21 \stackrel{\circ}{2.00}$	$21{ }^{\circ}$	0.00
299.66	302	2.33
356.69	392	5.31
473.09	48:	8.91
558.86	572	13.14
66200	680	18.00

In effect, however, the expansion of the glass is about equal to the increase of the rate of the expansion of the mercury, so that the mercurial glass thermometer is aceurate as high as 662°.

Fur temperatures above the boiling-pint of mercury, air-themmeters are usml. Dry air, when confinesl, increases in volume 3 for every 180°, and is believel to lue perfectly equable in its rate of expransion.

A bulb or cylinder with a tube of platinum is connectel to a glass tube at right angles therewith. The glass tule is of unifom bore, is filled with mercury, and terminates below in a recurved bulb. The glass tule is divided into a number of spaces, each equiralent to $\frac{3}{\frac{3}{3}}$ of the total volume of the platinum bulb or cylinder, with $\frac{3}{4}$ of its stem. The other $\frac{1}{4}$ is supposer to be beyond the immediate influence of heat. The platinum bulb and 3 of its stem are plunged in the furuace, and the clepression of the mercury by the heated and expanded air within the instrument pressing on it more powerfnlly than the external air, will indiate the degree of tempriature. Fach degree of the glass stem is equal to 180 Fah.

Air'-trap. Sometimes called stench-trap. It is an adjunct to a vessel of any kind, such as a washhowl, water-closet howl, nrinal, or sink, which discharges ly pipes or sewers up which a current of foul air is liable to pass.

Sotne of them are very simple in their character, and consist of a water-pan in which is submerged the end of the disclarge-pipe of the bowl above. This shuts off the passage of air, and an overtlow is affortell to the water as it reaches a certain height.

Craigie's sink, July 2, 1867, is of this character, and its essential feature has been familiar to builders and housekeepers for many years. In the illustration the novel feature is found in the mole
of attaching the trap-culs to the bowl and the dis-charge-pipe to the bend of the cup.
Cali:, December 6,

Fig. 118.
 1864 . A spout, continuous from the bottom of the basiv, descends into the water held in a depressed part of the receptacle. The flow of water into the upper part of

Fig. 119.

Carr's Crinal.
the basin is regulated by a valve controllenl by a cam morement. The drip from this flow, falling upon the top of this receptacle, is conducted by flanges to a descending tube, which is tnrned upward within the receptacle, so as to form an inverted siphon, and thus deliver its water into the Fig. 120. receptaclewithout permitting the gas to ascend.

Carson, Sep-

tember 25 ,
1S60. A perforated plate oproses the passage of matter likely to choke the pipe, which enters a chamber beneatli the sink. The water passes to the clamber beneath a plate whose edge is submerged in lipuid and forms a trap.

Manqu゙s September 4,1866 . A donble tral' is

formed by compelling the water to pass by a sinuous course through a cirenlar pan and then through an amnlar pan, on its way to the discharge-pipe.

Air'-trunk. A pipe or conduit for conducting foul or heated air from a room, theatre, or ward.

Air'-tube A small, wrought-iron tube hung in a coal-box from the deck, and filled with water, for the purpose of ascertaining the temperature of the coals by a themometer, as a precaution against spontaneous combustion.

Air'-tube for couveying Letters, Goods, and Passengers. This idea suggested by Dr. Papin about 1695, patented by Medhurst in England 1810, on the ain-compression principle, and by Vallance in 1824 on the exhaust principle, has come into operation to some extent, and is considered nnder the had of Paedmatic Tube (which see).

Air'-valve. (Stecom-Enginc.) A valve in a steamboiler, which opens inwardly to allow air to enter when the intemal press:are is below the atmospheric. This my be produced by the condensation of steam when the fire is drawn, and the device is to prevent collanse of the boiler.

Air'-ves'sel. An air-reservoir ; it is applied to those air-chambers from which the air is to he drawn for use, as in carbureters, and one form of airpump. See Air-holder.

A chamber on the ej ection-pips of a pump, to ren ler the stream continuo.s. Se Arr-chamben.
Aisle. (Arch.) A side-division of a chureh, partially sepurated from the nave and choir by columns.

Aitch'-piece. (Mining.) The part of a pluugerlift in which the clacks are fixed.
A-jambe'. A French window with four casement windows, separately hingal and fastened.

Aj'u-tage. 1. The spout or nozzle of a funnel.
2. A tube applied to the sides of a discharging orifice in a vessel, in order to olviate the resistance to the discharge incident to the contraction of the flud vein. This resistance may amount to 0.45 of the whole theoretical delivery.

The aldition of a cylindrical tube to the opening will cause a greater discharge, the head and sectional area remaining the same.

If the ajutage be cylindrical, and the water fill it entirely, the increase in the discharge, when the length of the ajutage does not exceed four times its diameter, is in the proportion of 1.33 to 1.00 .

The effective discharge may be still furtber increased by making the ajutage of the form represented by the accompanying figure, provided the liquid fill it entirely. This ajutage is composed of two portions of cones upon the same horizontal axis; the first has the form of the contracted vein, the length of the second is three times that of the first, and the opening into the tube from the chamber is $\frac{7}{3}$ of the size of the delivery opening. The effective discharge
through an ajutage of this description is generally stated to be in the proportion of 3 to 2 of that which would take place though an oritice in a thin plate.

Venturi gives the following data:-

The length nine times the diameter of the effective opening.

He found the disclarge to be increased to 1.46 times the theoretical discharge, and 2.4 times the discharge that would have taken place had the orifice been in a thin plate.
Al'a-bas'ter. 1. A species of marble, white or colored. Sometimes called Oriental alabaster, to distinguish it from
2. A granular, compact, semi-pellucid gypsum which is fom I in masses, white or colored, and is reatily turne.l into vases and ornaments.
A-larm.' Au audible warning. Alarms, mechanically considered, are of many kinds ; the purpose or construction of each is usually indicated by its name. They are placed in such positions or inder such circumstances as to give warning of danger or to call attention.
Marine Alurms are fog-bells, whistles, and trumpets, oprerated by the tide, the waves, the current, the wind, or by clock-work.
Shool Alarms are similarly actuated, being situated on spits or banks, anchored, moored, or attached to piles.

Nautical Alarms, on shipboard, are to indicate a leak or the accumulation of bilge-water.
Burglar Alarms are attached to doors or windows to give notice of surreptitions entrance by thieves.
Fire Alnrms are actuated automatically by thermostatic artangements, and give notice of fire, as their name indicates.
clock. Alarms are attached to timepieces to strike an alarm at a given hour.

Gas Alarms indicate an escape of gas, either in a room, or from the fissures in a coal-mine.
High-pressurc Alarms are for indicating a dangerous pressure of steam in the boiler.

Loovevater Alarms are for indicating the subsilence of the water-level in the boiler below the point of safety.
A Pocket Alarm is to notify a gerson of the abstraction of a book, etc. from the pocket.

Telegraphic Alarms are to call the attention of the operator to his instrument.
Till, Trunk, Safe, Lock, and Door Alarms are to call attention to the opening of the oljects to which they are attached.
The Watchman's Alarm may be a rattle used by the police, or a systematic mode of commmicating a signal of danger.

Funnel and Barrel-filling Alarms are to indicate that the vessel is nearly full.
A Vill-hopper Alerm is to indicate that tle grist is about exhausted, and thus notify the miller that more grain is needed.
There are over two hundred patents in the United States for various forms of alarus.
See under the respective heads:-

Alarm check-valve. Alarm-clock.
Alarn-funne].
Alarm-lock.
Alarm-watch.
Annunciator.
Atmospheric alarm-whistle Clock alarm.

Earthyuake alarm.
Electric aham.
Electrie anuunciator. Fire alarm.
Fire-danup alam.
Fog alarm.
Gas alarm.
High-pressure alarm.
leverg alarm.
Leak alarm.
Low-water alarm.
Marine alarn.
دlill-hopper alarm.
Money-diawer alarm.

Nautical alarm.
Pocket alarm.
Safe alarm.
shoal alarm.
Steam-boiler alamn.
Stean-whistle alarm.
Telegraphic alam.
Temperature alarm.
Thernometric alarm.
Tide alam.
'Lill atarm.
Trunk alarm.
Watch. Alarm
Watchman's alarm.

Alarm Chesk-Valve.
A-larm' Check-valve. (Srleer's mproved.) (Stcome.) A valve to notify the engineer whenever the injeetor ceases to operate or fails to start.

If the injector is not working into the boiler when the escape-valve is closed, the steam will back up in C, and tend to pass out into the water supply and tank. As soon, however, as any pressure oceurs in the upprer part of the supply pipe, the check-valve B will close, and the stean then exerts its pressure on the small check in the lateral pipe $C E$, which leads to the waste-pipe. This smill valve, which is kept in its siat hy a spiral spring, as shown in the drawing, will then be raised, and allow the steam to escalpe into the waste-pipe in a way that camot fail to secure notice.

A-larm'-clock. From a work pubished in 1661, we find that "Andrew Aleiat of France had a kind of clock in his chamber that should awaken him at any hour of the night that he determined, and when it strack the detemined homr, it struck fire likewise ont of a flint, which fell among tinder, to light him a candle; it was the invention of one Caravagio of Siema in Italy." The Marquis of Woreester, 1655, suggests that the tinder-box nity form a serviceable pistol. This is antiepating some of the burglar relarms of our own time.

The clock alam consists of a bell or wire coil and a hammer which is set in motion by an arrangement sulistantially similar to the recoil escapement in the atterherl cut. A weighted cord or spring, being wound on the axis of the scape-whed, rotates it as soon as it is free to move. If we suppose a short hanmer insteal of a long pendulum attached to

Fig. 126.

Euteneur's Yock-ג'arm.

A-larm'-lock. In the Marquis of Worcester's "Century of Inventions," No. 72, A.D. 1655, a lock is referred to which, if tampered with by a stranger, will start an alarm beyond the control of the intruder. As usual, the thing is merely hinted at, the purpose of that Digest of Inventions being more to act as a reminder to the inventor than as a specification for another reader.

Euteneur, Suptember 19, 1865, (Fig. 126,) has an arrangement of devices by means of which any movement of the latch-bolt causes two hammers to strike a bell. A plate covers the key-hole to prevent the almission of a key from the outside; the plate is seld closed by a bar attached thereto and projecting through the case. The two hammers are so pivoted as to be tripped by the motion of the latel-bolt, striking the bell on the recoil.
Decnow, December 12, 1865. The device consists of a bell, hammer, cscapement, and a spring. The bolt is so arranged as to trip the escape-wheel, when moved in either a vertical or a lorizontal direc-

Fig. 127.

Decrow's Alarm. tion, and release the hammer, which is oscillated rapidly to give a quick succession of strakes uron the betl.
A padlock with an alarm attachment is shown in Fig. 128. The shackle B is fastened by serews $Z Z$, whose heats are exposel. They are connected by chaius to the amo H of a trigger I. The barrel X is moved by the spring P, a cap is exploded, a ball projected, and fire communicated througin the opening R into the magazine S. D is a cover for the screw-heads $Z, \quad T$ is the fallen face-plate of the lock-case.

Fig. 123.

Andreu's Alarm-Lock.
A-larm'-lock for Tills. Alarm-locks are attached to tills so as to ring when the drawer is pulled open. The deviees are numerons. In Fig. 129 is shown one in which the contact of the head a with a detent beneath the comnter causes the said head to vibrate and swing the hammer-rod which

Fig. 129.

Tucher's Alarm-Till.
sounds the gong. By raising the trigger E the drawer may be opened silently.
A-larm'-watch. An instrument, not necessarily a timepiece, with going works, and adapted to run down and sombl an alarm after a specific interval of time. Sue Watch Alarm.

Al-ba'ta. German silver, composerl of nickel, copper, and zinc ; with the addition of small quantities of lead or iron in some formulas.
lt is a white alloy, used for table-ware, ete., and resembles the Chinese Packfong, or white colper.
The following are some of the formulas :-
Common, Nickel, 4 ; Corner, 20 ; Zine, 16.
Better, " 6 ; " $20 ;$ " 10.
For rolling, " $25 ; \quad$ " $20 ;$ " 60.
For casting, "، $20 ; \quad$ " $20 ;$ " 60 ; Lead, 20. Packfong, " $31.6 ; \quad$ " 40.4 ; " 25.4 ; lion, 2.6.

Sep Alloy.
Al'ber-type. (Photorr.) The process is as follows: "A plate of glass is covered with a solution of albumen, selatine, and bichromate of potash, dried and exposed to light until bardened. It is then again covered with a solution of gelatine and bichromate of potash, and when dry exposird under the negative, and the film is then fomnd to possess qualities analogous to a drawing made witle fatty ink upon lithograph stone. All those jortions of the film that were acted upon ly the light will reSuse water and take printing-ink, while those portions which were protected fiom light by the negative will take water and refuse ink. The ink and water will be ahsorbed by the film just in accordance with the gradations of light and shade in the negatise. To produce a picture, wet the surface of the film, then apply ink, lay on Papel, anel pass througlt a press; the operation lieing substantially the same as lithograplly. The process is said to be rapid, and excellent pictures of all sizes may be printed in admirable style,"-Iheromriphic Aeves.

Al'bo--ite Cement. luvented by Riemann. Mix calcined and finely pulverized magnesite (native carbonate of magnesia) with infusonial earth, and stir in chloride of magnesitim. Among the properties of the cement, as mmerated ly the inventor, are a high degree of plasticity, and of hardness after it has hecome fixed, and a spontancous develoj nemt of heat as soon as it is solidified to the consistency of wax, this increasing in proportion to the size of the mass into which it has been molded. It is extremely hard, a peculiarity increased by its elasticity, and adheres very well to stone, wood, and dry oiled surfaces, but cannot be used under water. It is now largely employed in the preparation of omamental moldings, for which, howerer, in consequence ol the above-mentioned development of heat, gelatine molds must he cantiously usel. By coating omaments of gypsum with this cement it imparts to them a great degree
of hardness. It is also used for reparing worndown sandstone steps for facing stnue and wooden ste lis, for fire-proof coating to boards in the interior of houses, and also for prenerving railroad-ties, ete.

Al'bum. A book arranged to hold photographs, autographs, or memorial addresses of a private character.

The principal concern of the mechanic arts with the alb:m is with devices for sewing the leaves in the book, making the slip-pockets for the reception of cards, clasps, and securing devices for the leaves of the cover.

The ullum was originally the tablet on which the Roman pretor's etliet was written. It was white, and hung up as a bulletin-loard in a public place.

It is now a book of friendly memorials : signatures, prose or poetic effusions, or photographs. It dates back to the church hlank-book, or white-page look, in which were inscribel the names of benefactors of the clumerh, in order that the appointerl prayers might be made as the feast-days of their chosen saints recurred.

The Venerable Bede, in his preface to the Life of St. Cuthbert, A. D. iol, speaks of the record of the saint's uame in the album at Lindisfarne. The name frequently oecurs in ecelesiastical and other writings.

Al'bu-men Process in Photography. This process antedated the collodion, which is much huore sensitive. It was inventel by Niepce de St. Martin. The g'ass receives a coating from a solution of albumen to which bromide and iodite of potassiom and a drop of caustic potash have been added, and after drying is exposed to the fumes of iodine. It is then silvered in a bath of nitroacetate of silver, and dried. After passing again over the vapor of iodine it is ready for the camera. The image is developed by a solution of gallic acid, and fixed by a solution of hyposulphite of soda. - Mayall.
Al'car-ra'za. A ressel of porous earthenware used for cooling the contained linuils by evaporation
from the exterior surface. See leb-machine. The word is Arabic, and the device was introluced into Europe by the Spanish sameens.
Alcarrazas are made of a sandy marl made uji into paste with saline water and liglitly tired.
"In niches where the current of air could be artificially directed hung dripping alearazas." Deseripion of the Alhambra.

Alco-hoi in'gine. An engine in which the vapor of alcolol is used as a motive-power.
The first suggestion of the machine was by Rev. Edmund Cartwright at the latter end of the last century. The reason why the elastic vapor of alcohol was supposed to be preferable to that prove duced from water is that it boils at a temperature considerably helow that of water. It must be recollected, however, that all leakage and escape of alcohol is not aloue an almolutie loss of a valuable material, but that sneh leakage is very dangerous, owing to the intlammalility of the material.

Howard's alcohol engine, English patent, 1825, was in use at the Rotherhithe Iron-Works for some time, but aplears to have wearied out the patience or means of the inventor, no engine of that description being now usefully employed so far as we are aware. The engine referred to was intended to woik l:p to 24 horse-power.

The engine had two vertical cylinders $A B$, of eqtial capacity, connected by a pile C, at the lower part of each. A quantity of mevcury or oil, which will not vaporize at the heat to be applied, is placed in each cylinder, so as to fill the base of one and nearly the whole of the other.

Within the cylinder B is a piston, exposed abore to the pressure of the atmosphere, and pracked in the cylinder in the usual manner. In the other cylinder A is a thin metallic dish D, floating freely upon the surface of the oil. A tube E, terninating in a nozzle pierced with small holes, passes through a stuffing-box in the cover of the cylinder A, in which also is a flap-valve G openeal ly a rod $I I$ as

Hotenrr's Alcohol Engine.
occasion requires. The valve is otherwise kept to its seat by a spring. I is the stulfing-box of the valve-rod; K the safety-valve. The piston has a plug by which a certain quantity of the fluid is admitted above its upper surface, there to remain. λ^{*} is a discharge-cock. $n o$ are argand-bumers, whic! heat the eylinders $A B$ by lirect action npon their lower s:iffaces, the hot-air f'tu extending aronnd them and teminating in the chimney P, which has a register-eap a by which the draft is regulateu.

By means of a force-pump R, workel by the ensin - a small quanti'y of alcohol is drawn from the comlenser and injected through the pipe E into the dish D. which floats unon the hot oil in the eylinter A, ane is thereby Hashed into stean. The e::phansion of the alcohol depresses the column of oil in the cylinder A, driving it through the gassage C into the cylinder B, where it raises the piston.
When the piston has attained its highest elevation, the valve G is opened and the rapor escajes by pipe S to the contenser, which consists of an upper and lower chamber connected hy jipes $V V$. These lipes are surrounded by flannel constantly wetted by water dripping from the troagh N, and the evaporation is expredited by a continned draft of air from the rotating fly Z, which is driven by the engine. Y is the lower trongh, which receives the superfluous water, and W is the botom chamber, which contains the condensed rajor and from which it is drawn by punup R to produce each upward movement of the piston. A cork or woolen packing in the connecting-pipe S prevents the conduction of heat from one part of the apparatus to the other. The condensation of the alcoholie vapor eauses the return of the oil into the cylinder A, and the atmospheric pressure causes the piston to descend. c, b, are the pipe and stop-cock by which the atmospheric contents of the condenser are withdrawn, 1 revions to starting the engine. d is the
 discharge pipe by which the coudenser may be drawn from the chamber W^{\top}. f is the nipe at which the chamber W is charged with alcohol. It is closed by a screw-pipe when the machine is in action.
Al'co-hol'-me-ter. modification of the liydrometer, for the purpose of as certaining the comparative sprecific gravity and conse. quent amount of alcohol in spinituous liquors, etc. This instrument may either be so constrineted as to be sunk, by weights, to
a uniform depth in the liquor testrel, or it miny indicate the gravity by the amount of its submergenec, as shown on a graduated stem, taking either price alcohol or "proof" as a standard ; the latter molle of construction is more convenient in practice, and more generally adopted. The absolute percentage of alcohol, or the degree above or below proof, is dedneed From tables constructerl for that purpose and corresjouding to various temperatures of the liputit.

GUT1, June 28, 1859. In this al-oholneter the evaporation of a fixed quantity of alcuholic fluid is made to exhibit the exact pereentage of alcohol contained in the said liquid. While the tule E is yet detached from the appratus, it is partially filled with mercury, and then receires a definite amount of the alcoholic liquid to he testet. When inrerted and placed in position in tlre instrument the lipuid and merenry change places, the former occu1ying the urper part of clamber E. Heat being aipliel, by means of the spirit-lanyl B, to the water in chamler C, the rapor rising therefrom, fillin:: chamber D, heats the mercury and the alcoholic liprid, the temperature being indicated by the thememeter A. As alcoholic vayor is climinated from the liquid it presses upon the column of mercury, causing it to rise in the stem $C_{r},:$ nel the height of ilee colun:n against the graduated scale indicates the alloonnt of spirit.

The ebnllition alcoholmeter of Vipal is founded apon his discovery that the boiling temperature of alcoholic liquors is proportional to the quantity of alcohol contained in them. It consists of a spiritlamp, bencath a snall boiler, into which a large eylindrical glass bulb is plunged, having an upight stem of such ealilur that the quicksilrer contained iil them may, by its expansion and ascent when heated, raise before it a little glass foat in the stem, which is connected by a thread with a similar glass bead that hangs in the air. The thread passes round a pulley, which, turning with the motion of the beads, causes the index to move along the graduated circular scale.
The numbers on this scale represent percentages of abso-
 percentages of abso Ebrllition Alcoholmeter. lute alcohol; so the number opjosite to which the index stops, when the liquor in the cylinder over the lanup boils briskly, denotes the pereentage of alcohol in it.

Stemex's alcoholmeter, Berlin, 1869, is thus described: "As the spirit - no matter of what strength - leares the still, it passes into a cylindrical vessel, and from this, through a drum something like that of an ordinary gas-meter, into the
cask which is to contain it. On its way through the apparatus it is measured, gaged, and registered with the greatest possible exactness. First, its bulk or volume is measured and indicated in gallons and deeimal parts ; and, second, the quantity of either absolute alvohol or of proof-spinit which it contains is measured and incheated independently. The measurement and registration of the total bulk or quantity of spirit which prisses over is obviously done directly by the rotation of the drum, such of the three divisions of which holds exactly tive gallons. The indieation of the strength of the spirit is done by a swimmer in the cylindrical vessel into which the alcohol first enters as it leaves the still. This swimmer is attached to a mintor, which, in being elevated and depressed by the lowering or rising of the swimmer, according to the varying specific gravity of the liquid, limits the reciprosating movements of a graduated tongue in connection with the counter-work. Thus, not only do the distiller and the exciseman know at a glanee ho:s mueh spirit in total has been distilled within a fiven time, but likewise ho.v much Iroof-spirit it is eqnivalent to. - Enmineer.
Sice also Liquid-miteli.
Al'cove. (Architccture.) A recess separated from a main chamber by columns, ante, and balusters.
A reeess in a roon for a bed or for seats.
A-lem'bic. The head or cap which is plased upon the cucurbit, and which discharges by its beak into the receiver. The cucurbit contains the li. puid to be distilied, and the alembic is luted thereto to

Fig. 133.

Alembic.
prevent the escape of vapor which is raised by the heat of the fire, aud is conducted to the receiver to be condensed. Some alembics have an aperture in the head to admit material to the retort when the stopper is temjorarily removed.

We are indebted to the Arabs for this apparatus and its name. Zozimus, who llourished about A. D. 400 , described the operation of purifying water by distillation.

Djafur, the great Arabian chemist, ahont A. D. 875 discovered nitrie acid, which he obtained by the distillation in a retort of Cyprus ritriol, alum, and saltpreter. He obtained aqua-regia by the addition of sal-ammoniac, and no doubt felt that in obtaining a solvent of gold he had discovered the long-lesired aurum potubile.

Rhazes, the Arabian, born 860 , obtained ahsolute alcohol by distilling spirits of wine with quickime. Achild Bechil, of the same prople, distilled to-
gether an watract of urine, clay, lime, and powlered charcoal, and obtained phosphorus.

A blimb-ulombie is one having a capital with no rostrum.

A-Ien'çon Lace. Also called blonde. A variety of lace lormon of two threads, twisted and worked to at hexagonal mesh.

Alenson point is torned of two threads to a pillar, with octagona' and sifuare meshes alternately.

Al'eu-rom'e-ter. The name given to an instrnment invented about 1849, by M. Bolani, a Parisian baker, lor detemining the quality of the gluten is different specimens of wheaten flour, and their consequent adaptation for bread-making. A tube ol about six inches in length is divided into two parts, of which the smaller one, about two inches in length and holding a given amount of gluten, is screwed on to the longer tube, which is fitted with a piston laving a graduated stem. The apraratus is then exposed to a moderate degree of heat, when the gluten expands, forcing up the piston, the amount of expunsion being indicated by the distaner the stem protrudes from the tube. It was found that gluten obtained from flour of good quality would expand to four or five times its original bulk, and had the smell of wam breal, while that of bad thour became viscid, with a tendency to adhere to the tube, and in some instances emitting an unpleasant odor.

Al'i-dade. (Optical Instr.) The movable arm of a gradtated instrument carrying sights or a telescope, by which an angle is measured from a base line observed throrgh the stationary or level line of sights.

Used in theodolites, astrolabes, demicircles, and numerons other angulometers.

A-lign'ment. (Engincering.) The ground plan of a roal or earthwork.

Al'ka-lim'e-ter. The object of this instrument is to asertain the value of the alkalies of commerce. It was invented by Dr. Ure, abont 1816, or by Mr: Descroizelles, and consists essentially of a graduated tube closed at one end, each graduation corresponding to a sufficient quantity of sulphuric or other acid to neutralize a given emount of pure sota or potash dissolved in water. The strength of the alkali is inferred from the amount of acid required to neutralize it.

The instriment recommended by Dr. Faraday consists of a burette supported upon a foot and graduated into one lumired equal prarts, the space between each two of the divisions being capable of containing ten grains of distilled water. The upper part of the instrument is shaped, as shown in the figure, for the convenient introduction of the test acid and its subsequent delivery in drops.

To employ it for estimating the amount of carbonate of potash in any sample of pearlash, weigh otit 100 grains of the ash, dissolve them in boiling water, so that, when cool, the mixture has a specific gravity of 1.1268 . Filter if necessary, and tinge blue with infusion of litmus; then till the alkalimeter to 65 with the test acid, diluting with water to 0°, amd add the dihuted acid gradually and cautiously until the reddening effect is produecol upon the dissolved sample. The number of measures of acid requirol represents the percentage of carlunate of potash in the sample.

To estimate the amomit of potash contained in the sample, either as canstic potasli or carbonate of potash, fill the alkalimeter to

49 with the test acid, the 100 measures being again made up with water. The number of divisions of this dilute acil required to neutralize 100 grains of the sample will correspond to the proportion of pure potash in the sample.

For the detemination of carbonate of soda, the alkalimeter must be filled to 54.6 with the test acid, which must then be used as before. For the estimation of caustic soda, the operator will require to fill the instrmment to 23.4. The number of measures required to change the blue of the solution to red will in both cases correspond to the percentages of canstic or carbonated alkali required.

All-a-long'. A bookbinder's te:m to denote that the sewing-thread lasses from enul to end of the foll, or directly between the distant pints of puncturation.

Allege. ($F r$:) A ballast-roat.
Al-lette'. (Architceture.) A wing of a building; a bu'tress or pilaster.

Al'ley. (Priuting.) The compasitor's standinc' place hetween two opposite frames.

Al-loy'. An alloy is a combination hy fusion of two or more metals, as brass and zinc, tin and lead, silver and copper, etc.

Many allors are composed of definite chemical proportions of their component metals, whilst in others the metals unite in any proportions.

The best-known and perliaps the most generally useful allor is brass, which is formed by the fusion together of copper and zinc.

The Colossus at Rhodes was said to have been constructed of brass B. C. 2ss. Bronze is a much more ancient alloy than brass, and has been known from a rery remote antiquity. See Brass and Bhosize. All alloys are oprque, hare a metallic luster, are more or less elastic, ductile, and malleable, and are good conductors of heat and electricity: Those consisting of metals of very different degrees of fusibility are usually malleable when cold and brittle when hot. Detallic compounds containing mercury are amalgams. Metals do not unite indiffurntly with each other, but bave certain affinities; thus silver, which will hardly unite with iron, combines readily with gold, copper, or lead. Alloys are generally harder and less ductile than the mean of their constituents, and their specific gravity is usually either greater or less than this mean. (See Tahle.) The melting-point of alloys is usually below that of either of the simple metals composing them ; thas, an alloy of 8 parts hismuth, 5 lead, and 3 tin, fuses at the heat of boiling water, or 212°. See Fusible Alloys.

They rery frequently possess more tenacity than their constituents would seem to indicate; thus an alloy of I2 parts leai and 1 part zinc has double the tenacity of the latter metal, or about six times that of lead.

They are, in general, more easily oxidized than their component metals. An alloy of tin and lead unites with oxygen so readily as to take fire and burn when heated to redness.

A very slight modifation of the components of ten produces a great change in the mechanical properties ; brass, containing two or three per cent of lead, is most readily turned, but works badly under the hammer, while that of the best quality for hammering is not turned with facility, owing to its toughness.
The precious metals, when employed for coin or jerrelry, are invariably alloyed to increase their hardness ; the degree of fineness, or proportion of pure metal, being usually estimated in carats or twenty-fourths. In this case the term "alloy" is
often understood to apply merely to the baser metal with which the gold or silver is combined. Thus the British standard for gold is 22 parts pure rold and 2 parts alloy, or 22 carats fine; for silver, 222 parts pure silver and 18 parts alloy.

The alloy for gold is an indefinite proportion of silver and copper ; that for silver is always copper. The standard for silver plate is the sane as for coin ; that for jeweler's gold is 18 carats, but lor some purposes the fineness is reduced to 12 and even 9 carats; silver is used for the alloy, and copper may be adiled to heighten the color.
Silver and palladium unite in any proportions, and it has been found that this alloy is not so readily tarnished as silver; it has been nised for the graduated scales of mathematical instruments. Platinum has been used with silver for similar purposes, but requires greater care in fusion to make the combination.
Steel is much impraved for cutlery by being alloyed with about $\frac{1}{10} \sigma$ part of silver; it is a:so improved by $\frac{1}{500}$ part of platinum.

From one to two per cent of rhodium has also been combined with steel, with excellent results.
brasses and broszes witi the addition of 1RON.

An English work of 1853 cites the aldition of one to two per cent of iron to brass to give strength and sonorousness; and further states that "large guns, large screws, propeller-vanes, mill-brasses, railway-bearings, bells, and other articles are made of a metal in which copper, zinc, tin, and iron, all take part."
(Brass:) The alloys of copper and zinc retain their malleability and ductility when the zine is not above thirty-three to forty per cent of the alloy. When the zinc is in excess of this a erystallime character begins to prevail. An alloy of 1 copper, 2 zinc, may be crumbled in a mortar when cold.
Yellow brass, that files and tums well, may consist of copper 32, zine 9 to 18 . A greater proportion of zine makes it harder and less fractable; with less zine, it is more tenarious and hangs to the file like copper.
Yellow brass (copper 2, zine 1) is hardened by the addition of two to three per cent of tin, or made more malleable by the same jroportion of leal. The tin whitens it ; the leall reddens it. See Brass.
(Bronze.) A compound of copper and tin. The addition of tin increases the fusibility of copper. The red color is not materially aflected hy the addition of 5 parts tin to 32 copper, which makes engineer's lrasses; it is consiclerably whitened when 32 enpur is alloyed with 12 tin, this being the limit of bell-metal ; and is quite white when 32 copper, 16 tin, is reached, this being speculum metal. When it has ceased to serve for producing sound it is used for reflecting light.

A simall addition of zine to a bronze alloy assists in the mixing, and increases the malleability without materially affecting the hardness. Lend increases the ductility of gun-metal, at the expense of its hardness and color. Mr. Donlin proposes the addition of nickel. Dr. Ure suggests antimony. The addition of from two to form per cent of iron to the gun-metal is claincel to make an extremely tongh alloy. Sec Gun-mptal ; Bronze.
Sir J. Gardiner Wilkinson mentions finding a bronze chisel among the chippings of the limestone rocks in the neighborhond of Thebes, where it had been accidentally left by the workmen in ancient times. It is $9 \frac{1}{4}$ inches in length, diauneter at the summit 1 inch, and weighs 1 lb .12 oz .
fusible alloys (Crmposition of ${ }^{\prime}$).

	륲	比	E		号	Meltingpoint.
Rose's . -		5	1	8		$201{ }^{\circ} \mathrm{F}$.
Newton's -		5	3	8		212
Newton's (another formula)		3	2	5		199
French . . .	1	6	4	8		
Wrood's . . .			1	3	1	210
Wood's - *		6		7	1	180
TVool's Patent (March 20, 1860)		4	2	7-8	1-2	150-160
Wood's Patent for filling teeth (Sept. 4, 1864)		1-2	2-3	3-4	1-2	

KUIFFEE'S TABLE OF FUSIBLE ALLOFS, - ATOMIC PROPORTIONS.

Lead.	Tin.	Melting-point.
1	5	$381^{\circ} \mathbf{F}$.
1	4	372
1	3	367
1	2	355
1	1	466
3	1	552

Holtzapffel's list is as follows:-

Tin.	Lead.	Bismuth.	Mercury.	Melting-point
1	25	\ldots	\ldots	$558^{\circ}{ }^{\circ}$ F.
1	10	\ldots	\ldots	541
1	5	\ldots	\ldots	511
1	3	\ldots	\ldots	482
1	2	\ldots	\ldots	441
1	1	\ldots	\ldots	370
$1 \frac{1}{3}$	1	\ldots	\ldots	334
2	1	\ldots	\ldots	340
3	1	\ldots	\ldots	350
4	1	\ldots	\ldots	365
5	1	\ldots	\ldots	278
6	1	\ldots	\ldots	381
4	4	1	\ldots	$3 \geq 0$
3	3	1	\ldots	310
2	2	1	\ldots	29.2
1	1	1	\ldots	254
1	2	2	\ldots	230
5	3	3	\ldots	202
5	3	3	3	122

Aceording to a table arranged by Professor P. H. Yanter Weyde, the fusion points of the undernu utioned alloys are as follows :-

A more extended tahle of the fusible points of the ordinary triple alloys is given in the Bullctin de lue Société Chimique:-

Lead	Tin.	Ei muth.	Point of Fusion.	Point of Solidification.
150	140	120	$130^{\circ} \mathrm{C}$.	$112^{\circ} \mathrm{C}$.
145	145	100	140	129
150	150	75	150	135
150	150	50	160	150
170	180	35	170	163
210	190	30	180	165
140	155	30	190	180
200	185	30	200	180
200	180	30	210	180
240	150	30	220	180
207	194	30	180	180

The Egyptians soldered with lead as long ago as the time of Thothmes, B. C. 1490 , the time oi Moses. Pliny refers to the art, and says it requires the addition of tin for use as a solder. The tin came mainly from the Cassiterides (Cornwall).

Gold Alloys.

| | Gold. Silrer. Copper. | | |
| :--- | ---: | ---: | ---: | ---: |
| 18-carat gold of yellow tint | 360 | 66 | 54 |
| 18-carat gold of red tint | 360 | 42 | 78 |
| 16-carat gold . | 36 | 6 | 12 |
| 16-carat gold nearly (yellow tint) | 20 | 7 | 5 |
| 16-carat gold nearly (real tint) | 20 | 2 | 8 |
| 11-carat gold nearly | 20 | 11 | 11 |
| Gold solders are made from gold of the quality of | | | |
| the article, say 18 or 16 carats, to which is ndded | | | |

$\frac{1}{12}$ of silver and one $\frac{1}{2}$ of copper ; or a larger
pioportion of silver and ${ }^{\frac{1}{2}}$ copler for ware of inferior fineness.

JEWELER'S ALLOY's.

Blanched Copper (Mock Silver)
1uitation Gold (Hermstade's); It itis resembles gold in color and specific gravity)
sumilor
Manheim Gold
Mo*aic or Gold (Hamilton and
Moas Gold (Ham
Parker's Pateot)
Pilichbeck
Mirek Platioum
Littı Metal
Tery hard Bronze (Cbantres's)
Speculum Metal

Martin's Pateat, Aug. 23, 1858
Or Molu
Tourbac (Malay, tambaga, copper)
Red Tombac
Moek Silrer (Toucas s Patent, 1856, England)

Hock Gold (Hackert's, patented Jube 11, 1867), cream of tartar, 8 oz . saltpeter, 1 oz ; melt, and add melted copper, 8 oz ; borax, 1 oz . ; xioc, 1 oz . ; tutty, 1 oz .
solders (Composition of).
 ness of the article, so as not to risk the test of assay.

TYPE-METAL (Composition of).

From four to six per cent of tin is used in the smaller types, and sometimes a small amount of copper.

In this alloy the antimony fulfils another service besides imparting hardness. Antimony expands somewhat in cooling, whereas lead contracts considerably; the antimony therefore, within certain lim-
its, compensates for the contraction, causing the alloy to retain the full size of the mold, making the letters slarp.

Sometimes, from motives of economy, the neighboring parts of machinery are not wrought accurately to correspond one with the other, but metal is poured in to fill up the intermediate space and make contact. Antimony is an essential aldition in such cases to prevent the contraction the lead alone would sustain, and which would defeat the intended object, as the metal would otlelwise become smaller than the space to be filled.

WHTE METAL ALLOS'S.

Special Formulas.
A metal that expands in cooling; useful in filling defects in iron castings:-

Lead	.	\quad
Antimony		
Bismuth		\quad
2		

BAbBitT metal:-

Copper . . 1
Regulus of Autimony 1
Tin
10
Melt the copper first, then the antimony, then the tin, strewing charcoal-powder over the crucible to
prevent it from burning away. Cast it in burs. It shoull not be kept hot on the fire any longer than is absolutely essential. Wash the hos to be tinned with alcohol, and then sprinkle powderel sal-ammomiae on it ; lohl it over the fire until the same fuses, then plunge it in melted tin. All parts not to be timnel must be washed with clay. Nuriate of zinc, that is, zine ent with muriatic acil, may be employed instead of the ammoniac, where it can be obtaned. When the box is timaed it will tahe the Babbitt, but it must be pretty hot lefore the lablbitt is poured in.
Babbitt's English Patent gives the proportions:-

Tin		
Antimony .	.	50
Copper .	.	5

Bithholz's metal :-
Cast-iron - 2 lhs .
are heated in a crucible to a white heat; add thereto Copper . . . 60 liss.
Heat ith both are melted together, then add

making 100 pounds of the composition.
These are the materials and almost exactly the proportions of the Austrian Navy gun-metal. See Bionszes and Brasses with the Addition of Iros (p. 61).

Dissman's metal for journal-hoxes, patented February $27,1866^{\circ}$: -

In his patent of October 15, 1867, 1 oz . of tin is substituted for the 8 oz . of lead.

$$
\begin{aligned}
& \text { An alloy of } \\
& \text { Silvet . . . } 50 \\
& \text { Platinum . . } 20
\end{aligned}
$$

resists the tarnishing action of sulphur.
Baron Wettenstedt's alloy for sheathing for shipis:-

$$
\begin{array}{ll}
\text { Lead . . } & 100 \\
\text { Antimony . } & 3
\end{array}
$$

Kenvelly's patent, March 31, 1863. For horse-shoes:-

American Charcoal lron	30 lbs .
Bone-ulust	4 oz .
Mangamese	2 "
Ferrocyanide of Potaslı	1 "
Hematite	
Wolfram	

melted and cast in molds of the required sluape.

Lead . . 50
Tin . . . 25
Bertos's patent, February 12, 1867. For plowshares: -

Johistox's patent, Nowember 26, 1867. For dental uses: -

Sodium or potassium, or an amalgam of either, is added to mercury to fueilitate its union with silver, tin, culminm, platinum, etc.

Brander's patent, February 12, 1867. For roofing :-

Leal . . . 75
$Z i n c$

are made iuto an ingot, coated with pure tin, and rolled.

Brayton's patent, August 6, 1867. For cyelets: -
Tin
Zinc
1

Taydor's patent, January S, 1867 . For sal.ots of projectiles :-
Leall
Tin ${ }^{4}$
for moderate charges. Ther tin is increased for heavier charges and jrojectiles to the extont of

$$
\begin{aligned}
& \text { Lead . } \\
& \operatorname{Tin} . \\
& 78
\end{aligned}
$$

With projectiles of 300 lhs. and over, 3 llis. of copper are added to the alloy for a sabot.

Two new alloys of tin and lead are descrihen in a recent French jublication. While containing less tin than is used in common pewter, they are said to possess most of its advantages. They are not acted roun by vingar, sour wine, or salt-water. The hirst is matle by melting 1 part of tin with 2.4 parts of lead. The lead is lirst meltel and skimmed, then the tin is added, and the mixture is stired continually with a wooden stick until it begins to cool, to prevent the lead from settling to the lottom. This mixture has the density of 9.64 , ent its melting-point is 320° Fah. It may be rollerl cold, and the plates do not crackle when lent. It takes a very cood polish, and tamishes hut little on exposure. It will mark praper like lead, and is so soft that it may be seratched with the nail, but it will not foul a saw or file.

The second alloy is made by melting together in the same way 1 lart of tin with 1.25 parts of leat. This alloy is less elastic and harder than the foregoing. It is rather brittle, less malleable than the former, and fills up a file. Neither of these alloys was acted on by boiling with acetic acill for half an hour, and standing in the acid for twenty-four hours longer, nor had salt-water any action upon them: hence they may be useful for some kinds of utensils.

VGoUROUX'S ALLOY FOR beER-TAPS.

	Tin.	Antimony	Nickel.
For the body . .	785 807	195	20 18
Or. ${ }^{\text {cey . }}$	807 715	175	18 70

Cock-metal is an alloy of copper and of leal for faucets.

Metallic injection for anatomical preparations:-

Bismutl
Lead
Tin

with the auldition of a small amount of mercury.

Hackert's patent, May 17, 1864. For knobs and hardware:-

Copper	.
Arsenic	
Cream of Tartar	\quad.

Pfelffer's patent, August 14, 1866 :-

Hoon's alloy for ship's bolts (England, 1844): -

Copper	40.4
Zinc	3.8
Lead	16.5
Antimony	5.1

Stribing's hox metal for bearings (Engl., 1849) :-

(Orcirle.) An analysis of this new compound by a German chemist gires the following :-

The two latter he regarded as mere accidental ingredients.

According to another formula oreide consists of Pure Copper . . 100
Zinc or (preferably) Tin 17 Magnesia
Sal-ammoniac
Quick-lime . $\begin{aligned} & 3.6 \\ & 1.8\end{aligned}$
Quichlime Tartar of Commerce . 9

Sce Oreide.

An alloy for silver coin, ctc., upon which experiments have been made in France, and which is said to render the metal more homogeneous than the common altoy of pure copner, less liable to be tarnistied by sulptiureted hydrosen, and which, when toughened by continued rolling, may be restored by simple heating, is as follows : -
Copper
Zine

To be added to Silver \quad| 93 |
| ---: |

Magee's alloy for moldboards of plows. Sentember $9,1871$.

Copper	.	.	85 Tin Zinc

Aluminium bronze, consisting of copper 90 , aluminiun 10 per cent (by weight, we suppose), has been stated to have the strength of cast-steel; a statement apparently confirmed by Mr. Anderson of the Royal Gun Factory in England, and by the experiments of Mr. Morin, Nanterre, where it was found that the tensile strength of this metal is of $5,32 \mathrm{~s}$ kilogrammes to the square centimeter. At the same time a very important point was determined, - the transverse strengtlo or resistance to being bent. This was found to be for hrass, 2.22 ; gln-metal, 0.15 ; aluminium bronze, 0.05 . That is to say, there equal bars of these different metals wre fastenel at one end so as to be perficetly hmizontal, a certain
equal weight was placed at the free eul of each bar, and the result measured by au instrument for that purpose. Brass bent at 2.22 degrees of the instrument, the other metals as indicated above, thus showing the resistance of aluminium bronze to be 44 times greater than brass. The transverse strength, the resistance to permanent flexion, resistance to friction, and the superior resistance to oxidation displayed by this metal, although the latter quality has not yet been accurately determined, admirably qualify it for delicate mechanism and also for purposes where hardened steel was entirely employed. The tenacity of this alloy is astonishing, and is hardly equalled by any other metal ; it is more difficult to cut tban gold or brass, bat the cut is very clean and smooth.
The alloy of iridinm and osminm, called iridosmine, is the hardest of all alloys, and is used for pointing the Hawkins "Everlasting Pen" (English).

Siclon, of Paris, proposes a new alloy for the manufacture of all metallic artirles, - bells, hammers, anvils, rails, and non-cutting tools. The alloy consists of twenty parts of iroll turnings or tin waste, cighty parts of stecl, four parts of manganese, and four parts of borax; but these proportions may be varied.

When it is desired to inerease the tenacity of the alloy, two or three parts of wolfram are added. When the cupola is ready, the iron and steel are poured in, then the manranese and borax, and the ressel is filled up with coke.
A number of other alloys are known and used, ineluding some of Eastern origin. The latter are generally of little practical importance. Such are Aurum Musivum, same as Mlosaic gold.
Climquant, same as yellow copper ; Dutch gold.
Caracoly, composed of gold, silver, and copper.
Calin, a Clinese alloy composed of lead and tin.
Electrum, an ancient alloy of gold and silver.
The following table affords a ready means for the conrersion of decimal proportion into divisions of the pound avoirdupis. The proportions of metals in formulas for alloys are sometimes stated in one way and sometines in the other.

It is believell that alloys are more perfect when compoumbled acoaring to azomic j"onsitions, or by multiples of their chemieal apluivatents, insteal of lyy volumes. The ehemiod aphabate of the metals upon the hydrogen seale, now most usually inlopted, are aprended to the following list of metals:
metals.

	Meltingpoiut.	Sperific dizavily.	Chemienl Runivaluats.
A (amininm(about)	$700{ }^{\circ} \mathrm{F}$.	2.56	13.75
Antimony .	810	1.712	69.4)
Arsenic *	?	5.8	317
Bisumith .	500	9.822	71.0
Coukimiun .	442	8.19	65. 8
Cotrult	2300	8.33	24.5
Coppuer .	2000	F.nts	(cast) 31.6
Cold .	2916	19.3	199.2
Iron (wrong'it)	3280	17.15	28.
Iron (cast) .	$2 \% 96$	7.807	29.
Leerul .	412	11.41]13.1i
Many tnese	2710	1.65	27
Alcrenry (boik at)	670	13.5	20.1
Nierkrl. *	2700	4.27	24.5
Pitlhulinm	hardly fusible	113	633
Platinum	4. ${ }^{1}$	215	98.8
Khodium . .	$4{ }^{4}$	11.0	52.2
Silver . .	$1813^{\circ} \mathrm{F}$	10.4	(east) 1118.0
Tin . .	412	7.79	(fast) 51.9
Zine :	773	6 s	32.3

For a more eomplete list see ATome Weigurs of Metale ; Me:als.

Alloys of greater Specific Gravity than the Mran of their Components.

Gold and Zinc.
Gold and Tin.
Gold and Bismuth.
Gold and Antimony.
Gold and Cobalt.
Silver and Zinc.
Silver and Lead. Silver and Tin.
Silver and Bismuth.

Copper and Zinc.
Copper and Tin.
Copper and Palladiam. Copper and Bismath. Copper rad Antimony. Lead and Bisumth. Leall amil Antimony. Platimumad Moly hdemum. Palladiun and bisumth.
Silver and Antimony.
Alloys having a Specific Gravity infrrior to the Mean of their Contituents.
Gold and silver.
Gohl and Iron.
Gold and Leenl.
Gold and Copper.
Gold and Iridium.
Golel and Nickel.
Silver and Copper.
lron and Pismuth.
tron ant Antinony.
Ironanll Leal.
Tin anil Lack.
Tin and l'allatium.
Tin and Antimony:
Nickel and Arsmic.
Copper and Lead.
Zinc and Autimony.
(Remarks.) The varions propertions and redative qualities as to meltins-point and gravity are collected lrom a multitule of someres, the loust attainable. 'Tha anthorities, however, hiffer somewhat wilely, and this cem only be acconnted for from the ficet that so few metals ran le ohtained peres. The diflerences in the metals obtaned from dilierent localities are oftern moshoppecterl, and are fully proven in the variable statements of the cohesion in the tables compiled loy M1usthenbreek, Tredgold, Birlow, Brown, Liumloril, licmie, Telford, Brannat, and others.

The dillieulty that has thus arisen has cansed variable statements in the formalas tor brell mal orlnance eastimes, and has very eonsiderably afleeted the exaetness of statement in all the illoys, asperially the more finsible onss, where the virions combinations of leal, tin, and hismath give surld variahber results.

It appears to be suarerly possibie to give any
sulfienently generat rules, by which the properties of alloys may he saf ly inferred from those of their whotituents ; for although, in many cases, the working पpalitios and appearance of an alloy may be neaily a mean moportional between the nature and gualities of the metals composing it, yet in other anel frepuent instances the deviations are execssive, as will be seen ly several of the examples lollowing.

Thus, when lead, a soft and malleable metal, is combincul with antimony, which is lavi, brittle, amd erystalline, in the proportions of lrom twelve to fifty parts of dearl to one of antimony, a flexihle alloy is oltained, resembling lead, lut somewhat haverer, and whicla is rolled into sheets for sheathing ships. six parts of lead and one of antimony are used tor the large, soft printers' types, which will beme slightly, but are considerably harder than the foregoing ; and there jarts of had and one of antimony ure (employed for the smallest types, that are very hard and brittle, and will not bend at all: antimony luting the more expensive metal, is used in the smallest quantity that will suffice. The diflemenee in specifie gravity between lead and intimony constantly interferes, and unless the typemetal is frequently stirred, the lead, from being the havier metal, sinks to the bottom, and the antimony is disproportionally used from the surface. In tha abuve examples, the differences anising from the proportions appear intelligible enough, as, when the soft lead prevails, the mixture is muth like the lead ; and as the hard, lnittle antimony is increased, the alloy heromes hardened aml more brittle ; with the propertion of four to one, the fracture is meither reluctant like that of lead, nor foliated like antimony, but assumes very nearly the grain and color of some kinds of stenl and cast-iron. In like manner, when the tin and leal are alloyed, the fomer metal imparts to the mixture some of its hardness, whiteness, and fusibility, in proportion to its quantity, as seen in the various qualities of pewter, in which, however, copper and sometimes zinc or antimony are fommel. The same agrecment is not always met with; as nine parts of copper, which is red, and one part of tin, which is white, both very malleable and iluetile metals, make the tongh, rigil metal used in lyass ordnance, from which it oltains its moklen name of gum-metal, but which meither admits of rolling nor drawing into wire; the same alloy is described by Pliny at the soft bronze of his day. Thu rontinual aldition of the tin, the sefter metul, produces a gradual increase of harduess in the mixture ; with about one sixth of tin the alloy assumes its naxinmm harlmess consistent with its application to mechanical uses ; with one fourth to one third tin it become's lighly tlastic and sonorous, and its brittheness rather than its hardness is greatly increasect.

When the copper becomes two parts, and the tin vue part, thu alloy is so hard as not to arlmit of heing ent with steel tools, but crumbles under their action; whan struck with a hammer, or even suddenly wamed, it thes in pipees like glass, and chearly shows a structure highly erystalline, instead of mal. hatble. The alloy has no trace of the ral color of the copper, but it is guite white, susceptible of an expuisite polish, and, bing little disposed to tarnish, it is most purfectly arlaptet to the reflecting speculums of toluseopes aml other instruments, for which purpose it is alone used.
Coprer, when combined in the same proportions with a dillerent metal, also light-colored and fisible, namely, two parts of copprer with one of zinc (which latter metal is of a bluish-white, and crystalline, whereas tin is very ductile), makes an alloy of eutirely opposite chanater to the apcenhum

ALLOT

metal ; namely, the soft yellow brass, which becomes by hammering rery elastic and ductile, and is very easily cut and filed.

Again, the same proportions - namely, two parts of copper and one of lead - make a common inferior metal, called rot-metal, or cock-metal, from its employment in those respective articles. This alloy is mueh softer than brass, and hardly possesses malleability; when, for example, the becr-tap is driven into the eask, immediately after it has been scalded, the blow occasionally breaks it in pieces, from its reduced cohesion.

Another proof of the inferior attachment of the copper and lead exists in the fiet that, if the molds are opened before the castings arc almost cold enoigh to be handled, the lead will ooze out, and appear on the surface in globules. This also occurs to a less extent in gun-metal, which should not on that account be too rapidly exprosed to the air; or the tin strikes to the surfuce, as it is called, and makes it particularly hard at those parts, from the proportionai increase of the tin. In casting large masses of gun-metal, it frequently happens that little hard lumps, consisting of nearly half tin, work up to the surface of the runners, or pouring-plaees, during the time the metal is cooling.

In hrass this separation scareely happens, and these molds may be opened whilst the castings are red-hat without such accurrence; from which it appeats that the eopper and zinc are in more perfect chemical union than the alloys of copper with tin and with lead.

The malleability and ductility of alloys are in a great measure referable to the degrees in which the metals of which they are respectively composed possess these characters.

Lead and tin are malleable, flexible, ductile, and inelastic whilst cold, lut when their temperatures much exeeed about half-way toward their meltingheats, they are exceedingly brittle and tender, owing to their reduced cohesion.

The alloys of lead and tin partake of the general nature of these two metals; they are flexible when they are cold, even with certain alditions of the brittle metals, antimony and hisnuth, or of the thuid metal, mercury; but they erumble with a small elevation of temperature, as these alloys melt at a lower degree than either of their eomponents, to which cireumstance we are indebted for the tin solders.

Zinc, when cast in thin cakes, is somewhat brittle when cold, but its toughness is so far inereased when it is raised to about $300^{\circ} \mathrm{Fah}$. that its manufacture into sheets by means of rollers is then admissible; it beeomes the malleable zine, and retains the malleable and duetile character in a moderate degr"e, even when cold, but in beuding rather thick plates it is advisable to warm them to aroid fracture. When zine is remelted, it resumes its original crystalline condition.

Zinc and lead will not combine without the assistance of arsenic, unlpss the lead is in very small quantity; the arsenic makes this and other alloys rery brittle, and it is, besides, dangerons to use. Zine and tin make, as may be supposed, somewhat hard and brittle alloys, but none of the zinc alloys, except that with copper to constitute brass, are much used.

Gold, silver, and copper, which are greatly superior in strength to the fusible metals above named, may be forged, either when red-hot or cold, as soon as they have been purified from their earthy matters and fused into ingots; and the alloy's of gold, silver, and copper are also matleable, eithe: red-hot or coll. Fine or pure gold and silver
are but little used alone ; the alloy is, in many cases, introdueed less with the view of depreciating their value, than of adding to their hardness, tenacity, and ductility. The processes which the most severely test these qualiti's, mamely, drawing the finest wires, and beating gold and silver leaf, are not performed with the phre metals, but gold is alloyed with copper for the red tint, with silver for the green, and with both for intemnediate shades. Silser is alloyed with copper only, and when the quantity is small its color suffers but slightly trom the addition, althoush all its working yualities are greatly improved, pure silver leing little used.

The alloys of simitar metals having heen considered, it only remains to observe that when dissimilar motals are combined, as those of the two opposite grouls, namely, the fusible lead, tin, or zinc, with the less fusible copler, gold, or silver, the malleability of the alloys, when cold, is less than that of the superior metal, and when heated barely to redness they fly in pieees under the hanmer; and thercfore brass, gun-metal, etc., when red-hot, must be treated with preeaution and tenderness. Muntz's jatent metal, which is a species of brass and is rolled red-liot, appears rather a contradiction to this; but in all probability this alloy, like the ingrots of cast-steel, refuires at tirst a very nice attention to the foree applied. It will be also remembered the action of rollers is more therular than that of the hammer, and soon gives rise to the fibrous eharacter, which, so far as it exists in metals, is the very element of strength, when it is uniformly distributed thronghout their substance.

The strengtle or colsesion of the alloys is in general greatly superior to that of any of the metals of which they are composed. For example, the relative weiglits which tear asunder a bar of one ineli square of the several substances stand as follows, all the uumbers being selected from Mnschenturek's valuable investigations, so that it may be presumed the same metals, and also the same ureans of trial, were used in every case : -

Alloys.	Cast Metals.
10 Copper, 1 Tin, 32,0043	Barhary Copper, \quad 16s. 50
$8 \text { \% } 1$	dapч1 20.2 ?
$\begin{array}{lllll}6 & 6 & 1 & 4 & 44,0,1 \\ 4 & 6 & 1 & \text { \% } & 3 \\ 3\end{array}$	Enylish Block Tin, 6 , 0 \% 50
$\begin{array}{lllll}4 & 6 & 1 & \text { \% } & 35,039\end{array}$	
2 \% 1 \% 1,017 125	Banca Tin, 3,519 Malacea Tina, 3,211

The inspection of these numbers is highly conclusive, and it shows that the enginecr agrees with the theory and experiment in selecting the proportion six to one as the strongest alloy: and that the optician, in choosing the most reflective mixture, (1mploys the weakest but one, its strength being only one third to one sixth that of the tin, or one twentieth that of the copper, which latter constitutes two thirds its amount.
See Holtzaplisl's "Tuming and Mechanical Manipulation," Art. "Alloys,"

It is much to be regrettell that the raluable labors of Nlusehenbreek have not been followed up by other experiments upon the alloys in more general use.

One curious eircumstanee will be observed, however, in those which are given, namely, that in the following alloys, whieh are the strongest of their respeetive groups, the tin is always four times the quantity of the other metal : and they all confirm the circumstance of the alloys having mostly a greater degree of eohesion than the stronger of their component metals.

Alloys.		Cast Metals.	
	Ihs. 10 (\%)		$\mathrm{lbs} .$
4 Lharen Tin, 1 Antimony,	13, 1×6	Antimony,	1, (16i)
$4{ }^{4}{ }^{\text {4 }}$ " 1 1simmith,	11,462	Zine,	2, in ${ }^{\text {a }}$
4 English Tiu, 1 Govlur Kine,	11025x	Hismuth,	3,0108
4 " "1 Antimony,	11,3\%3	Tin, 3,2	2, 140

For other matur in regard to motals, see Mistals.
The varieties of alloys are considered under their specitied lumads as fullows:-

Aich's metal.
Albata.
Almaininm bronze.
Argentum mosaicum.
Artimonrantico.
Anrum mosaicum.
Babbitt motal.
batli wetal.
Brill-metal.
Billlery ware.
Billon.
Blanched copper.
Brass.
Britannia metal.
Bronze.
Calin.
Caracoli.
Clingrtant.
Electrum.

- Expanding alloys.

Fusible alloys.
Gemman metal.
Gemaan silver.
Creman steel.
German tutania.
German white copper.
Gohl-solder.
Gun-metal.
Hard solder.
Imitation roli.
Journal-boc metal.
Manheim gold.
Miuargent.
Mock grohl.
Moek jlatimmm.
Mock silver:
Mosaic golil.
Muntz's metal.

Orede.
l'acklong.
Parisian gold-colored alloy.
Parisian white metal.
Petong.
Pewtro.
Pewterer's soliler.
Prwterer's temper.
Plamber's solder.
Pot-metal.
Queen's metal.
Ied brias.
led tombac.
liosthorn's gun-metal.
Sahot metal.
Semilor.
sheathing-metal.
Shot-metal.
Silver-solder.
Soft solder.
Solder.
Slanish tutania.
Speenlum metal.
Sluelter solder.
statuary brass.
Stereotype metal.
T'imman's soleler.
Tombae.
'I'ula metal.
Tutenag.
Tvpe-metal.
White luass.
White malleable alloy.
White: metals.
Wontz.
Yellow metal.

Al'ma-dy. (T'cssel.) An African canoe made of the lark of trees.

Al'man. (Mctallurg?\%.) A furnace used by refiriers for seprating metals. See Almond-Furnace.

Al'mond-fur'nace. The worl is probably cor-

Wathew's Almond-Pecler. riuted from Alman (Allemetuel, German) furnace.

A furnace used by refinersfor separating all kints of metals from cinkiers, ete.
Al^{\prime}-mondpeel'er. A small machine used by confeetioners and cooks.

WATHEW'S almomd - ${ }^{\text {reel- }}$ er, October 30,
1860. The this prel is removerl from the scakied ahmonu kepmels by passing them between two rlastic bands of hudia-rublur, traresing side by side in the same direetion, at diflerent velocities.
Alunnds same from l'ersia, and were introduced into England. 1570.

Al'mu-can'ter Staff. An instrument having an are of 15°, formerly usmerd to obtain olservations of the sun's amplitule at the time of its rising and sctting, to find the variation of the compass.

Al-pac'a. (F'ubric.) a. A eloth in which the wool of the alpaca (a species of the llama, inhabiting Peru) is combined with wool, silk, or cotton.
b. A soft dress-goods, an imitation of the former ; having a cotton chain and woolen filling, plain color and highly finished surface.
Al'pha-bet Tel'e-graph. An apparatus which marks symbols on Inare by pressure, as Morse's ; or by chemical action, as Bain's; or inpresses type on papre, as llouse's or Hughes's ; in contradistinction to one whose intications are observed by the thectuating josition of a needle or needles, as Cooke and Wheatstone's, or the bell-telegraph of Bright. Sce Recomping Telegraph.
Al-phon'sin. (Siuryical.) A kind of bulletforcerps. Named from Alphonsus Ferrier of Naples.
Al'tar. 1. The low ridge which intervenes between the puddling-hearth and the stack.
2. One of the steps at the side of a graving-dock. The steps are from niue to sixteen inches in hight, and from nine to fifteen inches withe, except the browl altar, whirh is eighteen inches wide.

Alt-az'i-muths. Ser Theodolite; Transit.
Al-tim'e-ter. An instrmment for taking altitudes geonetrically, or for measuring vertical angles, as the quadrant, sexinint, etce., or the vertical limb of the theordolite.

One of the first references to means for measuring height is in connection with the most worthy artificial olject in the work, then or now. Thales is said, by Plutarch, to have been in Egypt in the reign of Amasis, and to have tanght the Egypians how to measure the hejght of the pyranid by its shatow. This is interesting from its association of names and places, but is absurd in itself. Thates went to Fgyit to leam, not to teach. During the reign of thr same ling, Egypt was risited by Pythagomats and Anacreon, the fiemis of Polycrates of Manos; Pythagoras, among other things, learned to ahominate bems, the peculiar aversion of the Egyptian priests. Eegyit was also visited ahont this time by Solon (llerodotus, I. 30), who came as a student, and alterwards introduced some ol' the Egyputian litws into lis Athenian code.
Al-tin'car. (.1/ctullurgy.) A factitiouskind of salt used in selparating inctals.

Al'tì-scope. Clalk, March 13, 1866. This invention cunsists of an arangement of lenses and mirrors in a vertical telescopic tube, by means of which a person is able to overlook ohjects interroning hretween hinself and the object he desires to see. When the sretions of the tube are extemied, the view is received noon an upper mirror jhaced at an angle of 45° and reflected thenee down the tule to a lower mirror, where it is seen by the observer. 'The image is magnified by lenses intervening between the minors. The telescopic tubes are so comected that each in turm acts upon the next in series, as it comes to the end of its own ranfe, and thus the lesired elevation is arrived at. The means of extrnsion is a winch ant cords.

Sherens, January 6, 1863. This affords a means for thaning guns to a given angle with the axis of the vessel, or on an object, while the gumer re-
mains bemeath the gun-deck. There is attached beneath the deck to the pintle of the pivotem gun a graluated imbex-plate, by which its horizontal bearing may he reail. A telescopic tube, with two reetanglar bends and with reflecting mirrors at the angles, is so placed as to be used from beneath the
of them have ulso adjustments in azimuth. These are treated specially under the above and other titles, and are also referred to under Astronomical Insthements.
The altitude and azimuth eircle is used for measuring the altitudes and azimuths of stars, as its name implies, and is composed of two graduated circles, one verticaland the other lorizuntal.
It is thus of general application.
Jean Picard, the great Frunch astronomer, 1620 1684 , is said to have been the first to apply the telescope in the measurements of angles.
Al-tom'eter. A name for the theodolite, which see.
deek; two of these may be so situated as to form a base of sufficient lengtil to obtain, by simultaneous observation, the distanee by triangulation. Two screw-propellers, working in contrary ditwetions, rotate the ressel so as to bring the guns to bear on the required point.

The upper and lower limbs of the telescopic tube are parallel ; the one above deck is presentel towards the object, the other to the eye. The inatge of the object, after being twice reflectel, reaches the eye of the observer, whose person is not exjosent.

A portable altiscopre, adapted to enable a person to look over the heads of a crowd, is formed of a hollow cane with perforations near its respective enls, oplosite two reflectors arranged at angles of 45° in the cane. The cane being held rertically, and the upper orifice presentell towards the object to be viewed, - a speaker, for instance, - the image is received upon one mirror and passes down the eane to the other, where it is observed by the person. Slides cover the openings when not used for ohservations, and the eane las then an urdinary appearance.

Al'ti-tudeIn'stru-ments. Theololiter, sextants, transit instruments, and many others having specifie names, are used for taking altitudes, while some

TABLE OF THE VISIBLE DISTANCE OF ObIF:CTS IN statute Miles.

		$\begin{aligned} & \equiv \\ & = \\ & =x \\ & =x \end{aligned}$	$\begin{aligned} & \approx \\ & \\ & 0 \end{aligned}$			隹	
*.58\%	1.	11	4.33	30	7.18	1:\%	16.05
$\frac{1}{1}$	1.31	12	4.54	35	7.76	200	1854
$\overline{3}$	227	12	$\stackrel{4.11}{4.9}$	45	88.8	3010	$\underline{29}$
4	$\because 6$	1.5	5.nT	50	93.	51 m	$\underline{-9.3}$
5	$\stackrel{2}{2.93}$	110	5.24	55	972	1010	4145
6	3.21	17	54	60	10.14	2000	5861
7	$3{ }_{3}{ }^{4} 7$	18	5.54	8	11.9	3 n 0	7179
9	${ }_{3}{ }^{3} .93$	${ }_{2}^{19}$	5.:	81	12		
10	4.15	25	6.55	110	131	1 mile.	95.23

* For a statute mile the currature $=6.99$ inches.

Al'to-ri'li-e'vo. The high relief of a sculptured ohject from the plane surface to which it is attached.
The degrees of prominence of the object are indicated by the terms:-

Alto, or high-rclicf, when the ohject projects more than half its thickness, frepuently being attached at a few places to the plane surface.

Mcizo, or demi-relicf, less prominent, say one half the thickness or a little less than half.
Eusso, or lov-relief, a slight prominence, as in medals and coins.

Al'u-del. A pear-shaped receiver, used in the Suamish furnaces for subliming mereury.

The aludels are fitted together longitudimally in a row, the neck of one fitting into the bulb of another, being luted together at the joints with softened

Fig. 137.

Aludel.
loam. The mercury condenses in the aludels, and gradually works its way to the lower one of the series, which is tapped to allow the metal to flow off.
The aludcl jumace has a vaulted chamber ahove the fuel chamber, and in the former the blocks of cimalar are built up. The fumes of the metal jass into a number of strings of aludels, and, heiner conlensel, are received in a common duct which leads to a reservoir.

Al'u-min'i-um. Equivalent, 13.7 ; symbol, Al.; specitic gravity, 2.56 cast, 2.67 hammered; fus-ing-10int, 1250° Falı.

Next to silica, the oxide of aluminium (alumina) forms, in combination, the most ahment constitnent of the crust of the carth (hydrated silicate of alumina, elay).

Common alum is sulphate of alumina combined with another sulphate, as potash, soda, etc. It is mueh used as a mordant in dyeing and calico-printing, also in tanning.

Aluminium is a shining, white, sonorous metal,
having a shate between silver and phatinum. It is a very light motad, heing lighter than glase, and muly one fourth as heavy as silver of the same bulk, It is very mallealide and ductile ; does not oxidize when expored to moist or dly air, is nut chemieilly alfectenl by hot or cold water. Sulphureted hydrogen gas, which so readily tarnishes silver, forming a lidack film on the surface, lats ne action upon this netal.
Aluminium is of great value in mechanical dentistry, as, in adlition to its lighatness amd strength, it is hot affected by the prosechee of sulphur in the food, - a.s by cegrs, for instance.
Dr. Fowler, of Yamouthport, Mass.; ohtained patents for its combination with valemite as applind to dentistry and other usis, Fetmary 7 and 14 , 1Sis. It resists sulphur in the process of vuleamization in a manner which renders it an eflicient aud economical substitute for platinum or gold.
Aluminium is derived from the oxide, allumim, which is the principal constituent of common clay. Lavoisier, a ceelehated French chemist, first suggested the existence of the metallic buses of the earths and alkaiies, which fart was demonstrated twenty gears thereafter by sir Humpliry Dary, by climinating potassium and sodium from their combinations ; and afterwards ly the discovery of the metallic bases of barytes, strontiun, aml lime. The earth alumina resisting the action of the voltaic pile, aud the other adents the" nised to imduce decomposition, twenty yeats more passed before the chloride was ultained by Oerstalt by subjecting alumina to the aetion of potassium in a crucille heated over a spirit-lamp. The discovery of aluminimn was at last made ly Woller in 1827, who sucreeded in 1546 in obtaining minute glolutes or beiuls of this metal by lieatine a mixture of chloride of alumina and sodium. Deville afterwards conducted some experiments in obtaining this metal at thes expense of Napolems 111., who sulseribed $£ 1,501$, and was rewardect ly the presentation of two hatrs of altuminum. The process of manufacture was afterwards so simplifiew that in 1857 its price at l'aris was about two dollars an ounce. It was at first manutactured from common clay, which contains aliout me fourth its weight of aluninium, but in 1555 Rose annomencel to the scientific world that it could be ontained from a material palled ""ryolite," found in Greenland in large quantitics, imported into fiepmany under the mame of "minerral sonda," tund used as a washing-sodia, and in the mandiacture of soap); It consists of a dubble fluoride of aluninium aud sodimu, and only requires to be mixed with an exeess of sollimu, and hated, when the mineral aluminium at once serparates. Its cost of manufacture is given in the following cstimate: for one jumend of metal,

16 lbs. of cryolite at 8 cts per pound
24 1bs. metallic solium at about 26 cts per ib.
Flux and cost of reduction

Aluminum in used largely in the mamufacture of cheap jewelly, by making a hard, fold-colored allor with copher, called almunimm bronze, consisting of 90 juer cent of enpper and 10 per cent of ahmuinima. like irom, it dous not amakgmate directly with moreury, nor is it readily alloyen with lead, but many alloys with other motals, as coprere, iron, gohl, we., have been made with it and fomme to be valuahe combinations. One part of it to one lumderl parts of gold gives a hard malleable alloy of a greenish-gold color, ant an alloy of $\frac{3}{}$ iton and
\ddagger aluminium does not oxidize when exposed to a moit athospluere. It has abo heen used to form a metallic coating upon other metals, as coppere, lrass, and (emman silver, by the chectro-galvanic process. Copper hats also lewn deposited, by the same process, upon alnminimn plates to facilitate their being rolled very thin; for unless the metal be pure, it vequires to be anmealed at each passage through the rolls, and it is foum that its flexibility is greatly increased by rolling. To aroid the bluish-white ajpatace, like zinc, Dr. Stevensom Mr-Adam reeonmends imuersing the artiche made from alumininm in a heated sulution of potash, which will give a In mutiful white frosted appenance, like that of frostell silver.
F. W. Gerhard obtained a patent in 1856, in England, for an "improved means of obtaining almanium metal, ant the adaptations thereof to the mamufacture of certain useful articles." Powdered thoride of abminium is placed alone or in combinafion with other flumides in a closed furnact, heated to as red heat, and exposed to the action of hydrogen giss, which is used as a reagent in the place of sodium. A reverleratory fumace is us.d by preference. The thoride of a amininm is placell in shatlow trays or dishes, each dish leing survomed ly clean, iron filings placed in suitable receptacles; dry hyrdrogen gas is foreed in, and suitahle entry and exit pipers and stopecocks are provided. The hydragen gas, combining with the fluoride, "forms hydro-lluoric actl, which is taken up by the iron aind is thereby converted into fluoride of iron." The resulting ahaninium "remans in a metallic stite in the bottom of the trays containing the thomide," and may be used for a variety of manufacturing and onamental pruposes.

The most important alloy of aluminum is composed of

$$
\begin{array}{lll}
\begin{array}{l}
\text { Aluminium } \\
\text { Copper . }
\end{array} & . & 10 \\
90
\end{array}
$$

It possesses a prale gold color, a hardness surjessing that of bronze, and is susceptible of taking a fine polish. This alloy has foum a ready market, amb, if less costly, would replace red and yellow brass. lts hardness ansl tenacity mader fo feculianly arliphtul for jounnals and bearings. Its tensile strengtl is 100,000 lus., and when drawn into wire $124,000 \mathrm{llis}$, and its clasticity one latf that of wrought-iron.

Demeral Dorin believes this alloy to be a perfect clemieal combination, as it exhibits, unlike the gum-metal, a most complete homogencoushess, its prepration being also attended hy a great develop)ment of leat, not seen in the manufacture of most other alloys. The slrecific gravity of this bronze is 7.7. It is mallealle and ductile, may he forged cold as well as loot, but is not susceptible to rolling ; it may, however, be drawn into tubes. It is extremely tolngh and fibrous.

Aluminiums litonze, when exposed to the air, tarnishes less yuickly than either silver, hass, or common bronze ; and less, of course, than iron or steel. 'lhe contart of fatty matters or the juiee of fruits does unt result in the prodnction of any soluble metallic silt, an immmity which highly recommends it for rarious articles for table use.

The uses to which aluminium bronze is applieatle are various. Spoons, forks, knives, candlesticks, locks, knols, door-liandles, window - fistrmings, larness-trimmings, and pistols are mate from it; also objects of art, such as lousts, staturttes, vases, and groups. lu France, alminium lrouze is used for the eagles on military stamdards, for armor, for the

Works of watches, as also watch-chains and ornaments. For curtain parts, such as jourmals of engines, lathe-heal hoxes, pinions, aml ruming gear, it has proved itself superior to all other metals.
Hulot, director of the lmperial postage-stamp manufactory in Paris, uses it in the construction of a punching-machine. It is well known that the bost edges of tempered steel lreome rety quickly bhnted hy praper. This is even more the case when the paper is coated with a solution of gum-arabic and then dried, as in the instance of prostagr-stamp sheets. The sheets are punched by a maveline the upper part (head) of which moves vertically and is armed with 300 ueedles of tempered stecl, sharpened in a right angle. At every blow of the machine, they pass throngh holes in the lower. fixed piece whith correspond with the necalles, and perforate five sheets at every blow. Hulot now sul) stitutes this piece by aluminium bronze. Each machine makes daily 120,000 blows or $150,000,000$ perforations, and it has leen fouml that a cushion of the aluminium alloy was maflected after some months' use, while one of brass is useless after one tlay's work.

ALCMINICM ALLOYS.

Fabmer's aluminium alloys patent April Ω. 1863. Copper is the first element, aluminium the second ; the other light-colored metals are added singly or collectively, as by the following finmulas, in which the proportions of atoms are stated. (Sce article Metals, for table of the chenical equivalents of the metals.
Ag., Argcntum, -Silver. Al., Aluminium.

Cn., Ciaprum, - Copper.	Ni., Jickcl.
Fe., Ferrum, - Iron.	Zn., Zinc.

The four following formulas produce alloys which, from their color and fimeness of texturs, irearly resemble gold, whence they are termet chrrsoid, being achaptud for use in the manufacture of watch-cases, chains, and ornamental jewelry : -

Cu A1. Ag.
$\mathrm{Ag} .+24\left(\mathrm{Al}_{1}+\mathrm{Cu} .{ }_{6}\right)=.918 \mathrm{~B}+.061 \mathrm{i} 5+.0203$
$\mathrm{Al} .+24\left(\mathrm{Al}_{1}+\mathrm{CuF}_{7}\right)=.9241+.050+.0158$
$\mathrm{Ag}+24\left(\mathrm{~A}_{-1}+\mathrm{Cu}_{\cdot} \mathrm{F}_{\mathrm{B}}\right)=.933 \mathrm{n}+.05 \mathrm{O}_{4}+.0106$
$\mathrm{Ag} .+24\left(1 \mathrm{l}_{1}+\mathrm{Cu}_{.9}\right)=.94(100+.0450+.01 .50$
The three following formulas proluce alloys for journal-boxes, ete. for machinery :-

$$
\begin{aligned}
& \mathrm{Zn}+2\left(\mathrm{Al}_{.1}+\mathrm{Cu}_{{ }_{6}}\right)=.6643+.06 \cdot 32+.07 .34 \\
& \mathrm{Zn}+2\left(\mathrm{Al}_{1}+\left(\mathrm{An}_{2}{ }^{2}\right)=.9053+.0435+.0512\right. \\
& \mathrm{Zn}+2\left(\mathrm{Al}_{1}+\mathrm{Cu}_{12}\right)=.9273+.0333+.0394
\end{aligned}
$$

These alloys are hard and tenacions, but are characterized ly consilerable shrinkage in cooling from a molten state, the last-mentioned allor baving consilerably more shrinkage than either of the others preceding it. The sail alloys have, when drawn into wires of ahout one thititieth of an inch in diameter, a tensile strength to the square inch of section in the precerlinto order of abont 90,000 , 103,000 , and $\$ 4,000 \mathrm{lls}$.
The following allors are adapted for gun-metal, being hard, tenacious, laminable, and ductile.

Cu. Al. Fe .

$$
\begin{aligned}
& \mathrm{Fe}_{\mathrm{C}_{1}}+\left(\mathrm{Al}_{1_{1}}+\left(\mathrm{Cu}_{1_{1}}\right)=.9203+.0269+.0530\right. \\
& \mathrm{Fe}_{\mathrm{L}_{1}}+\left(\mathrm{Al}_{1_{1}}+\mathrm{Cu}_{._{9}}\right)=.9399+.0446+.0149
\end{aligned}
$$

The tensile strength of the above alloys when reduced to wire, as above referred to, is for the siquare inch of section about $\delta 2,000$ ths. for the first of the last series of formulas, $\varepsilon 4,500 \mathrm{lbs}$. for the second. and $107,700 \mathrm{lbs}$. for the last.

Where zine or tin, or both, enter into the alloys in place of silrer. the color of the resultant alloys is somewhat affected, and the luster is dimimisled.

In the following alloys nickel foms the third element of the combination of the first formula and platinum the thirl element of the combination of the second formula.

Pl. $]+21\left(11_{1}+C u{ }_{6}\right)=.911 \%+.0656+.0225$.
Those alloys into which platimum is introduced are less affected by acids than those in which silver takes the place of platimum ; cither the platimum or the silver gives a hich loster to the alloy, platimm prolucing this result in a greater degree than silver.

In those alloys in which are introducel iron or other light-colored metals, which are difficult of frion, it is preferable to bring the easily fused metals into a molten state, and then to mix those less fusible with them in the form of shreds, particles, fine wire, or thin plates.

Ahminium and its allors are combined with rul. canite in the patents of Fowler, February 7 and 11, 1865.

Aecording to some amalyses, wootz (East Indian steel) is alloyed with aluminium.

Lavcastre's (1s.5s, England) gun-netal : copper, 90: alnminimm, 100.

Al'um Leath'er. Leather tanned by a composition of ahm and salt. Three pounds of salt and fom of alnm are used to one hundred aml twenty middle-sized skins, which are placed in a tumblingbox with a sufficient quantity of water. The process, with the succeeding operations, is deseribed under Thwing, which see.

Alum was used as a tanning agent by the Saracens.
Al've-o-lar For'ceps. A cutting-forceps or nippels for gnawing away protruting portinns of the alreolar rilge, to get a better base for a denture, or to rem we prints which prevent the healing of the gums.
Ama a'sa. Pieces of glass used in enameling.
A-malgams. An amalgam is a compound of mereury witls another mutal or metals. It differs from an alloy in possessing mercury as a constituput. Compoinds of other metals, with no metery included, are allors, whatever may be their comparative puantities or complications. Mereury does not combine with all other metals, but nnites with notable realiness with goll, silver, copper, zinc, tin, leal, palladinm, and bisinth. It is the great means
of selecting aml aracrequting ly absorjution particles of gold ant silver which are set free by the comminution of their matrix, but are so listributed in the powler as to repuire a congregating agent. The quartz rock having been joumbed or grommi so as to reduce it to powder, lowaching the firm bond of the rock upon the particles of metal distributed throngh it, the mercury is well mised with the dust, water beine whed to lorm a pulp. The mereury insinuate's itself thronghont the mass, and absorbs the precions metals therein. Being removel from the sand and rlust of the rock, the puicksilver is set free by sublimation, laving the non-vaprozable metals in the retort. The quicksilver fumes are gathered and condensed for re-ust.
l'liny sitys, "The most convenient mode of gilding copper is to mmploy mereury, whitl is applied in the form of an amalgan to the copper, to enable it to retain the gold leaf when laid thereon." They also understood the ant of obtaining mereary by sublimation of cinnabar, or by stamping and application of vinegar. In the process by ilestructive distillation, the cinnabar wis pacel in a lat carthen pan covered with at lid and then enclosed in an iron pot luted with clity. Heat being applied, the funes were condensed and collected in globules on the lid.
In some cases the fuicksilver is presented in the form of vapors which condense and mite witl the metais to form an amalyam.

Auriferons sands are sulgected to the same process of amalgamation by brimging them in contact with it borly of mercury. The mechancal processes are leseribed under Andaciamatohs, which sec.
The application of an amalgan of solimm and merenry in extracting precious metals was invented by Wurta of New Fork, anl patenterl in the United States, Iunc 27, 186.5. Crookers, of Euglame, subsequently to the date of Wrurz's application for United States patent, made application for a patent in England for the sim" invention.
The extraction of the precions metals by amalgamation has hitherto beell much impeded and its cost increasial hy the presence in the ores of cornpounds of sulphur, arsenic, antimony, bismuth, or tellurium, which, by eovering the gole with a thin film of tarnish, prevent its entering into combination with the mercury. The use of sodium amatgam, umter these ciremstances, is to prevent the "sickening" ant "fluming" of meremy which the presence of these compounls, atul especially of sulphate of iron, is so apt to produce.
The oft cial statement of Wurtz's invention is as follows: This invention consists in adiling to ruicksilver, to be usel in the amalgamation of goll, silver, etc., is small ghantity of int analyam of mereury and solium, or other equivalent metal, as potassium; by this addition the mereary mose reatily attacks the precions metals. Mrevery trated in this way will also form a mercurial film or coatlins on iron or street, so as to form analgamated stufaces, to take the place of the usmal conprer phates. The mercury so treited is less liahle to "llour."
Cleim. - First, the combination with fuicksilver, when used for the extrantion by andlgamatiom of metals from their ores or their mixtures with other materials, of metallie sombiun or metallie? potassiam, or any other highly chectro-positive metal equivalent in its action thereto, ats alowe set forth.
 mate I plates of eopprer or other metal are used, the substitution for the plates of copper or other metal of iron coated with quieksilver combined with sodimo or other hishly electro-positive metal, as above set forth.

Thiru, the eouting of iron, steel, or other metallic
surfaces between or under which ores or other materials are cushed, with quieksilver combined with sorlime or other highly electro-positive metal, as above set lortlı.

Fourth, the prevention of the granulation or flouring of quicksilver when used in any methot of amalgamating ores or other materials by aldition thereto al sodimm or other lighly electro-positive metal, as alove set forth.
The valualle work of Phillijs on mining gives the compemlimm followiner : A yuantity of sodimm amalgan dissolvert in a hundred times or more its weight of quicksilver is sail to commumieate to the whole a greatly endanced power of adhering to metals, and particulanly to those which, like gold and silver, are situated towat the negative extremity of the electro-chemical seale. This power of adhesion in the ease of the two metals is so great that the resistance which their surfaces, when in their native state, often oppose to amalgamation (a resistance nuch greater, and more general than has heen hitherto revognized, and due to canses as yet minvestigated) is instantly orercome, whether their particles be coarse or impalpable. Even an artificial coating of oil or grease, which is nsually such an enemy to the combination of suerenry with other metals, forms no obstacle to immeliate amalgimation by this prepared tuicksilver. The atoms of quicksitver are, as it is deserilxel, put into a sort of polarie comlition by a minute aldition of one of the nutals which range themselves toward the electro-positive emb ol the scale ; so that its affinity for the more electro-nerative metals is stated to be so greatly exalted that it scizes upon amol is instantanconsly alsorbed lyy their surfices, just as water is absorbed loy a lump of sugar, or other porous sub. stance soluble in it.
Such guicksilver even adheres strongly to surfaes of iron, sterl, platinum, aluniniun, and antimony; an whesion which, however, in the case of these metuls, is not a true amalgamation, there being no penetration into the sulstance of the metal ; so that the sumeticially adherent !uicksil ver may be realily wiped olf, just as water may be removel fom glass. The only metal as yet experimented on, which cannot be enfihmed by the use of sodium amalgam, applears to be magnesium.

Applicution of Sotium Ametyam to Working Ores of the Precious Metuls.

This consists in alding from time to time, to the quicksilver used in amalgamation, about one hundredth part of its weight of sodimm amalram. The frequency witlo which the amalyan is to be alded camot he exartly specified, as it will he found to depend on a multitule of circmastances, - such, for instance, as the temperature, the purity and quantity of the water ussed, the ratio borne by the surface of the quicksilper to its mass, the amount and mode of agitation of the 'yuicksilver, the mature of the process and apparatus used, the character of the ore; strength of the amalgam, etc.; so that this important point can only be determinel in each case by experinne. Some general indicatims may, however, he derived from the experments which have been male. It is said that less sodiun is requisite in cases in which much water is employed, and when the water is frepurntly renewed, - as, for instance, in the riffles of a sluice, and in all forms of amakgamators through which a continnal current of water is keptruning, - since mercurial solutions of sodinm are but little aflected by water liee from acil, alkaline, or saline iupurities.
lit cases. liowever, in which but little water is
emploved, and especially where the ore and quicksilver are ground together into a slime, the water soon becomes alkaline, and oxidation of the sodium sets in, necessitating its frequent renewal.

In such cases the following manipulation is recommended. The whole amount of quicksilver to be used for working up a batch of slimes, say fifty pounds, is prepared by dissolving in it one per cent of amalgam No. 2 , or hetter, two per cent of the soft amalgam No. 1, which dissolves more readily; one half, or twenty-five pomds, is then thrown into the mill with the ore, and, as the incorporation proceeds, certain fractional parts of the other half are added at intervals, varying according to circumstances, until the whole has been introduced. If, as is usual, the quicksilver has been separated from the slimes of a previous operation, it will retain a certain amount of sodium, aml therefore require fresh amalgam in proportionately smaller quantities.
No. 1 amalgam contains two per cent and No. 2 forer per cent of sodiuns; the latter is a hard, brittle solid, remarkably intisible, reguiring a temperature uearly as high as the fusing-point of typemetal to melt it, and may be cast into ingots, and packed either under petroleum, or in air-tight iron cans filled with dry lime.
In slnicing operations, the soft amalgam No. 1 is, on account of its ready solubility in mercury, most recommended; and in these cuses it is practicable to test the quicksilrer in the rifles, and aseertain when the magnetic quality requires restoration, by throwing in a few grains of gold-dust. Similar tests are easily applied to slimes, and in amalgamating generally, a slip of tarnished sheet-copper is a suitable agent for such testiugs. It may be remarked that the amalgam No. 1 is at any time easily prepared from No. 2 , by melting it in an iron ladle with its own weight of quicksilver. In conper-plate amalgamation - that is, in cases in which auriferous materials are brought into contact with amalgamated metallic surfaces-it is recommended to substitute for quicksilver itself the pasty amalgam No. 2.
ln these modes of amalgamation great economy in wear and tear of apparatus, as well as in first cost, is said to be effected by using plates or surfaces of iron instead of colyler. The power of coating or enfilming iron is stated to render these amalgains peculiarly valuable in every form of apparatus for amalgamation which has internal surfaces of iron; for these, becoming coated with quicksilver, immensely extend its chances of contact with particles of gold, so fine as to remain suspended in the water. Other inportaut services are expected by the inventors to arise out of this power of entilming iron, such as keeping the surfaces of stamps and of other apparatus used in crushing ores continually coated. In like manner, as the power of adhesion of quicksilver to other metals is exalted ly the presence of the alkali-metals, so also is its own cohesion stated to be greatly increased. It is rendered more difficult to meehanically divide. and when thus divided again runs instantly together upou contact. Hence new results of great value are said to have been obtained. For instance, the so-called "flouring" or granulation of quicksilver, which in the amalgamation of ores always occasions losses both of the yuicksilver itself and of its amalgams with the precious metals, is stated to be reduced to a minimum, or altogether prevented.
Ther recovery of "tloured" 'luicksilver and amalgams from slimes and similar mixtures is also saill to be greatly facilitated and accelerated thereby. For this puppose some sodiun amalgam is thrown into
the separator, and collects and incorprates all the scattered globules of anriferous analgam. It is here necessary to call attention to a method of manipulation generally applicable when sotlium amalgams are used, and particularly so in all cases in which the ore is ground or agitated with quicksilver iu contact with metallic iron. This arises from the liability of abraded particles of iron to adhere to the amalgam.

The following plan is, therefore, in such cases recommended. The amalgam, after separation from excess of quicksilver, and belore retorting, is fused in an earthen dish or iron ladle, with, if necessary, the addition of a little quicksilver to make it more liquid; and the iron, which forms a scum on the surface, is skimmed off. The excess of quicksilver may, after cooling, be again seprated from the amalgam in the usual way: Any amalgam which adheres to the iron scum is readily detached by boiling in water to remove the sodium. This mocess depends on the fact that adhesion to the iron totally disappears with the extraction of the last traces of sodinm from the quicksilver. It is, in fact, possible to remore all iron from the amalgam by boiling in water without any previous fusion, particularly if the water be made somewhat acid or alkaline. The presence of iron can be readily detected by the magnet, which may also be sometimes used with adrantage in stparating iron from amalgam after all the sodium has heen extracted. There are still other substances whieh may be fonnd adtherent to the amalgam whrin sodium has heen used, such as platinum, or osmiridium, or both, with iron, and these may be freed from the latter by the magnet.

The sodium ainalgams prepared in accordance with the recipes of 11 r . Crookes are known respectively as $-1, E$, and C amalgams.
Each of these contains three per cent of sodium, in addition to which B has a small quantity of zinc in its composition, and C a little tin. An analgam (A), of seven times the strength of the above, is prepared in solid bars for shijment when the (x pense of freight or land carriage is great. Amalgams F ' and ' C ' eannot he prepared in the concenthated form. It is recommended that one yart by weight of amalgam B or C be dissolved in thirty parts of the mercury which is to be used in the amalgamating, triturating, or grindjng machines, and the effect which it produces on the mercury noted from time to time during the operation. If it retain its fluidity and brightness to the end of the operation, it is a sign either that a suffient amount or too much has been alded, and a srond experiment should be tripd with a less quantity of amalgam. But if it he "floured," or "sickened," or any loss occur, more amalgam may be added until the best proportion is arrived at.

Mr. Crookes states that amalgam E will generally be found effective, but if the ore contain an excess of any mineral which has a deleterious action on mercury, mose especially if it contain bismuth, it will be adrantageous to employ amalgam ('instead of B.

When the best proportion of amalgan B or C is determined, small quantities of ama!gam A should be introduced into the mercury, already containing amalgam B or C, in the proportion of pue part of amalgam it to one thousand of mereury. This quantity of amalgam, A can be added every few hours, according to circumstances, but one charge of amalgam E or C will, it is stated, usually be sufficient for several days. Under some circumstances it will be found adrisable to add amalgan E or C every fer days, but a little experience and comparison with the results obtained by the old :lan
will som show how these several agents are best utilized.
The process of extraction of the precions metals by the lead-bath will be found uniler Lead-batit fur the Exthaction of Goli ani Sinele.
Other processes for gathering gold (excepting Amangamatohs, which sed are included under the general title Gous-w.simet.
The ore-ernshers are deseribed under One-stamps, etc. - Ore-ghinding Mulis ; Ahristras.

An anslgam of merruy and tin is used to cont the butk of looking-glasses and glass mirrors.
This amalgam consists of mereury, 3 ; tin, 1. It is formed by laying a sheet of tin-foil on a table, covering it with mercmy, and then, by a sliding movement, placing the shect of glass over it.

An amalgam of gold is also used by jewelers to overlay other metals hy a fime film of gold, after which the mereny is driven off by heat.

In Mallat's process (English) for preserving iron from rust ant ship's shenthing firom fonling, the iron is dipped in an amalgam of zinc, sodium, and mercury.
The process is as follows :-
The plates are cleansed in a warm solution of equal parts of acid (sulphuric or hydrochloric) and water. The seale and oxide are removed from the metal by seourine. The plate is then placed in a preproviing-hath consisting of a saturatel solution of byidrochlorate of zine anil sulphate of ammonia. It is then immersed in a bath formed of

$$
\begin{aligned}
& \text { Mrreury } \\
& \text { Zine . } \\
& 202 \\
& 202
\end{aligned}
$$

To each 2,240 pounals of which analgam 1 pount of potassilum or sodium is added.
The iron is speetily herated, and is withdrawn before it reaches 650° Fah., at which temperature it would be soon dissolved by the alloy.

A similar process, so far as the manipulation is concomed, is passed through in the palladimmizing process, in which, after cleansing, the plates are inmorsied in a fused amalgan of palladium and merenr:.
Amalgam for the elcetrical machine:-

| Zine | 2 |
| :--- | :--- | :--- | :--- |
| Tin | |
| Nereury | 4 |

Melted in the onder named, in an iron sponn. Shake the fused amalgan till cohl, tritmate in a mortar; sift; rub up the powder with harl, and aphly with a palette-knife to the rubber of the machiue.
Analgam for silvering the insides of hollow glass splucres:-

A-mal'ga-ma'ting Zinc Plates. Ziuc plates for the vultaic battery are amalsamated with mereury, so that 10 a a tion of the sulphaic ami takes place ont the zine when the "ircnit is not elosed.
To amalgamate the platers, they are first piekled in dilute sulphani, arid! (awit 1, water S) in a stoneware pian. A litthe mereme, heing pomed into the pan, is rubbel on looth sibkes of the phate ly means of a swabs. The plate is washed in chean water, phaced on its erfee to drain, again rubbed with: morrony nud dratmed.

Auother methow is to elam the plates with emery, pickle, ansl wash. Then dip the clean plates in a mixture of edgual parts ly weight of bichloride of
mereury (eorrosive sublimate) and acetate of lead. Kub with a eloth, and they are realy for use.
A-malga-ma'tor. It appeats from Pliny, AD. 79, that the ancients were acquainted with amalgams, in their uses for separating gold and silver from earthy particles, and in giding.
liny says: "Mercury is an excellent refmer of golel, for on being shaken in an carthen vessel with gold, it rejects all the impurities that are mixed with it. When once it has thms "xpelled these impurities, there is nothing to do but to separate it from the gold ; to effect which it is pomed upon leather, and exudes through it in a sort of perspiration. leaving the pure gold behind."

Vitruvius (13. C. 27) describes the manner of recowring gold fom cloth in which it has leen interwoven. The cloth, he says, is to be put in an earthen vessel, and placed over the fire in order that it may be burnt. The ashes are thrown into water, and juichsilver ahled to them. The latter unites with the particles of goll, the water is pomed off, and the residue pint into a eloth, which being syneczed with the hands, the quicksilser, on account of its flititity, oozes throngh the pores, and the gold is left pure in a compressed mass. It is commonly stated that the ancients did not moderstand the art of recovering meremy by retort and receiver, lut a fleseription of the apparatus hy Mliny (see Amalgams) eontradiets this. It does not, however, seen to have been much practised.

In the year 1582 , Herberer despelibet the washing of gold as he saw it practised at Selz, not far from Strasbug, and at that time quicksilver hail long been used for that purpose.

The cinnabar mines of Peru were discovered about 1566 by Garces, who observed the Indians using a native red earth for paint. It does not alpear to have come into general use in the silvermines of l'eru, as a means of extmating the silver from the earthy particles, till 1571, when lero Femanlas de Velasco cane to Peru and olfered to refine the silfer lyerenry, as he hal seen in the smelting.lonses in Mexico. His proposals were acceptect, the old methods abamboned, and that of amalgramation pursued as it is practised at present.
lin $15 .-2$, Hawks wites that "an owner of a mine must have much quicksilver, and as for this charge of quicksilver, it is a new invention, which they find more protitable than to fine their ore with leat."Itriluyyt's Ioymars.

The number of patents grantel in the United States for amalgamators camot he readily statel, as so many of the crushers, ginders, anil arrastras become amalgamators by the adlition of mercury. To state the whole number wonld give an exaggerated vicw, as many of them are merely mechanical grimiers without any specific adap,tation to the repuirements of the mercurial process. The number of patents for amalgamators in the United States may lxe approximately stated at two humelrel and sixty; Jamuary, 1872.

- With the exception of the arcentiferous galena, silver is grmemally found in the form of brittle sul. phites disseminatel throngh the gangue or rein stone. These partieles, in the openation of grinding or stanping, are malnced on a line powiler, which floats off in water in the process of concentration. It lsecomes meressary, therefore, to apply a gathering agent which will collect them, and the notahle artivity of yuilisilver in entering into combination with the precious metals has cansed its selection as the desimed agent. The suloject is specially treated umber Amadoass, and the mechanical processes and manipulation are the solject of this article.

The processes and machines for the amalgamation of silver are various, and are : -

> The Patio process.
> The Barrel process.
> The Hot process.
> The l'an process.
> The Estula process.

These will be separately considered.
Succeeding the description of the pan process, a number of examples of Gold Amalgamators are inserted which cannot readily be classed : acting by grinding, stirring, heat, lixiviation, panning, sluicrs, centrifugal action, clectric action, and loy mercurial fumes acting on a falling column of pulverized ore.
The Patio Process has long been in use in South America, and is now employed in Mexico, and now or lately in Nevada. It was iurented by Medina in 1557 . The materials necessary for the reduction of silver by this process are, magistral, rommon salt, and mercury. The magistral is made from copper prrites reduced by stamps and arrastras to a fine powder. This is exposed to the air for some months and calcined in a furmace, a little salt being added. The effect is the production of a soluble sulphate of copper.
The silver ore is reduced by stamps and arrastras, or by the more modern forms of ore-grinders, to a line powder which becomes a mud by the addition of water. The mud or "slimes" is then remored from the arrastra and deprosited in walled receivers called "lameros," where it parts with a portion of its water and accumulates till it becomes sufficient to form a "torta." It is then spread to the thickness of about a foot, and after drying to a suitable consistence receives from three to five jer cent of salt, which is tramped in by aninals. The day after the incorporation of the salt, the magistral and mercury are added, being evenly spread over the "torta," as it is called, to the extent of one per cent of the matter in the heap. The proportion varies according to the richness of the magistral in the sulphate of corper. This is tramped in, and mercury is added ; three and one half to four pounds for every nark of silver supposed to be in the heap. (The mark is eight Spanish ounces of 443.8 gr. each.) This is trodden for four hours. Chemical action now comnences, and the mass is carefully sampled from time to time to ascertain its condition and test the sufficiency of the proportion of magistral. If too little, more is added; if too much, lime is added to prevent loss of mercury. The treading of the torta every alternate day expelites the action. The mules are hitched four abreast and blindfolded,

being grided by a halter held by a man standing on the central platiorm.

The treading occupies about eight hours on each occasion, and in addition the mass is tumed crer twice a week with wooden shovels. lncorporation by a mortar-mill would probably be more thoroughly effective with a given amount of lower.

When the mereury has absorbed all the silver, the nass is washol by agitation in a series of tank provided with rapidly revolving stirrers. The rate of motion of these is gradually reduced, and the metallic or heavier particles conmence to sink. As soon as a test shows that the ulperer strata have lut a trace of metal, a phog is withdrawn, which allows the carthy particles in suspeusion to be run off. The amalgam and heariur mineral particles are serarated by a subsequent washing, and the amalgamplaced in a stone trough, when it is treated

Strainer (from Tillmann). with a further amount of mercury and suljected to frequent washings, which bring the analgam into condition for the strainer, whose upper portion is of leather, and the lower closely woven canvas. A quantity of mercurystrainsthrougla andiscollected. The remaining amalgan is enutied on a leathercovered table and formed into bricks of a triangular sliape, which are then ready for the process of retorting.

VapNey, March 18, 1852. This device is for expediting the straining of the analgam. The tube, being closed at bottom, is filled with mercury. The amalgam is poured into the ressel, and the cock at the lower part of the tube is then opened. The quicksilver flows ont, causing a Torricellian vacuum above it and beneath the strainer. The quicksilver in the amalgan is then forced through

Varney's Strainer. the strainer by the pressure of the atmospliere.

In some other strainers the racmm is produced by mechanical meaus, such as an airpump. In some others it is effecterl by the condensation of steam. If the pipe be long enough it may be olstained by a hody of water, but the mercurial column, as in Varney's, brings the apparatus within much nore compact limits.

The operation
by which the separation of mercury and silver is eillected is condurted by the aid of a large iron or copper heil, which is placed over the imalgan, and aromed which is kindled a clarcoal fire. A circular tank of mason'y is constructed below the floor of the burning-house, through which a stream of water is constantly cansed to flow ; and in this is phaced an iron tripod, covered ly a romed plate, having a hole in its center for the estal) of mercury. On this plate are piled the bricks of

Lifling the Bell (Tilmann).
silver, to such a hright as to reach to within a short distance of the top of the bell, which, whern ghaced over them, laves a space of abont an inch hetween its sides and the colum of amalgam. When thus arranged, the hell is lowered over it and the bottom secured, either by lute, or by a water-joint constantly supplied by means of a pipe. Alobes (mburnt bricks) are now built arome the arrangement in the form of a hollow wall, leaving an ammlar spaep leetween then and the bell, of abont right inchers in witth. This is tilled with charcoal, which is ignited, and as the temprature increases the mercury becomes volatilized, and passing into the chamber below the floor is condensed, collects in a liguid form, and poseapes by an iron pipe into a proper rempetarle. The fine is thas kept up during abont fifteen hours, after which the apparatus is allowed to rool, and when sufficiently cold the bell is removal, rither ly a wimllass or by means of simple lilocks, as showis in the figure.

This silver, which is found to hare assumed a porous structure and a heatiful frosted apparance, is called hy the Nhexicans phene pinio, and is placed in lathern hags for moval to the smelting-lonse, where it is assiyrel amb rum into bars. The silver obtained by the patio process of amalganation is in most cisers very nearly pure, being gemerally ahove 990 fine ; and in many cases, as at chamaxnato, nlmost ahsolntely pure silver is uhtainem.

By the pratio propess, the mount of guicksilver lost Taries from ten to twenty-four ounces per mark of silver, eight ounces (3.556 .5 glains), and the time vecupied is from lifteen to forty-five days.

The comminution of the are in arrastras is not a meensary foature of the patio proves, as in phats where water-pown is abmalame the ore is reduced to a froper grable of fineness lyy stamps. A lange number of patents for mushers and grinders have heren patented in the [nited states, whidh are intended to act upon a constant, moderate supply of the broken ore, and raduce it by a succession of
operations to the fineness required. Sce OresCRリ:
The nature of the chemical reactions of the patio process has been muth misunderstood, but Someschmid has given a solution which is now accepted. According to his theory, that portion of the silver "hich exists in the ores in a native state is alone calpable of uniting lireetly with merenry ; and if, in grinding with this motal any ores which do not contain silver in the metallic form, a small quantity of amalgam he oltained, it is produced by the action of some substance which in presence of mercury has the property of reduring the silver existing in a state of comblination. These compounds, as well as the mative metals, are susceptible of conversion into muriate of silver under the indlucnee of muriatic acid liberated by the action of the sulphmic acid of the magistral on a solution of common salt. The muriate of silver thus formed may be lestroyed by the atdition of alkaliac carths, but the silver will then be converted into an oxide which has no longer the property of forming an amalgan with mercury. Farther, that as certain metals have the preculiarity of sepratang others in a state of privity from the acids with which they are combined, mercury performs this part with regard to sitrer, ly taking from it the muriatic acid, by which a portion of it is destroyed while the remainder forms an amalgam with the liberated silver. This reduction of the silver by the action of muriatic acid on metallie mereury, together with the direct action of the same on that metal, are the two causes occasioning the loss of guicksilver' ; the direet action of the acid manifesting itself whenever it becomes necessary to make a furtleer addition of magistral. The mercury lost remains in the resifue, either in comhimation with muriatic acid, or in the metallie state; the former remesenting the deficit known as comsumido (consumet) and the latter forming that portion of the loss classed as perdido (lost).

The llot Pronessi. This is employed in South America on a peouliar class of ores, containing a large propmortion of mative silver, or in which that metal ocenrs in the form of chloride, iodide, or hromide. The ore is rouglly stamped, reduced to a certain grade in the arrastia, and wasked on an inclined plane, by which the richer portions are condensed into an imonnt two per cent of the original lualks. The refuse may be grated and sorterl, and the richer part subjectel to a siving process. The liner prition is removed to a "eazo," a copperbuttomed vessel over a furmace. Water is added to make a liquil paste; when ebullition sets in salt to the amonnt of from five to ten per cent of the weight of the ore is added. The boiling mass is then stimed, and mercury added at intervals. This must not axceed twion the weight of the silver contained in the ur. This is determined by reluated tests. The operation completed, the liguid matter is remowerl and ardeal to the ingrediants of a "torta," while the solid portions are stered in wooken cistorms, and are subserfuently wasluel and treated as theseribed moter the patio process.

An margement of the hot process emsists of a largeremper vessel catleda "fondon," in whin blocks of coppret are drawn aromul as the porphyry blocks of all armastia. It is heated by a furnace helow, as in the case of the "cazo." The eharge of the latter
may be about 100 pounds, while that of the "fondon " is from 1,200 to 1,500 pounds, and the time for working them off is about six hours in each ease. The sulphides are not reduced by this process, and are therefore added to the imaterial of the patio, but do not require the addition of magistral, as they contain a sutticient amount of chloride of copper to convert the sulphides of silver into chloride ; the copper is furnishect by the attrition of the battom of the ressel, which is kept clean, by the paddle in the case of the "cazo," and the roplper black in the case of the "fondon." The propler proportion of the mercury and the mechanical action prevent the loss of mercmy by adherence to the bottom of the pan.
The Estufa Process. In some of the colder and more humid districts of Nexico, a molification of the patio process has been employed. The ground ore, instead of being exposed in the open air on a paved courtyard, as in the ordinary patio process, is placed under a shed, and the usual method of patio amalganation proceeded with, until the operation is about half completed. The ore is then removed into a chamber termed an estufa (stove), which has under it a fireplace six or eight feet long, so conmeeted by side flues with small chimneys as to elevate the temperature of the room containing the ore. Here it is exposed to a gentle hear, and allowed to remain during two or three days, when it is again removed, and the reduction completed by the orlinary method of patio amalgamation.

By this process, the time required for the reduction of the ore is less than by the patio, and the yield of silver greater; the loss of mercury, on the other hand, is more considerable.
The Barirel Process. An apparatus of this description was in use at the latter part of the last century in Germany. It is described as "an apparatus consisting of eighteen small, cylindrical,

Freiberg Amalgamatur (vertiral section).
vertical ressels, arranged in a circle, in which the ores were mixed with mercury and constantly agitated by a vertical spindle in each tub, the spindles being worked by a large, horizontal spur-wheel placed in the center."

The amalgamating apparatus of Freilerg consisted of wooden casks arranged in rows and driven
by pinions upon their shafts engaged by the teeth of a large spur-wheel. Each cask hail a circular aperture, closed by a lid while revolring, and opened as required to receive a charge of roastel ore hy a spout from the hopper above : or opened, when in the reverse position, to discharge its contents into the hopper below, after the argentiferous mer-

Fig. 143.

Freiberg Amalgamating Barrels (top rieve).
cury had been withdrawn at another opening, which at other times is closed hy a plug. Each lanel is charged with 300 pounts of water and 1,000 pounds of finely ground ore; fragments of iron are aided, the barrels closed and set in motion. When the material is reduced to a paste of the proper consistence, 500 pounds of mercury are addel to each cask, and the closed barrels revolved for 16 hours at the uniform rate of 13 revolutions per minute. By the addition of water and subsequent revolution at a slower rate, the mercury is separated from the slimes and collects in a mass below the water, which holds the major part of the eartly particles in snspension, by the aid of moderate agitation. The mercury is then withdrawn by removing a plug and conducting the metal by a hose to a spout and receiver. The passage of earthy particles indicates the time to stop the flow. The plug is replaced, the lid withdrawn, and the muddy residum discharged into tronghs below. The chloride of silver containell in the roasted ores is, as in the Freiberg [rocess, decomposed by agitation with iron fragmeats, the chloride combining with it to form protochloride of iron, while the reduced metallic silver becomes subsequently disoolved in mercury. The chatides of lead and copper which may be present are reduced at the same time as the chloride of silver, and enter into the composition of the amalgan produced. The chlorides in the roasted ores are, by trituration with iron, reduced to the state of minimum chlorimation, before the aldition of the mercury, allowing the latter to act upon the silver immediately, and obviating the conversion of the mercury into calomel, which would not be again reduced and would prove a loss.

The muddy residum, previously referred to, is re-treated, if sufficiently rich, by roasting, "tc.
The amalgam obtained is filterel in the usual manner, and the remainder distilled to sublime the merenty. The metallic result is then refined.
The barrel process at the Ophir and other mines in Nevada is preceded by drying the ores in a kiln; dry stamping, screening through wire sieves, and roasting in reverberatory funaces for from $4 \frac{1}{2}$ to 6 hours. About $5 \frac{1}{2}$ per cent of salt is adiled by portions in the furmace, the ore being stirred, and, before drawing, $1 \frac{1}{2}$ to 8 per cent of carbonate of sodla is added to decompose the sulpliates and chlorides of copper, zine, etc., and prevent loss of quicksilver.
The roasted ore is then screened and the barrels
are chargel with it. The charge of each harrel is 2,000 pound of ore, 4.50 proumbs of iron fracments, and water sulficient; they are then revolved for 3 hours. Fron 350 to tio pounds of mercury are now added to each Larrel, which are then revilved for 12 or 13 hours at the rate of 12 revolutions per minute. They are then filled up with water, agnin run for 2 hours, and the water drawn off. The amalgam is strained through a canvas bag to remove it prortion of the quicksilver. The tailings are washed in a settler; and thence passed through a series of sluive-boxes into a flume about 600 feet long anul 4 feer wide, providenl with riftes.

The amalgam is distill-d in cirenlar retorts.
The l'as l'bocrsis. This procers was designed especially for opreating ulpon ores of poorer quaility, diphensing with roasting incident to the barrel proress and to the frempent manipulations and loss of time incitent to the patio process. The ores of the mine heing sorted into three grales of comparative ricluness, the first, assaying over $\$ 90$ per ton, ancl containing a great deal of sulphur and reffrectory metals, is stanupeld dry and reserved for the barrel process; while the second, from $\$ 40$ to $\$ 90$ per ton, and the thirin, from $\$ 20$ to $\$ 40$ pee ton, are stamped wet and treated by the pan process.
The crushed ore, after passing through the sereen of the stamp-hox, is conveyed to the settlers, passing from one to another till the water runs off clear.
The prins are very various in their construction, and a number of them will be shown in this section of the article on analgamation. The common pan is a round, woolen, or cest-iron thl, six fiet in diameter, two feet in depth, and with in Hat bottom.

Comm"n Amalgamating Fan.
A false bottom of 1 R-inch iroll is inserted into this, and it hollow pillitr in the center admits the passage of am unight slaft which is generally worked by gearing bemeath the pan, eapable of communicating to it from fifteen to twenty revolutions per minute. It is sometimes geared much higher.

To the wooden inms a are attached the lilocks b, also of wool, to which are fastenet the iron shoes c, by means of the bolts d, passing up through the arms. Each shoe has also an iron pin, about an inch in length, whieh fits into the woolen hook and keeps the iron-facing steadily in its place. On the shaft f passing through the central pillar f^{\prime} is the yoke n, which, being fitted with a sliding kev, can he raised by mans of the serew h; and the enils of the yoke jtsilf, hring attacheel to the wooden cross-urms, the minlers will be raisel at the same time. Stram is introlued into the pan by the pipe i, the disclarge being eflected ly means of
the apertures J. The false bottom is made one inch less in tliancter than the bottom of the pan itself, and has an aperture in the eenter an inch larger in diameter than the base of the pillar, in which the vertical slaft works. To fasten the bottom in its

flace, and prevent the mercury from finding its way umber it, strips of cloth, abeat two inches in width, are lapped aromm the edge of the false lonttom, as well as applied against the sides of the pan.
Λ little iron cement is then ponrerl in, and the bottom secured in its place by means of well-dried woolen werlges tightly driven between the two layers of cloth. These wedges, which are driven quite close to each other. must be somewhat shorter than the thickness of the false bottom, thus leaving a space above them which is subsequently coverel with a paste of iron cement, that is allowed to set before using the apparatus. About onehorst power is required to work this pan, which will amalganate from one and a half to two tons of ore in the course of twenty-four hours.

Norton, September 18, 1860 . The ammar revolving fumel G listrihutes the powderen material by pipes $I I$ to the space near the central pillar throngl which the vertical shaft passes. The grooves in the fares of the muller and bel-plate are arranged in cursed lines, so that the material is fod from the center towards the circunference before it reaches the disclarge-openings 0 . Projecting points, as the muller and bed-plates, act upon the fell material, and force it from the center as it passes from the pipes H into the mill, giving it an eccentric motion, and causing it to come repeatelly ualler the triturating operation. The balance-rynil with its mullurs is auljustalle vertically on the shaft to regulate the proximity of the grinding surfaces.
Varner, December 16, 1862, and July 12, 1864.

A stationary bed-plate is attached to the floor of the pan A, and has matial grooves whiel are filled with wood. The rotary-disk las radial, open grooves, formed by the intervals between the sectional pieces which are attached to the face of the disk and form the mullers. The disk itself is an anmulus, and is connected by arms i with the outer tube h, which forms the balance-rynd and rests upon the central pillar m, being rotated by the central shaft which is driven by gearing below. The opeuing in the

Fig. 146.

Vamey's Amalgamating Pan.
center of the rotating disk is considerably larger than the tube h, so as to leave a hiatus in which the material collects. The action is such that the ore will pass outward from this central space between the faces of the upper and lower multers, anit arriving at the peripheral opening is drawn in by spiral scrapers s, which are supported from above anil return the pulp over the top of the upper muller, to the central space, for a repetition of the operation. The shoes are renewable, and are secured to the disk by rivets which are cast in them. The operation of this apparatus is as follows: The space about the periphery of the lower muller is filled with quicksilver, and the pan nearly filled with pulp of the proper consistency to flow easily ; the shaft is now made to revolve at a proper speen, from sinty to eighty revolutions per minute, by which the upper muller is rotated. The pulp between the mullers, by means of the centrifugal force leveloned, is made to pass out through the radial chanuels between the dies, as well as between the griuding surfaces of the upper and lower mullers ; also into and over the quicksilver, thereby causing amalgamation.
The outward motion of the pulp has the effect of keeping the quieksilver entirely away from the grinding surface, thereby obviating what has often proved a very serious difiticulty, namely, the grinding of the merenry.
The rotation of the upper muller causes the pulp in the jan to revolve with it. This enrrent is met hy the cuneiform projections and eurved plates, and thereby turned toward the central opening in the upper muller. The radial slots between the shoes, running from the central opening to the ontward one, allow currents of considerable size to pass with great velocity; and the pulp filling these slots, heing continually thrown ontwardly, tends to produce a vacuum. By this the pulp in the body of the pan is set in motion, causing a rapid and abundant flow downward at the center, and upward along the inner surface of the pan. The pulp is thus made to circulate until the complete pulverization of the quartz and amalgamation of the metals have taken place.

Coleman, August 18, 1863. The minller of this pan is driven, as are the precelling, by the central vertical shaft which is projected up the central carity of the annular pan. The shaft supnorts a
balance-rynd a, to whose ends are attached the muller C, which revolves between two plates $B L$, respectively below and above. The muller ('has corrugations on its unger and lower surfaces, as have also

Fig. $14 \overline{\text { I }}$.

the surfaes with which it comes in contact. The vertical position of the rotary-wheel or muller is aldjusted hy the central wheel b, and that of the upper plate D by the set screws c, which are four in 1hanber and set at opposite points. By this double adjustment the spaces between the grinding suffees are gradually ajproached, as the 1 ulp becomes finer in the progress of the work.

Wheeler, December 8,1863 . The lower face of the rotary-muller has spirally chrved grooves which act in apposition to reversedly curved spinal grooves on the bed-plate or stationary muller. Jifg. 148 is a vertical seetion, and Fig. 149 shows the jan in perspective, the muller being raised and turned bottom upwards. The dies a are attached to the bed

Wheeler's Amalgamating Pan.
of the pan, and the shoes b to the rotary-disk; this is attached to the hollow cone F (see Fig. 14S), which is connected to the rertical shaft G, and that to gearing heneath the pan. The dies a are kept in their places by the central ring c, and on the sides by the inelined ledges d, under which their edges are wedged. Spiral ribs are fixed on the periphery of the rotary-muller, and act in concert with reversedly spiral ribs d attached to the side of the pan to create an upward current in the prilp, which is then swept toward the ernter again by curved guide-plates attached to the hlock:s c on the

inside of the pan. This pan is 4 feet in dianmeter at the bottom, is said to require from 2 ? to 3 horse power to rum it effectively, and is geared for sixty revolutions per minute. The muller is connected to its driver by a universal joint. The pan has a donhle hottom, and is heated by steam admitted to the space thus tormert.

Whabler, July 14, 1863 . This machine is constructed for saving the mercury from the palp or

Fig. 150.

Wheeler's Separator.
waste matter which eseapes from the ordinary amalgamators, and consists of at tul) with coneave hottom and a central depression, in which is a vertical tubular rotary-shaft having arms on which pads are phacel, which rub on the bottom and eolleet the particles of merenry which rum down into the central chamber ; water is supplied through the hollow shaft, which may he deeanted ofl by a siphon or cocks, and the quicksilver drawn ofl by the lower tube emureted with the gathering-chaniber.

Haprures and Peifreson, April 19, 1864. This pan difters mainly from the forerging in the shape of the bottom, which is inchined towards the center,
or slaped like an inserted cone. The shows are bolted to the face of the conical muller in such a

way as to leave intervals which form spiral grooves. The dies of the hed are fastened to the pan hottom, and have a similar arrangement, forming spiral conductors whereby the pulp, is led towards the periphery ; ascending against the sides of the pan, it descembls by gravitation orer the upger surface of the rotary-muller, is collected at the center, and asain driven outwards. A constant and active circulation is thus estallished without the aid of the curved scrajers shown in some of the preceding examples. The charge for this jan is ahont 1.400 pounds, and the time requisite for working it from two to four homs, according to circumstances. The rate of rumning is from filty to sixty revolutions per minnte. The muller is sulyorted ujon a halaner-ryme as in the previons examples, ami is arljustable vertieally by land-wheels, a thimble, aml a tubular serew.
The following two are examples of planetary motion.

Hansbrow, October 27, 1863. The pau has the
Fig. 152.

Hansbrow's Amalgamating Pan.
same features as the foregoing, but the action of the mullers is different. The vertical shaft is driven by gearing below, and passes up through a central cavity in the annular pan. On the summit of the slaft is an arm in which are journaled the vertical shafts of the dependent mullers. Each of the latter slafts has a pinion which engages a circular stationary rack on the inner edge of the pan, so that, as the mullers revolve aronnd the main shaft, they have also a rotary motion on their own axes. They thus acquire what is called a planetary motion, rotating as they revolve.

The grinding effect of this motion is very satisfactory, and the mullers wear nearly evenly. The effect of a simply revolving muller is to wear the fastest nearer the periphery, as that passes over a greater frictional surface in describing a larger circle. This difficulty is, however, met by Dodge's patent, described elsewhere in this article.

Kesyos, July 19, 1864. This, like the one immediately preceding, consists of a circular pan, through the center of which passes a vertical shaft. To the upper end of the shaft is attached a crosshead fitted with a yoke, through which a screw passes and rests upon the end of the shaft. At the enuls of the cross-head, bows are attached carrying the vertical shafts, upon which are pinions gearing intu a stationary wheel. At the end of each shaft are placed arms, and at their ends are irons for receiving the millers. The mullers have a quadnangh'ar arrangement at the ends of arms o, similarly disposed and radiating from the shafts l. As in the preceding example, they have rotation on their own axes by the engagement of their respective pinions m with the stationary wheel n,

Kenyon's Amalgamating Pan
and have also a revolution in the track formed by the aunular pan, owing to the rotation of the shaft a and cross-head. The adjustment of pressure of the mullers on the face of the pan is obtained by the set-screw i, which passes through the yoke h and rests on the shaft a. Each muller recrives a cycloidal movement.
The process of working in pans is not merely a mechanical trituration of the material, and an exposure of it to the contact of mercury. These, of course, are necessary incidents, but the chemical reactions of the constituents are in many respects similar to those described under the patio process and the barrel process of Freiburg and Nevada. The energy of the treatment, however, has the effect of expediting the decomposition of the material and the combination of the precious metals with the mercury.

In operating, the charge having been placed in the pan, the muller is put in motion, and gradually lowered as the material hecomes pulverized. Stean is then injected into the mass, raising its teraperature to 200° Fahr., care beins taken to retain a proper consistence. The muller being slightly raisel, quicksilver is added in a shower from a canvas bag, to the extent of from ten to fifteen per cent of the material under treatment ; sulplate of copper am? sulphuric acid are also added in small quantities; also salt in some cases. Many suggestions of materials to be added are rife among the miners, but appear to be empiric in their character, and not derived from critical chenical consideration of the reactions taking place or required. The rumning of the pan to complete the amalgamation is continued for three or four hours. The pulp is then thinned so as to flow out of an opening in the bottom of the pan, and is conducted to the separatur ; or it may be thinned and settled in the pan, reducing the pulp so as to allow the heavier portions to settle, and decanting the mere liquid either by siphon or by opening the cocks on the side of the pan, begiming at the uppermost and proceeding downwards in order, as the condition of the settling renders advisable. Several of the examples slow these cocks, but others are so arranged that the pan will tip on its hinges and discharge its contents. In the larger pans, where it is desired to make the work as continnous as may be, the whole charge of the pan is drained off and subjected in a separator to a second process of dividing the earthy particles from the metal, in order that the pan may be expeditiously recharged and proceed with its work.

One of these separators is slown in this artice.e, but the common pan (also shown) is frequently used.
In the separator the pulp is mixed with a large quantity of water, and a regular steady supply kept ul $_{1}$, so as to carry off the lighter particles of earthy matter, at first firom holes in the upper jart of the pan ; but as the separation proceeds the dischargingpoint is gradually lowered, until eventually nothing hut the heavier pyrites and liquid amalgam is left. The amalgam is drawn off trom the bottom, and the pyrites then scooped out, and after being firther Washed in another separating-pan, to remove the: last traces of amalgam, it is reserved for final treatment by calcination and reduction in barrels. The analgam is now carefully washed in clean water, dried with flannels, and finally removed to the amalgam-room, where it is strained through thick conical bags of canvas twelve inches in diameter at the larger end, and two feet in length.

After the bags have drainetl for some time, they are beaten with a round stick to cause a flerther quantity of the mercury to run off: The havd, dry amalgam is finally removed from the bags anill weighed into store.

The mercury run off from the lags is technically known as "charged quicksilver," and after being mixed with retorted mercury is returned to the pan-room for farther use. Charged quicksilven is preferred to the pure metal, as with it amalgan:ation is found to proceed more rapidly.

Amaleamation of Ronsted Ores. In some of the mining districts of Nevada, and particularly in the neighborhood of Austin, where the ores consist of various compound sulphides of silver, containing a considerable amount of antimony, the ordinary pan process, as practised at Virginia City; cannot be advantageously employed. The ores from this part of the State cousequently require roasting betore being subjected to amalgamation, and then, when
worked in the puns, alford better results than those obtained from the ores of the Comstoek vein treated in their raw state. Each battery of five stampers will crush (diy) four tons of ore daily, through a wire-ganze screen of forty holes per linear inch. One thousand pounds of this crushed ore are roasted with eight per cent of common salt; the time occupied in the furnace by each charge being, on an average, six hours. Pans are most commonly employed, and are charged with from eight hundrel to

Fig. 154.

Spencer's Amalgamator. one thousand pounds of roasted ore, which occupies five hours in working. A mill of ten stampers, with all the necessary furnaces, pans, and appliances, will treat eight tons of ore in the course of twen-ty-four hours, with a total consumption of about ten cords of wood. It is stated that the loss of silver in the neighborhood of Austin, where the ores contain little or no gold, seldom exceeds seven per cent of the assay value. Spenoer, November 22, 1864. The treatment is designed to desulphurize the ore simultaneonsly with its exposure to the meremial fumes. The ore, finely pulverized, is phated in a vessel with a small : mount of mereury, and the vessel then strongly closed. Heat is then

Fig. 155.

applied, so as to vaporize the mercury. After this treatment the ore is placed in any suitable amalcamating vessel, and washed and treated in the usual way.
letorting. The silver or gold amalgam is treated in the assay-office, and the mercury separated by distillation in a cast-iron retort with a luted cover, placed upon an arch of fire-briek, and having another arell above it, being, with the exception of one end, enclosel within a chamber. Fig. 155 shows the arrangement of the retort and chamber. The charge of amalgam is weighel and placed in a scnicircular tray divided by a transverse partition. Before being put in the tray the amalgam is coated with milk of lime or a thin wash of clay, a sheet of paper being sometimes placed under it ; by these means the amalgam is prevented from adhering to the tray. The tray being placed in the retort, the cover is closed and carefully luted with a thin paste of clay and wood-ashes. The fire is then lighted in the furnace, and the heat very gradually raised until the retort is at a bright red heat. The tlame and smoke from the furnace pass through the thes $a a$, ete., up into the chamber b and around the retort, the smoke, etc. ascending into the chimney d through the flues $1,2,3$, etc., and the chamber c, the draft being regulated by dampers attached to these flues. A horizontal pipe D is fitted into the inner end of the retort, and is so connected to the vertical downcast pipe E that they admit of being readily separated for cleaning; the pipe E terminates in a chamber open at the hottom, and immersed sufficiently deep in a tank of water to keep it air-tight, but not to allow of water being drawn up into the heated retort, and passes through an outer pipe F, in which a current of water circulates from below upward, having its exit by a pipe at the top. As the retort becomes heated the volatilized mercury passes through the pines D and E, being condensed in its passage through the latter, and accumulates in the reservoir G, from whence it is

When the mercury has ceased to distil over, the retort is allowed to cool gradually, and when cold the retorted silver is withdrawn, and it and the mercury which has passed over are weighed for the purpose of ascertaining if there has been any leakage from
A sheet-iron hood is placed over the furnacedoor to conduct any escaping vapors into the flues.

According to Phillips, the cost of working from $\$ 45$ to $\$ 50$ ores by the pan process is, in those portions of the State of Nevada in which water-power ean be obtained, nearly as follows : -

Per ton.
Stamping wet, through
No. 6 screens . . $\$ 1.50$
Milling, including, the
loss of mercury, etc. $\quad 5.00$
Total cost including $\overline{\$ 6.50}$
wear and tear - $\$ 6.50$
The loss of mercury amounts to from $1+1$ to $1 \frac{1}{2}$ pounds for each ton of ore containing silver to the amount of from $\$ 35$ to $\$ 50$ per ton.

The Barmel Process as applied to gold is exemplified in many forms. In Fig. 156 the gold is amalgamatel in hollow revolving cylinders upon hori-

Fig. 156.

Wright's Barrel Amalgamator.
zontal axes, the trunnions being hollow to admit the pulverized ore from one cylinder into annther. The cylinders are connected by flanges or S-pipes with groaves turned into the axes or trunvions, and rings are fitted into the grooves and covered by the flanges ; the whole are so connected as to make them water or steam tight, and so arranged as to give a fall of about six inches to each cylinder. The cylinders contain rollers, knives, burnishers. and other analogous arrangements to produce friction, scour the ore, and assist the contact with the quicksilver.

Heath, February 17, 1863. This machine consists of a cylinder which rotates upon an axis diagonal with the true cylindrical axis, and is formed

Fig. 157.

Heath's Amalgamator. with a corrugated interior surface, the corrugations running parallel with the true axis and across the end ; it is also provided with annular ribs, which project from the inside of the eylinder in a plane paral. lel to the heads âd at right an. gles to the axis of the cylinder. The effect of the obliquity of the axis of rotation is to make the contents slide and roll as the machine is rotated. A hil admits to the interior, and the latter is also entered by a pipe.

Hall, February 28, 1866. The horizontal rotat-

Hall's Cylinder Amalgamator.
ing eylinder A has internal lifters $c c$, whieh raise and turn over the pulverized quartz contained therein. The central pipe is stationary, and the cyl-
on its horizontal axis above the fire in the furnace. The fumeseliminatinder turns thereon. The pipe D comnects with a retort, and conducts therefrom the mereurial fumes which pass into the cylinder through perforations in the lower part of the pipe. The end D^{\prime} of the pipe dips into a vessel of water that condenses any mercurial vapor which passes over when the stopcock g is opened. The cock regulates the pressure of vajor in the cylinder, which has a door by wbich it is charged and nncharged.

Staats, March 13, 1866. The ore is placed in a closed vessel in company with an allowance of quicksilver, and is then rotated ed by the heat

Stants's Amalgamator.

- from the mercury penetrate the material as it is agitated by the rotation of the vessel.

Sturges, September 18, 1866. The barrel amalgamator has a pocket to retain the mercnry and distribute it to the ore as the barrel revolves. The cylinder is stayed by diametric bolts.

Gold. The Battcry Process. In the amalgamation of gold ores the amiferous quartz is broken by a crusher into pieces of about a pound weight, and is then stamped. For wet
 crushing, stamps are used weigh-Sturges's Amalgamator. ing from five to nine hundred pounds including the stem, and are driven at the rate of seventy blows per minute with a fall of from six to nine inehes. They are fell by an attendant whose duty it is to regulate the supply of ore, water, and quicksilver, when that metal is used in the battery for amalgamating the free gold present.

Amalgamation in the battery requires careful attention, principally to avoid the too rapid addition of quicksilver, which should be supplied in very small quantities only.

To amalgamate the free gold in a battery, the quantity of quieksilver to be used is about one ounce weight to each ounce of gold present ; this is sufficient to collect the gold and form a dry amalgam. If, thereforc, a mill will stamp' twentyfour tons of ore in twenty-four hours, and the ore contain an ounce of gold per ton, it will be necessary to put into the battery an onnce of quicksilver every loour. When, in addition to gold, the rock under treatment contains metallic silver, the amount of mercury alded must be proportionably increased. More than eighty per cent of the assay value of the gole in the ore may by careful manipulation be thus obtained. The gold amalgam accumulates in the corners and crevices of the battery box, between the dies, on the breast of the mortar, over which the crushed ore is washed into the settling-cisterns, and is even found in considerable quantities adhering to the stamp-shoes. The amalgan. thus olitained is very hard and leavy, and is coumonly so rich in
gold as to be worth as much as ten dollars per ounce. The erushed ore is taken off from the mortar by a supply of water, pqual to the run of $\frac{3}{}$-inch pipe to each set of five stamps, passing through screens in the back and front of the box. These sereens are male of thin Russia iron perforated with holes punched by sewing-needles.

Auriferous samel is treated in divers amalgamating machintes; it being already in a comminuted state, it is not weeessary to put it throngh the battery.

Dongle, May 3, 1864. This invention relates to an armangement of the rotary-shoes of the machine, whereby the outer ones, which are subjected to the most wear in consequence of having the greatest

Dorge's Amalgamator. speed, may always be adjusted so as to run in contact with the bottom of the pan, aml the weal thereby campensated for. In the ordinary amalgamating machines the outer shoes, in consequence of being subjected to more wear than the inner ones, suon become comparatively useless.

The adjustible shoes are attached to supplemental bars, which are linged to the radial arms D, and are also connected thereto by springs which permit adjustment of the pressure.

1 Iiscellancous IHochines. The following are diverse in their construction from those previonsly cited, and are not strictly referable to either of the classes, while partaking of some of the features of the "pan" and the " barrel" process.

Clialles, September 25, 1866. The inclined panners D are suspended by rods from the frame,

Fig. 162.

Charles's Amalgamator. and are oscillated by machinery. They discharge into a trough which leads the oredust and water to a grinulingpan. The ore and water enter the eye of the runier, and pass between it and the berl-plate to the periphery, at which they are discharged by a spout to a series of amulgamat-ing-boxes, each of which consists of a case R containing a series of copper prans placed in vertical series. The ulper muller L has a rotary motion, and the lower one an oscillation, derivel from the crank and pitman O. The shell M, whose floor forms the lower muller, travels on rollers as it oscillates.

Brock, May 1, 1860 . The upper surface of the revolving disk c is divided into a number of receptacles, and the lower surface of the lisk above it is ribbed. The respective disks revolve in different directions. The receptacles are filled with mercury, and the action of the upper plate o is to feed the pulverizel ore from the center contimally towards the periphery, its gravity keeping it as

a film in contact with the mercury upon which it floats and travels. The disks are rotated by the engagement of their respective pinions with bevelwheels on the driving-slaft.

Battels, January 6, 1863. This apparatus consists of a series of toothed amoular plates $H \quad I$, secured to the casing of the machine and inclining down towards the center, and a corresponding number of revolving toothed plates $E F$, nomited on a vertical shaft, forming basins in which the mercury is contained and occupying the spaces betwren the stationary plates. The material to be washed

Fig. 164.

or scoured, falling on the outer part of the uppet stationary plate, is acted on by the treth of the revolving plate above, and passes inward ly its own gravity until it falls on the center of the revolving plate E next below, whence it is carried outward by centrifngal action until it falls on the stationary plate I next below, and so on to any extent required.
The vertical shaft is stepped in a lighter-har, which is raised or lowered to aljust the proxinnity of the teeth on the rotating disks to those on the: stationary ones. The annalgamated metals collect in the central pockets, and are removed therefrom as they accumulate.
Pietsch, May 3, 1864. The upper part of the

Pietsch's Separator and Amalgamator.
apparatus consists of a donble series of pans, the altermate ones revolviag in different directions. Each is smooth on its upper sur. face, but has teeth below, whichagitate the material in the pan next beneath. The ore aud water are corapelled into a tortuous course, falling over the edge of each pan in the series, and being caught by the one beneath. After reach. ing the point o, theoreisled in again to the center, and the action is repeated. The heavy particles accumulate at the bottoms of the pians, and are thence removed to the amalgamators below, where they are agitated by stimers above and in contact with the mereury which occupies the depressions in the luttoms of the pans; the pilis communicate by a central chammel.

КЕмшнick, May 29, 1866. The agitator F oprates in the

Fig. 166.

hottom of the tank, heing driven by the vertical
s.laft C and the gearing above. The box E occupies
hottom of the tank, heing driven by the vertical
silaft C and the gearing above. The box E occupies a josition near the bottoru of the tank, and is heited by steam introluced hy the pipe a. b is the disclarge-pipe for the water of condensation.
Trck, February 21, 1865. The pans are arranged in successive order upon steps on the swing-
\qquad
he

ing platform. Each pan empties into the one next below it in the series. The belly of each pan has sone mercury, and the combined vertical, longitudinal, and partial rotary movement is to settle the hearier matters to the bottoms of the pans and shift the lighter material to the pans next below. The peculiar complex motion of the pans is intended to imitate the hand motion in panning.

Partz, July 14, 1563. The pordered ore is distribnted in a dry state over the current of arcmery flowing apon the inclinell surface of the metallic trough. The surface of the latter is amalgamated with mercury, and that which flows to the lower end is re-elerated and again distributed upon the trough. A current of water and an amitator-wheel assist in removing the tailings which reach the receptacle at the lower end of the trough.

Fiz. 168.

[^2]

-
revolving pan; revoving pan;
the form of the rim prevents the loss of the amalgamated to cause adhesion of the amalgam, as it is formed by the contact of the mercury with the precious metals in the pulverized ore. The water, quartz, and lighter impurities are expelled over the edge of the basin by centrifugal force, while the heavier, valuable results settle into the central pocket.

GabDiner, October 4, 1864, subjects the finely $\mathfrak{y u t}$ verized dust of ores, in connection with mercury, to a powerfulagitation and centrifugal action, by placing them in a parially covered --

-
metallic portions, while the lighter impurities are ejectel over the edge of the pan, into which a stream of water constantly flows.

Whelpley And Stoher, Septenber 11, 1866.
interior surface by the centrifugal force, and the metallic particles are seized and amalgamated by the mercury.
The supply is derived from the tank T by pipe P,

Fig. 120.

Whelpley and Storer's Amalgamator.
The outer cylinder is supported on shaft attached by a hub to an internal plate. The interior of the

Phelps's Amalgamator.
cylinder is coated with mercury ; the pulp, being introduced during rapid rotation, is spread over the

Fig 172.

Adans and Worthington's Amalgamator.
and the tailings discharged by pipe S. Phelps, October 18, 1846. The lower roller revolves in a trough of mercury C, and distributes it upon the upper rollers $A B$, which are brought into an electric circuit to increase their attractive energy in accu-

Fig. 173.

Day's Amalgamator. mulating the adhering amalgam, which is subsequently scraped off and falls into the receiver O. The pulp is supplied to the upper roils through a spout proceeding from a tank J. The jackets hold the ores to the rollers for a specific portion of their revolution.

Abams and Wolithington, Februaly 12, 1864. This invention consists in pulverizing the quart\% or metalliferous substances containing precions metals to an impalpable powder, and precipitating and discharging this dust either in a calcined or atherwise prepared condition, in order to isolate the metallic particles fro:n their sulphurous or other foreign combinations, into an atmosphere of hot vapor of quicksilver. On the upper end of a vertical stationary cylinder is fitted a short cylinder, which is made to turn therein, the same being provided with a screen or hoppers. Below the stationary cylinder is a pan in which stirrers are made to operate. Communicating with the main cylinder, by means of a tubeplaced a little below the screen in the upper cylinder, is a furnace or still for distilling the quicksilver which falls with the calcined particles of ore through the stationary cylinder.

Day, September 26,1865 . The retort is set in a furmace A, and delivers fumes of mercury into the vertical tube D. The pulverized ore from the hopper C is delivered by it feed-wheel in graduated quantities, and falls the length of the tube, at the lower end of which it is deliv. ered by a discharge-wheel, so that the fumes may not escape. The length of the tube nay be such as is found sufficient for the purpose,
and the respective wheels $E \quad F$ are connected by a driving-chain. The particles of the precious metals combine, in falling, with the mereurial fumes with which the tube is charged.

Hall, December 27, 1864. This invention consists of a series of curved pipes connected with quicksilver basins in such a manner that the lower end of the upper pipe and the npper end of the second pipe will enter the bottom of the first basin, the end of the other pipe extending slightly above

Fig. 174.

Hall's Amalgamator.
the bottom of the vessel. The lower end of the latter pipe and the upper end of the pipe A enter the bottom of the pan, and so on thronghout the whole series.

He clains an apparatus for separating gold from foreign substances, composed of a series of bent pipes or tubes combined by means of a series of connect-ing-basins containing quicksilver.
To aid the process of amalgamation rarions processes have been adopted to render desulphurization by roasting more effective, among which may be cited the following : -

Rahr, August 21, 1866, forces air through the mass of fused metal, to remove sulphur, arsenic, and antimony. The apparatus may be similar to the " Bessemer."
Ryerson, August 14, 1866. The ores are heated in a muffle in the presence of a current of air; belind each mutfe is a passage in which binoxide of nitrogen is generated, which mixes with the air and sulphnrous acid passing from the muffles; the mixture is driven by fans into reccivers in company with a steam-jet. The receivers are charged with ore previously desulphurized in the muffles. The sulphurous acid is converted into isulphuric acid, and conbines with the base metals in the receiver; the sulphates are dissolved out by water, learing the gold free; the silver may by the usual method be afterwards precipitated from the solution of mixed sulphates.

Whelpley and Storer, September 11, 1866. In this process the chemical reagents are blown in a fincly divided state upon the heated ore by means of a blast of air or steam. The interior of the fur"naee is stater] to have an atmosphere charged with "coal in aërial or air-borne combustion."
Fleury, July 3, 1866, mixes the sulpharets or tailings with coal-dnst, and bakes them into
a metalliferous ceke. This is ground, heated, and treated with steam, after which it is a malgamated.

Brower and Campbeli, January 23, 1866 . The ores are smelted with a suitable fiux, such as carbonate of soda, and the fused mass precipitated into cold water, to disintegrate the mass and expel the sulphnr.

Whelpley and Storer, September 11, 1866. The cylindrical vessel is connected with a hopper at one end, an exhaust-pipe at the other end, and has a series of rotary agitating arms attached to a shaft passing through the said cylinder. The hopper has a grating and a feed-brusb. Air may be admitted to the cylinder through a grating.

The inventors claim, first, brightening metallic particles in finely pulverized and desulphurized ores, when such brightening is effected on the principle of mutual attrition in a cylinder alternately closed during the brightening process, and opened to set free the charge by means of a valve in the exhaust-pipe, intending to claim for this end the principle of alternately closing and opening the cylinder, so as to do the work in a close cylinder, as well as the comhination of the cylinder-valve and exhaust-pipe for the purpose and substantially as described.

A fine grating prevents in the feed-hopper the passage of any but very fine dust into the cylinder.

In their patent of June 13, 1865, they separate metals from mixtures of earth and metal by the action of gravity in counteraction to currents of air in an upright pulverizing-mill, the air moving upward to carry off the finer dust of earthy matter, white the metal falls by its suprior gravity.

Within the cylindrical case is a revolving shaft provided with hlades. The case is provided with a hopper and an air-aperture at the top, and an airoutlet and an outlet for the ore through the conductor at the bottom. The conductor communicates with a box, which is provided with an air-aperture and door. This box communicates with another box by means of a pipe, the latter box being also provided with an air-aperture and a door. A tube leads from this latter box to the center of a spray-wheel which is contained in a box, the hattom of which is covered with water, and the said box is provided with shelves in the upper part.

The same inventors lave an apparatus for desulphurizing ores, by roasting, while falling through a chinmey above a furnace.

Electric action has been called into play to secure the deposit of gold and silver from the earthy matters with which it is associated, and has also been used to energize the action of the amalgam.
Cohson, Dlay 5, 1868. The ores are contained in an insulated pan or barrel, and subjected to electric action therein. The battery is formed in the pan, and is independent of exterior influences, the anodeand cathode being exposed in the slime and amalgam, and connected by a metallic strip.

Fig 175.

Curson's Amalgamator.

For other adaptations of Electro-Metallurgy to the collection of the precions metals, see Gold and Silver, Electru-metalluigic Processes for Collection uf.
In Ryensus's apparatus, June 4, 1861, the suostance containing the gold and silver is introduced into the cylindrical vessel, provided with a hemispherical or dislred buttom, in a tinely divided state, tosether with mereury and water. Superbeated steam is introduced by the coiled pipe into the battom of the vessel, escaping into the mass by a series of small holes. The vapor of the meremry is condensed against the bottom of the cover of the vessel, and fir ls in a tinely divided state through the mass.

The extraction of the precious metals by immersinst the powdered ore in a lead-bath has been called amilgamation, but the term is incorrect; it forms an alloy, not an amalgam. It will be considered muler Lesin Phocess for Extraction of Prerhoes Merads.

Belisile's English patent of February 12, 1853, describes a mode which partakes of a combination of the mereurial and lead processes, and may be mentioned here.
He trats, auriferons and argentiferous ores with an aunalsam formed by the union of mercury with a readily fusible alloy of lead and bismuth; or lead, bismath, and tin. The ore is immersed in the bath of molten metal.

The lead process preceded the mercurial, at least on this continent, having been practised from time inmemorial by the Indians of Pern.

Heletrais new process for the reduction of arsenical sulphurets and other refractory ores is thus described by the San Francisco Times. "To all outward appearance the machine is very simple, consisting of three barrels, one of cast-iron and two of wool. The iron cylinder is about half filled with sulphurets or pulverized ore, and revolved over a moderate fire for an hour, keeping it below a rell heat. The ore, baving been thoroughly heated through, is drawn out into a wooden cylinder, and ten fer cent of quicksilver adden, and the opening then male air-tight, to prevent the fumes of the quicksilver from escaping. After revolving for two hoars, the ore and yuicksilver are found to be intimately mixed together, and the gold and silver armalgmated. The charge is then drawn off into the third larrel and dihuted with water, and after revolving for two hours the quicksilver and amalgrom are drawn off. The secret of this process is in this last barrel, used as a settler ; for, in every instamee, with the most refractory arsenical sulphureta, and with combinations of lead and iron, the facksilver is foum at the bottom, collecting and forming an amalgam eontaining over ninety per cent of the gohl and silver, while the only appreciable lons in 'fuicksilver in a month's working was what was spilt by carelessness outside. The cost of working five tons a day ought not to exceed $\$ 30$. A five. horse mogine would give an excess of power, and by grabling the barrels properly two common laborers on a shift could keep the machine going to full capacity."
A process said to yield excellent results was describerl in the "Alta Californian" of August 30, 1866. See also "American Journal of Mining" (110w the "Engineering and Mining Journal"), Vol. 11. 1. 43 ct seq.
"The dry rock is crushed, and afterward submitted to the a :ion of halls in a drum to insure full ${ }^{\text {ruld }}$ verization, it bing desirable that the powder should approach as near the fineness of wheat-flour as possible. A charge of this powdered guartz is then placed in all air-tight cylinder, the interior of which is fur-
nished with a worm of pipes to convey superheated steam therein. Added to the charge is a given guantity of quicksilver, which is first heated by the introduction of orlinary steam; the sunerheated stean is then turned on, and the whole scethed or boiled for an allotted period. On the top of this cylinder a water-bath is placed, and as the mercurial vapors rise they become condensed. Thus the system of thoroughly impregnating the crushed rock with quicksilver is carried out with efticiency. After thus cooking, the cylinder door is opened, and the whole mass discharged upon a novel shaking-table, which is worked hy the power of the steam employed in the previous operition. This table is built of copper on a wooden frame, with rollers and riftes of peculiar construction, which, when it is in motion, give the water, amalgam, and dust the same action as the ocean-surf, - an undertow. As the mass descends, the analgam, from its metallic weight, gradually clears itself from the quartz-dust, and the result is, that it is all collected in the troughs of the riffles, containing every particle of metal, be it precious or base, the quartz holds. The mode of applying super-heaterl steam to the crushed rock desulphurizes it, freeing the metals, and all that is necessary is to returt the analgan to obtain the result of the yield."

The "Journal of Mining," August, 1868, mentions the followiog is a reported success, but without vouching for it: "Zinc adelet in small quantities to the quicksilver used in amalgamation angments, in a remarkable degree, the retentive power of the latter for gold and silver. It is stated that one ounce of zinc, or less even, should be used to ten pounds of quicksilver. The action in this case is said to be about the same as when sodium amalgam is rmployed. The beneficial result is thought to lie in the fact that zine has a tendency to crystallize in a needle or barb-like form ; hence, when disseminated in minute particles through the quicksilver, the power of the latter to take up the atoms of gold and silver with which it may be brought in contact becomes very much intensified. This method of increasing the efficiency of the amalgamation process is said to have been in vogue in the Hexican mines."

Many valuable improvements have first been noticed in the current journals of the day, the "Engineering and Mining Journal," "Scientitic American," and "American Artisan." Books and their editors cannot keep pace with the march of improvement, which is incessant, and naturally finds its expression in these scientific , bapers. See also "Mines, Mills, and Furnaces," by R. W. Raymond, United States Commissioner of Mining Statistics: J. B. Forl \& Co., New lork.

A-mal'gam, E-lec'tri-cal. For covering the cushions of electrical machines.

Zinc, 1 oz . ; grain tin, 1 oz . ; melt in an iron lalle, and add mercury, 2 oz . Stir with an iron rod, pour into a wooden hox chalked on the inside, and agitate till cold ; or stir till cold, and then powder.

The porder is spread on the cushion, which is previonsly smeared with tallow.

A-mal'gam Gild'ing. Grain gold, 1 ; mercury 8 ; unite by gentle heat and stirring.

In using, first ruh the brass, copper, etc., with a solution of nitrate of mercury, and then spread a film of amalgam. Heat volatilizes the nercury and leaves the gold hehind.

A-mal'gam Ma-nip'u-lator: A dentist's instrument to tacilitate the preparation of amalgam for filling excavations in carious teeth. It has a cup at one end for taking up the desired amount of filings or powder, and a curved spatula at the

AMBULANCE.

other end for combining the mercury with the filings and packing it in the cavity.

A-mal'gam Sil'ver-ing. Silver, 1 ; mercury, 8 ; mix with heat, and stir as with gold.
Apply as the gold amalgam, previously using a wash of nitrate.

For silvering the insides of hollow glass vessels, globes, conrex mirrors, etc. : -
Lead, tin, and bisniuth, each 1 part ; melt, mix, and cool to the lowest point at which the alloy will remain fluid; add mercury, 10 oz . Warm the glass, pour in the amalgam, and roll the glass round and round. The amalgann will adhere readily at a certain temperature.
A-mal'gam Var'nish. Nelt grain tin, 4; bismutl, 1; add mereury, 1; and stir till cold. Grind fine with white of egg or varnish.
A-man'do-la. A green marble having the appearance of a honey-comb.
Am-a-sette'. A horm instrument for collecting painters' colors on the stone.
Am'be. A raised stage for a rostrurn.
An old chirurgical machine invented by Hippocrates for reducing luxations of the shoulder.
Am'bro-type. A picture taken on a plate of prepared glass, in which the lights are represented in silver, and the shades are produced hy a dark background, visible through the unsilvered portion of the glass. - W'cbster. See Photography.
Am^{\prime} bu-lance. Late events in the United States have direeted attention to means for the transportation and care of the sick and wonnded. Dealing strictly with the mechanical asjects of affairs, it may he stated at once that anbulances are of three kinds, four-wheelcd, two-wheeled, and those adapted for pack-saddies.

Fig. 176.

Moses's Ambulance.
Moses, September 28, 1858. The sectional fold-ing-seats are arranged along the siles, and may be converted into couches. Hammocks form an ulper tier for patients. An adjustable door serves for a table. The surgeon's medicines and implements are carried in cases, which fit in and under the seats, or in drawers under the body of the vehicle. The water-keg is suspended beneath the rear, its faucet defended by the step.

McKean, October 11, 1864. The stretchers are run in longitudinally upon rollers, which rest upon a false bottom suspended by rubber springs from the sides of the carriage. The watervessel is sufficiently ele vated to supply the wonnded by a flexible pipe which is under their control. A fan is suspended from the roof. The side-slats are vertical and are controlled by a single rod; their beveled edges enalile them to shut closely and present plane exterior and interior surfaces.

Arsold, April 5, 1864, suspends his cots upon pirots, which enable them to swing in accordance with the inclina-
tion of the ground, so as to avoid the rolling motion of the patient. The pirots themselves rest on springs, which give some resiliency when the carriage receives vertical motion, and thereby lessen the jar.

Rucceer, Allen, and Smith, November 6, 1866. This is a double or single tier ambulance. Each couch of the lower tier is diviled longitudinally and hinged. It may lie flat upon the floor, Whice the upper tier is oecupied by other patients; or it nay be bent so as to form a seat and support, while the stretchers of the upper tier are placed on edge ayainst the carriage sides and form backs for
 the seats. The sides are separately adjustable.

The two-wheeled ambulances are spring earts with provision for recumbent or sitting patients.

Hayward, May 16, 1865. The stretehers may be auljusted for recumbent or sitting patients, the legs operating to support them in either capacity when the stretchers rest on the ground. The packsaddle has wedge-shaped sockets to receive corresponding wedge-shaped blocks on the legs of the stretchers.

Sïs, 1863, Wilkins, 1864, Slatter, 1865, and otbers have patented improvements which might be cited would room permit.

This description of service was brought to great efficiency by Baron Larrey, during the wars of Napoleon 1. The experience was almost lost in the peace interval, judging by the ambulance arrangements in the Crimea, 1854. At the hattle of the Alma, in which 1,986 British and 1,360 French were killed or wounded, the generals of both armies

appear to have been taken by surprise. The Englishl were least efficient, the French improvised chairs or panuiers slung over the hacks of mules, like one of the illustrations preceding. Our own service, ISul-65, was well performed, after things got in running order. Perlaps the Crimean heroes uright say the same, with the concluding proviso.

Am'bu-la'tor. Sometines called a perambulator. An ms. idment for masuring distances. Sec OpomeTEL. The word " ambulator" is often erroneously applied to a velocipede, and to a traction-engine, whose mode of propulsion is by oscillating bars whose feet come in contact with the ground in somewhat sinilar manner to the natural action of the legs of animals or of man. The light carriages driven by hands or feet will be considered under the heading Velocipede. See also Thaction-engivs.
A-mer'i-can Leath'er. Au enameled cloth imitating leather.

Am'i-ci's Prism. A glass pism mounted beneath the stage of a microscope to obliquely illuminate an olject beneath the stace. The prism has a Ilat-bnttom side and two lenticular sides, combincs the refracting and reflecting powers, and throws a converging pencil of rays upon the olject. It lans three aljustments: one on a horizontal axis to direct the rays upward at the required angle; one for distance from the axis of the microscope, to vary the oblipuity; one by rotation on a vertical axis, to determine the direction whence the rays shall proceed.

Am mo-ni'ac-al En'gine. This motor seems to be yet in an inchoate state, but has received some attention in Europe. The machine described is the invention of ML. Froment. The London "Mechanics" Magazine" thus refers to it (it appears to have been at work - or rather in action, for it was not usufully employed - at the Paris Exposition) : "Strong liquid ammonia is used in the hoiler, and the vapor generated is said to be a mixture of at least eighty parts of ammoniacal gas and twenty parts of steam, so it may be fairly called an ammoni.teal engine. The principal recommendations of ammonia, when applied as a motive-power, consist in the small amount of fuel required, and the short time it takes to get up the stean, so to speak. The economy in fuel is very consitlerable, being about one fouth of that repuired to generate steam alone. As regants the boiler, it may be of either of the orlinary forms, the only complete uovelty being the apparatus for condensing the steam and ammonia. The gras disengagelf (about six atmospheres at 110° Centigrade with an ordinary solution of anmonia) does its work in the cylinder and then escapes into the tubes of a condenser, where the steam is condensed and the gas is cooted. The gas then ments with a cold lipuid from an injector, which dissolves it, and the solution is carried on into a vessel called the 'dissolver,' from which it is punpetl back into the boiler to do its work over again. The liquid for the injector is taken from the boiler, and is cooled before meeting with the ammoniacal gas by passing through a worm surrounded with cold water."
"Ammonia, at the temperature of our atmosphere, is a permanent gas of well-known pungent odor. It is formed by the union of three volumes of hydrogen to one of nitrogen, combensed into two volumes. Its density is 596 ; air locing 1,000 . The density of the liquid, compared with water, is 76 , or about one quarter lighter than that liquid. Its vapor at 60° Fahr. gives a pressure of 100 pounds to the siluare inch, white water, to give an equivalent pressure, must be heated to 325° Fahr. The
volume of ammoniacal gas under the above-named pressure is 983 times greater than the space occupied by its liquid, while stean, under identical Inessure, occupies a space only 303 times greater than water." - Annals of Chemistry (French).
"Ammoniacal gas, which is an incidental and abundant product in certain manufactures, especially that of coal-gas, and which makes its appearance in the destructive distillation of all animal substances, is found in commerce chiefly in the form of the aqueous solution. It is the most soluble in water of all known gases, being absorbed, at the temperature of ireezing, to the extent of more than a thousand volumes of gas to one of water; and at the temperature of 50° Fabr., of more than eight hundred to one. What is most remarkable in regard to this property is that, at low temperatures, the solntion is sensibly instantaneons. This may he strikingly illustrated by transferring a bell-glass filled witil the gas to a vessel containing water, and managing the transfer so that the water may not come into contact with the gas until after thie month of the bell is fully submerged. The water will enter the bell with a violent rush, precisely as into a vacuum, and if the gas be quite free from mixture with any other gas insoluble in water, the bell will inevitally be broken. The presence of a bubble of air may break the force of the shock and save the bell.
"This gas camnot, of course, be collected over water. In the experiment just described, the bell is filled by means of a pmeumatic trongh containing mercury. It is transferred by passing beneath it a shallow vessel, which takes ap not only the bell. glass, but also a sufficient quantity of mercury to kecp the gas imprisoned until the arrangements for the experiment are completed.
"The extreme solubility of ammoniacal gas is, therefore, a property of which advantage may be taken for creating a vacuum, exactly as the same oliject is accomplished by the condensation of steam. As, on the other hand, the pressure which it is capable of exerting at given temperatures is much higher than that which steam affords at the same temperatures; and as, conversely, this gas requires a temperature considerably lower to produce a given pressure than is required by steam, - it seenis to possess a combination of properties favorable to the production of an economical motive-power.
"Ammonia, like several other' of the gases called permanent, may be liquefied by cold and pressure. At a temperature of $38.5^{\circ} \mathrm{C}$., it becomes lipuid at the pressure of the atmosplare. At the boilingpoint of water it reguires more than sixty-one atmospheres of pressure to reduce it to liquefaction. The same effect is produced at the freezing-point of water by a pressure of five atmospheres, at $21^{\circ} \mathrm{C}$. (70° Fahr.) by a pressure ofo nine, and at $38^{\circ} \mathrm{C}$. (100° Falre.) by a pressure of fourteen." - Bamuerd.

Lamm's Ammonia Eugine is diven by the cxlanding pressure of Tiguefied ammonia, and is specially adapted for small powers, especially portable engines for street cars, etc. The ammonia is to he liquefied at a central station, at which the reservoirs on the cars receive their supply:
The engine is driven by the force of the gas npon the piston, and the gas is exhausted into a body of water surrounding the gas reservoir. The absorption of the gas by the water is instantaneous, and the water derives an increment therefrom which is impartel, through the walls, to the contents of the reservair. See "Engineering and Mining Journal," Vol. X. p. 65.

Am-mo'ni-um. The hypothetical metallic hase of anmonia. Equivalent, I8; symbol, NH_{4}. Only
known in its combination with mercury as an amalgam.

The salts of this metal, volatile and otherwise, are used in pharmacy, chemistry, and as stimulants.

Am'mu-ni'tion. In its most conprehensive signification, this includes artillery and small-arm p'ojectiles with their cartridges and the percussioncaps, friction-primers, etc., by means of which they are fired; also war-rockets and hand-grenades. For artillery, when the projectiles, their cartridges, primers, etc., are packed in the same box, it is designated in the United States service as fixed ammonition; this is the description fumished for field and rilled siege artillery. For larger calibers, the projectiles and cartridges are put up in separate boxes, round solid shot, however, bcing generally tran ported loose.

Up to 12 -pounders for smooth-bore ordnance the cartridge is attached to the projectile; above that caliber the shell or case-shot are filled, the fuse inserted, and the sabot attached; in this case, the projectile is said to be strapped; shells of 8 -inch caliber and upwards are seldom tilled previous to issue, this operation being performed as they are recuired at the place where they are used. Projectiles for rilled artillery are always separate from their cartridges.

Fixed ammunition for field artillery is put up in boxes of uniform size for each caliber, each containing a given number of rounds, viz. : -

$$
\begin{array}{lrr}
\text { Smooth-bore } 6 \text {-pounder gun } & & 14 \\
\text { Smooth-bore } 12 \text {-pounder gun . . } & 8 \\
\text { Smooth-bore } 12 \text {-pounder howitzer } & 12 \\
\text { Smooth-bore } 24 \text {-pounder howitzer . } & 6 \\
\text { Smoth-bore } 32 \text {-pounder howitzer } & 4 \\
\text { Rifled-bore 3-inch or } 10 \text {-pounder gun } & 10
\end{array}
$$

Ammunition for small-arms is known in the Uniterl States service as small-arm cartridyes. In these the bullet and cartrilge are invariably put np together in boxes of 1,000 , except some descriptions of patented cartridges, which are put up in boxes containing cu0 or 1,200 , and repeating-cartridges, as spencer's, in which the box is marle to contain a multiple of the nunber which fills the breechchamber.

Rules have been laid down for determining the proper supply of ammunition of each description for an army in the field.

That assumed by the British authorities allows 300 small-arm cartridges per man for six months' operations; of which an army of 60,000 men should have $2,680,000$ with them, besites those in reserve.

This amount is understood to be in addition to that carried in the cartridge-boxes of the men, 60 rounds each in the case of an infantry soldier.

The wagons for this service are intended to carry 20.000 rounds each, and are drawn by fonr horses. Several wagons are organized into an equipment nuler the charge of a detachment of artillery; several such equipments would be attacherl to an army of 60,000 men, one for each division of infantry and a proper proportion for the cavalry ; the remainder being in reserve.

The proportion given in the United States Orclnance Manual is 100 rounds for each man, 40 rounds in the cartridge-box, and the remainder in reserve for infantry.
Ammunition for cannon : 200 rounds for each piece, both of the reserves and active batteries ; the ammunition which cannot be carried in the chests of the caissons to be kept with the reserves.

During our late civil war it is believed that, where at all practicable, the amount of readily accessible
ammunition, both for artillery and small-arms, was kept largely in excess of the above standari.

A supply-train, under the charge of an ordnanceofficer, was attached to each division, from whit h issues were made as required to the company or regimental officers, upon properly approved requisition.

The wagons of which these trains were composed were generally drawn by six horses or mules, and were capable of carrying from 40,000 to 60,000 rounds of small-arm cartridges, or au equal weight of artillery ammunition.

Sre Weapons ; Projectiles.
Am'mu-ni'tion-chest. The box in which the fixed ammunition for field camnon is packed. One is carred on the limber of the gun-carriaue, and one on the limber and two on the body of each caisson.
The chest is of walnut, and has a hinged lint, which is covered with sheet copper ; it is fastened by means of a hasp and turnbuckle, and secured by a padlock.

The interior dimensions are 40 inches long, 18 inches wide, and 143 inches deep ; and it is dividerl into compartnents varying in number from 12 to 50 , according to the caliber of the gun, by longitudinal and transverse partitions.

The shot, shell, case, and canister, with their cartridges, are inserted in these comprartments, each in a separate part of the chest ; and over these is fitted a tray for containing the fuses, friction-primers, and small implements required for the service of the piece.

The chest is fastened in position by means of stay-pins and keys, and is readily removed or replaced.

Am'phi-type. The amphitype process in photography is an application of the calotype process, taking its name from the fact of negative and positive pictures being produced by one process. It originated with Sir John Herschel. - Photographic Neus.

Am'pli-tude Com'pass. An azimuth compass whose zeros of graduation are at the east and west points, for the more ready reading of the amplitudes of celestial bodies.

Am-pul'la. Any vessel having a belly, as cucurbits, receivers, etc.

Am'pu-ta'ting-knife. A long, narrow-bladed knife used for making the incisions in amputations. The ancient surgeons endeavored to save a covering of skin for the stump by having it drawn upward previous to making the incision. In 1679, Lowdham,

Fig. 179.

of Exeter, England, suggested cutting semicircular flaps on one or both sides of a limb, so as to preserve a fleshy cushion to cover the end of the bone. Both these modes are now in use, and are called the "circular" and the "flap" operations. The latter is the more frequently used.

Amputation was not practised by the Greeks: at least, Hippocrates (B. C. 460) loes not refler to it and did not practise it. Celsus notiees it (A. D. 30). Cantery, pitch, etc. were used to arrest the bleeding. The needle and ligature were introduced abont 1550 , by the French snrgeon Peré.

He was surgeon to Henry II., Francis II., Charles 1X., and Henry 111. of France, and though a Protestant was concealed in the king's chamber on the night of St. Bartholomew. The king is said to have 1 marked, "There is only one Peré." A complete set of strgival instruments of bronze was discovered at Pomprii. The tomrniguet was invented by Morelli in 1674.

Batso-relievos in the temples of Karmak, Tentyra, and Luxor show that the ancient Egypitians performed amputations of limbs, without the tourniguet, however, or the mode of ligating the severed arteries ; it is merely a cutting and sawing, followed by the cautery, stypties, or compress.

The chirurgeon of ancient times was principally employed in reducing fractures and luxations, in treatiing wounds, applying topical remedies, and in the appliation of simple or strange drugs with occult charms and pow-wows.

One foran of ampurating-knife found at Pompeii in 1819 hat a thick back and a wayy edge, and is sulpuosed to have been used by the blow of a mallet on its hack.

Am'pu-ta'ting-saw. Amputating-sawsare nodifications of the tenon, frame, joint, and crown saws.

Fig. 180.

Amputating-Saus.

They are of sizes from 4 to 14 inches in length. Some have edgesmore or less curved, and the smallest of these dwindle down to a nearly circular plate of steel less than one inch in diameter, serrated round the edge, except where a slender shank terminating in a wooden handle is riveted to the edge of the saw-plate. These are known as Hey's
saws, and are used in making exsections, operating on the cranium and metacarpil hones, and in removing carious bones from deep-sceated places.

Am'u-sette'. A stocked gun mounted on a swivel, and carrying a ball or charge of huck-shot of from 8 to 32 ounces' weight.

An'a-bas'ses. (Fubric.) A coarse blanketing made in France for the African market.

An'a-clas'tic Glass. A sonorous, flat-bel'ied glass male in Germany, having a thin, flexible, slightly convex bottom, which is capable of flapping back and forth by the expiration or inspiration of the breath when the month is applied thereto. As the bottom is drawn in or out it makes a loud crash.

An'a-cos'ta. (Fubric.) A woolen diaper made in Holland for the Spanish market.

An res-thet'ic Ap'pa-ra'tus. Anresthesia is a term made use of in medicine to denote a deprivation of sensilility to external impressions, affecting a part or the whole of the body. In some nervous diseases a portion of the body may become partially or totally insensible to pain, while the sensibility of another part may become excessively acute, or in a state of hyperæsthesia. The division of a
nerve, as is well known, proluces an entire deprivation of sensibility in those parts of the body dependent on it.

When the insensibility is confined to the surface of the body it is termed peripheral; but when arising from a cause acting on the brain or spinal marrow, from one or the other of which all the nerves emanate, it is called contral.

Means for inducing temporarily either of these conditions with safety to the patient have been long sought for in surgical practice. The Indian hemp, C'umabis Indica, was anciently employed; and it appears that the Chinese employed some preparation of hemp for producing insensibility during surgical operations, more than fifteen hundred years ago. Maudragora was used by the Greeks and lomans lor the same purpose, and appears to have continued in use, in combination with opium and other drugs, so late as the thirteenth century, the ratient inhaling the vapor from a sponge saturated with these substances. The mandragora, however, at times induced convulsions, and though mention is made of its anæsthetic powers for prolucing a "trance or a deepe terrible dreame," in operations for the stone, foward the close of the sixteenth century, it, or similar agents, appears to have gradually gone out of use.
It seens a little singular that sulphuric ether should not have heen employed for the purpose for some three centuries, unless, as has hern suggested, it is the substance spoken of by John Baptista Porta of Naples, who published a hook on Natural Magic in 1597 ; this "quintessence" was extracted from medicines by sommiferous "menstrua," and was kept in leaden vessels tightly closed to prevent its escape. The cover bring removed, it was applied to the nostrils of the sleaper, who was thereupon thrown into the most profonnd sleep, etc., etc.
In 1784, Dr. Moore of London tried the expedient of compressing the nerves ol a limb prepuratory to amıutation ; but this caused much pain.

Narcotic poisons will induce amesthetic conditions of the hody, in which surgical operations may be performed without apparent pain to the sulject. The same is true of akcolol. The peeuliar nervous condition induced by what is called amimal magnetism has also produced insensilility to pain, during which operations have been performed.
The modern anesthetic agents are : cold applications, protoxide of nitrogen (laughing-gas), chloroform, ether, amylene, kerosolme.

Sir Humphry Dary suggested the use of protoxide of nitrogen as an anæsthetic afent in surgical operations. It was used by Dr. Wells of Hartlord, Conn., in 1844, in dental oprerations. It has How attained great favor.

Chlorotom is a terchloride of formyle (the hypothetical radical of formic acid). Its điscovery is claimed by Soubeiran, Guthie, and Liehig, whose claims have about an even date, 1831. The verdict seems to lave settled in favor of the former. Its first use as an anresthetic was by Dr. Simpson of Edinburgh, 1847.

Hydrate of chloral has recently become quite unpleasantly prominent in the list of anodynes, sedatives, and lyjmoties.
Ether was known to the earliest chemists. The discovery of its use as an amresthetic was made by Dr, Jackson or Dr. Morton of Boston, in 1846. A contest ensued between the parties to prove priority, and was much debated in the scientific journals of the day. In an application to Congress for a remunerative appropriation of $\$ 100,000$, the rep-
resentatives of Dr. Wells came in with a claim to the first inrention. The enterprise failed, but mankind owes a debt of gratitude to each.

Amylene is a colorless liquid obtained by distilling fusel oil with chloride of zine. It was discovered by M. Balard, of Paris, in 1844 . First used by Dr. Snow in 1856.

Kerosolene was derived from the distillation of coal-tarby Merrill of Boston. Its use as an anæsthetic was made known in 1 S61.

Nitrate of ethyl, of which the chemical formula is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}, \mathrm{N}_{5}$ possesses remurkable anesthetic properties; it has a very fragrant and agrreable smell, a sweet, but a bitter after taste. lts boiling-point lies at 185° Fahr., and its specific gravity is 1.112 at 62.5° Fahr. It burns with a white flame, is not soluble in water, but easily so in alcohol.

Various forms of apparatns are used in the administration of anesthetic agents. Some consist of cups which contain the sponge saturated with the liquid and exposed to the current of air as it passes to the lungs. Others pass the air through a body of liquid. The administration of nitrons-oxide requires a different arrangement, and the tube connecting the bladder with the mouth-piece has valves so arranged as to pass the gas to the mouth during inspiration, and allow the expired breath to pass to the atmosphere instead of contaminating aud weakening the contents of the bag.

These are more properly considered under Ishalens (which see), as that has become the term by which they are generally known and patented. A class of inventions which preceded the inhalers just described are termed Respirators (which see), and are not adapted for the introduction of anesthetic or curative medicaments into the lungs, but are intended as air-heaters or filters, and are used by two classes of persons, - by consumptives to temper the rigor of the air in cold weather, by causing the air to rush rapidly through a succession of narrow passages; and by mechanics, eutlers especially, to arrest particles of steel and grit which permeate the air where the grinding is carried on.

The anuesthetic apparatus wbich operates by topical application of cold is ordinarily in the form of an ATomizer (which see), and consists of a tuhe whose lower end communicates with a body of liguid, and whose contracted upper end is exposed to a blast at right angles to the axis of the upper tube and across the orifice thereof. This has the effect of raising the liquid, which is dispersed as it reaches the opening, and, assuming the form of fine sluay, hecomes a great absorber of sensihle heat, and consequently lowers the temperature of the air in its vicinity. The air, thus cooled, is projected upon the part where local anæsthesia is required, and by absorbing the heat of the part renders the nervous system of the part incapable of feeling, callousel by cold.

Bags of ice have been laid upon the frart affected to produce insensibility by freezing.

For freezing mixtures, see lce, Mavufacture of.
An'æs-thet'ic Re-frig'er-a'tor. An apparatus for producing local anesthesia by the application of narcotic spray.

The apparatus consists of a bottle to contain the ether or other fluid to be used; throngh a perfo-

rated cork a double tube is passed, one extremity of the inner part of which goes to the bottom of the bottle; abore the cork a tube, connected witl the bellows, pierces the outer part of the donble tulee, and communicates by a small aperture at the inner end of the cork with the interior of the bottle. The inner tube for delivering the ether runs upward to the extremity of the outer tube.

When the bellows are worked, in donble eurrent of air is produced; one current descending and pressing upon the etber, forcing it along the inmer tube, and the other ascending through the outer tube and playing upon the colnmn of ether as it 1 asses from the inner tube.
Put the ether into the bottle, nearly filling it, then insert the tube with the cork firmly, and fit the nozzle to give the jet desired; the bulb on the extremity of the rubber-tubing, being now graspel in the hand and rapidly used as a hand-bellows, the other bulb acting as a reservoir, - keeps up a steady pressure upon the ether and produces a continuous j t.
The small wires, called stylets, are used to graduate the spray, which is made finer or heavier by $t 1$: use of the \cdot different sizes.
Remove the nozzle and insert the stylet in the small tube. The hook on one end of the wires is to prevent their slipping into the tube.
Two nozzles accompany the instrument; the straight one for jrodwing a single jet, and the double curved one for operating on both sides of a molar tooth.
An'a-glyph. A chased or cmbossed ornament.
An'a-glyp'to-graph. An instrument for making a medallion engraving of an object in relief, such as a medal or cameo. A point is passerl orer the metal at an angle of 45°, and communicates motion to a diamond etehing-point. The diamond partakes of the motions of the tracer, following the curves of the object, making the liues relatively open on the sides of the protuberances ulon which the light is supposed to strike, and making the lines closer on the sides opposed to the light. See Meballic Engraving.
A'nal-di-la'tor. (Surgical.) Auinstrument for dilating the sphincter muscle for the examination of hemornhils or fistula in ano.

An'a-lem'ma. A form of sun-dial now disused.
A'nal-spec'ulum. (Surgical.) An instrument for distending the anal opening to explose the inner surface of the rectum, in case of hemorrhonds, fistula in ano, etc. See Speculum.
An'a-lyz'er. The upper or eye prism of the polarizing apparatus.

The first of the two columns in the Coffey Still ; the second being the rectifier. See Still.

ANCHOR.

An'a-plas'tic In'stru-ment. For the operation of forming a nose unon the face. The Tagliacozzion oneration. Sue Rhinoplastie Pin.
Ana-stat'ic En-grav'ing and Print'ing. Invented by Wood in 1841. An engraving or other printed sheet is moistened with dilute phosphoric acid, and pressed on to a clean surface of zinc, which is etched thereby in the place not protected by the iuk. The plate is kept damp by acidulons solution of gum, and in the printing process only takes ink from the rollers at the points where the ink of the original impression first adlered.
Zincography is the term applied to drawing upon zinc for suhsequent treatment abs above.

An'chor. 1. Anchors were, aecording to Apollonius Kholius and Stephen of Byzantium, originally made of stone, or of logs of wood covered with leat. These were succeeded by a bent rout with a single fluke. The invention was ascribed by Pliny to the Tuscans; Strabo ascribes the addition of the second fluke to Anacharsis the Scythian. They were first forged in England, A. D. 578 , when Titilhs reigned in East Anglia. The general shape of anchors is well known, consisting of two ams terminating in broad expansions termed flukes, and attached to a long shank, to which is fixed a stock of wool or iron at right angles to the arms, to insure the prependicularity of the Hukes when the anchor is on the hottom, in order that they may take lirm hold of the ground. Small anchors termed grapnels, and having four or more arms, are used for hoats, and at times for small vessels. The mushmom-anchor, so called from its shape, is much employed in the East Indies by the native vessels called grabs. The weight of the largest anchors, for vessels of 1,000 tons or less, is about 1 cwt. for each 20 tons neasurement, or . 0025 of the tonnage. Various improvements have leen proposed upon the ordinary anchor, of which the most prominent are Rodgers's, Trotman's, and its modifieations, Isaars's and Lenox's.
In Thotman's anchor the arms are passed through the shank, which is slotted, and are held hy a bolt, thus hringing the upper arm and fluke down on the shank, and allowing the lower one to penetrate decper when the anchor is on the bottom.

Fig. 182.

Thotman's Anchor.
This arrangement, aided by the horns on the back of the flukes, also prevents fouling. At a trial made in 1853, under the nuspiees of the British Board of Admiralty, to determine the comparative general merits of rarions descriptions of anchors, their
comparative merits were decided to be as follows, the Admiralty anchor being taken as unity : -

Trotman	1.28	Honibal (or	1.09
Rodgers	1.26	Aylen	1.09
Mitcheson	1.20	Admiralty	1.00
Lenox	1.13	Isaacs	

Notwithstanding the numerous recent modifications claiming to be improvernents, an anchor diflering little from the oldfashionel type, excepting that even the very largest sizes have iron stocks, still maintains its place both in the navy and merchant service of the Uuited States.

Anehors require to be made of the very best and toughest wrought-iron. They are made by welding together a fagot of bars under a steam or trip lammer, the smaller and more alifficult portions being shaped and rounded olf, and the whole anchor finished up by hand. This portion of the work, es-

English Admiralty Anchor. pecially in the case of a large anchor, is one of the most arduous labors of the smith's shop; as the workmen are unable to stant the intense heat from the huge mass of ret-hot metal and wield the ponderous siedge-hammers employed but for a very sloort space of time, each strikes his blow and falls back to make room for another, who in turn retires to give place again to his predecessor, and so on until the iron becomes too cool for further hammering. This evidently requires a considerable share of strength, activity, and endurance on the part of the men, who are not only compelled to strike while the iron is hot, but have to put in as many and as heavy strokes as they possibly can in the time.
lsaacs's anchor has a flat bar of iron from palm to palon, which passes the shank elliptically on each side, and from each end of the stork to the midlength of the shank are fixed two other bars to prevent fouling.

Fig. 184.

ANCHOR.

Porter's anchor, or Howibal's as it is sometimes called from the purchaser of the right, is very sinilar to Trotman's (which see), the latter being au improvement upon Porter's, with some

Fig. 185.

modifications in the shape of the flukes and their horns. Levox's improvement (1832-39) consisted in an improved mode of welding, and in rounding off the sharp edges and lines; also in reducing the size of the palms, the object being to obtain a stronger anchor and prevent injury to the cable.

Rodgers's anchor has a shank with a wooden core, for giving more surface, and consequent strength for a given weight of metal.

Williams's anchor, patented March 16, 1858. This anchor has three flukes hinged to a block at the lower end of the shank, and so set that two of them may penetrate the ground at the same time, while the third falls down npon the shank to prevent the cable from being fouled. The flukes are set at 120° apart and hinged in a separate block.

Morgan's anchor, patented June 21, 1864. The arms are separately pivoted near the end of the shank, and are connected by a corved bar passing through a hole in the shank. When one fluke has hold of the ground its arm rests against and is supported by the crown-piece,
while the other arm falls down upon the shank, obviating the danger of fouling and by means of the curved bar assisting the first arm to bear the strain.

Morgan's Anchor.

Fig. 189.

Marshall's Anchor.

Marshall's anchor, patented October 17, 1865. Antedated March 6, 1865.
The arms are straight and turn in an are of a circle, moving separately on a pivot passing through the crown. Each is provided with barbs or projections to help the fluke to take and retain its hold, and the oscillation is checked by cusps on the thick portion of the crown, so that the arms have a given inclination to the shank.
Latham's anchor, patented Angust 21, 1866. The shank $A B$ is made of two pieces, which separate at their lower ends to allow the passage of the middle fluke. The arm C turns in the shank and has three parallel flukes.
The weight by these means is concentrated at the lower part of the anchor. When the anchor is let go, the Fig. 190. flukes make about a quarter of a revolution, lying in the position shown in the illustration when they enter the ground. The shoulder on the crown-piece comes against the shank and restrains the oscillation of the arms in either direction, and the anchor stows compactly by bringing the arms parallel with the shank, the middle arm or fluke lying in the space between the tro portions of the shank.

Stuard's auchor. Among the single-armed anchors may be mentioned Stuard's (English), which has a very short shank made in one piece with the arm, the pile being bent, but not welded. The stock is a wrought-iron bar with knobs on the end, which cant the anchor so that its fluke penetrates the ground as it is dragged along. One hole in the
shank is for attachment of the cable, and a shackle at the crown is for the buoy-rope.

The largest puchor in the world, according to Charles Rytand's "Iron Trade Report," was made at H. P. Parke's Works, Tipton, Staffordshire, for the Great Eastern, and weighs eight tons exclusive of the stock. Its dimensions are : Length of shank, twenty feet six inches; of wood-stock, nineteen feet six inches; trend of arms, seven feet four inches. It is somewhat different in form from ordinary anchors, the palms or blades being divided or ${ }_{81}$, lit so that it may more readily pierce the seabottom.

The parts of an anchor are as follows : -
a to b, shank ; b to c, square ; d to e, arm ; f to g, palm, fluke, or kevel ; h to i, point, pee, or bill ;

i to k, blade ; M to N, crown ; o, ring ; p, stack ; d, throat or crutch.

For checking and regulating the motion of the cable as it runs towards the hause-holes while the anchor is dropping, amb for holding the cable after the anchor has taken hoh, four kimels of apparatus are used torether or separately, - Contholleis, Butts, Sturrens, Cumplessiors (whidh see).

To cast, or drop anchor is to let go the anchor.
To ride at anchor is the condition of the vessel when anchored.

To swing at anchor is when the ship obeys the change in the direction of the tide while at anchor.

To weigh anchor is to heave it out of the gromml.
To back an anchor is to strengthen its hold of the ground by means of a seconil anchor laid down ahead of the other, and fastened to the crown of the latter by a cable.

An anchor is foul when the cable is twisted around it or the anchor is entangled with a wreck or another anchor.

The anchor bites when the fluke takes hold of the grounal.
To surepp for an anclior is for the recovery of a lost anchor by sweeping the bottom with the bight of a cable or liawser.
Parting: Breaking cable and leaving the anchor in the ground.

An anchor is a-cock-bill when it is suspendel perpendicularly from the cathead ready to let go.

It comes home when dragged from its hold by the pulling of the cable.
An anchor is a-stay when the angle of the cable with the water is about that of a stay. A long-stay apeak when coinciding with the main stay; short stay when with the fore stay.

It is a-peak when the cable is drawn in so tight as to bring the ship directly over it.

It is a-weigh, or a-trip, when litted clear of the ground.

It is a-wash when lifted to the surface of the water. It is hove up when lifted to the hawse-hole.
It is hooked when cat-fall is fast to the ring.
It is catted or hauled up when liftet by the ring to the cathead.

It is fished when the fluke next to the ship's side is lifted to the fish-davit.

It is on-board when the fluke is lifted to its rest-ing-place on the bill-board.

It is in-buered when on deck.
It is secured when all is made fast, the cable and buoy-rope unbent, and the anchor stowed.

The weight of Anchor and hedge is given exclusive of that of its stock.
Bower and Sheet Anehors should be alike in weight. Strcum Auchors should be $\frac{1}{4}$ the weight of the best bower.

Kediges are light anchors used in warping.
2. The block, frame, or masonry deeply buried in the earth, to which the cables or wires of suspen-sion-brilges are attached. See Axchoi, Suspen-SION-FAMLE:

An'chor and Col/lar. A form of hinge for a lock-gate. The anchor is let into the stone coping; the collar is attached like a clevis to the anchor, and foms a socket for the pintle of the heel-post of the gate.

An'chor-ball. 1. A contrivance of Captain Manby; I. N., for saving life in eases of shipwreck. It is a ball having several hinged prongs fitting in slots, which are intended to eatch in the rigging of a stranted vessel.

It is tired from a mortar, and carries a light lint by which a stout rope may be carried ashore from the vessel.
The French use a ball for this purpose having : haryoon passing throngh it, on the rear end of whish a line is wound.
2. A carcass or incendiary ball affixed to a grapmel by whim it is intenced to adhere to and fire a verssil.
An'chor-bolt. (Machinery.) One having an expaustel shank to prevent its drawing out.
An'chor-chocks. Blocks on which a stowed anchor tests.
An'chor, Sus-pen'sion-ca'ble. The anchors of
Fig. 192.

Suspension-Chain Anchor.
the chains of the Memai Suspension Briuge are castfron plates having a bearing against the solid rock. Three obligue circular sbafts six feet in diameter and sixty feet in depth were blasted into the solicl rock, a considerable space being left between each shaft. At the bottom is a cross-tuunel which runs horizontally and at right angles to the inclined shafts. The iron plates, weighing 2,240 pounds, were fitted into seats in the face of the rock at right angles to the chains which are bolted thereto. a, cross-tunnel ; b, anchor ; c, suspension-cable.

An'chor-drag. Spe Drag-Ancior.

An'chor Es-cape'ment. The anchor escapement supersedel the crown-wheel escapement for clocks. It was invented by Clement, a London watchmaker, in 1680. By some it is credited to Dr. Hooke.

The anchor has two arms whose bent ends resemble flukes in some degree, and thus give rise to the name. It is suspondech from a horizontal axis, on which it turns freely along with the dependent stem, which terminates at its lower end in a fork or urnteh between whose prongs the pendulum-rod passes, so that the motions of the penduhm are communcated to the anchor, and the pressure of the wheel uron the pallets of the anchor is also communicated to the pendulum so as to make up for the small loss by friction incident to its action.
"The great advantage of this escapement over the old crown-wheel is that it allows the escape to take place at a small angle of vibration, thereby preventing the necessity for the maintaining power auting upon the jendulum with so great fore as by the old plan; and by the introluction of a heary ball, leaving that to be dune by the miform power of gravity which before was dependent "!on the impulse given by the whed to the pallets."

Clement, in comection with this escapement, introduced his mode of suspending the pendulum by a thin piece of flexible spring, a mode which has remained in favor ever since.

Figure 193 shows two forms of anchor escapement : one is on the recoil principle and the other is the dead-beat ; the former is so called hecause each tooth of the wheel makes a back or recoil motion after escaping from the pallet. In the figure one tooth is represented as having just escaped from the anchor, and a tooth on the opposite side of the wheel has dropped on to the pallet. The pendulum continuing its course a little farther to the left,
the slope of the pallet will drive the tooth on the right a little way back and produce the recoil.

The other figure shows the dead-bert escapement, in which the slope of each jallet stops at the points where the teeth fall, the rest of cach pallet forming portions of a circle of which the axis is the center. The tooth having pressed the pallet, the continued motion of the pendulum merely holds the tooth, but does not give it any bachward mution. See Dead-beat Escapement; Recull Escapement.
An'chor-gate. A heary gate, such as is used in the locks of canals, recpuires for its upper bearing a collar which is stayed by the adjacent masonry. Barbed metallic projections from the collar are embedded in the masonry, and resist displacement of the gate while enduring strain or swinging on its axis.

An'chor-lin'ing. Sheathing on the ship's planking, under the fore-channels, to keep the bill of the anchor from ripping the ship's side when bauling it up, or fishing.
An'chor, Mush'room. The mushroom anchor is usel for moorings, and is snid to be a favorite in the East Indies. Its name indicates its form, hav-

ing a central shank and a head of a bowl shape, which reguires no stock on the shment to cause it to engage with the gromal over which it is dragged.
An'chor-ring. The ring of an anchor by which it is bent to the cable. A jew's-larp shackle is now used.
An'chor-stock Plank'ing. (Ship-building.) Each plank has one straight edge, the other consisting of two equal slopes.
An'chor-trip'pers. These are devices for "tripping" or castiug lonse a ship's anchor. lu some of them it is suspended by its ring from the cat-block or a tripping-holt; in others it is fastened at each end by inains which are cast loose simultaneously.

Duncas, April 28, 1863. The anchor hangs from a chutch-1ing on the cat-block, which is susprended below the cathraul. When the fill is cast loose, the block descends, and the clutch is opened by the chains which are attached to the cathead, and to the projecting levers or prongs on the respective halves of the clutch. A single motion, the slackening of the fill, operates the tripper; the clutch is opened when the chains are made taut by the descent of the block.
Stacey, December 27, 1864. The anchor is suspended by its ring from

Fig. 195.

Duncan's Anchor-Tripper.

the hook of the fall. block, which depends from the cat-head. The tripping-rope is attached to an eye on the fall-block hook, and is belayed to a pin on the cat-head. When the fall is cast loose, and as soon as the slack of the tripling-rope is exhausted, the said rope upiscts the hook, and casts loose the anchor.
Holmes, April $28,1857$. A short chain is attached to the ring of the anchor, and the link on its upper

Holmes's Anchor-Tripper. end is transtixed by a pin which has its beariugs in a block. By turning the handle half a revolution in one direction, the screw upon the shaft will cause the l^{in} to recede, and disengage itself from the link of the chain. The thread works in a spiral groove or nut, by which it receives longitudinal motion when partially rotatesl.

Heitman, May 16, 1865 . The anchor is suspended by a slank-painter and a rinc-stopper. One end of each chain is fast to the vessel, while the ring at its other end rests mpon a pivoted latch-

Fig. 198.

Heitman's Anchor-Tripper.
piece. These latch-pieces are supported upon a bar, which is rotated to give simultaneous disengagement to the latches, and east the anchor loose. The movement of the bar is effected by raising a lever which rests npon the rail.

There are thirteen United States patents for anchor-trippers.

Gibsos, December 5,1865 . In this device the fluke of the anchor rests on a block A, which is pivoted in a noteh of the gunwale. A bar B, attached to said block, is lield by a shackle-bar C, when the latter is in its upper position. By sliding the shackle
in its staple, the bar is released, and the block A freed to rotate under the weight of the anchor, which is thereby "tripped."

Bunton's anchor-tripper (English). The standing end of the cat-heacl stopper is worked into a

ring placed around the end of the boit $b c$, which is pivoterl at d, on the cat-head a. The other end c of the holt is ohliqne, and is held down by the clampe, turning on the pivot f, the clasp being secured by a hasp g, and pin h. The cat-head stopper passes through the ring of the anchor, over the thumb-cleat k, and is made fast roumd the timber-lieal 7 . When it is required to let go the anchor, a handspike is inserted, so as to bear against the clasp e, and hold it closed while the pin h is withluawn, and the hasp g is cast off. The laantspike being then removed, the oblique end c of the bolt throws open the clamp e, and the holt revolving on its pirot d allows the standing end of the eatheat stopper to fill off, and the anchor to dropl.

Spexce's tripiper (English) is especially intended for casting ofl the shank-painter, which holds the

shank and flekes to the ship's side, while the cathead stupper holds the ring of the stock:
a is a carriage bolted to the gunwale; b is a bolt which is nivoterl at i to the carriage, and sustains the chain-cnd of the shenk-painter; c is a bever pivoted at f to the upper side of the carriage n, and having a hook d at its end which hotls the bolt b in an upright position. When the shanh-puinter is to be cast off, a pry is taken mpon the end of the lever ly a handspike till the piu g is removed. The
lever e is then oscillated till the hook d is disengaged from the bolt b. The latter is immediately rotated by the weight of the anchor, and the shankpainter is cast loose.
Anch'y-lo'sis Ap'pa-ra'tus. An apparatusfor re-

Fig. 202.

Anchylosis Apparatus.
Au ornamental keystone.
An'co-ny. (Metal-urorking.) A piece of partially wrought bar-iron, partly finished in the middle, but mowrought at the ends.

An'cove. (Architecture.) A console on each side of a door to support a cornice or entablature.

An-cy'lo-mele. A curved probe used by surgenus.

And'i-rons. These are used upon the hearth to suphort the burning logs and brands. Sometimes called dor-irons, and familiar to all who have been acepuainted with the old-fashioned fireplace.

Smvief, July 12, 18t3. The horses of the andirons are adjustably comected, so as to place them at any convenient distance apart and keep them steady. They are guarded by a safety-bar against the danger of upsetting.

Loga․, March 27, 1860, has a bottom plate or frame, in combination with two upright angular bars, in such a manner that the same stands firmly in its place and allows a free circulation of the heat.
The name andiron is supprased to le derived from the Anglo-Saxon brand-iron. Others derive it from hand-iron.

For the large kitchen fire, the andirons were very strong and massive, but usually quite plain. In the hall, that ancient seat of hosjitality, they were also strong and massive, to support the weight of the huge logs; but the standards were kept bright or ornamenter with brass nings, knobs, rosettes, heads and feet of animals, and various grotestue forms. In kiteluns, and in the rooms of common houses, the andiron, as its name implies, was of iron ; but
in the hall the standards were of copper or lrass, and sometimes of silver.

Until the seventeenth century wood was the ordinary tuel. It was burned in holes dug in the floar, on hearths in the middle of the floor or against the

Fig. 204.

Andiron.
wall. Chimneys are a comparatively modern invention, and no traces of them are found 1 revious to the twelfth century. See Chmaner.

In the baronial halls of England the logs were liberally piled on the hearth in the midule of the hall, being confined within the two standards of the amdiron, their ends resting on the billet-har for the purpose of admitting air beneath them, and thus promoting combustiou.

A-nem'o-graph. An instrument for measming and recording the direction and foree of the winl.

An'e-mom'e-ter. Aninstrument for detemining the force of the wind. The most simple forn of this instrument is a board or other plane surface of given area, which is presented to the wind and has a spring attached by which the direct foree of the wind is measured on a principle precisely similar to that of an ordinary spring-halance. A siale may le attached, which will show the absolute pressum in pounds and fractions to the sytuare foot or inch. The earliest known anemometer was that of Irr. Crombie, 1667, alterwards improver? be Woltius and others. Dfo James Liso of Winitsor invented, about the year 1775 , a very conveniont and aceurate anmometer which is well suited for private olserver's or those desiring a portable instrument occupying a small sprace. It eonsists of a graduated glass tube having two arms, one of which has the upber part hent perpendicularly; the thlie is momited on a stand, the two arms being in a vertical position, and the bent portion lorizontal, so that its month can be presented to the wind. Water is proured in until the instrument is filled to the misldle or zero of the scale. For use, it is placed so that the mouth shall receive the full force of the wind, which depresses the water in that arm and canses it to rise in the other. As the pressure of the atmosphere at the earth's surface will orlinarily sustain a colum
 of water about 33 feet in height, which is equivalent to about 2,060 pounds to the square foot, if we surpose the wind to blow with a force sulficient to cuase a difference of level of one inch in the two branches of the tube, this
 trace a corresponding line on a fixed cylinder, which is divided by vertical lines representing the points of the compass; as the wind changes, the jencil is moved romel on the surface of the eylinder, and eansed to register the direction as well as the velocity of the wind, the former by its rotary and the latter by its vertical motion.
for public institutions, or where it is desired to keep a perfect record of the changes in the force and velocity of the wind. The essential parts are a plate, haring its face constantly presented to the wind by a set of vanes at riglit angles to it ; the force of the wind on this plate causes it to move an

ANEMOSCOPE.

arm carrying a pencil, which makes a mark on a sheet of paper especially ruled for the purpose, having separate compartments for registering the force and direction of the wind, and a third to show the amount of rain ; the paper is slowly moved forward by clack-work; the pencil approaches toward or diverges from the edge of the paper as the force of the wind varies, while a similar pencil, attached to an arm competed by a spiral worm and nut to the guide-vanes above mentioned, registers the direction of the wind in the center compartment. The raingage is attached to a bent lever, also carrying a pencil, which is drawn toward the center of the paper as the gage becones filled with water, thas indicating the amount of rain. When the gage is completely full it tilts, empties itself, and the record commences afresh.
sri'sirz, February 4, 1862. An endless apron moving upon three rollers carries the paper upon

Stuntz's Anemometer.
which the record is to be made, a uniform velocity being given to one of the rollers by clock-work. A nencil-holder is attached to the lower part of the vaneshaft, and the proper mark is made on the highest part of the apron above the roller. A pricker, actuated by a spring through mechanism operated by a winel-wheel, makes perforations in the paper, the number occurring in a given length denoting the velocity of the wind during the intervals of time indicated by a scale on the paper.
The following talle, calculated by Smeaton, shows the force and velocity of the wind :-

Velocity per hour.	Per second.	Pressure per sq. ft.	
Miles.	ft	lbs.	
1	1.47	005	Hardly perceptible.
2	2.93	.020	Jnst perceptib
3	4.40	. 044	
4	5.87	.079	Gentle, pleasant wind.
5	7.33	. 123$\}$	Gentle, pleasant wind.

Telocity per hour.	$\begin{gathered} \text { Per } \\ \text { second. } \end{gathered}$	Pressure per sq. ft.	
Miles.	ft .	lbs.	
10	14.67	. 492 \}	Pleasant, brisk bre
15	22.00	1.107 \}	Pleasant,
20	29.34	1.968 \}	Very brisk.
25	36.67	3.075	Fery brisk.
30	44.01	4.429)	High wind.
35	51.34	6.027	High mind.
40	58.68	7.873	Very high.
45	66.01	9.963	Very ligh.
50	73.35	12.300	A stown or tempest.
60	88.02	17.715	A great storms.
80	117.36	31.490	A hurricane.
100	146.70	49.200	A lumicane that tears up trees, carries build. ings, ete. before it.

About twenty varieties of anemometers are described in works devoted to physics, under the department Meteorology.

A convenient form of anemometer, adapted for ascertaining the force of currents in jinus or thues, was formed by a piece of cardboard c^{\prime}, of known dimensions, susjended to one arm of the beam of a balance, and placed at the elge of the mantel-priece in the ascending current. The graduated stem of
a broken thermometer t was snspended to the other end of the beam, and was placed in a glass vessel containing water; weights were pllaced on the card-board till the zeropoint of the graduated stem was level with the surface of the water. The degrees were reati with the assistance of a magnifier G, and the number of degrees moved indicated the force acting on the card. The value of each degree was found by adding weights to the card. In this way it was ascertained that the force of the upward cur-

Anemometer.
rent at the mantel-piece was considerable, and that it varied in strength. It was strongest in the center, but extended to both sides of the mantel-piece ; this upward current had a force of from 15 to $4 \frac{1}{2}$ grains to the square foot; the force diminished as the fire got low, but the same action went on eren when the fire was extinguished.
The greatest pressure of wind ever registered at Glasgow Olss rvatory was 55 lbs . $\mathrm{p}^{\text {er }}$ foot. Professor Airy, bowever, states that it may reach 80 lbs. per foot in this country, while Mr. Scott Pussell asserts that 40 lbs. per foot is about the maximum force which it is necessary to reckon upon in constructing roofs, etc. This is identical with the maximum registered at Menai Bridge.

A-nem'o-scope. An instrmment for showing the course or direction of the wind. A weathercock. It is related that Andronicus Cyrrhestes huilt an octagonal tower at Athens, having at each side a statue of the god to whom the wind blowing from
that quarter was derlicaterl; and in the midulte of the tower was a small spive having a copper Triton, which lowng put in motion hy the wind pointed to the deity from whom it proceeded. The enstom of placing vanes on the top of churrch-streples is at least as old as the midille of the ninth century ; and as these vanes were frequontly made to rescmble a cock, the emblum of clerieal vigitane, they recrivel the name of weathercocks. In thre ages of ignorance the clergy frequently styled themsilves "the coeks of the Ahmighty."

Varro is said to have been the first who connected the vane by a rod to a dial in the interior of a buikling.

This instrument is mentioned by Vitruvius, and was introduced in mansions in the time of WilJiam III.

On the Hall of Commerce, London, is an anemoscope compecter with an index and dial in a room below, like that of Varro above mentioned.

Whon thus arranged, the shafts connecting the vane and index should be made of cane, bamboo, or other light material.
The anemoscope may be combined with the anemometer, thus indicating both the direction and the force of the winil. See Anemoneter.

An'e-roid Ba-rom'e-ter. An instrument for indicating atmospleric pressure, invented by M. Vidi of France. The action of the aneroid depenils on the pressure of the atmosphere on a cireular metallic box hermetically sealed and having a slightly elastic top, the vacum serving the purpose of the column of mereury in the ordinary barometer.
The arrangement is illustrated by the accompanying ligures, the first showing the face and the second the interior of the instrment, which is mate about $4 \frac{3}{3}$ inches in diameter across the face and $1 \frac{3}{4}$ inches thick.
The pressure of the atmosphere is shown by the hand pointing to a scale whish is graduated with 40 divisions to the inch; one or two themometers are affixal to the face, but are not essential.
The serond figure shows the internal construction, as sem with the face removed, but with the ham still attached. a is a flat, circular metallic hox, about $2 \frac{3}{4}$ inches in diameter and $\frac{1}{4}$ of an inch deep, having its upper and lower surfaces corngated in concentric cireles. This box or chamber, being exhausted of air through the short tube b, which is subsequently made air-tight by sollering, constitutes a spring which is affected by every variation of pressure in the external atmosphere, the corrugations increasing its elasticity. At the center of the upper surface of the exhausted chamber is a solid cylindrical projection x, about half an inch ligh, to the top of which the principal lever c d e is attached.

This lever rests partly on a spiral spring at d; it is also supported by two vertical pins with perfeet freedom of motion. The end e of the large or

Fig. 210.

Aneroid.
principal lever is attached to a second or small lever f, from which a chain g extends to h, where it works on a drum attached to the arbor or axis of the hand, connected with a lair-spring at h, changing the motion from vertical to horizontal, and regulating the hand, the attaclmments of which are made to the metallic plate i. The motion originates in the corrugated metallic box a, the surface of which is depressed or clevated as the weight of the atmospbere is increased or diminishel, and this motion is communicated through the levers to the axis of the hand at h. The spiral spring on which the lever rests at d is intended to comprensate for the effects of alterations of temperature. The actual movement at the center of the exhausted hox from whence the indications emanate is very slight, but by the action of the levers this is multiplied 657 times at the point of the hand, so that the morement of $\overline{2}^{\frac{1}{2}} \mathrm{n}^{\text {th }}$ part of an inch carries the hand through three inches on the dial. See also Bourdons Banometer.

An'eu-rism Nee'dle. A needle for passing a ligature aromid a dilated artery.

An'eu-rism Tour'ni-quet. An instrument for bringing a pressure upor a sanguineous tumor resulting from the dilation or rupture of the coats of an artery.

The instrument has two legs and a hinge-joint. The pressure being adjusted as required, the hinge is set by the key so as to make it rigid.
Au'gar-i-po'la. (Fabric.) A kind of coarse lineu made in Spain.

An'ge-lot. A musical instrument of the lute kind.
An'gel-shot. See Chain-shot.
An'gle. The arris or edge, salient or receding, formed by the junction of two surfaces not in the

same plane. Varions are the modes of attaching the two portions; among other devices may be cited :-

Angle-joint.	Feather.	Rebate. Cramp.
Ghe.	Serews.	
Dovetail.	Miter.	Tongue and groove.
Dowel.	Nails.	See Jows.

vetail. Nails.

Tongue and groove. See Joint.

Pieces at the angles of structures are known as -
Angle-brackets, angle-rafters, angle-ribs, anglebars, angle-staffs, angle-tie, etc.
An'gle-bar. (Carpentry.) The upright bar at the mecting of two faces of a polygonal or bow window.
An'gle-bead. A strip having a rounded edge, and placed at the vertical exterior angle formed by $\mathrm{p}^{\text {lastered surfaces. A beaded-edge angle-staff. }}$
An'gle-brace. A corner-drill. An angle-tie.
An'gle-brack'et. (Curpcntry.) One beneath the eave at the corner of a building, and projecting at an angle of $45^{\prime \prime}$ with the face of each wall.
An'gle-float. A floct made to fit any internal angle of the walls of a room.
A foont is a plasterer's trowel.
An'gle-gage. A gage for setting the reflectors on a frame for the exhibition of light under the catoptric system, has two long arms connected by a graduated are. The arms, having been first placed at the angle whi his supplemental to that of the inclination of the axes of the two adjacent mirrors, are made to span the faces of the relicetors, one of which is moved about till its edges are in close contact with the flat surface of one of the arms of the gage.
The instrument has many other applications.
A gage for determining angles of hexagoual nuts. The graduated bar A has graduated arms B and C;

Fig. 213.

the latter movable, and provided with a block whose edge forms with it an angle of 120° as a gage for bexagonal prisms.

An'gle-i'ron. (Machinemy.) A bent piece joining the sides of an iron structure. See Angle-joint.

A description of iron which is used for ship's knees, for uniting the edges of plates which meet at an angle, and for other purposes too numerous to mention. On a larger scale, with more than one bend, it may form a bean, girder, or rail, the difference consisting rather in proportions and purpose tlian in construction. The fagoting and construction of wrought-iron beams will be considered under Beam, Whought-1ron. Some devices substantially similar in inventive features will be found under Rallroad-rails, Fagoting, and Rolling; the ditterence between a railroad-rail and a girder is one of shape and proportion of the jarts, as will be seen by comparing their cross-sections.

Lewis, April 26, 1864 . The rollers have flat faces, and a central triangular groove, and rib respectively, so that the bar can be introduced between the rollers flat, instead of cornerwise. The effeet of this is, that both sides of the angle-iron when finished run parallel to the layers of the original bar, and not crosswise, as is the case with

Lewis's Machine for Rolling Angle-Iron.
one side of the angle-iron when rolled in the ordinary manner. The parallelism of the wings with the top of the pile is maintained till the har is reduced nearly to its proper thickness, when it is finished by passing it through a plain rectangular groove which turns up the wings and finishes themp with a grain conformable to that of the original bar. The ordinary angle-iron is a bar whose section

Fig. 215.

Angle-Irons.
forms two sides of a triangle, but the term now includes other shapes, such as the cruciform, etc.
a is an angle-iron forming two sides of a rightangled triangle; b is a flatter form Fig. 216. with two flanges, and is called "chan-nel-iron"; c is crueiform in eross-section. It is called "cross helf-lattice iron."

Box-Girder and T-Tron.
d, Fig. 216, shows the application of angle-iron in making a hox-girder, or wrought-iron cell ; e is a form having a treced and zecb. It is called T-iron. Other forms are known as Z-iron, I-iron, etc.
Fig. 217 shows the mode of using angle-iron in compound girders, tanks, and other structures.
f shows its application to uniting the angular junction of two plates.

Fig. 217.

Angle-Irons.
g shows a beam strengthened by angle-plates at each side.
h shows angle-plates uniting a tread-plate and its web.

Angle-bars for shipbuilling are bent and worked into the various forms reqnired in ships, by men called angle-iron smiths; they are then punched with holes, generally about the center of the arm, and by the rivets inserted in these holes the angleiron is attached to the plates of the ship. The dimensions are usually given in the specification of

a vessel in this form, namely, 3 in. $\times 3$ in. $\times \frac{1}{3}$ in. This means that each arm of the bar is to be three inches from the angle, and the thickness in the center of arm, or at the rivet-hole, half an inch.
As angle-iron is generally applied for the ribs of a ship, the arm which is perpendicular to the surface of the phates is that which is in the position to afford the greatest stiffiness to the shell. On this account angle-iron has been rolled with armis of unequal lengtbs, that the greatest strength may be obtained from a given quantity of iron.
a, b, c, d, are angle-irons and braces for flooring in iron ships.
e slows the connection of outer skin and inuer flooring by angle-irons.
f is the arrangement of angle-irons and braces for stiffening ship's bottom longitudinally ; answering to the keelson in wooden ressels.
g, keel ; showing its conuection to the outer skin and beams.

Fig. 219.

a, b, c, d, c, f, are angle-irons and beams employed for flooriug in irou ships.
g, outer skin and flooring of an iron steamer with. out keel; showing the mode of counection of the two, and the longitudinal stiffening-plates and augle-irons of ship's bottom and flooring.

The angle-iron and plates for building iron shins are heated in reverheratory furnaces, of which two are generally placed together, the flues from them leading to one chimney. They are formed of brick and have a brick turned arch, the sides being secured by binding-platcs, like a puddling-furnace.

One furnace is made wide, say $4 \frac{1}{2} \times 10$ feet, and is suitable for heating plates; the other long and narrow, say 2 feet wide by 25 feet long, and is used for leating the angle-bars which go to make the frame. An iron sill is phaced across the doorway on which the anglc-iron slides in entering or withilrawing.

The furnace A has the usual grate-hars, and a pan B beneath, filled with water, cools the ashes as they fall and thus preserves the bars from injury.

This furnace is fed with coals, the flame of which passes along the chamber C, and over the brick bed D, on which the plates or lars are laid. The roof over the whole is a brick areh, about two feet from the bed, acting by reverberation, to concentrate the
heat upon the iron. The flame and hot air then escape down a narrow flue, situated across the month of the furnace, and leading by the main flue to the chimney. The end at which the plates or bars are inserted and withdrawn is closed by a door F, framed of iron, and enclosing tire-bricks. This, being very heavy, is suspended by a chain, and this chain is attached to a lever G, having a balance-weight H suspended from it, that the men may have less difficulty in raising and lowering it.

screw-stems pass through the other plate and are fastened by nuts.
l, the two plates are secured by being bolted or riveted to an angle-iron, which is straight or bent into sweeps according to the shape of the olject.
An'gle-me'ter. Any instrument for measuring angles. The term seems to have become more particularly aplilied to an instrument made use of by geologists for ascertaining the dip of inclined strata.
In the broader sense of a measurer of angles it would include a great number of astronomical and surveying instruments for measuriog angles, such as transit instruments, quadrants, sextants, theodolitcs, adapted for observations in altitude and azimuth ; also those of special adaptation, as angulometers, goniometers, protractors, etc., which are treated under their respective heads.

An'gle of Re pose'. (C'ivil Enyivecring.) 1. The utmost inclination at which a carriage will stand at rest mpon a roal. At the angle of repose, the gravity of the load and the friction of

An'gle-joint. Angle-joints differ according to the material, thickness, purpose, and exposure.

Angle-joints.
a, b, are joints which are entirely dependent upon solder ; such are usel with tinware and sheet-lead.
c is a miter-joint. It is used for thicker metals with hard solders.
d is a butt-joint; otherwise similar to c.
e is a lop-joint ; the metal is creased over the hatchetstakic or by the spinning-tool. It requires solder.
f, one plate is bent rectangularly, and the other is doubly bent so as to recurve back on itself, lapping aroand the edge of the other. It needs solder to keep it from slipping apart.
g has a fold to each plate ; these lock upon each other and require no solder to perfect their hold, although it may be added to make the joint air and water tight where the closure is not absolutely perfect.
h is a riveted joint, one plate being bent to lap upon the other. This joint is called the folded angle, and is common in all sizes of work, from domestic utensils to steam-boilers.
i, the edge of one plate is formed into tenons which enter mortises in the other, and are there riveted.
j resembling i, except that the tenons are prolonged, so as to be retained in the mortises by cotters.
k, one plate makes a butt-joint with the other, and is attached by L-formed rivets or screw-bolts, whose heads are riveted to one plate, while their
the load are equal. See Friction.
2. The natural angle at which the soil of a cutting or embankment will stand without slipping. See Siupe.
An'gle of Sight. (Ordnance.) The natural angle of sight is the angle between a line drawn through the axis of the bore, and a line drawn from the rear of the base-ring to the swell of the muzzle or to the top of the sight.
An'gle-plane. A plane whose bit reaches into a re-entering angle.

An'gle-raft'er. (Curpentry.) A rafter at the hip of a roof, receiving the heads of the jack-rafters or cripule-studdiny.
An'gle-staff. A strip of wood fixed to the vertical angle of a wall flusla with the plastering of the two planes. It is designed as a substitute for plastering in a situation so muel exposed.

A round staff is known as an angle-bead.
An'gle-tie. (Carpentry.) A hrace-piece in the interior angle of a wooden frame, securing two sidepieces together and occupying thereto the position of a hypothenuse.
An-go'ra. (Fubric.) A light and fashionable cloth made from the wool of the Angora goat.

An'gu-lar File. A locksmith's file for working into the corners of the wards in keys.

An'gu-lar Gear'ing. The wheels are quadrilateral, and the speed of the driven wheel is variable. The driving-wheel, rotating at regular speed, will impart a quicker rate to the other wheel when the angle of the former is in contact with the flat side of the lat. ter, and conversely. Has been used in printing-

An'gu-Iar In'stru-

ments. (Surreying.) One in which the horizontal angles are ineasured by a divided circle and verniers as well as by the needle; as the superior kinds of railroad compasses, the engineer's and survcyor's transits, etc.
An'gu-Iar I'ron-band. A ferrule angular in its
eross-section. A siquare, or other sided collar or bindiug-hoop.

An'gu-lar Thread. A screw-thread whose projection beyond the barrel of the screw is triangular in cross-spetion. In contradistinction to a square thread.

An-gu-lom'e-ter. This instrument is defined by Francis as one for measuring exterior angles. The tems angle-meter and goniometer might be held to mean the same thing judging by their derivation, but the former is applied to instruments used by geologists for measuring the dip of strata, and the latter for measnring the angles of crystals.

A try-sifuare may be termed an angulometer, "a bent measure."
Thayele, August 26, 1862. This invention consists

Thayer's Plane Angulometer.
in the same plane, and carries Fig. 2ㅡ4.

Hall's Angulometer.
in so constructing and hanging a pendulum, and conmecting it with a portion of the surface of a sphere, that it will indicate at once whether any plane to which it is applied is level ; and it not so, will show the degrees of the angle, whether of elevation or depression, which such plane makes with the horizon.

The pendulum mores upon three or more bearings upon its top a graduated are, acting in combination with the spherical surface and the opening therein.
Hallis angilometer has two hingedlegs, and a graduated are which indicates the dibedral angle.

An instrument called a cordrans, for mensuring the angle for the facets of gems in cutting and polishing.

Fig. 225.

Generese Angulometer.
The gem is cemented on the end of a rod whieh is clamperl between the jaws α, which are closed like a vise by means of a set-screw passing through them. Each of the jaws has on the inside a hemispherical cavity into which is fitted a brass ball. A tube passes through the ball, and carries at its upper end a small graduated disk. The cementstick, carrying the stone to be cut, fits within
the tube sufficiently tight to hold it while Fig 226 a facet is being cut, and the upper end of the stick has a pointer by which the divis. ions on the disk are read off.
The vertical angle of the tube is determined by the quadrant c, fixed on one side of the jaws a, and the tube is retained at any angle by closing the jaws upon the ball. The divisions of the quadrant admit of any degree of vertical inclination upon the shive, or of rertical position when grinding the table or callet.

The facets around the stone will be determined by twisting the cenment-stick in thee tube, until the index marks the required
 division on the disk b.
An'i-mal Black. Carbonaceous matter obtained by the calcimation of bones in close vessels. Used in filtering, deodorizing, defecating, discoloring syrups, liquors, solutions.

An'i-mal Char'coal. Calcined bones prejared for sugar-refining. See Boneblack Furvace.
An'i-mal Clutch. A gripping device for catching animals by the leg. It is especially used for slinging animals during the operations of slaughtering.
In the noose form, Fig. 226, the chain is attached to one end of the plate, and the key on the end of the chain engages in the slot to form a bight for looping around the leg of the animal.

111 another form, Fig. 227, the gambrel of the animal is clutched by the grippingjaws which are attached by chains to the frame, whose roller travels on a way-rod to trausport the hog from the "sticker" to the scalding-trb, or from the latter to the "gutter."
An'i-mal'cule Cage. A cell in
 which living mieroscopic objects are Hog-Hoister. kept and exposed to view.
An'i-mal-iz'ing Fi'ber. The process of conferring upon vegetable fiber the physical characteristics of animal fiber. Cotton, under the microscone, is a ribbon-shaped tube, ant when treated with a cold, strong solution of caustic soda, slurinks aul assumes the form of a simple cylinder. It becomes stronger, smaller, and has an increased capacity for receiving coloring matter.

An'i-mal Poke. A yoke placed upon an animal to keep it from pushing down or jumping fences. See Poke.
An'i-mal Pow'er. The expression of the numerical valnes of the results of the labor of men and animals, particularly horses, is a suljeect which on account of its eminently practical bearing has attracted considerable attention among scientific as well as practical men.

A work entitled "De Motn Anamalium" was published as far back as 1680 by Borelli, but Coulomb, who devoted a great deal of attention to the matter, has furnished nore information of practical value than any other writer.
The unit of value employed by Coulomb was 1 kilogramme (2.2047 pounds) transported a distance of one kilometre (6.214 niles) the total force exerted being estimated by the number of kilogrammes of the burden multiplied by the number of kilometres it is transported during a working day of eight hours; these measures are of course readily reducible to any other denominations, as pounds and miles.

Coulomb ascertained that on an average a man
could travel unloaded 31 miles per day ; and supposing his weight to be 160 lbs ., the expression for the effect exerted by him would in this case be $160 \times 31=4,960$ pounds carried one mile per day. He found also, by the average of the work performed by the porters of Paris, that a man could carry a burden equal to 128 lbs. 9.72 miles jer day. Assuming the weight of the man to be 160 lbs., the total effect produced would be equivalent to $160+$ $128 \times 9.72=2,799$; but the transportation of his own weight formed no part of the usiful eflect, which is consequently expressed by $128 \times 9.72=1,244$.

The useful effect is found to be at a maximmm when a nan is loaded with 121 pounds; under this burden he can walk $10 \frac{1}{3}$ miles per day, giving an efficet of $121 \times 10 \frac{1}{3}=1,250$.

A porter going short distances with a burden and returning unloaded, as nsually oceurs, carries 135 lbs. 7 miles per day. A man can wheel 150 lbs. in a wheelbarrow 10 miles in the same time.

The maximun effect of a strong man exerted for $2 \frac{1}{2}$ minutes is estimated at 18,000 poumds raised one foot in a minute ; and the force of a man of orlinary strength exertel in lifting is equivalent to 30 lhs . raised 24 feet per second for ten hours, or 4,500 lhs. raised I foot per minute; the estimated power of a horse being equivalent to 33,000 pounds raised one foot in the same time, according to Bonlton and Watt's experiments.

The following statement by Harhette shows the force exerted by the strength of men applied in rarions ways, expressed in terms equivalent to the number of pounds carried by a man oue mile during a day of eight hours.
Drawing a light four-wheeled wagon over moderately uneven ground

857 lbs.
Pulling horizontally at a rope attarhed to a weight and passing through a pulley
Rowing in a boat. $37 \mathrm{~S}^{\prime \prime}$

- - . $374 "$

Pushing horizontally, as at a capstan . 368 "
Turning a winch and axle
The above estimates are based on the average strength of men generally, and in many instances, especially in carrying weights, are largely exceeded ; thus it is said that a London porter will carry 200 lbs. on his shoulders at the rate of three miles an lonn, but such efforts cannot be sustained for any great length of time. The porters of Constantinople are said, by a judicious distribution of their burdens, to carry much greater weights than this for considerable distances.
The useful effect of a horse walking in a circle, as in turning a mill, is es. timated at
A horse carrying a load of 200 lbs. 25° miles per day.
An African dromedary carrying his rider (160 lbs .) can travel for 9 or 10 hours at the rate of between 7 and 8 miles per hour; say $160 \times 9 \frac{1}{3}$ $\times 7 \frac{1}{2}=$.
An Asiatic camel can carry a load of from 500 to 800 lbs . at the rate of $2 \frac{1}{2}$ hours ; this for a day of 8 hours mould give (assuming the load to be 600 lbs.) $600 \times 8 \times 2 \frac{1}{2}$ or
A duaft-horse can draw 1,600 lbs 12,000 day, the weight of the earriage being includerl.

In hauling for short distances and returning unloaded, a horse will draw ou a good road 2,000 lbs. or more, exclusive of the weight of the cart.
In drawing a load the greatest effect is found to be produced when the traces are perpendicular to
$11,400{ }^{\prime \prime}$
the collar ; as the position of the horse changes in heary pulling, the traces become more nearly parallel to the road. With very heavy drafts, loading the back of a horse is fount rather advantageons than otherwise, by not compelling him to incline forward so much and enabling him to use his museles in a more advantageous position. The circle in which a horse moves in turning a mill should not be less than 25 or 30 feet; 40 feet is better.

According to Tredgold, a horse can draw, as indicated by the dynamometer, 125 pomids at the rate of $2 \frac{2}{2}$ miles per hour, which for one day will give $125 \times$ $2 \frac{1}{2} \times 8=2,500$. By the experiments of Bonlton and Watt they determined that a good horse can draw 125 pounds at the rate of 3 miles per hour, $125 \times 3 \times$ $8=3,000$ pounds one mile in a day. Multiply this amount by the number of feet in a mile, and divide the product by the number of minntes in 8 hours; the result is 33,000 , which stands for the number of pounds raisp one foot per minute, and this is now the admitted measure of a horse power.

An'i-mals. In the nomenclature of the mechanic arts, the names of animals have not been entirely overlooked e. g. : -

Ass.	Cricket.	Hound.	Rat.
Bear.	Crow.	Jack.	Seal.
Be.	Dog.	Jenny.	Sergent.
Beetle.	Doljhin.	Kite.	Shate.
Buck.	Drill.	Leech.	Slug.
Bufflo.	Fish.	Lizarl.	Snail.
Bull-dog.	Fly.	Mole.	Sole.
Buttertly.	Fox.	Monkey.	Starling.
Camel.	Frog.	Mouse.	Swift.
Cat.	Gonse.	Mule.	Throstle.
Cock.	Hawk.	Pig.	Turtle.
Cow.	Hedgehog.	Pike.	Urchin.
Crab.	Hog.	Ram.	Worm.
Crane.	Horse.		

Each of these useful animals is described in its alphabetical place.

An'i-mal Trap. A device for eatching anima's. There are numerous varieties; some to set in the path of the animals, others are pulled off by a person on watch ; the more common forms are those in which the animal is the cause of his own capture by meddling with the bait, or by crawling into his prison in search of food.
A few instances of different arrangements will be given.

1. The guillotine-trap has a descending knife or row of spikes which descends vertically upon the animal which is tampering with the bait.
2. The rotating-claw is actuated by a spring on the axis, and is released hy nibbling at the hait. It strikes the animal, and throws him to a distance, resetting itself.
3. The dead-fall is a weight or spring bar, released by the animal, either by stepping on a platform or touching the bait.
4. The grip-
ping-jore-trap
is shown in the familiar form wherein the jaws are actuated by a spring released by the depression of a small platform between them.
Anotherform of jaw-trap is

seen in Fig. 228, in which the spring and jaws are made of one strip of steel, and the brace, which keeps them aprart, has the bait attached; a trigger releases the jaws, which grasp the animal that is pulling upon the bait.

Fig. 229.

The illustration shows the mode of setting the trap. The forward part stands on two legs, and the bow at the rear is supported on a little crotch.
5. The fulling-cage. This may be a wire basket, as in Fig. 229. The bellshaped cage is suspemder] vertically above the platform ; it rests upon a tog-gle-jointed bar, and is relrased by the baited trigrer, which allows the togngle to donble up.
Another form of dropper is shown in Fig. 230. A disk with a circular series of vertical wires.

The arm which rises vertically from the falling disk has at top a staple which rests on the top of a vibratahe lever, to which the bait is tied.

The fall of the disk imprisons or impales the animal.
6. The gravitating-platform has many forms. Fig. 231 may be taken as an illustration.
l'ressure on the swinging bait-box releases the platform, which swings and precipitates the animal into the cage beneath. The atjustable weight returns the platform to place, when it becomes reset.

The essential featnres of these trapss are a falling platform, a resetting derice, and a receiver bencath. The resetting is sometimes done by a spring, sometimes by a weight, in some Dropping-Cage Trap. cases by the animal in passing to au interior chanber.

Falling-Flatform Trap.
7. The rotating-platform, Fig. 232, has a number of platforms brought snccessively into use.
A series of wings is attached to a rotary-shaft that is aetuated by a weighted cord, so that they consecutively assume a horizontal position, forming a platform upon which the rat stands while nibbling
at the hait, and from which he is thrown down into the trap. In another form, the wheel is rotated by a coiled spring. the radial wings being in turn detaine by their latches, which catch upon a detent-lug on

Fig. 232.

Rotary-Platform Trap. the case. The motion of the oscillating platform disengages the latch, the wing descends, and the next becomes ready for duty.

Fig. 233 has a duplication of the rotary feature. The invention cousists of two radial ro-tating-platforms, each held in position by seprate triggers, but the wires controlling themi come together at the bait-hook, which lorms one of them.

Fig. 233.

Gatchell's Trap.
Each wire is connected with a rock-shaft, and the triggers or detents are withdrawn by the pulling of the bait by the animal, whose resting-place is at the center, upon two wings. Upon the animal falling into a receptacle below, the trap is reset.
8. The falling-door. Several forms of traps which come under this class are familiar to the public, some with one door, and some with two.

Fig. 234.

Falling-Door Trap.

Fig. 234 is open at both ends, when set, the doors B being supported by triggers. The animal standing on the platform G, to reach the bait on the hook, operates the rods I, C, and releases the doors, which tall simultaneously. This darkens the trap, and the animal lifts the grating O in passing to the light chamber MF. The opening of the gratiug O resets the trap.
9. A sliding-gate. Of these there are several varieties. In Fig. 235 the animal passes through one of the holes into the first chamber. His weight

Sliding-Gate Trap
on the platform brings the shutters over the holes and prevents his return. In passing through the grated door into the next chamber he resets the trap.

In Fig. 236 the box is provided at its center with an oscillating platform, to which is rigidly attached an upright leaf or partition of the same width, which has its openings for the entrance

In another form the box forming the trap is provided with two apartments, separated in the nsual way by a hinged grating, or self-closing door. In the first apartment is arranged a revolving shaft armed with vanes or paddles, aud actuated by a suring. The animal, on entering this first apartment, releases by means of a treaule the detent of the revolving vanes, which press the said aminal forward, causing him to enter the inner chamber, the said detent immediately checking the further revolution of the vanes. An index on the outside of the trap indicates, by the number of vanes released, the number of animals caught.
10. The cage. This class includes those in which an inverted wire basket is entered between a set of converging wires which oppose a return.

Sometimes this form of trap has a grated inclined door.
11. The noose. This is a very old form of snare, consisting of a running noose placed in the path of the animal. Such were the "springes to catch woodcocks," of old Polonius. They are used by poachers in England for snaring hares, and by boys for catching the less aristocratic rabbit.

Fig 236.

Baker's Trap.
of the animal so arranged that when it depresses the tilting platform by its weight, the said attached leaf or partition is thereby swne past said opening, leaving the opposite side of the platform in like manner open to admit the next visitor. The entrapped animal escapes on either side into a closed apartment.

Fig 237.

Revolving-Gate Trap.

Among barbarous nations and frontiersmen a snare of this kind is attached to a sapling bent over and held by a trigger. The springing of the trigger releases the sapling, tightens the roose, and swings the animal clear of the ground.

The cornmon mouse-trap is another form of the noose. A bow of spring wire is depressed at an opening, and the tampering with the bait allows the loop to spring up antel strangle the animal against the top of the opening. (Fig. 238.)
Anklets. Cunninghasy, March 20, 1866. The frame is made in three portions, reaching from a garter-band on the leg to the skate. The upper two portions are extensible on each other as the limb is flexed and extended, and the middle piece hinged to the lower

Fig. 239.

Cunningham's AnkleSupporter.
one to permit the said motion. It is intenced to stiffen the ankle-joint and prevent the ankle turning sideways in skating.
The terin is also applied to an article of dress which forms an extension above the top of the bootee or the shoe, and forms in some cases a protection for a weak ankle, in others is merely an ornaneental extension.
Stockings, stiffened with steel springs or whatebones, worn as a protection to weak ankles, may also be termed anklets.

see Gaiters.

Annealing. Annealing is a process used in the mamutacture of glass amd iron for the $j^{m r n o s e}$ of rendering them less brittle. it is performed by allowing them to cool rery gradually from a high heat, a sudilen reduction of temperature remdering them hard and brittle. The singnlar properties of enamelerl glass are strikingly shown in lrince Rupret's drops and the Bologna vial. The former are prepared by allowing melted glass to drop into water, where the drops which are not broken by contact with the water form irregularly elnogatel globular bodies tapering to a tail at one extremity. These will bear a considerable blow on the thick encl without breaking, but if a small piece be snapped off the tail the whole immediately falls into powiler, emitting a cracking sound.
The Bologna vial is a rude flask of some three or four inches in length by about one in dianeter, and from $\frac{1}{1} 0$ to $\frac{2}{8}$ of an inch in thickness.

If a leulen bullet be dropped into it from a height of three or fom leet, or it be struck a smart blow on the outside with a stick, it will not break, but the dropping of a grain of sand or a small sharp fragment of Hint into it will canse it to crack and fall to picees.
Upon the proper amealing of glass much of its utility for many purposes entirely dejunds, and for ressels which are to be subjected to great extremes of heat and cold, careful annealing is absolutely indispusable. Its neglect is one of the primeipal causes of the breakage of so many lamp-chimneys, tumblers, ete., whase cost oftem forms such a considerable item in domestic expenditure. See Glass.

Annealing is also a necessary process in the manufacture, liy trawing, of wire and small tuling, as well as in making brass, copper, or sheet-iron vesspls by lammering and rolling; the metal, by compression, becoming too harel and brittle tor further reedetion until ammealed, after which it recovers its former softuess and pliability.

When molten glass is allowed to cool slowly, its particles assmme a fibrous arrangenent, which imparts a certain elasticity to the whole mass, so that it can transmit vibrations from one extremity to the other. When suddenly cooled, the interior partiedes are enelosed by the solidification of the exterior before they have assumed the fibrons condition which insures the elastic structure or condition.
Glass may be annealed hy placing it in tepid water, boiling it for a consideralule length of time, and then altowing it to cool gralually.
Glass-ware is ampaled hy placing it, while yet hot, in an oven, technically callet a leer, in which the glass is allowed to cool very gralually. A common form of the leer is a long oven, with sliding or travelling pans to hold the glass-ware, which cuters at one end, as hot as it comes from the lands of the glass blower or presser, and by the gradual aecession of pans of ware is pushed to the other cmul, whene it issues at a temperature which permits it to he landled. The particles of glass are supposed to assume a different structural relation,
when thus slowly coolen, which favors their colnesion, and permits a certain degree of resiliency or elastivity. When cooled suddenly, there seems to be an inherent strain, a compulsory mion, hat thulty and fragile static condition, whose equilibrium is disturbed by an excitant in the form of a blow, which generates a tremulous motion among the particles, and permits them to yield to the disruptive toree. This disruptive tendency may arise from want of homogeneity, unequal contraction, or something else.

In the amealing of metals, cast-iron for instance, the motal is brought to a red heat, and then allowed to cool slowly. The rationale of this process has hern varously explained, and the most reasonthle seems to be that the particles of metal taker a different arrangement under these eircumstanes from that assumed by them when allowed to cool rapidly. In the latter case the exterior portion of the metal contraets first, and presses ulon the interior portion, and the particles of the latter may thereby be compelled to take an arrangement which they would not ware the cooling to take place at an equal rate in every part, and the pocess of cooling be long protracted. It does not seem to be determined whether the protraction of the process is merely necessary to insure an evpal rate of cooling in every part, but it is not a violent conjecture that the said slowness may favor a particular aggregation of the particles, which gives them the greatest possible cohesion attainable with the struetural nature of cast-iron. In making cast-iron malleable, as it is termed, a process much used in making luilders' hardware, the metal is kept for several hours at a temperature a little ledow the fusing-point, and then allowed to cool slowly. From the prolongation of hoth stages of the provens in this case, it is wident that the perfect result is best attained by giving the particles time, and not violently changing their structural relation: unless it be held that chemical changes in the furnace (snch as parting with a portion of the earlon) lave to be taken into consideration, and that the change is not all in the meehanical disposition of the particles. Tompering and amealing are nearly allied, but the processes are not confounded in the arts, owing to their different technical applieations. The word "amealing" is derived from the AngloSaxon signifying to "kinclle," and the heating is a necessary preliminary whether to withena the hariness ineident to lammering ami rolling of malleable motals, or the haralness incilent to the rapid cooling of a casting in its mold. The protraction of the process of cooling the casting has a favorable effect upon its touglmess and comparative softness. This is plainly seem hy compring them with chill-hardened articles, which are remeled hard and brittle by the sulden cooling.

Explosure of the hot steel to a cohl surface renters it hard. This is usually done by dipping the recthot metal in water, but other colld surfaces which are rapid conductors will answer the same purpose.

A thin, heated hade placer between the cold hammer and anvil is hardenet by rapiu cooling.

Thicker pieces, under the same cireumstances, are somewhat hardened, hut may be filed.

Placed on colid cinders, or other bad conductor, the steel cools more slowly and beomes softer:
l'laed in hot cinders, and allowed to cool by their gradual extinetion, it becomes still softer.

Encased in a close hox with charcnal-powder, raised to a red heat, and allowed to conl very slowly, it reaches its softest state, exeept by a partial decomposition, as in the following irocess.

The steel is placed in a close box with iron turnings, filings, or scales, lime, or other matters, which will eliminate the carbon from the steel, and reduce it to the condition of pure, soft iron. This is the process used in softening plates and dies under the modern systen of bank-note engraving invented by Jacob Perkins (cited below).

Analogons processes are had in the case of cast-iron, producing the ranious grades of harduess, from the chilled cast-iron to the soft malleable iron-castings.

The annealing of steel, to soften it for the uses of the die-sinker and engraver, is effected by heating it to a bright cherry red, and suffering it to cool gradually in a bed of charcoal. Another process, adopted by the writer, has been to imbed the steel hlanks or forgings in lime within a cast-iron box. This is heated to relness in the fire, remaining a sutficient time to insure an equal heat of the articles inside: the box is then remored and buried in hot ashes, which ${ }^{\text {rrotract }}$ the jrocess of cooling for sereral days. See Teyperisg.

Perkins's process of transfer-engraring is as fol

lows :-

A soft steel plate is first engrared in finished style, either by hand or mechanically, or the two combined, and the plate is then hardened. A decarbonizell steel erlinder is next rolled over the hardened steel plate by powerful machinery until the engraved impression of the plate appears in relief upon the roller, the hollow lines of the plate being salient ridges on the cylinder. The roller is then reconverted to the condition of ordinary steel, and harlened, after which it serves for giving the intaglio impressions to any number of decarbonized plates, erery one of which is an absolute counterpart of the original. Each plate when hardened will afforl 150,000 inpressions, and in the event of accident to the transfer-roller, any number of new rollers with the design in cameo may be obtaiued from the original plate.

The metallurgic process was explained by the inventor in the thirty-eighth rolume of the Transactions of the Society of Arts. He there states that to decarbonize the plates they are placed in a vertical poxition in cast-iron boxes not less than three fourths of an inch thick, and surronnded on all sides by iron filings not less than one half an inch thick. The boxes are then placed in a furnace, and, after being heated, are allowed to cool in the most gradual manner by stopping off all the air-passages, and corering the boxes with a layer of cinders six or seven inches deep.

The plate or roller, as the case may be, having, in the softened state, received its impression, is reconverted in a similar hox, wherein it is packed with sifted charcoal, made from leathe: scraps. After heing heated in this cementing box and furnace from three to fire hours, the plates or rollers are lardened by plunging rertically into cold water.

The use of steel plates for cograving has hut comparatively lately superseded that of copper, and its peculiar value arises from the fact that by the processes of hardening and annealing it is made to assume the opposite conditions of extreme hardness and sufficient softness, so as in the former state to endure wear in printing, and also preserve the sharpness of its lines when enduring immense pressure agaiust a soft steel roller or plate; and in the latter case to be readily cut by the graver or dry point, and hare sufficient plasticity to yield to pressure, and insinuate itself into the finest lines of the hardened steel against which it is pressed.

The use of steel in preference to copper may be credited to Mr. Perkins and the engraver Warren.

Warren annealed his plates at a high temperature in earthen boxes packed with pounded orster-shells.

The practice in the Bank of England, as modified by Oldham, is to anneal at one time four cast-iron hoxes, each containing from three to six steel plates, surrounded on all sides with fine charcoal, mixed with an equal quantity of chalk, and driven in hard.
The reverberatory furnace employed has a circular cast-iron plate or bed upon which the four boxes are fastened by wedges, and as the plate is slowly and continually revolved by power from the steamengine which drives the pinting-presses and other machinery of the building, the plates are exposed to an equal heat. When the required temperature is artained, all the apertures are carefully closed and luted to exclude the air and extend the cooling orer at least forty-eight hours.

The surfaces of the cylinders and plates are thus rendered exceedingly soft to the delth of about $\frac{1}{32}$ of an inch, so as to be almost as inupressible as lead and readily yield to the pressure of the transferpress, where they are brought in contact with the counterpart portion, the softened cylinder with the bardened, originally engrared plate, or the softened plate with the hardened roller, whose design was received during the soft stage from the harkened plate, which had been engraved during its soft condition.
ln some cases the extremely soft surface of the plates is planed off. In the Bank of England the jlates are used for printing without previous hardening, as they can then be repaired, the parts bronght up sharply hy re-rolling under the transferjoller. Danger of warping is also avoided.

Though belonging to the hardening, and not to the annealing process, it may here be mentioned, to complete the subject, that Oldham, Jr., has introduced a plan for precipitating the plates instantly into water, so as to prerent even an instantaneous exposure to the air ; thus avoiding scale, or even a rough discoloration. See Temperisg.
slany recipes are extant in the trade for annealing and hardening compounds; such are frequently heirloonas and preserved with jealous care. Lime and ox-gall are recommended hy the operators in the English mint as an annealing comprition.

For annealing of cast-iron, see Malleable Cast-1ros.

Ele gives the following directions:-
"In the annealing of steel, the same care is required in the heating of it as there is in heating it for hardening, for orerheating the steel is as injurious in one case as in the other. In the process of annealing, artists differ very much, some approving of heating the steel and burying it in lime, some of heating it and burying it in cast-iron lorings, while others alprove of heating it and lurying it in sawdust. A far better plan is to put the steel into a bos made for the purpose, and fill it with charcoaldust, and plug the ends up so that the air is kepit from the steel, then to put the hox and its contents into the fire till it is heated thoroughly tlirough, and the steel is at a low red heat: it must then be taken from the fire, and allowed to remain in the box, without opening the box till the steel is cold. Then when taken ont the steel will be nice and clean and very soft, and without those liright spots which some mechanics call pins, and which are no smal! impediments to the frling and working of steel, and, in fact, the steel is believed to be improved by the process. A piece of stout gas-pipe, with a bottom welded in, and a piog made for the other end, makes a rery good box for a small quantity of steel ; but, for a large quantity, the box must be large in proportion. If the steel is very large, it is as well to make a char-
coal tire to heat it in, and then let the steel and the fire get cold together before it is taken out, and it will be equally solt. But it sometimes happens that a piece of steel is wanted in a hurry, and the sterl, perhaps, is too hard to work on, and cannot wait for its being softened in a box; in such cases it may be heated in an open fire, and baried in char valdust till it is cold, or if it be heated to a red heat sufficient to be seen in a dark place, and then phunged into cold water, it will work more pleasantly, hut not so soft as if it were heated in a box with elarcoal. There are many that do not know the value of a good tool, because the steel they work on has never been properly annealed, and befure the tool has half done its duty it is worn out, or wants repairing; whereas, if the steel had been properly annealetl, the same tool might have lasted ten times as long withont repairing."
The process of annealing gongs, cymbals, bells, and mortars of bronze, is a complete inversion of the proce's sited above. The gong, for instance, which derives its name from the Chinese tshoung, a bell, is a compounl of copper, 78 ; tin, 22 . When east, it is very brittle, from the quantity of tin, which is double the percentage of gun-metal (copper, 90 ; tin, 10), and between that and the proportions of speculum matal (eopper, 43; tin, 20). The speeulum metal is callin] by Ure the whitest, most bolliant, hardest, and most brittle of alloys. (lridosmine is harder.) The gong when cast is as brittle as glass, but by being plunged at a cherry-red heat into cold water, and being confined between two lisks of iron to keep it in shape, it becomes tough and malleable. Other hronze articles may be similarly tempered or annealed, as it has been variously termed.

There are several ways of hardening copper, - by the fumes of phosphorus, by an alloy of the latter, or some other motals, - but these render it brittle and dentroy its usefulness for most purposes. In common with many others, Prescott regrets the loss, or rather our non-discovery, of the lost art of tempering bronze. After a careful examination of what has been written on the subject, the writer is inclined to the opinion that the hardness was imparted by judicions alloying with tin and iron, by the hammer, and by a careful use of the amnealing process to confer toughness upon the back while the edge was allowed to mintain the hardness necessary for maintaning a sharp elge. See Bronze ; Alloys.

Lewts's Anvealing Box. The top, bottom, and silu's consist of three separable pieces, to prevent warping by the heat of the annealing oven. The bottom forms a tray to receive the rectangular

Fig. 240.

Lewis's Annealing Box.
frame forming the sides; the top is strengthened by ribs, rests on rabbets in the sides, and is fastened by transverse rods.

Washbuhn's Whee-annealer. The wire isphaced in a box, which is then charged with a gas which will not oxydize the wire when the latter is heated. This is for the purpose of preventing the formation of scale, and obviating the subsequent use of an acid

Fig. 241.

Washburn's Annealing Box.
bath to cleanse the wire. The vessel is provided with stopcocks by which the air in the interior is displaced and an artificial atmosphere or gas substituted. This is applicable to other articles besides wire.
McCarty, June 11, 1861. The device is intended for anmealing ent-nails. The process consists in confining them in a suitable vessel, subjecting both

Fig. 242.

Mc Carty's Annealing Box.
vessel and contents to a red heat, and allowing the whole to cool from six to twelve hours, according to the size of the nails and tube, and maintaining the vessel air-tight during the heating and cooling process.
Much attention has been directed to the aunealing of cast-iron car-wheels. The object is to make the weh soft and tough, so as to withstand the jar and strain incident to use, and at the same time have a hardened rim which will bear the wear.

Whitney, April 25, 1848, placed the wheeds in a pile in a eylindrical pit or case in which they were closely covered and left to cool gradually. A nonconducting jacket protracted the period of cooling, and contributed to the effectiveness of the opration.

Gersse, April 19, 1859. The wheels, while hot, are removed from the molds and piled in a eylindircal oven, where they are allowed to cool gradually. A blast of air is carried through the centers of the hubs, whicl, as the wheels are symmetrically piled, form a contimons air-duct, at the top of which is a conductor lealing to the chimney. Dampers at the ash-pit and also in the chimney afford means for regulating the passage of air and therehy modifying the rate of cooling. By the means deseribed, the wheels are induced to commence cooling at the center's, the cooling gralually extending outward. The heat at no time is sufficient to draw the chill which has been conferred upon them in the mold. The object is to prevent the hubs shrinking away from

Fig. 243.

Geisse's Annealing Ocen.
the rims after the latter hare cooled, as is apt to be the case rben the cooling is initiated in the reverse order.
Mowry, May i, 1S61. The car-wheels, alternating with layers of charcoal,

Fig. 244.

Afoury's Car - Wheel Annealing. are built up into a pile in a pit, which is so arranger that the quantity of air may be graduated to regulate the combustion, which is desigued

Moore's Car-TVheel Annealing
to be protracted. The double walls of the pit or annealing case form a non-conductor to retain the heat, and allow hut a very gradual cooling to the mass.
Moore, December 5,1865 . The wheels are remored from the molds while hot, are piled one above another in a rertical pit, with intervening rings so placed as to separate the chilled tire from the web
 Which is to be annealed. The interior space around the hubs is filled with charcoal, and the outside space around the tires is filled with sand. The charcoal, being ignited by the heat of the wheels, burns slowly, and anneals the web of the wheel, while the sand protects the tread from the same actiou, retaining thechilled surface which it bas acquired in casting.

Moore, October 9,1866 . This varies from the
Moore's Car-Wheel Annealing. 8
mode of introducing the air-draft, and in the mode of isolating the tires.

The car-wherls are piled upon supporting rings at the bottom of the esse, so that a jasage is formed by the holes through the hubs for cold air, and onother passage around the tread of the wheels for the draft for burning the charcoal, which is distributed upon the perforated flanges of the ring interposed between each wheel.

The openings in the base of the annealing case are the means of admission of atmospheric air to aid in the combustion, and this supply is graduated to suit the requirements of the case. Another opening admits air to pass upward through the hubs to cool them.

Elus's furnace for annealing and polishing sheetiron. The sheets of metal to be oplerated on are placed in an iron box or muffle, with layers of oxide of iron, lime, and animal charcoal between them, heat-

Fig. ${ }^{24}$.

Ells's Annealing Furnace.
ing the whole to about eight hundred degrees in a suitahle furnace, meanwhile subjecting the box to a rocking and rotating motion.

The attrition of the particles during the operations of heating and cooling is to give the peculiar mottled and polished appearance of Russia sheetiron.

In Woon's annealing furnace, 1867, the box has track wheels. Jts lower plate has an uprardly projecting rim to hold the sand used as luting. The top is a rectangular box, which is inverted orer the pack of sheets, and is clamped at the bottom portion.

The plates are held in rigid compression between the wagon bottom and the inverted box;
 the object being to prerent discoloration. The truck has wheels by which it traverses on the railway, and is thus run in and ont of the oren.

Worcester, September 25,1860 . This arrangement is intended to give a solid support to the bedplate of the box which contains the pack of sheetiron or the other iron articles which are to be annealed. When the carriage is mun into the oren with its load, consisting of some tons of iron, if the bed-plate be supported in but a few places it is apt
to warp, which is destrnctive of the apparatus and injurions to the load then under treaturent. In this

Flg 249.

Worcester's Annealing Oten.
oven are dwarf-walls on the sides of the oven, below the level of the bed-plate of the box as it is run into the oven. After the hos has reached its position longitudinally, the winch at the end of the carriage is turned and the bed lowered till it rests on the walls. A further turn or two of the winch lowers the supprorting posts, so that they run elear of the bed-plate when the carriage is withdrawn. The withdrawal of the charge is the converse of the former action; the carriage being run beneath the bed-piece of the box, the winch is turned so that the posts elevate the bed-plate from the walls, and the carriage is then withdrawn with its load.

In Woon's patent, July 9, 1867, the sheets are compressed between the toje and bottom of the box, which are temporarily clamped together. The object is to prevent warping and discoloration.

Malont, May 22, 1866. The furnace is at one end of the annealing chamber ; the caloric passes along the

Fig. 250.

upper flue, dives down side flues to the lower flue, and thence passes by apertures and cross flues to the chimney. The object is an even heat at all parts.

Reynolds, February 13, 1866. This is an oven for decarbonizing and annealing iron. The caloric current from the furnace passes by the flues $M M$, beneath the arches $K K^{-}$, in the chambers, and thence by the diving-flues $S S$, and the lower flues N, to the chimuey.

Annealing and tempering devices, especially intended for wire, and which act continually upon the wire as it passes through, will be considered under Whe Tempering and Annealing. As before remarked, annealing and tempering are nearly allied; the strictly tempering devices, however, are more conveniently considered under Tempering (which see), as they generally consist in means for giving peculiar grades of temper to axes, cutlery, scythes,

Reynolds's Annealing Furnace.
springs, etc., and in devices for securing the integ. rity of the articles under the great strain and change incident to the process.

An-neal'ing Arch. The ovenin which glass-ware is allowed to cool gradually in order to anneal it. it is called a leer in some departments of glass-making.

The annealing arch of the plate-glass manufacture is called a carquise; the front door, the throat ; the back door, the guexlette (little throat); it is heated by a furnace along the side, called a tisar. The nomenclature is French, and indicates the source Whence the manufacture was derived.

An-neal'ing Col'or. The color which steel takes in tempering of exposure to progressive heat.

An-nealing Fur'nace. A furnace in which metals are heated nearly to fluidity, and then allowed to cool slowly, so as to render them less brittle or to make them malleable.

Or, - as with glass, - a furnace in which the heat is retained for a considerable period in orier that the process of cooling may be protracted. A glass-annealing furnace is called a leer.

Gold, silver, and zine are occasionally annealed in the process of working, to render them more tractable. The process is of more especial and frequent application, however, to steel. See Anneabing.

The annealing funnace for gold or silver in fillets or planchets has an iron table in front on which a cast-iron carriage is loaded with the metal in jointed and luted tubes; the car and its load are then run on to the floor of the furnace, and the door is lowered.

An-nealing Lamp. A dentist's appliance for heating foil used in filling excavations in carious teetli. It is a small alcohol lamp on a stand, and has a tray of mica or german-silver in which the foil is placed. The foil is more adhesive when wam.
An-nealing Ov'en. A cbamber in which articles are placed to allow them to cool gradually so as to make them tough. See Annealing.
The annealing arch for glass is called a leer.
An-nealing Pot. A closel pot set in a furnace, and used for exposing, an object to heat withont forming a scale of oxide.

Pots for ammealing wire are made anmular, so as to reeeire with as little vacant space as possible the wire which is coiled therein. The smaller the

Fig. 252.

Wire-Annealing Pot.
amount of air in the closed pot, the less the deteriomation of the surface of the wire by exposure of its heated surface.

An-nihi-la-tor, Fire. An apparatus for extinguishing fire by the rajuid production of carbonicacid gas, which excludes the vital air from the combustible material. See Fire Annihilator.

An'nu-lar Bit. A boring bit which cuts a circular channel, but does not rout the central portion.
Wads, buttons, and some other things, are made by a tool of this kind.
One form of the diamond drill makes an annular groove, leaving a central cylindrical plug of stone. See Diamond Drill.

Several annular boring tools are described and illustrated under AUger, which see.

Annu-lar Borer. A description of rock-boring tool, in which a circular groove is made in the stone, learing an axial stem of unbored matter. The tool descends until the stem is nearly as long as the wings of the tool; then, the latter being withdrawn, a grapnel is introduced into the hole, the stem broken off and raised. The borer is then relowered and the work proceeds. This mode of boring is convenient for affording a perfect section of the strata, giving, if care be taken, the dip as well as the quality. See Puck-bornge Tools ; Grapsel.
An'nu-lar-Cylin-der Steam'-en-gine. A form of direct-acting stcam-cngine invented by Mauds-

Fig. 258.

Mrudslay's Annular-Cylinder Steam-Engine.
lay, England, and patented by him in 1841. It consists of fixed imner and outer cylinders, between which is an anuular steam space a, occupied by a piston c. This piston has two rods, $d d$, which pass through stuffing-boxes in the cylinder-head, and are keyed to the cross-head c. The latter comnects by rods $f f$ with the guide-block g, which reciprocates in the open-ended cylinder l. Fo a pin on the block g is attached the connecting-rod h, which juasses to the crank on the paddle-shaft.

In another form of this engine the cylinder is annular and has
two piston - rods which connect to a cross-head plate, slotted to jermit the morewuent of the connectingrod which passes thongh it. Rods bass up from this plate to an upper cross-head whose slides are within the annular cylinder. The con-necting-rod passes from this crosshead to the wristjin of the crank.

It may be necessary to remark that the Trunk Engine and the Annular - Piston Engine are distinct devices. There is a certain
 similarity of ap-

Fig. 254. pearance, the in-Annular-Cylinder Table Steam-Ensine. ner and concentric cylimer, the most salient feature of novelty in alpearance, being present in each engine.

In the Anmelar-Cylinder Enginc both cylinders are fixed and the piston reciprocates in the anman intervening space.

In the Trunl: Enginc theannular piston is attached to the inner cylinder (the trunk.) and reciprocates therewith; the latter slides in stuffing-loxes at the ends of the fixed outer cylinder. See Trunk ExgINE.

In another form of this description of engine the parts are somewhat modified. The two cylinder-heads are connected by a trunk which is of flatteneal form B, as shown in the plan. The piston A is of corresponding shape, and not strictly annular: it is connected by the rods $H H$, with the cross-head G, from which proceerls the comnect-ing-rou E leading to the crank I. The rods $H \quad H$ pass throngh stuffing-boxes in the upper head C, and the trunk B connects the heads $C D$.
lerlaps the most gigantic stcam-enginesin the worldare the three engines, the Leegh-

water, the Cruquius, and the Lynden, erected $1840-$ 50 , for the purpose of draining the Haarlem Lake. This had an armof 55,230 acres, and a maximum depth of seventeren feet below the level of the boezem, or catch-water basin, of the distict. The boezem carries the collecteel waters to the sea, into which it disehugrs by shaices at Katwyk on the North Sea, anul at Sparndam and Halfweg on the Y, or the Southern end of the Zuyder Zee. See Koniuklijk Institut van Inycnicurs, 1857-9, plaat 3, 4.

Each of the three engines mentioned has two stemu-cylindens phaced eoncentrieally, the one within the other, the outer of twelve feet diameter, and the inner one of seven feet diameter; both are secured to one bottom and covered by one caver, but the inner cylinder does not tonch the cover within $1 \frac{1}{2}$ inches. There are two pistons, twentysix inches leep, the compartments of which are fitted with east-iron plates; the onter piston is anmular, and has a packing on both sides; beneath this annular piston a constant vacuum is maintaind when working. The two pistons are connected by live piston-rods to a great cross-head weighing about 190,000 pounds. Eight conneetingrols from the eross-head pass to the inner ends of eight working-beams, to whose outer euds the pis-ton-rots of eight pumps are suspended. These pumps are situated in a circular series around the stean-engine, the working-beams radiating from an axis coinciding with a vertical prolongation of the cyliniler piston-rod. (See Driminge, for an illustration of the engine.)
The working of the engine is as follows :-

Steam is admitted below the central piston, and lifts it, the ammlar piston, the ross-head, and the inner enls of the pumpbeams; cansing the pmop-piston to descencl. A hydraulie apparatus is brought into aetion to maintain the parts in this position until the pump-valves have had time to change. The equi-librimm-valve is then opened, the steam prasses above both pistons and drives them down, the pressure being nearly equalized on the opper and lowir sides of the small piston, while nearly two thirls of it acts on the upper side of the annular piston, which has a partial vaenum beneath it, to aid in the work. The effective stroke is also ailed by the dead weight of the eross-head, which wighs over ninety tons, and by the weight of the pistons and yools of the engine.

Each engine has two air-pumps of forty inches diameter, and five fest stroke. The steam is cut off in the small cylinder at from one fourth to two thirds of its stroke, accorling to the load, and is then farther expanded in the large cylinder.

When working with the net power of 350 horses, the average consumption is $2 \ddagger$ pounds of Welch t:oal per horse-power per hour, or $75,000,000$ pounds of water raisted one foot high with 94 pounds of coal. The duty of the engines has heen as high as $87,000,000$. See Dety.

The Lynden and Crupuius engines work eight pumps, each of seventy-three inches diameter and ten feet stroke. The Leeghwater works eleven pumps of sixty-three inehes diameter, ten feet stroke, each engine being calculated to lift sixtysix cabic meters of water per stroke.

The three engines are capable of discharging 2,000,000 tons of water in twenty-four hours at their full depth. They were ereeted by two English companies.

An'nu-lar Gear'-

Wheel. A wheel whose teeth are on the concavity of au annulus, or ring, which is destituteof web or spokes.

An'nu-lar Mi-crom'eter. A lorm of the circular micrometer invented by Framhiofer of Mmuich, consisting of an amular glass disk whose central aperture isabout half aninchin diameter and boundel by a metallic ring which is cemented to the inner edge of the glass.
The metallic ring is used to determine differences of deelination between stars, from the differences of time occupied by them in traversing different ehorids of the ring. See Circular Micrometer.

An'nu-lar Pan. A ring-shaped trough in which the vertical grinding-wheels of an ore-crusher revolve.

The main shaft may stand in a central aperture of the bed and receive motion from a horizontal

Fig. 25\%.

Annular Pan.

shaft bencath. The pulverized ore, mixed with water; is loosened up by rakes, and scraped from the sides to the wheel-tracks by knives. The wheels follow ditlerent thacks.
The pan form of amalgamator is a favorite, and several illustrations may be seen under Amalgamator, Figs. 144-153, 11p. 78-81.
An'nu-lar Saw. The annular saw for cutting pearl-button blanks is a steel tube with a serrated end.
The amnular saw of the surgeon is the freman, or, preferably, the trephine; which see. Other varieties of anmular saws are known as crocen, barrel, drum, or eylinder saws ; which see.
An'nu-lar Valve. A gravitating-plate valve of a circular form and with a circular central aperture. It works upon a stem by the upward pressure of water, and closes an aunular aperture when the lifting foree is removed. See illustration in ScrewProhellif Steam-Engine.
An'nu-lat-ed Col'umn. A clustered column girt by bands.

An'uu-let. A flat molding; a small square member in the Doric capital.

An-nun'ci-a-tor. Annmueiators are substitutes
for the old-fashioned amangement of bells in hotels, etc. Instead of each room being connected to a separate bell in the office of the hotel, the bell-pull of each room is connected to a single bell, which gives notice to the clerk or prorter, and at the same time a pendulum with the number of the room is cansed to vibrate, or the shield is removed from a number corresponding to that of the room. The devices are rarious. The general scheme is to connect the wire from the room to a numbered plate, which is moved up to an opening and thereby exposes its number to vien. The wire at the same time trips a trigger which actnates the hammer of the bell. A variation in the mole of operation is found in those annunciators whose openings are all covered by piroted shields, the numbers being permanently attached in the rear. The motion of the wire trips the sounding-lammer as before, and at the same time trips the shield to which it belongs, and causes it to oscillate from before the onening and expose the number to which it belongs. A crank operated by the hotel clerk restores the normal condition after the number has been observel.
Horsfall, October 4, 1553, and Hale, April 22, 1856, are among the earlier inventors.

In Horsfall's, the wire from the room operates a rod whose horizontal lifting and tripping arm extends beneath its appropiate swinging index-plate. The rod and arm are arranged in such relation to the rocking-fiame which carries the alarm-bell, that, as either of the rods is raised for the purposs of tripping one of the index-plates and exposing its number to view, the frame and bell will be also raised, and the pendulous hammer allowed to descend some distance. When the rod descends after tripping the index-plate, the rocking frame and bell also descend, and the contact of the short arm of the hammer with a lever causes the hammer to sound the alarm, subsequent to the exposure of the number.
The index-plates are thrown back to their corering position by an eccentric rod and connecting devices.
In the example annexed, a crank arm is attached to the center of the lever, and is acted

Fig. 255.

Hotel Annunciator.
upon by the wire, carrying a pendulum in front of the face of the annunciator, and by its vibration denoting the wire acted upon and the number of the room.

In Fig. 259 the annonciator is so arranged that the lifting of any wire shall not alone expose the n:mber of the apartment, but shall lift a plate, and through the connecting wire cause the hammer to strike unon the bell. The slides, with the numbers upon their faces, have projections on their rear with heles through which the wires pass, and the upward
movement of the stides is limited by transverse bars above them, which cross the line of their motion.
The mechanism in Fig. 260 is so arranged and connected with a knob in the room of a hotel, that as the knob is actuated by the occupant a bell will be sounded at the office, and a slide mored which discloses the name of the article wanted, such as "water," "boots," " messenger," etc. A slide in the room is made to corer the names of articles generally wanted by a guest, and corresponds with a similar slide and names in the office. The extent of the pull deternines what name shall be exposed, and the guest, by noticing the effect at the pull end, may

Annunciator. determine the effect at the other end, as the slides are coincident.

Another form is a combined hydraulic and pneu-
Fig. 260.

matic anmunciator. The clamber of the guest and the hotel ottice are each provided with an indexed gage, consisting of a hollow tube containing a colored liquid. At the back of each tube is a gradnated index marked at intervals, " fire," "light," "water," "brandy," "towels," etc., as may suit the average of eustomers. The respective tubes are connected by an air-pipe, into which air is injected by the guest, to raise the liquid in the respective tubes to the proint which indicates his wants.

An'ode. That pole of the galvanic battery by which the electricity enters into the substance suffering decomposition ; the positive or + pole. This nomenclature was adopted by Professor Faraday.

A-nor'tho-scope. The name given by M. Platean of Brussels to an instrument invented by him and intended to produce a peculiar kind of anamorphosis by means of two disks rotating rapidly one before the other; the hinder one is transparent and bears distortel figures, while the front one is opaque and is piereed with a number of narrow slits. On revolving the disk the distortions appear as amusing and interesting figures and pictures. As in other toys of a similar kind, the effect depends upon the persistence of impressions on the retina. - Brande. It probably suggested the Zoctrope, which has lately become so popular in the United States. See Thaumatrope; Phenakistoscope; Sthoboscupe.

An'sa. (Artillery.) The handles of some kinds of brass ordnance.

An'ta. '(Architecture.) A pilaster occurring at the corner of a flank wall.
An'te-fix'z. (Architecture.) a. Ormaments placed below the eaves of a Grecian temple ; perforatell to allow the escape of water from the root.
b. Blocks covering the termination of the rilge formed hy the overlap of the tiles on a Grecian roof.
An'te-mural. (Fortification.) An outwork consisting of a high, strong wall with turrets, for the defence of a gate.

An-teri-des. Buttresses.

An'te so-la'ri-um. A balcony facing the sun.
An-te-ven'na. An awuing, or shade roof.
An'tho-type. A photographic process in which the colored juices of the wild proply, rose, stock, etc., are efficen by the action ol light.
An'thra-cene. A solid crystalline hydrocarbon, accompanying nap hatine in the distillation of coal-tar.
An-thra-com'e-ter. An instrument for measuring the amount of earbon in a given case. - Beil.

An'ti-at-trition Com'pound. For the bearings of machinery and axles of carriages. See Lubricant; Alloy; Anti-friction Composition ; A.sti-fiction 1 etals.

An'ti cli'nal Line. (Mining Enyincering.) The axis of curvature on the arch or saddle of a range, on each sile of which the strata dip. Opposed to Syn. clinul.

An'ti fric'tion Bear'ing. A rolling bearing for
Fig. 261.

Ante-friction Bearing.
an axle or gudgeon. The intention is that the pats primarily in coutact shall not rub against each other, but move in mison. In one form the roller surfaces impinge upon the surfaces of the axle and its box (Fig. 261) ; in another form the roller's are on axles (sue Fig. 263). A familiar illustration is also lound in the improved fom of hanging grindstones (ste Fig. 265).

The "Palier Glissant," of Girard, consists of a journal box whose lower part is grooved and has an aperture communicating with a pipe through which water under a heavy pressure is introduced beneath the journal. The eflect of this is to slightly lift the jourual, allowing a very thin film of water to escapre, which effectually lubricates the bearing, entirely preventing contact of the netallic surfaces.

This is analogous to the liydraulie pivot for turbine wheels, invented by the same eugineer, in which the weight of the
turbine and its vertical shaft is supported by a water cushion, in the same manner as is the horizontal axis in the former case.

An'ti-fric'tion Box.

 An eaclosure for the balls or rollers of a step or bearing.An'ti-fric'tion Com-po-si'tion. A lubricating material or compound to diminish friction of

Fig. 262.
 parts moving in contact. The compounds are numerons, and include the following materials in various combinations:-

Alloys. See Asti-Fhic- Mucilage.
tion Merals.
Alim.
Ashestus.
Bitumen.
Borings of Metal.
Cork.
Cotton.
Fiber, Animal.
Fiber, Vegetable.
Gelatine.
Graphite.
Gum.
Gy]sum.
Lard.
Lime.

An'ti-fric'tion Met'als. Alhoys principally userl for bearings of machinery and for journal boses. Several are clescribed under the head of Alloy.

Some variations are found in the formulas, comparatively few agreeing even in the conposition of Babbitt's metal, patented in 1839, and so muth used throughout this country and in Europe. The firl. lowing table will give the composition of several :-

An'ti-friction Press. A press in which the power is obtained by the rolling of two cams against an intermediate roller. See Rollisg-Cam Press.
An'ti-fric'tion Pulley. A device for the purpose of lessening the triction of the sheare on its pin. An annular system of auti-friction rollers surround the pin, and rotate on their own axes as they revolve on the pin. They are maintained at their

Fig. 263.

Anti-friction Pulleys.
proper relative distances by a ning or series of links, so that the faces of the rollers themselves do not come in contact, as contacting faces, under these circumstances, would be revolving in ditferent directions, and great friction would result.
An'ti-fric'tion Step. A beaing at the end of a

Fig 264.

Anti-friction Step. rotating slaft, to diminish the friction of the contact with the step when pressure is applied longitudinally. In the step for propeller shafts, the loose collar B has antifriction wheels on radialaxes, which act between a collar on the propeller shaft and a fixed plate traversed by said shaft. The object is an antifriction bearing to take the end strain of the shaft.
A somewhat similar arrangement is nsed for vertical slafts in some cases. See Fig. 262.
An'ti-fric'tion Wheel. The wheels $C C^{\circ}$ form a rolling bearing for a slaft, so as to dinninish its friction thereon; the bearings for the axis of a grindstone, for instance, as shown in Fig. 265. Analogous devices are found in many machines and in cartiages. See Jourial Bearings ; Axle.

Anti-gug'gler. A small tube, inserted into the mouth of a bottle or carboy to admit air while the liquid is running out, and thereby prevent guggling or splashing of corrosive liquid.

An'ti-in'crus'ta-tor. A device or a composition to prevent the incrustation of steam-hoilers.
One class of improvements in this line is magnetic ; it depends upon keeping np an electric action which prevents the adherence of the scale of salts of lime, etc.
Another class consists of mechanical agents, and a thirl of chemical. See Increstation is Boilers.
An-tim'e-ter. An optical instrument for measur-

Fig. 265.

ing angles. A modification of Hadles's Quadrant, long since superseded by superior instruments.

An'ti-mo-ny. Equivalent, 129.03. (Symbol, Sb : Stibium.) Specific gravity, 6.8. Melts at 995.5, Fah. ; passes off in rapor at a white heat. It has a peculiar taste and smell. It is a bluish-white, brittle metal, aud is much used in hardening type-metal, to which it also imparts the faculty of not shrinking in cooling. It enters into the composition of some other alloys, such as one kind of speculum metal.

Its salts are much used in medicine and pyrotechnics.
Antinony was known to the Hebrews as a cosmetic. With it, it is supposed that the wickel Jezebel painted her eyelids and eyebrorrs, B. C. SS4, just before she was thrown ont of window by the orders of the cruel Jehu, who trod her under the feet of his horse, and left her to be deroured by doss.
The Arab romen use $k o h l$ to increase the brilliancy of the expression of their eyes, as the Hebrew romen did down to the times of Jeremiah and Ezekiel, and later. It is yet an Oriental custom. Little toilet boxes and bottles for kohl are found among the relies of the ancient Egyptians, and are preserved in many collections; for instance, in the Ablott Collection in the possession of the Historical Society of New York.
Basil Valentine introduced the metal antimony into the practice of medicine. Observing that some swine fattened surprisingly quick after the administration of the drug, he tried it on some of the monks in his vicinity, who had become much attenuated by their Lenten fast. The account says that they were all killed, and hence the name Anti-moine. It was previously called Stibium, and yet retains that titl in scientific nomenclature.

An'ti-mo-ny Fur'nace. The antimony furnace, Fig. 266, as at present used, is a reverberatory whose hearth is formed of clay and sand solidly rammed together and sloping from all sides towards the midule, at which place is the disclarge opening. temporarily closed with coal-ashes. The air channel lyasses up through the fire-bridge, and the fire

is in the chamber at the end, the flame reverberating in the chamber ahove the ore. The charge is introluced at the usual opening, which is closed by a door while the operation is in progress. The slag is drawn off at the same opening. The sulpharet of antimony is found associated with gangues of Iuartz, sulphate of barytes, and carbonate of lime, and is casily fused therefom by the application of heat in the furnace describel. It is not obtained perfectly pure therefrom, hat is fused again under coal-dust in crucibles on a reverberatory hearth.
The former mode of obtaining the metal from the ore consisted in exposing it in luted crucibles which are placed in a furnace (Fig. 267). The crucilles have openings in the bottom, and are luted to a

Fig. 267.

purforated tile which forms the roof of a lower chamber containing a pot into which the metal excapes as the operation procerds. The gangue rpmains in the crucible above. This method is found to be very destructive of crucibles.

The crude antimony is purificd by repeated exposure at moderate heats to expel the sulphur and fuse the metal. The difficulty in the treatment arises from the volatility of the metal, which excapes if excess of heat be applied. This is in the domain of chemistry.

The ordinary alloys of antimony are : -

	Antimony.	Lead.	Tin.	Copper. Bismuth.	
Type Metal	1	4			
Stereotype Metal	1	6			
Music Mlates	1	1	1		
Britannia Metal	8		100	2	2
Pewter	1		12		

An'ti-qua'ri-an. A size of drawing-paper measuring $52!\times 3012$ inches, and weighing 233 pounds to the ream.

An-tique'[an-teek']. (Typc.) A fancy style in Which each stroke of the face has an equal thickness. There are many varieties.

An'ti-sep'tic. See Wood, Preservation or ; Fond, Pheselivation of.

An'vil. (Forying.) 1. This is ordinarily a mass of iron which sustains a piece of metal while the latter is being forged to shape. In its ordinary form, where the hammer is worked by hand, it has a square central block, and a strong, projecting, and pointed piece of steel called the beck or horn. The quarter has holes for tools such as cutters and swages, and the whole is mounted on a block. Isaiah speaks (xli. 7) of him that smites the anvil in connection with the art of the goldsmith, and also refers to the subsequent soidering.

In heary operations, such as the forgings of heavy ordnance and shafting, the anvil consists of an enormons iron block imbedded to a considerable depth and founded on piles or masomry.

Fig. 268 shows the ordinary blacksmitli's anvil,

and illustrates the methods of making bolts.
a face of the anvil.
b horn or beak.
c hardy hole, with rounding-iron inserted.
n body or web of the anvil.
In forming a bolt by the drauing-doun process, the size of the bar of iron is redinced at proper intervals by fullers, and the operation is completed by the romding-irons, shown at c and d, leaving the head of the full size of the bar h, which is then cut off with a chisel.
In upsetting, the borly of the bolt remains of the full size of the bar, while the head is enlarged by
upsetting, that is, driving the end down upon the body with a hammer, thus forming an enlargement ; or it is enlarged by jumping, that is, beating the heated end forcibly on the anvil; in either case, the head of the bolt is finished by means of the heading-tool, two rarieties of which are shown at e and f.
The third process of bolt-making is by melding or building up; a bar of flat iron is bent around the horn of the anvil, as shown at i, and the bar of round iron intended to form the body is inserted through it ; the ring is then cut off at the proper length by the chisel, shown at k, and the head finished as usual. g is a swage for forming hexagonal heads to bolts, or other hexagonal or triangular forms, and l, m, represent bolts. in the first of which the head is partially made, and in the latter completed.
Tubal Cain, the descendant in the sisth generation of Cain, is the first recorded blacksmith, and the necessities of his craft must have introduced the anvil before the time of Cinyra of Cyprus, who is credited with the invention by Pliny.
The anril of the Greeks and Romans (incus) was usually of bronze, and was shaped like our orrn. It had a horn, and was mounted on a wooden block.
Among numerous varieties of anvils for special trades, and to give a more extended usefulness to the space occupied by the implement, may be cited one in which a shears and punching-machine are com-

Fig. 269.

Anvil Shears and Punch.
pactly placed beneath the anvil, and are worked by handerank, pinions, and segment-rack.

Another anvil has a seconlary horn, is socketed upon the beak of the anvil, and confined there by a hinged link. On the upper surface of the secondary horn are grooves into which the shoe is driven

Fig 270.

Antil.
so as to bevel the inner edge, to facilitate its freeing itself from snow which hecomes packed inside it.

In Fig. 271 the anvil is supported by a stout spring, whose recoil is partially counteracted by the light springs abore. The object is a certain amount of resiliener without jar as the anvil regains its normal position.

The gold-beater's anvil, when using the forging-hammer, is a block of steel, four inches long, and three broad. The ingot is reduced by this operation to a thickness of one sixth of an inch.
The anvil used in the subsequeut operation is a block of black marble twelve inches square at top, and eighteen inches deep, framed in a wooden block.

Anvils are tempered in a float, instead of being merely

Fig. 2 II.

Spring Ancil. dipped. The rapid formation of steam keeps the water from close contact with the metal, and in the float a copious stream of water is loured upon the surface to be hardened, falling particularly upon the center of the face.

Large anvils are slung from a crane into a tank beneath a fall of water, where they are hardened; being lifted before the main hulk of the iron is cooled, the remaining heat is allowed to draw the temper to the right degree, when the anvil is instantly immersed.

The casting of an anvil reighing 35S,000 pounds is thus described by the "London Engineer": 一
"Another immense casting has been turned out by the Midland Works, Sheffield, riz. a 160 -ton anvil-block for a steam-hammer. In the center of the floor a great pit was dug, and in this the mold was formed, the anvil heing cast with its face downward. The mold was ig feet square at the base, and 11 feet 6 inches deep, and it was estimated that nearly 170 tons of iron would he required to fill it. At intervals outside the shop were five furnaces, and at six o'clock in the morning these commenced to pour their molten contents into the huge chasm, and continued until about fire o'clock, when the operation was declared to be successfully completed. From four or fire different points streams of liquid fire were slowly rolling to the edge of the pit, where they fell amidst showers of starry sparks into the vast mass beneath. A metallic rod rras thrust through the mass to test its perfect liquidity, and, this haring been satisfactorily proved, the top of the pit was carefully closed, to be opened no more until the metal has cooled, which will probably be in about seven weeks. The anril is intended to be placed in a gun-manufactory in the vicinity. The bed consists of a first course of great piles, which have been driven by steam-power 15 feet into the solid ground. Upon these is a thick bulk of oak, solidly braced and bolted together, and the combined mass forms the bed of the anvil. Only about half a foot of its bulk will appear above ground. The block will have to sustain the blows of a 25 -ton steam-hammer which will be employed in frrging 600 -pounder and 300 -pounder guns for Mr. Whitworth.'

Mr. Ireland, of Manchester, England, has a porta ble plant for casting large anvil-blocks in the posi-
tion they are to occupy on the premises where they are to be used. He furnishes everything but the iron and the blast.
"The plant used at Mr. Bessemer's works consisted simply of a cupola 4 feet in diameter within the lining, and 12 feet deep to the charging-door, constructed on the "upper tweer" principle. A belt ahout 2 feet 9 inches deep surrounds the cylinder at about 7 feet from the ground, and into this belt the blast is delivered by two large pipes, one on either side. The upper row of tweers consists of sixteen orifices, cach about 3 inches in diameter, ranged equidistantly above the level of the main supply pipes, which discharge into the lower portions of the belt. The lower tweers are only four in number, each about 8 inches in diameter, disposed opposite each other, but not opposite the main pipes. By this means the blast is very equally distributed throngh all the tweers. At the time of our visit, this cupola was bringing down 9 or 10 tons of iron per hour, and Mr. 1reland has recently cast an anvil-block, weighing no less than 205 tons, at the Bolton Iron and Steel Works, at the rate of 25 tons per hour, with two cupolas precisely similar to the one under consideration. The consmmpion of coke is very moderate, when once everything is well warmed up, not greatly exceeding one covt. of coke per ton of iron. A strange contrast exists between such operations as this and those in which Mr. lreland first engaged in the year 1809, when he, in common with many other tounders, considered it a gool day's work to melt a single ton of iron in ten hours.
"It is not easy to see how the casting of large masses can be more economically effected than under this system. The lining of the cupola being removed, it is brought into the condition of an ordinary boiler sleell of no very excessive weight, easily almitting of transport by either rail or water. The whole affair being carried out by contract, the mannfacturer is saved an immense amount of trouble and responsibility, while all the operations being conducted by those who possess a special knowledge and experience of the matter in hand, the best results are sure to be obtained at the least possible outlay. In many cases, without the existence of such a system, the manufacturer would find himself compelled to erect a cupola of large dimensions for which, the block once cast, he would have no further use." London. Engineer.
2. In the Laidley cartridge (Fig. 272) is an anvilplate A which is held in position by a shoulder d on the capsule. On the plate is a nipple which holds the percussion-ca1, and the latter is exploted by a blow on the rear, delivered by the nose of the gun-lock. B is the bullet retained hy spinning down the edge of the capsule.
3. A little pennon on the end of a lance.

An'vil-cut'ter. A shears operated by a blow of a hammer, for the use of blacksmiths.

The lower cutter is upon one end of a lever whose other end is elevated by a spring to open the jaws.

The jaws are closed by a blow of the hammer upon the ou er end of the lever.

A-or'tic Com-press'or. An instrument for compressing the aorta to limit the flow of blood from thence to the divided femoral artery in cases of amputation at the hip joint. See Surycon-Gcueral Barnes's Report, Circular No. 7.

Ap'ex-ture. 1. (Arehitecture.) An opening in a wall or partition, for a window, door, ventilation, or to form a recess.

The sides are jambs.
The top is the head, or lintel.
The bottom is the sill, or threshold.
2. (Optics.) The orifice in the end of a telescone or other optical instrument through which light enters. The diameter of the exposed portion of the object-glass ; as, " 6 -inch aperture."

Aph'lo-gis'tic Lamp. Literally, flameless. A lamp in which the wick, of platinum wire, is kept constantly red-hot by the slow combustion of alcohol, heated by the wise itself.

A'pi-a-ry. A place where bees are kept. It generally assumes the form of a house foming a common shelter for the hives, but in some cases the hives are more closely associated and form a cluster of families, occupying a bee "palace." This is frequently an ornamental structure with a number of a partments for brood comb, and outlying, removable loxes for containing surplus honey. The interior has provision for ventilation by gatuz-lined tubes, and the portions communicate by ducts, or by holes in the partitions. Provision is made for parting off certain portions which are removable with their tenants and provisions to form a nucleus for another cluster of families. The intention of the bee-palace arrangement has been to give the bees the advantage of combined effort and at the same time prevent natural swarming by making colonies removalle. Experience indicates that they run well for a season and then dwindle, becoming a prey to their natural enemies, among which the most fatal is the bee moth. Individual families are comparatively short-lived, and modern apiarists have obtained snch a command over the frateruity, that the families may be divided at pleasure, with a frequency and success dependent upon the resources of the bees lor food and the salubrity of the season, always bearing in mind the tribal economy of the bees, which requires the presence of a queen.

In some parts of the world the apiary consists of a collection which are formed into a village with avenues. They are sheltered in winter-quarters, and on the approach of spring are carried out to favorable localities, where they work during the honeymaking season. This is especially the case on sone parts of the continent of Europe, where bee-keeping is systematized and followed as a regular branch of imlustry, the aim being to glean the favorable territory of all the bee-supporting nutriment.

Fig. 2T4.

The devices in apiaries, not considering those belonging to hives, which are considered stparately (see Beenive), are for ventilation, protection against storms and depredators, and for housing during winter.

In the compound hive (Fig. 274) the apartments are associated side by side in an outer case, and communicate with each other laterally, and each with its remorable honey-box above. This is an illustration of the lateral arrangement; others are associated vertically.
lu Fig. 275 is shown another form of apiary whose "pigeon-holes" are occupied by drawers which are interchangeable and made to commu-

Fig. 275.

Apiary.
nicate as required. Doors inclose the front, and the whole is mounted on a pillar to raise it out of the way of mice, etc. Ventilating arrangements are made in the interior, the ramifications extending to the pockets which contain the drawers forming the apartments. An ornamental character is given to the whole to make it an agreeable object in a bower or on a grass plat.
Auother bee-palace has a flame on which the
Fig. 276.

Bee Palace.
hives are supported, shelves for honey-boxes, doors for examination or change, and an enclosing shed abore for protection from leat and wet. The lower part of the case has inclined sides and a falling door at botton for the discharge of oftal.
la Fig. 277 the moths and grubs falling from the hives are directed, by the inclined sides of the lower portiou, into the trap beneath. The trap has a

Fig. 277.

funnel-shaped conductor, a perforated diaphragm, and a cetachable bottom by which the insects and offal are removed. Additional apartments for the extension of room are added above and on the sides, and admittance to them is afforded as required by withdrawing the slides which command the ducts of communication.

Fig. 278 shows a hive which has a sunken hatch-

way in the center, extending into a pit so as to bring the floor of the hive about on a level with the surface of the ground. The walls and ceiling are double, and have a layer of non-conducting material. A central chimney removes the vitiated air, and registers determine the admission of air to each hive in the group. It is supported by posts which rest in cups of water to prevent access of ants and mice. The devices have particular reference to ineans for maintaining an even temperature ; the double sides and non-conducting material obstructing the passage of heat outward in winter, and also moderating the effect upon the bees of the summer heat striking upon the sides of the hive. The equality of the temperature is also conserved by the nearness of the ground, while provision is made for removing effluvia or corrupt air which might accumulate in the pit.

Apla-nat'ic Lens. A lens constructed of different media so as to correct the unequal refrangibility of the different rays.
The olject to be attained is that rays parallel to the axis of the lens or diverging from a point on its axis, after passing through it and suffering refraction at its surface, shall converge to a single point, the true foeus. See Achromatic Lens.
A-pol-lon'i-con. A large chamber-organ played by key-boarls or by barrels, and exhibited in London some years since. It was coustructed by Flight and lobinson in 1817 . It had 1,900 pipes, 45 stops, 5 key-boards and 2 barrels. The number of keys acted upon by the cylinders was 250 .

Ap'o-me-com'e-ter. An instrument for measuring hights, invented by a Mr. R. Millar, and manufactured in Loudon.
The anomecometer is constructed in accordance with the principles which govern the sextant, viz. As the angles of incidence and reflection are always equal, the rays of an object being thrown on the plane of one mirror are from that reflected to the plane of another mirror, thereby making both extremes of the vertical light coincide exactly at the same point on the horizon glass, so that by measuring the base-line we obtain a result equal to the altitude.
The eye of the observer when in position will be at the lower end of the hypotenuse, and the summit of the olject at the other. Keeping the line of vision, which forms the base, exactly horizontal, the observer approaches the object till the images coincide, when the base will agree in length with the perpendicular, and the measured length of the former will give the hight of the latter.
A-poph'y-ges. A molding of a rounded concave form. sice Moldivg.

A-pos'tle. (Nautical.) A knight-head or bol-lard-timber where hawsers and heavy ropes are belayed.
A-pos'tro-phe. An elevated comma-slaperl point ("), to indicate an abbreviation, as "don"t" for" "do not"; to mark the plural of figures or letters nsed as words, as "two 20's," "the font lacks A's" ; or to mark the possessive, as "lago's triek."
Ap'pa-ra'tus. 1. A set of tools or implements for a given duty, experimental or operative.
2. A complex instrument or apliance, mechanical or chemical, for a sjecific action or operation.
3. (Nautical.) A ship's war equipage and anmunition.

Ap-par'el 1. Body clothing.

2. (Vatetical.) The masts, rigging, sails, and other gear of a vessel.

Ap-pend'a-ges. (Shipbuilding.) Relatively small
portions of a vessel projecting beyond the general shape, as shows by the cross-sections and water-sections. These parts usually consist of, -

The keel below its rabbet.
Part ol the stem and stern-post.
The rudder, rudder-post, and screw (if any).
These volumes are calculated separately and added to the main part of the displacement.

Ap'ple-cor'er. Many ol the apple-parers have attachments for dividing the fruit into guarters, or still more minutely; in some cases the aple is pushed from its impaling fork against a cutting-tube with radial knives, the tube receiving the core and the kuives making the division. A device for coring, slicing, and stringing lruit is shown in rig. 279. The fruit is placed above the coring-tulse and its radial knives, and is pressed down upon the

Fig. 279.

same by a plunger whose central part projects sufficiently to drive the core into the tube. The quarters are pressed upon sharp plates which enter the fruit a short distance, and are the means of introdncing strings which depend from the said plates; the successive pieces push their predecessor's ofl' the plates, and the pieces are thus strung and suspended until a sufficient quantity is gathered. The strings are then removed and empty ones attached.

Fig. 280 is an example of an implement cousisting of a tube or circular cutter of sheet metal, slightly tapering from the cutting edge, and with four or more radial cutter's projecting from its circumference. The central plunger serves as a guide in apllying the implement, and is afterwards the means of ejecting the core.'

Ap'ple-par'er. This is an ingenious American device, and created mingled cmotions of admiration and ammsed surprise when it was introduced into Englaul; the date is not remembered, lut it was referred to as a novelty ahout 1840. There are now over eighty patents, which appear to

Fig. 280.

Apple Corer and Quarterer.
agree in one respect, that is, the rotation of the fruit | by gear connection with the hand-crank shaft. The on the end of a fork. The operation requires two motions, which vary in the different machines.

1. The cutter describes a semicircle in the plane of the axis of the fork while the fruit is rotating, so that it may remove a paring from the stem to the blossom end, following the rotundity of the fruit.
2. An oscillatory motion is given to the fork, whose stock describes an are in the plane of its length, presenting the rounded surface of the rotating apple to the knife, which cuts a continuous paring from the fruit, from the stem to the blossom end.

The first patents recorded are those of Coates, 1803, and Cruttenden, 1809 ; Gates added the quartering in 1810. The Patent-Office records perished in the fire of 1836 . We find that in Mrtcuel's patent, April 13,1838 , the first granted after the fire, that the knife was operated hy hand while the fruit was impaled upon a fork which was rotated by gearing. The pared apyle was then pushed through an opening with a cruciform kuife arrangement, by which it was quartered.

Fig. 281.

the curved rack and moring the larger cog-wheel which rums the pinion on the fork-shaft. The par-ing-knife and its stork have no motion on each other, but have such a progressive and rotary movement, that, as the apple is revolved, the knife will pass from the stem to the blossom end of the apple, and adapt itself to the rarying form and inequalities of the fruit being pared. The knife is automatically moved away from the fruit after the effective sweep, and resumes its operative position when returned to the starting-point.

Ap'ple-quar'ter-er. An implement for dividing apples into quarters.
A wooden plunger is pressed down upon the apple placed on a central point, and forces it between the four knives. In another form it is a coring-tube with four radial wings.

Ap'pli-ca-tor. A surgical instrument, of form and proportions adapted to its specific uses, for applying caustic, a tent, or other application to a deepseated part.
Ap-point'ments. 1. (Pcrsonal.) Accouterments other than arms and ammunition.
2. (Naval.) The furnishing or equipment of a ship.

Ap-proach'. In a military sense, either a route by which a fort, fortified town, or other military nosition, may be approached for the purpose of attack; or the trench or protected road constructed by the besiegers for conveying ordnance, ammunition, and stores, or for marching bodies of men to or from the parallels; in the latter case approaches may be cither excavations, with the earth therefrom thrown up as an embankment ou the side exposed to the enemy's shot, or they may be formed of sand-bags, gabions, fascines, or anything, in short, which will stop a camon-ball. The works of this kinl constructed during the siege of Sehastopol in 1854 and 1855 are probably without a parallel in moderu history, if indeed they were ever equallech in the history of sieges. They embraced seventy miles of sunken trenches, and no less than sixty thousand fascines, eighty thousand gabions, and one million sant-bags were employed to protect the men working in the trenches and at the different batteries.
A'pron. 1. A board or leather whirh conducts material over an opening ; as, the grain in a separator, the ore in a buddle or frome, etc.
2. The sill of a window or a dock entrance.
3. The floor of a tuil-bay. See Canal. Lock.
4. A lealen plate over the vent of a gun.
5. A leathern covering for the legs of the person occupying the driving-seat of a velicle.
6. The piece that holls the cutting tool of a planer.
7. (Plumbing.) A strip of lead which leads the drip of a wall into a gutter ; a fleshing. See Gutter.
8. (Shipbuilding.) A timber within the stem of a vessel in prolongation of the dead wool. It strength. ens the stem, and affords wood for the reception of the plank of the bottom and the heels of the forcmast timbers. See Stem.
A'pron-piece. (Carpontry.) A horizontal piece sujprorting the upper ends of the carriagc-picces or rongh-strings of a wooden stairease.
i pitching-piece. The cerriage which supports the steps is pitched or slanted against it.

Apse, Ap'sis. (Architcture.) a. The arched roof of a house, room, or oven.
b. The domed semicircular or polygonal termination of the choir or aisles of a church, where the altar was placed and where the clergy sat, in Gothic constructions.

A-qua'ri-um. A vessel containing salt or freslı water in which liviug specimens of aquatic animals ant plants are maintained; sometimes called vivarium or aqua vivarium. Fronn the earliest times animals living in water have been kept alive in small vessels for exhibition or transportation hy frequently changing the water, yet it is only since the rise of modern chemistry and pilaysiology that the true principles of the aquarium have been discovered.

As the air contained in the water is breathed by the animals and loses its vitality, the resulting gaseous prohuct becomes deleterious and must be removed: this is the office of the plants in the molem aquarium; these restore the oxygen and abstract the excess of carbonic-acid gas, their function in the subaqueous regetation being similar to that purformed by the ordinary terrestrial flora.

But, hesides the animals and plants properly proprortioned to each other to maintain the uniform composition of the air in the water, it has been fommb necessary to add certain animals which feed on decomposing vegetable matter and act as the scavengers in this community ; such are the various species of molluscous animals, as the snails, etc. It is of importance to guard against the preponderance of
animal life, for an excess of animals over plants in a given space will disturb the balance and lead to their destruction. The demonstration of these conditions is due to R . Warrington, 1850. In some cases whele the supply is continuons, the fresh water maintains a healthy condition; and the same effeet has been attainel by a succession of bubbles of air introduced into and aseending through the water to maintain the natural equilibrium ilestroyed by the animals breathing therein. Agitation of the water jroluces the same results more or less perfectly, but the effect is not so pleasing unless it be introluced with scenic devices or machines, such as paddles, wheels, mills, or moving automatons which require a supply of water to make them constant.
ln 1849 N. B. Ward grew sea-weed in artificial sea-water. A great aquarium, one hundred and tilty

Fis. 285.

feet long and thirty-six feet wide, was constructed in 1860 in the Jardin d'Acclimation in Paris by Alfurd Lloyd of London. The same gentleman ereeted a magnificent aquarium in Hamburg.

Fig. 285 shows an arrangement for the introilnction of air for the revivification of the water. It is an air-forcing apparatus consisting of an inverted weighted vessel whose edges are submerged in the

Fig. 286.

water of the reservoir, and which eonnects by a flexible pipe with the interior of the tank. As the inverted weighted air-holder descends gradually, it
forces air through the flexible pipe into the aquarium.

The aquarium of the Paris Exposition was a remarkable suceess, and has given rise to much more ambitious structures. The aquarium of Brighton, England, for instance, occupies ground 715 leet in length, with an average width of a hundred feet. The aquarium proper is divided into three corrdors. The first is divided again into mineteen bays, which are roofed over with bricks, groined raulting of rell and black alternating with red and buff. The arches, ribs, and bosses are of Bath stone. The extreme length of the corridor is broken most effectively by a central square 55 by 45 fect, the groined vaulting forming a sort of cloister around the square, while the central portion is covered with an claborate ormamental iron roof, partly glazed with antique colored glass. The tanks are arranged on either side, twenty-eight in number, averaging in size from 11×20 feet to 55×30 feet. The whole front work of the tanks is of Portland stone, ornamented with appropriate devices of tish, shells, marine monsters, and anuatic symbols. These fronts are inclosed by plate glass of great thickness, secured to the stonework by waterproof cement. The area of water surface visible in the rear of the glass is 9 feet wide by 5 feet deep. The light of the corridors is only transmitted through the water, thus affording to the visitor the sensation of being under water without the inconvenience of a wetting. At the eastern extremity of this corridor, which is 220 feet in length, the visitor finds before him the entrance to a fine conservatory. This entrance is at the junction of the first and second corridors; the latter, running north and south, forms right angles with the first corridor. The conservatory is 160 feet long by 40 feet wide and 30 feet high. The ornamentation of this apartment is in keeping with that of the other parts of the building. It is chietty intended for a sort of subterraneau promenade, and is ornamented with plants, ferns, small aquaria, etc. Corridor No. 3, which is approached from No. 2 , is of the same length as the conservatory, contains twenty tanks, some for fresh-water, others for saltwater fishes. At the end of this corridor are the engines and the store tanks, hoiler, retiring and naturalists' rooms, and another flight of steps leading to the terrace.
The water for the tanks is supplied, by means of pumps, from reserroirs beneath the floor of the building; and by an arrangemene of pipes and pumping the water is kept constantly in motion throughout the aquarium.

The whole cost about $\$ 250,000$.
A-quat'ic Box. An accessory to the microscope in the form of a shallow glass cell in which alge or animalcule are placed for observation.

A'qua-tint. A peculiar style of engraving on metal saill to have been invented by St. Non, a French artist, about 1662. Otherwise stated to have been invented by Le Prince, Metz, 1723. The process, briefly descrihed, is as follows: A surface of resin is spread upon a polished plate in such a manner as to leave innumerable little interstices between the resimons particles. This surface covering is called a ground, and may be made in two ways, - the dry process and the solution process.

The dry process is performed by dusting over the very slightly greasel surface of the plate a shower of tinely powdered resin. The surplus having been removed by tapping the plate, which is held in a reversed position, the particles are caused to adhere to the plate by warming the latter over a lamp, or, what is much better, the moderate diffused heat of a
piece of burning paper. In the interstices between the particles of resin the plate is exposed to the action of acid, of which presently.

The solution process consists in dissolving the resin in alcohol and flooding the plate with it, allowing the liquid to run off; a film adheres to the plate and cracks in drying, leaving innumerable fine fissures where the plate is exposed.
The design is now placed on the "ground," or it may have been previously etched in ; the latter is now preferred. A wall of wax being erected around the design, it is flooded with dilute acid, as explained under Etching (which see). For copper plate, dilute nitrous acid is used (acid, 1 ; water, 5). For steel, dilute nitric and pyroligneous acid is used (nitric acid, 1 ; pyroligneous acid, 1 ; water, 6). As soon as the lighter tints are suthiciently bit in, the acid is remored and the plate washed and dried. The light portions being stopped out, that is, covered with Brunswick black to protect them from farther action of the acid, the latter is again applied for the second tint, and so on. The delicate gralations are oltained by flooding and feathering, which are nice technical operations, requiring skill only attained by practice, and for a description of which we cannot spare room. This is a cheap and effective mode of engraving, and is not estimated at its proper value. The effect produced is like a drawing in india ink.
For different grounds the resin is more or less diluted; the greater the dilution the finer the ground, that is, the more delicate and mmerous are the interstices in which the acid acts. A different ground is also obtained by a change of ingredients. Bergundy pitch, mastic, frankincense, and other resins, give various patterns of grounds, so to speak.
Aque-duct. A conduit tor the conveyance of water. More particularly applied to those of considerable magnitude intended to supply cities amd towns with water derived from a distance for domestic purposes, or for conveying the water of camals across rivers or valleys. Pocock describes one erected by Solomon for conveying water from the vicinity of Bethlehem to Jerusalem. This was formed by earthen juipes about ten inches in diameter, encased with stone and sunk into the ground, and would seem to have conformed to its inequalities, indicating a more adranced state of hydraulic engineering in Solomon's time than is commonly supposed to have been possessed by the earlier Romans, who were justly famed for their works of this kind, which have never been surpassed in strength and beanty.
The earliest account of any aqueduct for conveying water is probably that which is given by Herollotus (who was born $484 \mathrm{~B} . \mathrm{c}$.). He describes the mode in which an ancient aqueduct was made by Fupalinus, an architect of Megara, to supply the city of Samos with water. In the course of the aynechuct a tumnel, nearly a mile in length, was jierced through a hill, and a channel three feet wide made to convey the water.
The first of the Roman aqueducts (Aqua Appia) was built, according to Diodorus, by Aprius Claudins, in the year of the city 441, or 312 B. C. The water which it supplied was collected from the neighborhood of Frascati, eleven miles from Rome, and its summit was about one hundred feet above the level of the city.
The second (Anio Vctns) was begun forty years after the last-named, by M. Curius Dentatus, and finished by Fulvius Flacens: it was supplied from the country beyond Tivoli, forty-three miles distant. Near Vicovaro it is cut through a rock unnwards of a
mile in length, in which part it is five feet high and four feet wide. The water of this aqueduct was not good, and therefore only used for the most ortinary jurposes.
The thitd (Aqua Martia) was supplied from a fountain at the extremity of the monntains of the Peligui. The water entered the eity by the Esquiline fate. This aqueduct was the Work of Quintus Martins, and had nearly seven thousand arches in a course of thirty-niue miles.
The fourth (Aqua Tepala) was supplied from the vicinity of Fraseati.

The fifth (Aqua Julia) was about six miles long, and enterel the city near the Porta Esquilina.

The sixth (Aqua Virginis) was constructed by Agripla thirteen years after the Julia. Its summit, in the territory of Tusculum, was about eight miles from lome, which it entered by the Pincian Gate. This water still bears its ancient appellation, being called Acqua Vergine.

The serenth (Ayua Alsietina, called also Angusta, from the use to which Augustus intended to apply it for supplying his Naumachia) was brought from the lake whose name it bears.

The eighth (Ayua Claudia), begun by Caligula and completed by Claudius, is about forty miles in length. It enters the city at the Porta Nevia, urar the Esquiline Monnt. The quality of the water whieh this apheduct supplies is better than that of any of the others. It was built of hewn stone ancl supported on arcades during seven miles of its length. After a lapse of eighteen hundred years it still contimues to furnish Modern home with pure and wholesome water.

The ninth (Anio Novus, to distinguish it from the second-named water) was begun and finished by the same persons as the last-mentioned. It is the water of the Anio, which, heing exceerlingly thick and muddy after the rains, is conveyed into a large reservoir at some little distance from Rome, to allow the mud to sulvide.

The Acqua Felice is modern, and was erected by Sixtus V. in 1581.

The Popes have, from time to time, been at considerable pains and expense in repairing and renewing the aymelucts; but the quantity of water delivered is constantly diminishing. In the ancient city the sum-total of the areas of the different pipes (which were about an inch in diameter) through which the above immense quantity of water was delivered, amounted to about 14,900 superficial inches ; but the supply was subserguently reduced to 1170 .

The waters were collected in reservoirs callecl castcllu, and thence were conveyed through the city in leathen jipes. The ketpers of the reservoirs were called castelleni. Agrippa alone built thirty of these reservoirs during his redileship. There are five modern ones now standing in the city : one at the 'Porta Maggiore, Castello dell' Acqua Giulia, dell' Acqua Felice, dell' Acqua Paolinn, and that called the Fomntain of Trevi.

The aim of the Roman aqneduct-builders was to conduct the water along with an equal fall during the whole distance from its source to the point of delivery ; and for this purpose, instead of allowing the conduits to follow the natural slope of the groumd, thry ahmost always erected long and massive stone arcalles wherever it was necessary to cross a valley, insteal of availing themselves of the wellknown property of water to find its level. This was p erhaps necessary in the then state of the mechanic arts, the art of casting iron pipes of large size being maknown.

It has been calculated that the nine earlier aque-
ducts of Rome had a total length of more than 249 miles, and the supply of water to Ancient home was computed by Professor Leslie, on the authority of Sextus Julius Frontinus, who was inspector of the aqueducts under the Emperor Nerva, and who has left a valuable treatise on the subject, at fifty million cubic feet per day for a population of one million souls. This gives the inmense average jur heall of lifty cubic feet, or three hundred and twelve gallons, per diem, - a consumption oute unequalled in mader'n times, except in the city of New York, Where it is said to have formerly amounted nearly to this quantity.

The aluueducts of Metz, Nismes, and Segovia are also striking examples of the attention paid by the fomans to the subject of supplying water to their towns and cities.

It does not appear that the ancients were by any means ignorant of the applicalility of pipes for conducting water, and it is difficult to conceive how it could have been distributed to the baths and fountains of Rome without their aid. Their system appears to have liepn the result of calculation amb design, and it is notable that in the greatest works of thr kind of modern times, such as the aqueduct of Marseilles and the Croton Aqueluct, their leading mrinciples have been carriel out, and the use of pipes following the elevations and depressions of the lills anel valkeys has been in a great degree dispensed with, where the water had to be conveyed along a conrsc of considerable length, - thongh, in general, without resorting to such an extensive, or indeed excessive, use of long and expensive arcades as the Romans employed.

The advantages of this system seem to be more perfect frecelom from deposition of mineral substances in solution in the channel way, owing to the more miform and regular flow of water which can be obtained; facility of constructing traps or wells along the route for the deposition of selliment; grater security from intermption and oplortunity for reprair in case of accident.

The aqueduct of Nisnres, or the Pont dn Gard, in France, is one of the earliest constructed by the Romans out of Italy, and is supposed to have been lmilt in the time of Augustus; it was intended for carrying the waters of the Eure and Airan from the vicinity of their sources to the town of Nismes.

The commencement of this aqueduct was conducted along the sinnosities of a linl, entirely under ground, and was often cut in the jock itself. Snall bridges were thrown over the streams crossed in its course, and it passed over a series of aroms, rescmbling those of the upler part of the great areade of the Pont du Gard, followed the crest of a hill to aroid unnecessary hight in the pines, and after a course of alout $£_{8}^{8}$ miles arrived at the Pont du Gard, by which it is carried over the river Gardon at a hight of more than 157 feet above the surface of the stream below.

This magnificent structure consists of three tiers of arches, on the upper one of which the water-way is carriel. The length at the level of the string conrse surmounting the lower tier of arches is 562 feet, and at the string course of the second tier 885 feet.

The large arch through which the niver passes is 30 feet 5 inches in spun, the three on the right side of this are 63 feet, and the smaller ones 51 feet. Those of the upper story are all equal, 15 feet 9 inches in span; their piers vary in width, and do not come immediately over those below.

The whole is constructed of freestone, from the foundation to the thirl course abore the cymatium

covering the piers of the upper story. Rubble was / was taken to prevent leakage employed for filling in the piers, spanclrels, and haunches of the first and second stories.

The stones were laid without cement, each being raised by the lewis, the holes for the insertion of from one into the other, so that the water of better quality might not become deteriorated by mingling with that of infe-

Fig. 2st.

Section of Upper Story, enlarged scale.

Pont du Gard. Side Elevation.

which are still to be seen exactly over the center of gravity of each stone.

The dimensions of the water-way are 4 feet in wilth and 4 feet 9 iuches high ; the fall throughout its entire leugth is 2.112 inches per mile, and it is estimated to have been capable of supplying from $1+$ to 18 millions of gallons of water per day.

The eutire length of the aqueduct is over $25 \frac{1}{2}$ miles.

The aqueduct of Segoria, Spain, was built by the Emperor Trajan, and is of squared stone laid without mortar, and in crossing a valley has a length
rior clearness and purity; to effect this, the bottom of the channel of each was based nnon thick stones passing into the sides of the aqueduct, and carefully lined with tiles and a coating of cement. Doors from the outside admitted the persons in charge to examine the condition of the conduits at condition of the conduits at Tepula, and Martia. any time, and they were required to report constantly upon their efficieucy and state of repair.

The accompanying illustration (Fig. 290) shows one plan adopted by the Romans for conveying watur across a valley. The aqneduct was erected by the Emperor Claudins for supplying a palace in an elevated part of the ancient city of Lugdunum (Lyous).
The channel-way, both in as-

Aqueduct of Segoria. cending and descending, was formed by masomry, tiles, and cement.

The work was performed as follows : A level parement was formed of brick, on which was raised a frame or caisson of tim- ber planks: against the sides of more than 2,200 feet; it is in many places nearly \mid of this, squared stones were laid in regular courses, 100 feet high. An elevation and plan are shown in and their interior filled in with rubble in a dry Fig. 288.

The waters of the Aquæ Julia, Tepula, and Martia at joured in to consolidate the whole. Lime, fine Romewere conducted through a triple aqueduct, forming three channels, onc above the other, as shown in theaccompanying section; the Aqua Martia being the lowest, the Aqua Tepula the middle, and the Aqua Inlia the uppermost of the series. Particular care

3
gravel or sind, mixed with a due proportion of water, formed this gronting. After a sufficient time had allowed this work to consolidate, the caisson was mounted upon another course or layer of tiles, and similar operations to the first took place.

The bricks or tiles used were 21 inches in length, 12 inches in brealth, and $1 \frac{1}{2}$ inches in thickness.

The whole of the water conduit was coated with cement ; at bottom, its thickness was 6 inches, at the sides $1 \frac{1}{2}$ incles. 24 inches from the bottom of the canal, at distances of 30 inches apart, the side walls were stayed with iron ties to prevent their being burst a part.

In the ancient aqueduct at Lyons, called at onc part of its conrse Mont de Pile and at another Champonest, the water was brought over eight bridges in the usual manner, and a siphon was emtployed for conducting it across the ninth. At this point the valley is very deep, and a reservoir wats built from which leaden pipes of large size, bedied in the sides of the valley, conducted the water to others laid over a brilge in an inverted curve; they were then roulucted op the opposite side of the valley, and delivered the water into a reservoir at the same level as the first; from this they were conducted under ground for some distance, and thence, by a bridge of ninety arcales, to another reservoir, from whence it again descended into a valley through similar leaden pipes, crossing a river and ascending the other side of the valley, where it was delivered into a reservoir on that side. From thence it was carried, partially over arcalles, to a reservoir at one of the gates of the city, from whence again it was carried by leaden pipes, tirst falling and again rising until it reached the rest-rvoir from whence it was finally distributed; in this last instance the pipes were bedded in solid masonry, and not carried over a britge.

The total length of this remarkable piece of work, which certainly seems to combine all the known appliances for conveying water without the aid of extraneous meehanical power, was 13 leagues, and the fall in this tlistance upward of 350 feet.

Wherever the agueduct was tunneled in the sides of the hills at a considerable distance below the surface, wells were sunk to carry off any vapors which might accumulate, and to admit light and air ; they also afforted access to any workmen who might he employed to make repairs or remove accumnlated deposits in the channel : these were at distances of 120 feet apart. Perpendicular vent-pipes were also erected for ventilating purposes. The walls, where the work was above ground, were two feet thick, and the arches were roofell over to shed rain. The entrance to the apheduet was thongh iron doors opening intermally. The underground portions were accessible hy trals or man-holes brought up a little above the level of the soil.
l'ipes, in cases where a very large supply of water is not reguired, undonbtedly possess many alvantages, and in rery broken and rugged localities their use, either alone, or in combination with masonry or brick conduts, along the more level portions of the route, is indispensable withont increasing the cost of the work beyond all rasomable bonnds; but it would seem, both from the experience of antiquity and that of more recent times, that the stone or brick channel into which the air is freely admitted, and to whiph ready access can he hat for the runoval of impurities or obstructions, is, when the encinereng difficultips and cost are not too great, preferable to any other.

Tlins of course does not apply to the delivery and discharge of water within cities or towns; there,
metallio pines of some kind are indispensable. Castiron is the material now universally employed for the larger pipes of this description, called mains, and is perfectly umohjectionable in every respect. Leaden pipe is very extensively employed in buildings tor lischarging water, but, unless kept constantly dilled, is a wry dingerous material, its salts being active poisons. lining with tin is a good expedient.

In China and Japan, bamboos of large size are userl to convey water from one point to another.
The ancient works executed under the later Roman etupeross for the supply of Constantinople combine the system of aqueducts with the collection and imponding of water by means of resemoirs at the houl of the atpeduct. The impoumling reservoirs are situate about twelve miles from the city, on the slopes of a range of monntains whith form the southeastern prolongation of the great Balkan chain. There are four principal aqueducts, one of which eonvers the water collected ly three sepmate reservoirs, while the other three are each supplied by its own reservoir. Besides these extensive provisions for securing water to the city, there are immense subterranean reservoirs, one of which, now in ruins, is called the Palace of the Thousand and One lillars, not because this is the precise number supporting the roof, but lrecause the number is a farorite one in the expression of Eastern hyperbole. This great suliterranman cistem is supposel to have been made by the Greek emperors for the purpose of storing water in case of a siege or simitar calamity. Although originally of great depth, it is now nearly filled up with earth and rubbish. It is sin gular that in the mineteenth century we are reviving in our covered reservoirs, for the purpose of storing water in a state of freshess and unform temprature, the practices which were followed nearly two thousand years ago by nations whose moderin descembants are half barbarians.

Works of great magnitude were, accorling to Garcilasso, constructed for purposes of irrigation by the ancient Peruvians, previous to the conquest of that comitry by the spaniards.
On the western slopes of the Andes there are immense districts where rain never falls, and which are incapable of rultivation unless watered hy artiticial means. The incas cansed numerous aypeducts to be constructel for this purpose: one of these is stated to have been 120 leagues in length and 12 feet in depth, and to have watered a tract of comintry more than 50 miles in wilth; another was 150 leagnes in length, traversing an extensive province and inrigating a vast and arid district of pasture land

The Peruvians do not appear to have alvanced so far in the use of bridges or pipes for conducting the water across valleys, - their purpose probably did not require it, - lunt gave their apmeducts a sinuons course, winding aromid the mountains and throngh the valleys with sufficient inclination to allow the water to flow freely.

The French ayueducts referred to in this article are most of them of great magnitude and importance, and the most stnpendous work of the kind ever projected originated in France. This was the apueduct of Mantenon, which was undertaken in 1684 and abandoned in 1688, during which time $22,000,000$ franes are said to have been expended upon it. It was intended to have brought water from the river Eure at Pongoin to Versailles, a distance of urarly 25 leagues, and embraced an arcade of masoury 10,090 feet in length, comprising three tiers of arches at its highest part.

The illnstrations (Fig. 291) exhibit to the same scale, -

1. The Pont du Gard Aqualuct, at Nismes, un- conduit is $15 i$ feet abore the river, and is referred der which the river Gardon passes, and which was to above. built by the Romans, possibly by Agripia. The _2. The Solani Aqueduce of the Ganges Canal ;

the area of the water-way is eighty times that of the Pont du Gard.
2. The Roquefavour Aqueduct, erected by Montricher to conduct the maters of the Durauce to Marseilles.
The aqueduct for supplying Marseilles with water extends from the river Durance, a distance of 51 miles, though a very hilly country. It comprises is tumels, haring a unitell length of over 12 miles. It has 500 bridges. emhankments, and other artificial constructions. Marseilles lies in a large arid hasin, and the aqneduct approaches the edge of the basin at a hight of 500 feet abare the level of the sea. Branches extend to and irrigate the area of 25,000 acres, and also supply the city of Marseilles. The bridge orer the valley of the Arc is 1,257 feet in length and 262 feet in hight. It is formed of a triple tier of arches; is said to have occupied from 700 to 800 workmen for seren years, and to have cost $\overline{\mathbf{T}} 750,000$. The water channel is 30 feet wide at top, 10 at bottom, and is 7 feet deep. It delivers 11 tons of water per second.

The aqueduct of Chirk on the Ellesmere and Chester Canal in England is noted as being the first in which iron was employed, the bottom of the water channel beiug of cast-iron and the walls of masonry; that of Pont-r-Crsrilte, on the same canal, has the entire chann-i nuale of cast-iron arches or ribs resting on pillars of stoue.

It carries the waters of the canal across the ralley of the Dee. It is mpards of one thousand feet in length, consisting of mineteen arches of equal span, but varying in their hight above the ground. The three shown in eleration in Fig. 292 are the highest, being those which cross the river Dee itself; the surface of the canal is one hundred and twentyseren feet abore the usual level of the water in the riser. The aqueduct itself is a cast-iron trough formed of plates with flanges securely bolted to-
gether. This trough is supported upon cast-iron arches, each composed of four ribs, supported apon piers of masonry. The towing-path overbangs the water, being snpported at interrals on timber pillars.

Watt's sobmerged aqueduct across the bed of the Clyde ras an articulated pipe whose ioints reudered it flexible, so as to accommolate itself to the shape of the river-bed. It is stated to have been a success.

Fig. 292.

Pont-y-Cysylte Aqueduct.
The Croton Aqueduct was commencerl in 1537 and completed in 184 ? costing $\$ 8.575,000$.

Its length is $40 \frac{1}{2}$ miles, 33 miles of which di.tance it is built of stone, brick, and cement, archect alore and below. It las a capacity for dinchargin:; $60,000,000$ of gallons per day. It is carried over the Harlent River by pipes laid upon a bridge consisting of fifteen arches, eight of 80 feet and seven

AQUEDUCT.

of 50 feet span, rising to 114 feet above low-water mark.

At the spot where the Croton dam is constructerl, the surface-water of the creek was about 38 feet lower than the elevation reguired is a lacad for the delivery of the water into the city of New Tork at a sufficient hight. lby going farther up stream a dam of less hight would have been sufficient, but the supply of water would of course have been smaller. The medim flow of water at the dan is about $50,000,000$ gallons laily, and the minimum in very dry seasons about $27,000,000$ gallons.

The water is set back upon the course of the creck by the dam, about six miles, forming the reservoir, which has on area of about 400 acres, now balled Croton Lake. The available capacity of this reservoir down to the point where the water woukl cease to flow into the aqueduct is estimatel at $600,000,000$ gallons, in aldition to which the receiving reservoir in the city is capable of containing $150,000,000$ more when full, which together aftord a reserve supply of $750,000,000$ gallons in seasons of extreme drought. In case of necessity other streams might he turned into the Croton River at or above the reservoir, or into the aqueduct.

From the dan at the lower end of Croton Lake to the receiving reservoir there is no essential change made in the form of the chamel-way, except that, in crossing the Harlm River and a valley on Manhattan Islam, iron pipus are used instead of masonry; at

Fig. 293.

Earth Ercavation. theseplaces the pipes fall and rise again so that theyarealways full. The channel-way of masonry is never entirely filled, so as to cause a $\mathrm{I}^{\text {res }}$. sure on its interior surface. To avoid this, six waste weirs were constructed at suitable haces to allow
the water to flow ofl upon attaining a certain level.
Fig. 293 is a section slowing the kind of masoury

Fig. 294.
 used in earth excavations.
The foundation is of conerete, the side walls of stone, the bottom and sides of the interior ficepl with lirick, and the top covercd with an arch of brick.

After the masonry was finislect the excavation was filled up aromd it and over the top of the coveringarch, generally to the
depth of three or four feet, and in deep excavations up to the natural surfice.
Fig. 294 shows a seetion in open cuttings in rock. The rock was excavated to the requisite dep,thand width, and the bottom filled in with concrete to the proper hight and form for receiving an inverted arelt of liriek; the side walls were of brick bonded with an outer casing of stone, huilt upelosely aganst the siles of the rock. Ont the exterior of the roofing arch, and filling the space between it and the rock, spandrels of stone were luilt.
When finished, the space above the masonry was filleal in with earth.
Fig. 295 is a section in tunnel (outtings in solid rock. In hard, sound rock the natural rock often surved as is roof, but when solt, a liriek arch was hailt over the chamel walls and the space hetween its upper surface and the rock filled in with wellrammed earth. In some cases where the rock was originally

Rock Tunufl.
found to become soft and insecure upon exposure to the air, renlering it necessary to arch over the chamel-way to support the natural roof.

Fig. 296 is a section in earth tunnel cuttings. In dry and compact eartl the excavation for the bottom and sides was male of just suf-

Fig. 296. ficient size to receive the masonry built closely against it ; the tol was made high enough to give room for turning the roofing arch, and when complete the space above it was filled with earth closely rammed. In wet earth the excara. tion was made larger and the top and sides sup-

Earth Tunnel. ported by props of timber and plank until the masonry was completed ; the vacant space aronnd it was then compaetly filled with earth. In crossing valleys, the aymeilnet was supported on a foundation wall of stone, laid dry, and sloping embankments of earth were thrown up on each side of it.

At intervals of a mile apart, ventilating shafts of stone were erected over the agueduct, rising about 14 feet above the surface of the ground; every third shaft was provided with a door to afford entranes to the interior of the aqueduct for the purpose of inspection or repairs. Openings two lept symare were also made in the top of the roofing arrly overy yuarter of a mile; each of these was coverel
by a flag-stone, and its position indicatel ly a small monument projecting above the surface ; these are for the purpose of obtaining entrance or increasiug the ventilation if necessary. Where the line of the work was intersected by streams, culverts were built to allow the water to pass under without injury to the aqueduct.

In comnection with the reservoir at the lan is a tunnel and gate-chamber. The gate-chamber is not directly connected to the dam itself, but is at a distance of upwarls of 200 feet. The water is conducted from the reservoir to the gate-chamber by means of the tumel T, which is cut through the solid rock of the hill, having its entrance above the dam, its center being about 12 feet below the surface of the water, so that the entrance of floating bodies is prevented. In winter, when the reservoir is frozen over, there is no obstruction to the flow of
water into the aqueduct, and in summer the water. is drawn from a level where it is cooter and purer than at the surface.
The gate-chamber has two sets of gates, the one heing called regulating gates, R, and the other guardgates, G, G. The regulating rates are made of gunmetal, and work in frames of the same naterial, fitted to stone jambs and lintels; the guard-gates are of cast-iron, working in cast-iron frames, also attached to stone jambs and lintels.

The gates are managed by means of wrought-iron rods, having a screw on their upper part working in a brass nut set in a cast-iron socket-cap.
The accontpanying riew (Fig. 297) exhibits a section of the hill throngh which the tumnel is cut, showing its eutrance into the reserwoir, the gatehouse and gates, and the point of discharge into the channel-way of the aqueduct.

Fig. 297.

In the center of the dam and on its ridge is a gatehouse over a culvert passing through the dam. This culsert is 30 feet below the surface of the water when the reservoir is full, and has gates openel by rods rising up into the gate-house. When the river is low, the water which is not carried off by the aqueduct may be allowed to pass through this culvert, preventing any from passing over the dam.

The botton of the water-way of the aqueluct at the gate-chamber is 11.4 feet below the surface of the reservoir, and 154.77 feet above the level of mean tide at New York City.

The aqueduct is divided into different planes of descent from the gate-chamber at the dam to that of the receiving reservoir on Manhattan Island, and is as follows : -

	Length.		Descent
First plane of aqueduct . .	Feet. 26,099 72	$\begin{aligned} & \text { Miles. } \\ & 4.943 \end{aligned}$	$\begin{array}{r} \text { Feet } \\ 2.94 \end{array}$
Second plane of aqueduct	148,121.25	28.053	3069
Leagth of pipes across the Нarlem River	1,376.33	0.261	
Differme of level between the enils of the pipes			2.29
Third plane of aqueduct	10,733 14	2.033	2.25
Length of pipes across the Manhattan Valley	4,105.09	0.75	
Difference of level between the ends of the pipes			3.86
Fourth plave of aqueduct	10,680.89	2.023	1.60
	201.117.42	38.090	43.63

The hight of the interior of the aqueduct is 8 feet $5 \frac{1}{2}$ inches, and the greatest width 7 feet 5 inches: the interior having a sectional area of 53.34 suuare feet. Ou the first plane the aquetiuct is larger; heing 2.05 feet higher at the gate-chamber, 2.31 feet higher at 2,244 feet from the chamber, and diminish. ing to the head of the second plane, where it is of the dimensions above stated.

The curves used in changing the course of the aqueduct are generally of 500 feet radius; in somie cases a radius of 1,000 feet or even more was employed.

The receiring reservoir is located between Sixth and Serenth Arenues and Serenty-ninth and Eightysixth Streets in the upper part of the city of New York. It is 1,826 feet long and 836 feet wide at the top of the external walls of the embankment, having a total area of 37 acres, the area of the water-surface being 31 acres. The reservoir is divided into two divisions by means of an embankment, either of which may be used independently while the water is drawn off from the other, in case of repairs, ete.
The greatest depth of water in the north division is 20 feet, in the south, 30 feet, and the total capacity of the whole $150,000,000$ gallons. The aqueduct enters a gate-chamber in the sonth division, where there are regulating gates for discharging the water into either division by a continnation of the aqueduct within the reservir. The two divisions are connected by a cast-iron pipe for equalizing the level of water in each. There is also a waste weir for the escape of surplus water into a sewer.

The embankment is of earth, protected on the sutsile by a stone wall four feet thick, the face of which is laid in mortar: the inside slope has a stone facing, 15 inches thick, laid without mortar.

From the receiving reservoir the water is carried by iron pipes to the distributing reservoir, a distance of 2.17 miles, with a fall of four feet. The distributing reserroir is 436 feet square at the base and 425 feet square at the comers, haring an area of rather more than four acres, and a capacity of $20,000,000$ gallons.

The outside walls have openings, so that ly entering a door one may walk entirely round the reservoir within the walls, giring a greater lreadth with
a given amount of material, and afforting an opportunity of examining the work for the purpose of obviating leakage, and also preventing water from finding its way to the exterior and causing injury to the wall by freezing. This open space rists to within about eight feet of the water-line. Inside of the wall is an embankment of puddled earth faced with hyilraulic masonry 15 inches thick.

From the distributing reservoir the water is distributed over the city by means of cast-iron pipes of from 36 to 4 inches diameter.

The total cost of the work was $\$ 8,575,000$, including the purchase of land, etc., being within tive per cent of the engineer's estimate. In this the cost of the distribnting pipes within the city is not included.

The Washington Aqueduct was built at the expense of the United States government, for the purpose of supplying the cities of Washington and Georgetown with water, and is distinguished by some bold teatures of engineering. The most remarkable of these is the bridge over Cabin John Creek, near the upper termination of the work, the wilest spanued stone arch at the time of its construction; it has a span of 220 feet and a rise of 57 feet 3 inches.

The bridge over Rock Creek is also a peculiar and noteworthy application of the results of modern science anil mechanical skill. The water is carried across this stream (which divides the cities of Washington and Georgetown) by means of two arches of east-iton pipes of 3 feet 6 inches interior diameter, formed of sections with thanges firmly screwed to each other and braced: upon these are laid a bridge over which the street cars pass, and which serves as a public avemue of communication hetween the two citics. The span is 200 feet, and the rise 20 feet.
The artueduct which supplies Madrid with water, and has a large surphis for irrigation, is fed from the river Lozoya, where it emerges from the Guardarama Monntains. This work was constructed muder the suprintendence of Don Lucio del Vallé, between 1851 and 1858 , and is 47 miles in length. The river gorge is crossed by a cut-stone dam, 98 feet in hight, its wings abutting upon the solid rock of the hillsiles. The artificial lake thus formed contams $100,000,000$ cubic feet of water. The cost of the whole work was $57,897,368$ francs.
The "canal," as it is termed, has seven miles of subterranean galleries, 4,600 feet of aqueducts, and 8,600 feet of inverted siphons at the crossings of three valleys. The siphon of Berlonal is 4,600 feet in length. The transverse section of the waterway has an area of about 20 square feet, and it discharges $6,600,000$ cubic feet of water per day; one fifth is reyuired for toyn service, the remainder being used in irrigating a tract of nearly 5,000 acres.
The town service has 45 miles of brick culverts about six feet high, and 60 miles of cast-iron pipes. It supplies 35 public fountains, and has 3,000 plugs for fire and irrigating purposes.

A novel expedient for the support of an aqueduct across a densely wooded ravine was suggester] hy Mr. M'Taggart, the resident engineer for the Rideau C'anal in Canada. In a part of the country trav. arseal by the canal, materiats for forming an embankment, or stone for building the piers of an arfuelluct, could not be obtained but at a great expreuse. The plan consisted of cutting across the large trees in the line of the works, at the level of the bottom of the camal, so as to render them fit for supporting a platform on their trunks, and on this
platform the trough containing the water of the ranal was intemed to rest.

Ar'a-besque [ar'a-besk]. 1. (Architccturc.) A species of ornament, either painted, inlaid, or carved in low relieft, employed for derorating flat surfaces. It usually comsists of convoluten and intertwined curves, intended to rentesent foliage, tendrils, and openwork whecker natterns.

In a degraded form, various figures of animals, real or imaginary, have heen introluced in the attempt to make it more consonant with the later taste for florid ornament. The Koran forbids the rearesentation of the human form, but some have even deviated so far from the original designs of the Arabs as to blend satyrs, sirens, and memaids in the design. This is on a par with the taste which degrales consoles into caryatides and pillars into atlantes.
2. (Bookbinding.) The English term for the impressed ornamental work on the sides of cloth and leather-hound books.
It is produced by the pressure of hot plates or rollers having the battern engraved on them.

Ar-bac'cio. (Fubric.) A coarse woolen cloth made in sardinia from the wool of an inferior breed of sheep, calleql the Neworo.

Ar'bal-est. A kind of cross-bow used formerly by the Italians, and introduced into England in the thirteenth century. The arrows shot from it were termed quarrels.

Ar'bor. (Machinery.) a. An axle or spindle of a wheel or pinion. The term is specially used in horology.
b. A mandrel on which a ring, wheel, or collar is turnel in a lathe.
Ar-cade'. A vaulted avenue. A covered passage.
A number of streets in London and Paris are thus vaulted over, and are well known to many of our citizens; the Lowther and Bullington Arcades of the former city, for instance.

As one mode of connecting down-town and uptown of New York City, the arcade system has beem proposed. Kiven of this, many forms have been suggesterl. One is to form a sub-way, a main-way, ami an mevated railway.

Ar-cade' Rail'way. The uppr roadway to he supported by iron columns, and having gas and

Fig. 298.

Arcade Railuay.
water tubes; the main-way ly masonry, through which the sewers and pueunatic dispratch pass. Access to be hat to the various levels by ranus and staircases.
Arc'bou-tant. An arched buttress forming a lateral support for the foot or haunch of another arch.
Arch The antiquity of the arch, says Wilkinson, is traced to the time of Amunoph $1 .$. who reigued 1540 в. c. He also thiuks it prohahl that the chambers of the brick Pyramids at Memphis, erected by the snccessor of the son of Cheops, would
prove to be raulted over with arches, which wouk 'arry back the antiquity of the arch to $2020 \mathrm{~B} . \mathrm{C}$.
ln one of the Egyptian pyramids is an arch turned over three stones which formed a stone
 arched ceiling to the sarcophagus chamber. The two outer stones were set edgeways and inclined inward, having the other placed upon them, forming an arch.
Over these stones was turned a brick arch, the radius of which was 6 feet 2 inches, amd the span 11 fert. It consists of foum courses, and is 3 feet 10 inches thick. The stones beneath were 4 feet long, and 15 inches in breadth. At the back the joints were packed with chips, and the whole was grouted with fluid mortar.

This tomb is of the time of Amunoph $1 ., 1540$ B. c. The stone arch at Saccara is of the time of Psammeticus $11 ., 600 \mathrm{~B} . \mathrm{C}$. The arches of the tombs of Beni Hassan are coëval with Osirtasen 11. and the Viceroy Joseph.

Arelies are found in Chinese bridges of great antiquity and magnitule ; and as before shown, those of Egypt far antedate the periods of Greece or home. Arched vaults are found anong the ruius of Nineveh.

A building at Mycenæ, in Grecce, called "Treasury of Atreus," lias an interior pointed done of 48 feet diameter, and of about the same hight, the section presenting two intersecting ares of about 70 fect radius. The difficulty of working vonssoirs has

Fig. 300.
 bren evaled by making the beds horizontal throughout, the top being formed of allat stone. The soffit of each course was then cut to the required angle with its bed by means of a teuplet cut to the radius of the vault (Fig. 300).
This form of arch is sometimes known as the "Egyptian," anul of conrse is an arch merely in name, the constructive principle being entirely different, as the stones of which it is a mposed are only subject to vertical pressure.
The Greeks did not allow arches to appear in their visible architecture, but used them for covering drains and the like, as in the teniple of the Sun at Athens and that of Apollo at Didymos. It was, however, contrary to their architectural principles to almit any but straight lines into any visible part of a building, except, perhaps, as mere ornamentation, thus sacrifieing in many instances convenience to secure that severe simplicity of outline by which their public structures were characterized. The Romans male very free use of them. The Cloaca Maxima, or Great Sewer, of Rome, is the oldest known
example of Roman workmanship; it is lelievel to have been constructed more than five hundred years before the Christian era, and is yet in a prefect state of preservation, still continuing to 1 rriom its original functions. That penple also used arches as triumplal monuments; the arch of Titus was erected A. D. 80 ; that of Trajan, A. D. 114 ; aul of Constantine, A. D. 312. The Gothic style, which originated ahont the nintle century, and soon spread over the whole of Europe, was emphatically the style of arches. Its special characteristios are the clustered pillar and the pointed areh. The mediaral masons treatel them with a bohlness and freedom unknown to the luillers of Ancient liome.
Their constructions display an astonishing amount of practical science, and clearly show that their tasto was equal to their skill. Long before the properties of the catenary had been develonell by Hooke, it is more than probahle that they were known in prartice to the old Freemasons who built Henry Tll.'s chapel and other structures of similar and previous date. The span and hight of some of the principal vaulterl arched structures are as follows:-

Date.		Breadth.	Hight.	Propor: tion.
		Feet.	Feet.	
Tarquin 1.	The Cloaca Maxima	16	26	1:1625
1st century	" Temple of Peace	83	121	1:1.46
13th "	Cathedral of Salishury	35	84	$1: 2.3$
"	" of Amiens	42	147	1:3.5
${ }^{6}$	Westminster Abbey	33	99	$1: 3$.
14th "	Milan Cathedral	55	165	1:3.
17 th "	St. Peter*s, Rome	84	147	1:1.75
4 "	St. Paul's, London	41	82	1:2.

For examples of arches used in linidge construction, see Brange.
The term "arch" in its widest signification, is commonly unterstood to mean almost anything of a curved shape employed lor the purpose of bearing weight or resisting pressure, but in its more restrictel mechanical scuse may be lefined as a collection of welge-shaped bodies termed roussoirs or arch-stones, of which the first and last at each extremity are sustained by a stupport or abutment, while the intermediate ones are held in position by their mutual pressure and the alhesion of the mortar or cement interposed between them. The center voussoir a, in
the highest part, or crown, of the arch, is called the keystone. The inferior surface of the arch, $b d f \subset c$, is the intrados, or soffit, but this latter term is sometimes restricted to that part of the

Fig. 301.
 under surface in the immediate vicinity of the keystone, or crown. $b d, c c$, are the funks of the arch. The exterior or topisurface is called the catrados, or back. The points, $b c$, where the intrados meets the abutments, are called the springings : their horizontal distance apart, the spon; and the distance, of f, from the center of this to the center of the intrados, the rise or height of the arch.

The simplest, as it is the earliest, form of arch, is that of a segment of a circle, generally less than a semicircumferrnce, such as is foumd in the works of the Romans. The (iothic architects about the tenth century originated the pointed arch, formed by two arcs of circles describerl from different centers, and neetingat the crown. Three and four centered arches were introduced into the later Gothic architecture.

Three-Centered Arch.

In the three-contered arch the lower prit to the bends of the haunch. es was formed by the corresponding opposite aress of one circle having its center in a line perpuendicularly beneath the crown of the arch, the nuper opposite sides to the crown being describedi with equal ramii, greater than the ratins of the lower part, from centers at equal distances on rach side of the perpendicular passing through the crown of the arch.
The four-centered arch was, as its name imports,

Fig. 303.

Four-Centered Arch. lescribed from four centers, the two lower centers being perpembicularly umter the two upper ones; from the latter are described the lower parts of the arch near the risings, and from the former, with greater radii, the urper barts to the erown ; of this form is the Tudor areh, hearing somewhat of a resemblance to the ellipse. The elliptic arch is employed largely in bridge building and in the construction of vaults, drains, cte.
In Fig. 304 are shown some of the forms of arches employed in architecture.
a. The Semicircular arch, de-
 scribing half a cirele.
b. The Segment arch, struck from a point below the springings.
c. The Elliptic arch is not always truly elliptical, but is sometimes formed by the com-

[^3] bination of the ares of several circles.
d. The Stilted arch rises from points below its center.
e. The Iorseshoe arch is peculiar to the Moorish or Arabie style of arehitecture.

Various styles of pointen arelses were employed by the Gothie architects, as shown in Fig. 305.
c. The Equilatcral arch; so termed because the two spring. ing points and the crown of tha intrulos form an equilateral triangle.
b. The Lancet arch is more pointer than the equilateral arch; and
c. Ther Drop arch kess so.
d. The Segmental Gothic areh is compesel of two segments of circles merting ohtusely.
e. The Oype arch was introduepal at a later period of Gothic arehitecture.
f. The Tudor style prevailerl during the close of this most graceful order, and was so named from the then ruling family of the English dynasty. It has
a much thattened arel, low moldings, and a profusion of pruetings.

Foiled arches, Fig. 306,
met with in Saracenic and Rommestue huiklings.
The Flot arch (Fig. 307) is rery benerally employed in doorways, fireplaces, aml windows of buihdings; its intiados has no curve, thoneh the vonssoits are arranged so as to ratiate to a center, and are lain in paralles "omses: where any considerahbe pressure is to be resisted, it is usually sulported by horizontal lairs of iron or wood laid across the opening aml having their ends supporterl in the

Flat Arch. wall on each side.
In some examples of old date the voussoirs are held up by indented joints which fit into each other. In this lorm of arch it is manifist that almost the

Fig. 308.

Fireplace of Coningsburgh Castle.
of spirals intersecting at right angle.s the conersing joints, or those which divide the stones of each course, so that the voussoirs are rectangular on the soffit, exchit those puoins or voussoirs on the faces of the arch where the section exlibited is elliptical.

In Fig. 310 , instead of radiating the loed-joints from the center ol the eylinder, they are marle perpenalicular to tha curve of the saffit on the ohligue sec. tion.
Of the parts of an arch, -
The top is the extrados, or buch:
The under-side the intrados, or somit.
The line from which it conmences is the springing line.

The stones of the arch are toussoirs.
The lower one on each side is a sprinug. er, or rein.
whole pressure is vertical, and that the arch is sup-1 The middle one is the keystone, and the course ported principally by the cohesion of the parts ; so that it cannot be used for covering amy but narrow openings. As at present employed in brickwork, its principal use is to relieve the pressure on a beam or lintel below it.

Oblipue, generally called skew, arches have their axes obligue to their faces, and on account of the difficulty of their construction are sellom employed, unless in railroal bridges where the direction of the line of the road renders it necessary to cross streams obliqnely to their courses. In such cases it is necessary that the piers should be parallel to the current of the stream, in order to offer as little resistance as possible and afford a free passage to tho water.

A bridge arched in this manner is said to have been built near Florence as early as 1530 , but their general introduction dates no farther back than the era of the commencement of railroal construction, about or a little previous to 1830 .

The ordinary method of building a skew arch (Fig. 390) is to make it a portion of a hollow cylinder, the voussoirs being laid in parallel spiral courses, and their beds worked in snch a manner that in any sec-

Fig 309.

tion of the cylinder perpendicular to its axis the lines formed by their intersection with the plane of section slall radiate from the axis of the cylinder. In this mode of construction the soffit of each stone will be a prortion of a cylindrical surface, and the twist of the beds will be uniform thronghout the whole of the arch ; so that we have only to settle the amount of the twist, and the stones can then be worked with almost as great facility as the voussoirs of an ordinary arch. The hearling joints, or those which divide the stones of each course, are prortions

Skele Arch.
the key-course.
The upper portion is the vertex, or crourn.
Mislway between the crown and the springings are the haunches, or flenks.

The springers, or reins, rest on imposts, abulments, or piers.

The extreme width is the span.
The rise of the curve in the center is the rersed sine, or rise.

The spare between the hrunch and the outscribing rectangle is the spandrel.

The joints between voussoirs are the abreuvoirs; which are perpendicular to the surface of the sofft.

The exposed rertical surface is the ficer.
An Ammealing Arch is the oven in which glass is allowed to cool gradually. See ANNEALING.

An Arabien Arch is one of horseshoe shape. The diameter is less at the springings than above.
A Baskethandle Arch is a three-centered, low-crowned arch.

A Blind Arch is a closed arch; one which does not penetrate the structure. Commonly employed for mere ornamentation, to make one face of a bulding correspond in character witl another front where there are actually arched openings.

A Calenurian Areh is one in the form of an inverted catenary curve, or that which a chain suspended at eacli end naturally assumes.

A Componnd Arch has an arehivolt receding in steps ; giving the appearance of a succession of receding arches, of varying spans and rersed sines.

A Concentric Arcli is one of several courses whose curves litve a common center. Common in Nobman ant Saxon architpeture.

A Discharging Areh is one which is formed in a wall to protect a space beneath from the superincumbent weight.

An Arch of Equilibrium is one in which all parts are of similar strength, and the whole capable of standing without abutments.

An Arel of Equipollence is one in which the voussoirs are sustaned by mutual opposition ; the thrust of the crown being transferred from one stone to another till it reaches the abutments.

Fig. 311.

A Furmuce Arch is one which spans the fire-chamber and supports a battery of kettles ; or it may form the ceiling and roof of a metal. lurgic furnace, - a puddlling furnace, for instance.
Furnace Arch.
A Groined Arch is one in-
tersected by ather arches cutting across it transversely. The point of junction is at !roin.

An Inflectcel Arch is il reversedorinverted arch.

An Invertcal Arch is one with the crown downwards, as in the floor of a tummel, the space beneath an opening in a foundationwall, ete.

A Lancet Arch is a narrow peaket arch, which was much employed for windows during the prevalence of the Gothic style of architecture, known as Early English.

A Laminated Arch is one male of strceessive thicknesses of planking, bent into slape, and secured together by treenails or otherwise. See Arcred Beam; Laminated Ahch.
A. Rumput Arch is one whose abutments are on an inclined plane.

A Relieving Arch is one on the spandrel of an arch, to distrihute and limit the pressure.

A Sheue or Scheme Arch, is a circular arch not over 180°.

A Shicw Arch is one whose line of direction is oblique with its abutment. See Figs. 309, 310.

A Straight Arch is one built with voussoirs, which give a level intralos, used as the head of an aperture in a wall.

A Sployed Arch is a funnel-shaped arch; one whose two end sections are unequal.

A Tuecer or Tuyere Arch is an arched opening in a furnace-wall at which the blast-pipe enters.

A Tymp Arch is the arched oprening at which the metal is discharged from a smelting-furnace.
2. (Mining.) Annnworkedportion of the ground.

Arch-board. (Shiphuilding.) The part of the stem over the counter, under the knuckles of the stern timbers.

Arch-brick. A compass brick, or one of weelere shaje.

Arch-but'tress. A flying buttress; leaching from the onter wall of an aisle to the clear-story of the nave to form a beteral support against the thimst of the roof.

Arched Beam. (Curpentry.) A bran cut, bent, or huilt into an arched form to support a structure, as a ceiling, rouf, or vialuct.

One form of the arched bean is exemplified by the roof of the dininer-roon of the Chaterhonse School, London (Fig. 312). This much-perverted charity is well honsed, and the roof of the refectory is formed with cireular ribs in fon thicknesses of $1 \frac{1}{2}$-inch deal four inclres wide, with saw-cuts half an ind in depth on the under sides, and put together with murine glue, on a eradle center. The dotted lines show the collars, which are dovetailed one inch into the sides of the principal rafters. The principal watters, being five inches wide, project on one side an inch before the face of the cirenlar ribs, which are only four inches wide. On the collars rest the purlins supporting the rafters. The ceiling joists are spiked uj, to the circular ribs.

The five main arehes of the Ousehomme Viaduct of the Newcastle, Nosth Shields, and Tyuemonth Railway, England, are built of arehed beaus ; three

Roof over Dining-Roon at Charterhouse School.
of these have a span of 116 feet each, and the others have 114 feet span. The hight of the rails above the hed of tha stream is 108 feet, and the width of the viaduct is 31 feet, -26 for a double line of rails, and 5 for a foot-path. At each end of the viatuct are two arehes of masomry, and the total length is 918 fect. The two mildle jiers are erected upon piles from 21 to 27 leet in length. All the piers are of masonry, and tapered noward, the principal buing 21 feet wide between the footings and 15 feet at the springing of the arches. The piers are continmed upward, of reduced dimensions, to the level of the roadway, the whole of the five main ardies, spandreling, and superstmeture being formed of timber. The radius of these arches is 68 feet, and their rise or versed sine about 33 feet.

The ribs forming the arches are composed of planks of Kyanized Dantzic pine, the lengths of which vary from 20 to 46 feet, by 11 inches wide and 3 inches thick. The thickness of each rib is mude up of fourteen planks so bent as to form an areh, and laid together so as to break joint both transversely and longitudinally. They are fastened together by oaken treenails, $1 \frac{1}{2}$ inches in diameter and 4 feet apart, each treenail perforating three of the planks. Between each joint in each direction is placed a layer of strong brown paper dipped in boiling tar.

The spandrels are formed of trussed framing, and the platform of the roadway, which is composed of 3 -inch planking, is supported upou transverse beams laid 4 feet apart. The platform is covered with a composition of boiling tar and lime, mixed with gravel in applying it, and thus forming a coating impervious to water.

The arched beam has been very extensively used in the timber bridges of the United sitates. See Whoones Bridge; Arched-Beam lique.

Arched-Beam Bridge. A bridge whose span either consists of a compound beam, or one in which such a beam forms one element in the truss, as in many of the wooden bridges of the last century and the present. Sue Woodex Biadge.

Compound arched beams of irou are also becoming common, and many beantiful bridges are now made on this principle. See previons article.

The arched bean is now a fivorite form of bridge. Angle-iron of varying cross-section is freely used. See Irus Bridge.

Arched-Beam Roof. In the sisteenth century Philibert de Lorme, a French architect, invented an

Fig. 318.

De Lorme's Arched Beam.

arched beam (Fig. 313) made of pieces of timber which were cut into short arcs of the required circle, placed edgewise, and bolted together, breaking joint. Several roots in Paris and Londou are, or were, of this construction.

It was a disadrantage of this plan that the pieces were necessarily short, as they would otherwise present a cross grain to the strain.

The largest roof of one span, in its day, was that of the Imperial liding-House at Moscow, built in 1790

Fig. 314

Imperial Riding-House.
(Fig. 314). The span is 235 feet. The members of the arched beam are notched together (Fig. 315) so as

Fig. 315.

Notched Arch-Beam.

to prevent slipping on each other. The ends of the arched beam are prevented from spreading by a tiebeam, and the arch and tie are connected together by vertical suspension-rods and diagonal braces.

Colonel Emy's arched beam (1817) is constructed on a principle differing from both of the foregoing (Fig. 316). The rihs in this roof are formed of planks bent round on templets to the proper curre, and kept

Fig. 316.

Eny's Arched-Beam Roof.
from separating by iron straps, and also ly the radiating struts which are in pairs, noteled out so as to clip the rib between them.

The principals, wall-posts, and arched rilh form two triangles, firmly braced together, and exert no thrust on the walls; the weight of the roof, heing thrown on the walls at the feet of the ribs, and not at the pole plate, permits the upper portion of the walls to be comparatively light.

The Colonel erected a roof of this description in 1825 at Marac, inear Bayounc.
The principle has been extensively adopted in wooden bridges in the [nited States and in Europe. See Woodex Bringe.
The illustration opposite represents the roof of the Union Passenger Depot of the New York and Harlem Railway, projected by Commodore Vandurbilt, and constructed from the designs of J. C. Buckhout, C. E. The roof is 6.52 feet long and 199 feet 2 inches between walls. It is sulported upon 32 semicircular trusses, which are spaced 20 feet 4 inches between centers, extending from a point 2 feet below the rails to an elevation of 94 feet from the springing line to the extrados of the arch. Each truss has at its foot two tie-rouls $2 \frac{1}{4}$ inches in diameter, with a turn-buckle at the mid length. The pitch of the roof is formed by rafters secured to the top chord of the arch.

The trusses weigh about forty tons each, and were raised in sections by means of a movable staging 80 feet high, 160 feet long, and 30 feet wide, moving on ways, and shifted along step by step as the work of raising the trusses progressect. About $8,000,000$ pounds of iron were used in the structure, $10,000,000$ bricks, 20,000 barrels of cement.

The car-house is lighted through three skylights, extending over the entire length of the roof, - one on the center, double-pitched, and a single one on earll side of the center, and having altogether $80, n 00$ square feet of glass, - nearly two acres. The north eurl is closed by an iron front, the south end by the huilding containing the principal offices of the Company.

The roof covers nearly three acres, the station it-
melf about fonr acres. The station is designed for the use of the Inulson liiver, Harlem, N. Y. Central, and N. Y. and New havell hailways, having limes of rail for each company, besides those for the Fourth Avente horse-cars which rme into and to and from this station, which was opened for traffic October $\overline{7}$, 1871. The gas-burners of the building are lighted at night by electricity ; $25,00 n$ feet of electric wire being used, and 20,000 fret of gas-pipe. The 144 steam-radiators are heated by 15 miles of steam-pipe.
The roof is ventilated by six lines of ventilating slats 6 feet high and 8 inches wide, with a Z-shaped interval between the slats.

The roof of the St. Pancras Station of the Midland Railway, England, cosers wearly four acres. The roof hal at the time of its erection, and may yet have, the widest span of any in existence, 240 feet, and the space beneath is mbroken by ties or braces. Its style is subulned Gothie, with segments meeting at its crown. The roof springs from the platform level, the principal ribs each having the form of a four-centered arch, the radii of the curves being 57 feet and 160 feet respectively. The two central curves - those of 160 -feet radius - meet at an angle in the center at a hight of 96 feet above the platform level. The length of the roof is 690 feet, with a clear span of 240 teet, covering five platforms, ten lines of rails, and a cab-stand 25 feet wide, thus making a total area of 165,600 square feet. Its hight at the ridge is 125 feet above the level of the road. There are twenty-five principal ribs in the roof, 29 feet 4 inches apart from center to center, and each weighing about 50 tons. The station walls rise, hehime the spring of the principal, the space at the top being filled in with open ironwork.

The roof is glazed about 70 feet on each side of the center, and the remainder is covered with slates.

The transverse girders whieh support the floor of the station take the thrust of the roof. They are connecterl so as to form continuous girders across the station, and rest on the walls of the $17 \frac{1}{2}$-feet story beneath. Besides being tied to the girders, the feet of the ribs are each secured by four 3 -inch bolts to an anchor-plate built into the wall and stronery finstened.

Arched But'tress. A flying buttress, or arcbortiont.
Ar'chil. The extract of Orchilla weed, used for dyeing, usually eraporated so as to form a solid mass like indigo. Called also Orchil and cudbear.

Ar'chi-me-de'an Drill. A drill whose stem consists of twisted pinion wire, or a core having stee 1 spirals. A nut with intermal ablique grooves is reciproeated on the stem and rotates the latter. A Pehaian Dhile (which sce).

Ar'chi-me-de'an Pro-pel'ler. A propeller consisting of a continuous spiral vane on a hollow core running lengthwise of the vessel. It is an amplification and extension of the serew. Figure 317 shows it in lorizontal and transverse sections. See Screw Propeller.

Ar'chi-me-de'an Rail/way. A form of railway in which a continuous shaft rotates on pillars erectei] between the lines of rail, the shaft having a spiral rib which acts as a screw upon a pedestal below the car to propel it along the traek.
Ar'chi-me-de'an Screw. The invention of Archimedes when in Egypt, about 260 B. c. It consists of a hollow inclined screw, or a spiral pipe around an inclined axis; the lower enul is submerged in the water and the upper end discharges.

Strabo refers to a water-raising machine of this kind, used to supply the garrison of the Memphite Babylon, on the Nile, and worked by 150 men.

Fig. 31\%.

It was also used as a draining pump by the Turdetani of lberia in the time of Strabo. This was thie country of the Guadalquiver. See Screw, Archimetean.

Ar'chi-tect'ure. The classic orders are five: Duric, Ionic, and Corinthian (Greek) ; Tuscen and Composite (Roman). The more modern is Gothic, which has several varieties : Anglo-Roman, B. C. 55 to A. D. 250 ; Anglo-Saxon, A. D. 800 to 1066 ; An-glo-Norman, 1066 to 1135 ; Early English or Pointed, 1135 to 1272; Pure Gothic, 1272 to 1377; Florid, 1377 to 1509 ; Elizabcthan, 1509 to 1625. Ther subject is copiously and admirably treated in many excellent works. Its interest in a work of this character is not as an art, but as reguiring machinery to hew and shape the stones, construct the founlations and the roof, and also calling for ingenuity in providing the building with its material accessories for safety, ventilation, warmth, light, and convenience.

The following are dates assigned by some authorities for the buildings mentioned : -

he Pyramils	(about)	B. C.	
Memmonium			1350
Solomon's Temple			1004
Birs Nimroud,			900
Jupiter Capitolinus			616
Parthenon			438
Pantheon		A. D.	13
Colisemm			70
St. Sophia			532
Mospue of Omar,	Jerusalem	"	63
Caves of Ellora		'	700
St. Peter's, Rome			1626
Lonulo			

The tent is the original of the Chinese style.
The cave is the original of the Egyptian.
The loy cabin suggested the frecian.
The arenue of trees the wondrous Gothic nave.
The possession of iron and various facilities of
work have yet insjired no one. Some are anxious to build iron houses as much like stone as possible; the most anbitious attempt is an immense barn at Sydenliam, England, - an engineering success, but not a work of iuspiration.
The Egyptian capitals were the prototypes of those of the Grecian and Roman orders ; and the various ceramic works of the Greeks and Etruscans were strangely like those of the Nile people. The opening of the Egyptian ports by Psammeticus, 670 B. C., was fortunate for the uations on the northern shore of the llediterranean.
For Specific Index of Architectire, see Masox's asd Bhicklayer's Work.
Ar'chi-ton-nere. A name for the Steam Gus.
Ar'chi-trave. (Archatecture.) That portion of an entablature which rests upon the columns; the lintel.
(Curpentry.) The molling around a doorway or window. The respective portions are known as the transucrse architrave, and architrave jambs.

Ar'chi-volt. (Architccture.) a. A molding running round the face of an arch.
b. The inner curve formed by the roussoirs or arch-stones.
Arch'stone. A wedge-shaped stone used in an arch; a voussoir. In some furnaces the chamber, or an opening thertinto, is covered by a flat ashlar, which is called an arch-stone.
Arc'o-graph. An instrument for descrihing ares of circles without the use of centers. A thin and pliable strip of metal whose ends
Fig. 318.
 may be sprung into the requirel shape and then fastened by set screws. Unless the stock have means for extension and contraction, the range of arc which may be described will be but limited. The device is susceptible of many variations, and is useful as a templet or marker for many purposes.

A-re-om'e-ter. in instrument used by the Spanish Saracens A. D. 1000. It had a bulb and stem similar to a hydrometer ; floating in liquid, its stem was more or less submerged by the changes in the density of the liquid due to changes of the temperature, and thus constituted a thermometer.

Nicholson's areometer consists essentially of the funnel a, the cylinder b, rod $c m$, and the table or plate d.

The instrument is so arranged that when set in distilled water and a definite weight laid upon d, it

Fig. 319.

Nicholson's Areometer. will sink to a mark m made on the rod. To detemmine the specific gravity of a mineral, it is laid on the plate d, when it will of course depress the instrument in the water. Additional weights must be added to bring the mark m to the lerel of the water, anl the amount of these subtracterl from the standard weight already referred to will be the weight of the mineral in the air. Call this weight p. Remore the mineral from the plate, and place it in the funnel or hollow cone α; immersed in the water the areometer will not sink quite to m, say about to c, the body losing in water an amount of weight equal to that of a quantity of water of precisely the same volume with itself, that is, equal to
that of the water displaced. Adilitional weights are now to be laid on d until the lerel m is again reached. This amount, which we will call p^{\prime}, expresses the weight of an equal volume of water. We hare thus ascertained the weight of precisely equal volumes of water ani of the mineral, and as water is the standard taken, $\frac{n}{p}$ will express the ratio of the two, or the specifie gravity of the body.

Thus, $x: 1:: p: p^{\prime}$, and $x=\frac{p}{p}$.
The areometer of PAlpr's, the Gireek philosopher contemporary with Theodosins the (ireat, A. D. $379-395$, is described by Al-khâzinî the Saracen, an eminent writer of the twelfth century, the author of the "Book of the Balance of Wisdon," and suspected to be identical with the great Al-Hazen, whose celebrity is associated with the Cordovan period of Spanish history. It was a graduated brass tube which floated rertically in liquid and indicated by the line of submergence the degree above or below the "equator of equilibrium," the sprecific gravity of the matter weighed.

The surmise of Cher. Khanik off, indorsed by Draper, that Abu-Jafar Al-Khâzini and A1-Hazen were identical may be correct. They were certainly contemporaries, but the former, whose name it is innossible to find in any other part of the Persian annals, fails in some respects to answer for 'Abu-'Ali Muhammad Bin 'al-Hasan 'lbu 'al-Haitham, said to be of Basrah.

The book referred to above as the writing of AlKhâzinî was composed, as is seen in the Dedication, at the court of the Saljuke Sultân Sanjar, who reigned over a large part of the ancient khatifate of Baghdâd from A. D. 1117 to 1157.

The areometer of Pappus is very similar to the Ioluneter of Gay Lussac.

Gay Lussaces stale areometer consists of a cylindrical glass tube in the lower part of whicha ball b is blown, and, being continued, finally terminates in another bail c. The latter is filled with shot or mercury, to cause the instrument to sink vertically in distilled water to a certain point, the zero. The specific gravity of a liquid is ascertained ly the depth of depression, its weight being equal to that of the liquid displaced. It is a form of liydrometer.
A-re-o-sty/los. Anintercolumniation of four diameters width.
Ar'gand Gas'-burn-er. The Argand Gas-burner has a circular series of holes on the upper edge of a cylindrical chamber, having a central aperture to allow access of air to the inside of the flame.
The jets from the series of holes unite to form a cylindrical flame. The holes are ahout one sixth of an inch in diameter, and when there are
 ten holes in the circle, the Gay Lussac's Areometer middle opening will be four tenths of an inch in diameter; with twentr-five open. ings, the central aperture will be ahout one inch in diameter.

The following formula is giren for the number of holes, central aperture, hight of flame without swoking, and approjriate size of chimney :-

No. of Apertures.	Central Opening. inch.	Hight of Flame. inch.	Diameter of flass Chimney. inch.
10	$\frac{3}{5}$	$3 \frac{1}{2}$	$\frac{8}{1}$
15	$\frac{1}{2}$	3	$\frac{1}{1}$
20	$\frac{3}{5}$	$2 \frac{1}{0}$	1
25	$\frac{1}{2}$	2	$\frac{1}{0}$
	2	2	$\frac{3}{0} \frac{5}{1}$

In Fig. 321 the lower section of the burner has an orifice for the gas, which is more

Fig. 321.

Argand GasBurner. or less obstructed by the end of a screw which is either turned directly by hand, or, when rertical and inclosed within the burner, is turned by a lever projecting through a slot there. in.

Ar'gand Lamp. Invented by Argand, a native of Genera, about the year 1784 . It consists of two concentric cylindrical tubes between which is fitter the annular wick used in this pectliar burner. The anmulus inclosing the wick is elosed at the botton, and communicates, by a pipe, with the oil reservoir. The interior tube being oquen, free access

Fig 322.

Argand Lamp. of air is allowed to the interior and exterior of the flame, insuring wore equal and perfect combustion.

In a round solid wick, lurning any of the fatty oils, such as sperm, a large proportion of the carbon, which in that elass of oils is greatly in excess of the hydrogen, escapes unconsumed and is wastel, lising in the form of smoke.

The annular wick las double the surface of a solid one of the same diameter exposed to the contact of the atmosphere, and as the flame is also thinner its temperature is more uniform, and the vapor from the center of the wick is consumed equally with that from its exterior. The combustion is also greatly aided by the draft caused by the glass chimney, continually bringing fresh supplies of oxygen in contact with the fame and protecting it from currents of air. The chimney was the invention of l'Ange.

Argand died in 1803. A French meehanic named Carcel patented an improvement in 1800 , in which the oil is pumped from the reservoir to the wick hy power derived from a spring or by the ascending column of air above the chimney. This is ealled the Mechunicul Lemp, ant is used in the large limps for the Dioptric system in lighthouses.

The Argand lmmer as monlified by Fresmel for the Dioptric system in lighthonses has four concuratric wicks, the outer one $3 \frac{1}{4}$ inches in diameter, and the great heat produced is carried of by two means, overflowing the wicks with oil, and by means of the ventilator levised by Faraday. The oil in supwahundant quantity is pumped into the wick-tubes and thows over the top. The ventilator is a tube having several sections, the lower portion of each heing flaring, and receiving the upper end of the section helow, whiell enters it a short distance. The top of the lamp-chimmey enters the lower section and problnces a great draft.

The Argand limp first made eflective the Catoptric system for lighthouses.

The annexed engraving shows the lamp in its lower position, withdrawn from its place in the focus of the paraboloid retlector a for trimming. b is the burner , antl c a eylindrical fountain containing twenty-four onnces of oil. The oi]-pipe, burner, and fountainare conneeted to a frame d, which is novable in a vertical direction upon guide-rods e f, by which it can be let down by simply turning the handle g.

An aperture of an elliptical form, measuring about two inches by three, is cut in the ujper ant lower part of the reflector, the lower serving for the free egress and ingress of the burner, and the mprer, to which the copper tube h is attached, serving for ventilation ; i shows a cross-section and a back view of the main bar of the chandelier or frame on

Fig. 323.

Argand Lamp. which the reflectors are ranged, each being made to rest on knobs of brass, one of which is solhered to the brass band l, that clasps the exterior of the reflector. m is an oil cup to catch drip. A frost lamp is placed at this point in winter to kerp the oil in the wick-tube in a flowing condition.

The tubular wick-burner (Fig. 324) las a wa-ter-chamber $D C^{\prime \prime \prime}$ interposed between the wicktube and the oil-reservoir, soastoprevent
the heating of the contents of the latter. The wick oceupies an anmular space formed by two concentric wieks. I is the sleflecitor plate, and $C^{\prime} I$ a filtstrum to reflect npwarl the beat which reaches the insile of the tube. $G^{\prime \prime}$ is a purforatell floor to prevent the conduction of tlame, on the principle of Da-vy'ssafety-lamp. The water las an overtlow down the centrild airtube. K is the hase ring for the chimney.

Ar-gent'alMer'-cu-ry. Silver amalgram.

Ar'gen-tan. An

alloy of nickel copper aml zine. Albata; German Silyef (wlich sex ${ }^{2}$.

Ar'gen-tine. White metal coatel witlo silver.
Ar'gen-tine Glass. In ornamuntal glassware having the sheen of silver. It is the invention of Apley Pellatt, and is formen by inclosing delicate white Argentine incrustations of dry porechain clay with solid and transpurent glass.

The dry ligures are placen on a red-hot bulb of flint glass and immediately covered with a thin layer of very thiul glass.

The exterior layer is polished, and gives a silvery brightness to the white figure.

Ar-gen-tom'e-ter. A graduated tube used for ascertaining the amount of silver in a solution by the admission of a definite bulk of chloride of sodium solution.

Ar-gen'tum Mo-sa'i-cum. An alloy, or rather amalyam, of tin, bismuth, and mercury, used for coloring images of plaster of Paris. Argcntum Dfusivum.

Ar'gil. Potter's clay, from the Latin argillit: white clay.

Ar'go-sy. A merchant-shin of the Jlediterranean; specially of the Levant. The term is now antiquated.

A'ri-es. The battering-ram, so called because the metallic head of the beam was sometimes fashioned like the head of a ram. As a means of battering walls it is sail to have been inrented by Artemanes of Calzomene, a Greek arehitect, about 441 в. с. It is described by Josephus, who states that it was sometimes supported on the shoulders of men who adranced on a run ; at other times it was' slung from a frame, and operated by ropes.

Philip of Macedon is said to have been the first to place the frame on wheels, at the siege of Byzantium. Plutarch informs us that Mare Antony, in the Parthian war, made use of an aries 80 feet long. Vithuvins says they were sometimes 106 to 120 feet in length.

A-rith-mom'e-ter. An instrument for assisting in calculating. The most ancient form is the Abaeus (which see). This has a series of wires, the balls on which represent units, tens, hundreds, etc., and is nsed by sliding the balls on the wire, to tabulate the result of each successive inerement or decrement of numbers.
lf the balls were numbered and several series were strung upon a ring, they might be passed contimuously in the same direction, as the addition required.

The Arabs, to whom we are indebted for the introduction of the Indian numerals, termed their treatises "Systems of Indian Aritlmmetic." The worl cipher is the Arabic tsmphora, - "blank" or "roid"; alluding to its integral value. The word algebre is also Arabic. The words chemise, cotlon, are also Arabic, and to the Arabs Europe is also indebted for the introdnction of the garment and the material. Mohammed Ben Musa wrote a treatise on algebra in the latter part of the pinth century. The Khalif Al-Maimon measured a degree of latitude on the Red Sea shore. This, when the teachings of Constantinople and Rome were on the scale and standard of Byron's Grand Seignoir, -

[^4]An anthmometer was suggested by the Marquis of Woreester in his "Century of lnventions," hut was not described. It was adapted for addition and subtraction.

Sir Samnel Morland, in 1672-73, published a treatise on the use of two arithmetical instruments adapted for addition and subtraction.
ln Fig. 325., instead of balls on a wire, a series of sectional belts operate numbered wheels, which are rotatahle in one direction only. The numbers on the peripheries of the wheels are exposed at a row of openings in the case. The sections of the belt are perforated so as to be moved by a peg, the selection of the place for the peg being assisted by a row of numbers over each belt.

Fig. 335.

Computing Machine.
The Calculator (Fig. 326) has disks numbered on their peripheries and arranged on a common axis.

Fig. 326.

- Calculator.

They are mored by cogs exposed conveniently to be operated by the finger, and are so connected that

ant eluculation of the mode of pormit an exact elucilation of the mode of operation of this
ingenious machine. Another form of arithmometer is that in which
lisks of varying diameters overlie each other, and Another form of arithmometer is that in which
disks of varying diameters overlie each other, and communicate motion to each other in regular series, as in Fig. 328, the units to the tens, these to the humlreds, etc. The principle is substantially the sume as those previously described, but the device has a compact appearance, and the result is read on a dial.
One other form is analogous to the disks of a gasmeter register, which is in fact an arithmometer.
the motion of ten
cogs on the disk of units gives the next clisk a single impulse and registersten, and soon through the series. The result is visible at a slit in the case.
Fig. $3 \supseteq 7$ has also the numbered disks, which are moved by handles sweeping in circular arcs. It performs the operations of addition, subtrac. tion, multiplication, and livision, the results appearing at different slits in the case. Space will not permit an
operation of this

Ciphering Machine.
Sre Fig. 329. The different disks are arranged on their separate axes, and usually have their numbers on their circular faces. A revolution of the unit wheel gives one tenth of a revolution to the wheel registering tens, and so on ; the numbers of the wheels appear at the series of openings in the slit, and are read consecntively. In the gas register the impulse is all imparted to the unit wheel, and from
it is transmitted through the series: but in adding machines (allh wheel must have capacity for indepembent rotation to register thonsands, hundreds, tens, and units, not affecting those below it of lesser denomination, but each imprarting to the one above it one tenth of its own motion.

Registering devices are to be seen very perfectly construted in steam-engines and 1 rinting-presses ; in the former to record the number of revolutions of the shaft for economical purpose in estimating the consumption of steam, the slip of the pachles, etc., and in the latter case for keeping record of the number of impressions. See Calculating Machine, Babrage's.

Ark. A flat-bottomed boat made of a frame annl boarcls which do not usually overlap, but are naikend to the frame and have the interstices calked or daubed.

It is used on the Western rivers to transport produce, jults, marchandise, ete.

Ar-lien-ans'e. (Fitric.) A kind of Spanish linen.
Arm. (Angle-Irons.) 1. One of the wings or flanges of angle-iron. The side-arm of the angleiron in a ship's frame forms the jaying-surface to which the plates are riveted. The other arm is in the plane of the transverse section of the vessel.
2. (Knecs.) One of the members or projections of a knce. With timber knees, the arms are usually two, resting respectively against the berm and the ship's silles. With iron knees, the arms may be more numerous, and nay embrace other sides of the object to which they appertain.
3. (Nautical.) One of the projecting members of an anchor, terminating in a fluhe or polm which takes hold on the ground.
The arms unite at the crown.
The throat is at the junction of the inner edge of the arm with the shanh:

The tread is that part of the shouk reaching from the throut towards the sloch, a distance equal to the length of the arm.

The pee or bill is the point of an arm.
4. The onter piece of an overshot waterwheel bucket. Also called the wrist. The inner piece is the floor or bottom. See Bucket.
5. (Iehicles.) That part of the axle which passes through the hut of the wheel. The axic-spizadle. When of woorl, it is strengthened hy metallic straps called skeins, and sometimes by a conical sheath called a thin-ble-skicin.
In carriages it is of iron, in continuation of the iron axle, or it is inserted into the end of a wooden axle. See Axle.
6. Of a liammer. The handle of a triphammer, which receives the impulse of the canls.
7. Of a windmill. The beam which supports a sail ; the sail itself; also called a whip.
3. A spoke of a gear-wheel.
9. An end of a yard.
10. A weapon; as, side-urm, fire-urm, small-arm.
Arm, Ar-ti-fi'cial. Artificial arms are adapted for amputations alove or below the elbow, respectively. In the former case the mo:ements, in the most prefect artilicial arms, are derived from the motions of the stump; the backward motion of the latter ex tending the joints of the prosthetic arm and hand, and the forward motion of the stump flexing the said joints. These motions are derived from bars or
cords which connect the forearm to a shield on the shoulder, as in Kocller's, or to bands on the boly, as in Condell's and in Uren's.

In these cases the upper arm consists of a socket to receive the stump of the limb, and is secured by straps to the person with a certain degree of rigidity. The anterior and posterior tendons or rods have a firm attachment at or near the shoulder, pass along or through the upper section, and are attached to such points on the forearm that, as one or the other is tightened, the forearm is tlexed or extended. In some cases the oscillation or the elbow-articulation is obtained by cords which have direetur intermediate attachment to the loream, as in Condell's and Peterson's; in others the cords or bars move a toothed wheel which engages a pinion on the elbow axis and gives motion to the forearm, as in one of Foeller's.
The backward motion of the stump, it will be appurent, tends to strain the anterior tendon, which is so connected to the forearm behind the elbowjoint as to extend the forenm. The forward motion of the stump strains the posterior tendon which comects to the forearm in front of the articulation, and thus flexes it as the stump is moved forward. These motions follow the natural ones, as, for instance, in the act of raising the hand to the mouth it is usual to oscillate the arm forward on the shonlder as a pirut, and backwardly as the hand descends. In the matural arm the pivotal position of the forearm is varied so as to canse the said arm to swing in an are whieh will bring the hand to the required place, say the mouth, for instance; in the artificial arm, the motion on the shoulder is the generator of the motion on the elbow, and a certain amount of practice and adjustment is required to proportion the parts so that the consentaneons action of the parts which proluce the compound motion may, without apprent constraint or indecision, land the hand at the olject. When the trunk of a person affords points of attachment for the Hexor and extensor straps, the motions of the shoulder itself, relatively to the thorax, and involving the clavicle and scapula, may be made to assist in executing the motions required.

The primary motion of the stump having been communicated to the forearm by the means described, (and the special devices are various and very ingenious,) the motions of the hand are derived from that of the forearm by means of tendons, slides, or other attachments. The construction will farther appear when considering some of the varieties of artificial arms, though it will not be possible to alford space for an exhaustive description even of the sixteen patents which have been selected and are now before the writer.

One class of arms does not reccive motion from the stump, but retains the position at which it is set by the other hand, or assumes and relains it hy swinging it in one direction or the other till it is engaged by a spring latch. Drake's, also Lindsay and Vance's, are illustrations of the former; Lincoln's of the latter.

To secure the requisite lightness and afford room for the operative devices, artilicial arms are made hollow. The material is varions, and some patents have been issucd for the use of specific materials, such as rawhide, which has a toughness and strength hardly to be excelled. Vulcanite, papier-maché, layers of fabric alternating with glue, veneers, cardhoart, and hollow woorlen blocks slaped to the natural contour, have all been adrocated and used.

The tubular form does not always extend to the metacarpus, and the fingers especially are frequently made of solid jointed blocks, with tendons, cartilage, and ligaments. These prosthetic parts perform the functions of their correlatives, as being the means of motion, giving resiliency to the contact of the parts, and specitic connection to the phalanges. In the latter case, the hingeing of the parts, it must be admitted that the lumau mechanic has assumed a hard task in attempting to copy the natural articulations, and that he has done commendably with the materials at hand.

In Condell's arm the loop appendage is a yoke of webbing for the attachment of the socket to the stump, and for securing such a rigid connection to the body that the three straps procceding down the humerus may be utilized when the stump is moved backward, forward, or rotated, in producing extension

Fig. 330.

and flexion of the arm and the forward motion of the metacarpus which opens the phalanges. The axis moves with the forcarm, and a stud P thereon adfords a point of attachment for the spring ν, whose duty is to assist in extension. The straps $D^{\prime} D^{2}$ are respectively attached to the yoke in posterior and anterior positions, and to the arm of the rock-shaft L at F and $d /$ respectively. The draft on D^{\prime} acts to flex, and on D^{2} to extend, the forearm, by means of the link B, which is pivoted to the forearm anteriorly. The flexor and extensor motions deseribed apply to the forearm, but do not involve the action of the hamd, the metacarpus of which is hinged by a through pin to the midewrist. A post g is permanently attached in the hollow of the arm, and a spring tendon Z passes from it to a point on the metacarpus back of its wrist articulation, so as to oscillate it backwarlly. This spring being constant, the normal position of the metacarpus is rearward and the fingers and thumb clased. The relation of the motion of these to that of the metacarpus will he presently described. The forward motion of the land and the opening of the grasp are effected by a sliglit rotation of the shoulder, which draws upon the strap c, oscillates the post d, and by means of the tendon e draws forward the metacarpus extending the phalanges.

The forward portion of the forearm is sleeverl upon the butt or woolen part in which the post g is secured. By the partial rotation of the forward portion the ulna-radial motion is given (hy the other hand), to wary the presentation of the palm ; the tendons which actuate the metacarpus still maintaining the same relation, that is, laving their points of attachment thereto at opposite siles of the axis of vibration.

The frame-piece m of each finger is piroted to a point on the metacarnus i, and the rool at the back of the hand is pivoted to the frame-pieee and also to a point on the forearm at o, so that when the metacarpus is moved, hy the means previously described, the frame m is oscillated on its pirot, and gives the primary deflection to the finger. The second section of the finger-frame is pivoted to a point on the frame m, and is connected by a link to a stud permanently attached to the metacarpms; by this means is obtainel the additional deflection proper to the second phalange. The additional deflection due to the thiril plalange is given by a roll attached to it and to the frame-picee m. The same arrangement is adopted for each finger, and the action of the plaalange is emmulative, the second and third phalanges participating in the motion of the first, and having an additional motion derived therefrom: the third in like maner participates in the motion of the second and third, and has a motion of its own derived from its predecessors. The proportion of the parts of respective fingers is so regulated that, in closing, the second, third, and small fingers receive a gradually accelerated motion in theorler stated, so as to imitate the natural closure of the hand, in which the little finger most nearly approaches the palm and the others stand in receding order.

The motions of the thumb are substantially equivalent, being derivel from its diverse points of attachment to the metaearpus and to a point on the forearm, so as to be closed liy the backward motion of the former, and conversely, as already stated in regard to the phalanges of the fingers.

In Fig. 331 the shoulder-cap is the basis for the movements of the arm, forenrm, wrist, thumb, and fingers. The strap \mathbb{C} is linged to the cap A, and connected ly a rod to the ring L. The straps $D E$ of the upper arm are also hinged to the cap and the
lower part of the upper arm; from the ends of the straps $D E$ proceed the slotted bars $I I N$, to whose

Fig. 331.
 Fig. 331.

Artificial Arm.
lower end the forearm is pivoted. The three straps mentioned are the means of suspension of the arm, forearm, and hand, and the stamp of the natural arm within this outer skelen is the means of imparting motion to the forearm, wrist, and fingers. The ring L is commected to the strap C, and hingerl to the forearm lehend the ellow-joint; it is guided in its motions by the slotted bars $I I N$. sliding down the said slots as the stumb is movel forwarl, and lhemby thrusting unon the point of the elbow and llexing the forearm.

Pivoten to the bars $H N$, near the elhow-axis, are the bifureated ends of the wire Y, which actuaters the fingers and thumb, flexing them as the arm hemls, by means of tension on the tendons which pass thongh the metacarpus and then diverge to follow the phalanges. By means of the lever K, the spring-slide 5 , and the notehed slot, the thumb aud fingers can be connected to or disconnected from the armand forearm, so as to receive motion therefrom, or otherwise as may be desirel. In the rotary movement of the stump the upper end of the strap D mins on a roxl attached to the shiche A under the axilla.

Fig. 332 is for amputations above the elhow. The shoulder-joint is imitated by a eap or collar and a hoop which turns on the collar hy looped brackets, which slite upon a wire ring suspendel to the lower edge of the collar. The ease which holits the stump is attached to the hoop by a hinged joint, and turns with it. The motions of the stump, whether rotary or back and forth, turn the hoop, and hy means of a system of jointed levers, the fixerl points of whieh are on the collar, and the case for the stmmp, motion is

communicated to a seg-ment-wheel at the elbowjoint to which the levers are attached, and this wheel, acting upon a pinion on the forearm, causes it to be flexed and extented accorling to the motions of the stump.

The hoop $D D$ slides on the collar of the artilicial shoulder A, the two portions being bracketed to a ring B between them. The hinge motion of the shell F of the upper arm is effected by the stump, and the segment-gear H, being linked posteriorly to the shoulder-piece, is rotated by the motions of the upper arm, which tighten or slacken the said link-connection R.

Artificial Arm.

together, and provided internally with a lock-phate to retain them in a flexed position when requited, To reblase the forearm a projecting eatch is tonched, which disengages the eatel-plate, allowing the amp to swing. To lasten the forearm fexed, it is swung forward, when the lock catches of itself. The hand is secured on the lorearm, and it and the fingers are rigid in a grasping position. The thmob shown in the smaller liguse has a constantly acting internal spring, and retains artieles placed in the grasy, betwerl the thumb and tingers. The hame may be detalhed, and a hook substituted therefor.

In Fig. 335 cach articulation has a ratchet and spring pawl attachment whereby any flexion impartcul is maintainet until fremel by a means which trijs the trigers. The foream at the elbow-joint has a ratehet, and a spring pawt is pivoted on the upperarm piece. liy pressing on the back of the pawl, the later is disengaged and the forearm freed. By the other means cited, the thmmband fingers are flexel so as to grasp an olyect, and are maintained in their bent positions by their respective ratehets and pawls. By pulling out the button s, the cross-bar ? is driven in ami overturns the rods t, which will bring the fingers back to their distended position.

In the ahove, the hame has necessarily heen considered in connection with the arm which actuates it, and in some cases owing to its leing associaterd with an arm of peculiar construction, although its own operative paits had no necessary connection with that specific arm. For some other varieties of hand stiucture, see Hand, Alitificial.

Ar'ma-ment. A tem expressing collectively all the camon and small-arms, with their equipments, belonging to a ship or fortification ; fregnently appherd, in a more restricted sense, to the artillery alohe.

The armament of ships aml forts has undergone a very great change within the $\mathrm{p}^{\text {ast }}$ thirty years. Abont 1540 the 32 -pounder gun was most usually employed hoth on shore aul shipboarl, 24-pounders forming no inconsiderable proportion of the armament of our forts. 8 -inch and wen 10 -inch gums amil howitzers were, however, monnted to some extent in the more important seahoaral fortifirations.

The armanent of a line-of-battle ship mounting eighty-four guns consisted of twenty-two 32-pounders of $57^{\circ} \mathrm{cwt}$ and tens-inch shrell-gms of 63 cwt on each of the two gun-derks, and twenty 32 -pounders of lighter weight on the spar-lerk; that of a $50-\mathrm{gmn}$ frigate was similar, omitting the battery of one gumdeck. In 1857 a $40-\mathrm{gm}$ steam frigate was armed with twenty-four 9 -inch guns on the main-leck aml fonteen 8 -inch and two 10 -iuch pivot-guns on the spar-deck; 11-inch pivot-guns were also introlueer as a prart of the armanent of stean sloops antl smaller vesselds.
litlect or breech-londing ordnance was practieally unknown. The commencement of our late ciril war lronglat with it the era of 15 -inch smooth-hores weighing 50,000 poumds, amb at or shortly after its close 20 -inch guns, weighing more than 100,000 lhs. and carrying it hall of 1,060 lbs., had been cast. The former of these classes now forms the usual armanme of ony monitors. Riflerl gmos of calibers up to 10 inches (as the l'arrott 300 -pombier) were also introduced, and this size has brem expeeted in Euron", 30 -ton Armstrong hreech-loaders, canrying a projectile of 600 lbs . Weight, being now in hase in the English mavy, while North Germany and other continental nations are little, if any, helinel in this respect. In the 1 Inited states service great reliance las been placed on the "smashing" qualities of round projectiles of large caliber fired from smoothbore gans when employed against iron-clad vessels,
while the impression of European artillerists is that they are compatatively ineflim ient in competition with elougated projectiles diecharged from rifled guns ; these are, accorlingly, the only kind now employed abroad on first-class war vessels, and appear to have almost, if not entirely, superseded smoothhores, with the exception of mortars in the armament of furtifieations.

Ar'ma-ture. A piece of soft iron applied to a loarstome or comecting the poles of a horseshoe magnet.

In certain forms of electro-magnetic instruments a magnetized armature is employed, which may vither br a permanent magnet of steel or an electio-masnet. The armature must have a polarization the olymesite of that of the magnet and by its use the recoil-spring may be suppressed.

Arm File. A nam from the German. A heted file.

Ar'mil. An ancient astronomical instrmment. When composed of one ring placed in the phane of the equator for determining the time of the "yuinoxes, it is called an equinoctial armil. When of two or more rings, one in the plane of the merilian for ohserming the solstices, it is called a solstititl :rrmil. - Whewnil.
The equinoctial armil of the " $S_{\text {quare }}$ Porth" of Alexandria is referred to by Hipparchns ant Ptolemy. A solstitial urmil is also destribuel hy Ptolemy (see Whewell, 1. 201). These amils ame divided into parts of sixths of degrees (10°). The reading was stated in prats of the circumfirence. Thus, Eratosthenes statel the interval betwren the tropies to le $\frac{1}{8} \frac{2}{3}$ of the circumference. Ptolemy used a part of a circle, a quadrant.

It is supposed that Fratosthenes surgestel to Ptolemy Energetes the construction of the large armille, or fixed circular instruntents which were long in use in Alexandria. Eratosthenes of Cyrne was hom B. C. 276 , and left Athens at the invitation of 1. Eurrgetes, who placed him over the libary in Alexandria, where be remaned till the time of P. Euiphanes abont B. C. 196. He is cerlumated for his attempt to measure the magnitude of the earth. He discoverel the oldignity of the ecliptic, which he mate to be $23^{\circ} 51^{\prime} 20^{\prime \prime}$. He ascertamed that Syene in 1^{\prime} pper Empt (lat. $24^{\circ} 10^{\prime}$ N.) was in the tropie, a vertical ghomon casting no shadow at noon on the day of the summer solstice, and thence determined its latiture to be equal to the ohlipuity of the ecliptic. Observations at Alpxandria determine the zenith of that place to be distant ${ }^{2}$ हो pratt of the circumberen of the earth from syeme, the are of the merilian betwen the two places heing equal to 7° 12t, which was measured by the Ptolemies amt foum to he 500 starlia. This gives roughly 250,000 stadia for the circmaference ol' the earth. The Olympic stadium was 2023 yards. See Udumeter.
Ar'mil-la-ry Sphere. An instrument to ollustrate the motions of the heavenly horlies. It was inventel by Eratosthenes ahout B. C. 255, and was employed till the time of Tycho Brahe, A. W. 158\%. It was ordinarily made of hrass, and disposed in such a manner that the greater anel lesser eireles of the sphere are seen in their matural position and motion. It was perhaps the principal agent in astronomieal observations in the musmom of Alexandria, which was founded by Polemy Soter, B. C. 298, and was plambered hy (y ril A. 1). 415, who prohably thought the sphere was some heathenish machine for invoking the infernal gods.
It was used by Aristarchus, who first took the heliocentric view of the solar system; by Archime-
les, the grand master of mechanics, contemporaneoasly with the building of the great wall of China; by Eratosthenes, the originator of astronomical geograjly; by Hiplarchus, the father of mathematical astronomy; and by Ptolemy, the astronomer, A. D. 150 , whose system was aceepted down to the time of Tycho Brahe, A. D. 15s2, and until Conernicus, Kepler, and Galileo revived the true siews of Aristarchns, the heliocentric theory promulgated nearly two thousand years betore.

Fig. 330.

E. The eartl.
a. Hour circle.
b. Nortll pole of the heavens.
c. Arctic cirele.
d. Tropic of Cancer.
c. Celestial horizon.
f. Celestial equator.
g. Ecliptic.
h. Tropic of Capricorn.
i. Antarctic circle.
i. South pole of the heavens.
l. Solstitial colure (s:mmer).
m. Solstitial colure (winter).
The armillary sphere consists of a frame with a horizon on which are represented the 360°, the region of the heavens, the calendar, and the hight of the sun for every day in the year. Two notehes in the horizontal circle, and corresponding to its morth and south points, receive the fised meridian, whose plane is perpendicular to, and center coincident with, that of the horizontal circle. Within this meridian the other circles, as well as the small terrestrial globe, may all be rotated together on the common axis of the hearens anl earth. The merilian can be moved in its noteles, still retaining its rettical plane, and in this manner the general axis nay be place l at rarious angular distances with the horizon. The center of the small terrestrial globe is coincident with that of the general armillary sphere. The hour circle is fastened to the north pole of the
fixed meridian, and has a movable index, which when fastemel revolves with the axis. It is still used in demonstrating astrononical problems.

The urmillary sphere of the Hindu astronomers is describerl in the Sanserit treatise "sirya-siddhinta," translated by Rev. E. Burgess, aid jublisherl in the Journal of the Amencan Oriental Society, Vol. [']. [J. $141-498$, New Haren, 1860. The instrument was illustrative of the positions and motions of the heavenly hodies, rather than for astronomical observations: in this respect differing from the Greek, Arab, and carly Emopean instruments.

Arm'ing. (Wautical.) A plug of tallow in the hollow at the bottom of a sombling leat, to hring mp sund, minute shells, infusorice, etce, from the lattom.

Arm'ing-press. (Eooldinding.) A screw pres having it jlaten heated hy gas-jets, and serving to fix the gold-leaf upon the book-covers upon which it is inflessed. See Buckise-fiens.

Arm'let. A clasp or Joup for contining the sleeve to the uljer pestion of the amm. L'sed to loop up the short sleeve of children's dresses.

A protecting sleese of lather or metal, worn on the forearm, ant used as a shield for the amm or as a corring for that portion of the cont-sleeve.

Ar'mo-rer's Gage. For veritying the dimensions of the varions parts of small-arms are templets of various sizes and shapes, rings, and cylindical or conical gages for interior dimensions. 200 are embraced in a complete set for the varions anns made at the Government armory, of which about 78 are nsed for the rifle-musket alone.

Of these, the culiber gage measures the dianneter of the bore.

The dimension gages show the length of the barrel and its diameter at rarions distances, the value in inches and parts being measured by the culiper gutic.

Other gages measure the proper dinmsions of the breech-screw and its thread, and those of the counter bore of the barrel which rectives it : others, again. the form, dimensions, and position of the sights.

A seprarate gage is required for the lock-phate, and for each seprarate part of which the lock is comprosed ; as the mainspring yugr, sear yage, bridle graye, tumb? er gage, hummer yage, etc. ; also gages for the various dimensions of the stock, of the layonet, and of each of the appendages whith actompany the gum.

The number of 200 , above given, might lee swelled to several thousand, by including those required for inspecting the rarious carbines and pistols made by different parties for the Cnited States govemment; all which were marle so that the parts of the same kind might be interehanged.

Ar'mor, Per'son-al. Defensive clothing or corering for the body in battle.

Scale and clain armor were common among the old Egyptians (time of Rameses 1II.) and Assyrians, also amoug the Persians and Romans. Dr. Abbott's collection in New York containsthe iron hehet aml scale armor of Sheshonk, or Shishak, the king of Eqypt who overthrew Rehoboam, seven years after the ideath of Solomon. The scales are the shape of the Egyptian shiehd round end dornward, and some of them are marked with the cartouche of the king.

The Sarmatians wore seale armor of pieces of horn or horse-hoofs fastened to a linen doublet.

Goliath was armed with a coat of mail (1 Samuel xvii). It is frequently spoken of by Homer. Demetrius, son of Antigonus, had a coat of mail made of Cyprian adamant (perhaps steel). Cyprus was famons for its armor. The ancient Seythians had ammor composed of horse's hoofs curiously strung and jointed together. Hengist the Saxon had scale
armor A. D. 449, and King Joln of England possessed a hanberk of rings set elgewise, 1200 . The cavalry ol Henry 111. had coats of mail. Henry VII. had a steel cuitass, 1500 . Since the introduction of fire-arms the mse of armor hats been gradually discontinued, and it is now confined to The heavy eavalry or cuirassiers of Luropean armies. As worm at present, it generally consists of a lelmet of brass strengthened with steel, and a cuirass composed of a front piece, or breast-plate, and a back iece strongly laced or backled together. The sucess of the French cuirassiers in the famous cavaly :ombat at Ecknuhl, 1809, was in a large degree wing to their wearing complete curasses, white he Austrians were only provided with breastslates.
For illustrations and descriptions see Frost's Pictorial Itistories, and the leonographic Encyelopedia.
Of ancient armor some remarkable examples are to be found in the tribolites of the Sihmian age, "a famity in whose nicely jointed shells the armorer of the Nidulle Ages might lave fomm almost all the contrivances of his craft anticipatel, with not a few, besides, which he hal faited to diseover. They were covered over, back and heul, with the most exquisitely constructed plate-armor ; but as their abdomens seem to have been soft and defenceless, they had the ability of coiling themselves rome on the approach of danger, plate moving on plate with the nicest adjustment, till the rim of the armed tail rested on that of the armed heal, and the creature presented the appearance of a ball defendel at every point. In some genera, as in Calymene, the tail consisted of jointel segments till its termination ; in others, as in llaenus, there was a great caudal shield, that in size and form corresponded to the shield which covered the head; the segments of Calymene, from the tlexibility of their joints, fitted clase to the cerebral rim ; while the same eifect was proluced in the intlexible shields, caudal and cephalic, of llienus, by their exact correspondence, and the flexibility of the connecting ring;, which enabled them to tit together like two etpual-sized cymbals bronght into contact at every paint by the hame." -- Huef Milleh.

Ar'mor-plat'ed Ves'sel. A vessel whose exposed prortions are protected by iron plates. The plating reaches a certain distance below the waterline whon in tighting trim. See Armor-Phatinas.
Ar'mor-plates, Ham'mer-ing and Roll'ing. Armor-plates may he either hammered or rolled. When it is desired that the armor shall be of one thickness of stont plate of from four to six inches, hammered iron seems to be preferable on accomet of the increased temacity conferred upan the plate by the closer interbacing and condensation by this process. Owing pincipally, however, to the greater rapidity with which rolled plates can be manufactured, and the ficility with which they can be l.ad together and bolted so as to constitute armor of any required thickness, and the ease with which a damaged plate ean be replacell, the rolling process has been more generally resorted to in this comntry. Hammered-iron plates are made from "Blooms," which may be procured from the forge, or preferally made at the works where the plate is forged. Any deserpiption of good scrap wronght-iron will answer for this purpose, as it is soon converten into one homogreneous mass muler the steam-lammer. The scraps ire piled into "fagots" of convenient size, and placed in the furnace. After reaching a welding heat, they are taken from the furmace by tongs suspended from a chain, and laid upon an anvil under the steam-hammer. By the first low
of the hammer an iron rod, one end of which is held by a workman, is weded into the figrot for the pmrpose of turning and manipulating it while being hammered. A very few minutes pounding ly the heary hammer sutfices to bring the mass into the bloon slape, - a bar of homogeneous iron some four or five feet in length and six inches thick; when sufficiently hammered, the hande is cut off, and the bloom is ready to take its place in combination with others in the formation of a plate. In this operation a long and stont bar of round iron, Hattened at one end, is used for sulporting the pite, which is composed of several layers of blooms hail in tiers one apon the other transversely; these are phaced in the furnace upon the flatemed end of the above bar, which is suspended near its mid length from a crane, and is elaspeed by tongs or handles to enable the workmen to turn and move the mass as desired; when sufficiently heated for welding, which requires several hours, the pile is drawn trom the furmace, swing romed and placed upon the anvil hy the clane assisted by the handles held by the workmen, and sulijected to the action of the hammer.

When the hlooms are thorouglity welded and the bilo drawn down to about the reguired winth and thickness of the plate, another pile of hlooms is added, welled on to its end, and the operation thas contimed until the desired length is attained. When this opreration is completel, the plate is again heated and pussed under the hammer, water heing thrown upon it as it is alvanced forward, which assists in removing seale and eleaning and smoothing the plate; these are then drilled to reeciving the bolts for fastening them into position on the ship, and afterward beat to the required curve.
The operation of rolling the larger description of armor-plates involves a number of applianes not usual in ordinary rolling mills. The mass of iron, being lieated in the firnace, is drawn thence ly chains attached to the steum-rollers and received by a wrought-iton ear. The forceps being detached and the chains llatar from the rolls, the car is atvinceld to the head of the incline, which it then traverses ly its own weight, and lands the elge of the phate into the grip of the rotating rolls. The plate is received on the other side of the rolls by another wrought-iron truck. The rollers being set nearer to cach other by about an inch, their motion is reversed, the plate landed into their grip, and carried throngh to the other side. This is repeated again and again, setting the rollers closer leetween cach operation, until the required dimensions are obtained. Sand is thrown on the plate from time to time, and water, which detaches the seale of oxide. This is removed ly serapers. The plate, being then laid upon the Hoor, is subjeetelel to the action of 15-ton rollers, which levels and sumoths the surface. The dimensions here stated refer to the alparatus used in rolling a 15 -inch artuor-plate in Eingland.
Ar'mor-plating. The application of iron for this purpose is of very modern origin. Cast-iron plates lad been proprosed long before as a revetment or faceing for fortifications; lnt this material was soon found unsuitable, on account of its brittleness, and consergent liability to be fractured by shot.

Iron armor was suggested in the United States in 1812, in France in 1821, and was experimented "uno in England in $18: 27$ at the sugcustion of Genaral Ford, who proposed to protect fortifications by wrought-iton hars.
Gregg's I'nited States patent, Mareh, 1814, was an iron-clad bomb-proof steam vessel, and will be noticed presently.

The first practical use of wrought-iron plates as a defuse for the sides of ressels appears to have been made by the French during the Crimean war. These vessels, - floating batteries, as they were termed, - though they seem to have hat sutficient seagoing qualities to enable them to mavigate the Mediterrantan and Black Sea, were ol light draft and exposed very little surfice above water; they rendered very elficient service, especially at the bombardment of 广inburn, in 1855, and their syceess probably led to the adoption by the French gorernment of armorplating on a much more extended seale; "La Gloire," launched in 1859 or 1860 , having been the tirst large iron-plated ship afioat. Her armor consisted of 4 -inch rolled-iron plates, supported by a backing of wool some three feet in thickness.

England, witls the determination not to be behind her Continental neighbor, commenced the construction of iron-clads immediately afterward. The most noted of those first built in England was the "Warrior," whose armor was of $4 \frac{1}{2}$-inch plates, backed

Fig. 337.
 inches of teak wood; the plating, howewer. merely covered the midslip portion of the vessel for some 200 fect, leaving a large space both at the bow anm stern of the vessel unprotected.

Another class of ironclads in the British Navy, represented by the "Royal Oak," wern" wooden ships of the line, not originally intended for carrying armor, lont which have been covered with $4 \frac{1}{2}$. inch iron plates bolted on to their woolen hull. In one respeet they have the alvantage of the "Warrior," their sides being completely nailet from stem to stern, as are those of "La Gloire." The "Minotaur," and others of her class, were originally constructel to receive plating. They are of very large size, ahout 6,650 tons, and are also completely potecterl, the plating exteming thronchout their entire length, and to a depth of several feet below the water-line; it is similar to that of the "Warrior," from $4 \frac{1}{2}$ to $5 \frac{1}{2}$ inches thick, having, however, a wooken backing of but 9 inches, which is said to be, and no doubt is, tou

Fig. 338.

" Hercules." thin to insure the great rigiliity reчquires.
The armor adopted for the "Hercules," which was another typical form of English ironplating, consists of an outer plating of rolled iron S inches thick, inside of which is 12 inches of woad, $1 \frac{1}{2}$ inches of iron, and 20 inches of wool, in the orther named, and an interior iron lining.
Mr. Chalmers's system, for which he claims very su-
perior efficiency and strength, is represented in the annexel figure ; it is compused of alternate layers of iron and woul, the outer iron plating being strengthened by horizontal plates interposed between the beams of the onter layer of wood.

This armor has been severely tested in England, and is reported to have given very good re-
 sults.

It is unlerstood that the "Palisser" bolt, in which the shank is rednced to the same dinmeter as that of the smallest part of the thread, is now used for fastening anmor-plates in the British navy.

The subject received very early attention in this country, and as early as March, 1slt, a "Ball-proof Vessel" was patented by Thomas Gregg, of Fayette Co., Pennsylvania. The design enoluaced a flat upper deck, from which the sides and ends sloped outwardly to the water-line, where the upper lart ol the wessel was very broad, overhanging the sub)merged portion and protecting the rudder and means of propulsion. The gun-deck was nearly level with the water-line, and jorts were cut in the sloping sides. The external appearance of this

Fig. 310.

floating battery seems to have been very similar to that of the confeilerate "Yirginia," formerly the "Merrimac," or some of our Western iron-clads. Copper or iron was proposed as a covering for the exposed portion. It does not appear that a vessel was ever actually constructed on Gregg's plan, but the invention is interesting as embolying some of the features which were afterwards adopted hy both North and South during the emergencies of our late war, and as showing that only some seven yrars after the first successful application of stean as a motive-power for vessels, it was proposed to rmplor it as a means of propulsion for iron-clad floating batteries.

In 1842 the late R. L. Sterens commenced at New York the construction of an iron-clad warvessel, under an agreement with the government, which seems to have never been completed.

This vessel, it is understood, was intended for speed, her lines being very sharp. Her dimensions have been stated as follows:-

Extreme length	420 feet.	
Beam	52	
Depth from lighting-deck	28	
Draft with coal and stores	20 "	6 inches.
Fighting-draft	22 "	6 "

She is provided with compartments into which water is admitted upon going into action, so as to sink her two feet deeper in the water, thus leaving l lesser expased surface. These compartments may be rapidly emptied by steam-pumps. The side armor extends ontside of the liull from stem to stem to a distance of four feet below the line of fighting draft, and is plated with $3 \frac{1}{2}$-inch iron. The armor of the casemate, which is sloping and has a shot-proof deek, is composed of $6 \frac{3}{4}$-inch plating backed by 14 inches of locust timber, in which are imbedued 6 -ineh wrought-iron beams at distances of two feet from each other. The upper deck is of $1 \frac{1}{2}$-inch iron plates resting on 6 -inch wrought-iron girders, filled in with timber and lined with $\frac{1}{2}$-inch iron plate. The guns are to be used ch burbette upon the top of the casemate, and are to be louded from below, by machinery, through holes in the deck ; they are pointed from within, and by means of a gradnated inlex within the cascmate each gun may be brought to bear simultaneously on the same object.

Captain Ericsson designed the Monitor class of vessels in 1854, though the idea seems to have lain dormant till the times were propitions. The "Monitor" attacked the "Merrimac" Mareh 9, 186., and, on the 11th of May foilowing, the latter committed suicide. The revolving turret was invented by T. R. Timby, and was patented by him in 1862. Captain Coles introduced a moditieation into the British navy, and was lost when the ill-fated double-turreted "Captain" foundered off Cape Finisterre, July, 1870. The "Captain" had two large turrets placed amidships, in each of which were mounted two 2.5 -ton rilled guns, throwing solid clongated projectiles of 600 pounds, or shells of proprortionate weight. In the forecastle and poop were two or three guns of smaller caliber. The thickness of her plating varied from six to ten inches. She was full-rigged, had two independent screws, engines of extraordinary power, steering apparatus of curious perfection, and a picked crew of 500 men.

The original "Monitor" foundered off Cape Hatteras with all on board.
There are now 54 iron-clad monitors in the United States service. The plating of the deck and overhanging portion of the hull nsmally consists of five 1-inel iron plates, backed by and holted on to a woorlen backing some three or more feet in thickness. The revolving turret is comiposed of eleven similar plates, firmly bolted togetlier, and sourranged as to break joints.

As might naturally be supposed, the late war was fertile in the production of devices for the protection of war vessels, dis-

c'umtesse's Armor. playing more or less ingenuity and adaptability to that olject. In the first and most numerous class of these, solidity and streng'h, derived from the arrangement of the plates and the minner of fastening and backing them, were prineipally taken into consideration ; while in the second it was proposed to

deaden the force of a batl striking the amor by giving the latter a considerable degree of clasticity or resiliency; allowing it to yield and afterward returu to its momal position. Some examples of cach of these classes will be given, as illustrating the different moles proposed in order to arrive at the same result. These are aranged according to the dates of the patents. Among the first was that of F .
Comtesse, April 22, 1861, who proposed to employ convex rounded shichds, partially overlaphing each other, attachect to thesides of the ves. sel by loops and cyebolts, for the purpose of causing the ball to glance oll upon strik. ing.

Wardex's patent, February 25, 1862, embraces a wrouglit-
 iron lattice framing,
 in and upon which an iron body is cast, so that, the latter being fractured, the pieces would still maintain their places, and jrotect, or partially so, the side of the ship.

Junes's Defensive Armor for land anù Water Batteries, April 15, 1862. ${ }_{11}$ this invention the ammor-plates have edge and intermenlFig. 342. ate flanges, and are placed in two tiers having intermeliate cushous between them; they rest against foundation - eushions, the whole being bolted together and to the casemate or side of the vessel by bolts, which are mrovided with elastic washer. cushions.

Callender AN1) Nurth-

Fig. 343.

Jones's Armor-Plating.

Callender and Northrup's Armor.

Fig. 345

Rur's Defeusive Armor, May 27, 1862, is composed of ribled plates which are fastened to interior concave stringers by bolts passing through the stringers and into metallic tubes between them ; each plate has a lap at its edge to fit the corresponding edge of the next plate, to which it is niveted. The nuts are ond the outside.

Ballarn's armor, June 24, 1862, consists of a series of inner iron ribs A A, with interposed wooden frames B B, longitudinal covering bars or plates C C, diagonal bars or plates 15 E , and outer covering plates F F.

Fig. 346.

Hotchkiss's Armor.

Hotchкiss's "Metallic Defensive Armor" for vessels and fortifications is formed by a series of plates, in which the lower ones over
Fig 347. lap the higher, so that when any me of them is struck by a projectile, the projecting edge may become detached, glancing the shot on to the next plate, by which it is further deflected and prevented from penetrating the armor. The cut represents the action of a cylindrical bolt whose edge has impinged upon one of the lapping plates; the dotted lines show the bolt in a subsequent position, in contact with the piece of armor-plate which it has removed, and glancing uron the successive plates.

Wool's armor, September 23, 1862, comprises sets of inner and outer plates, the former secured to the vessel by bolts whose heads are covered by the latter, each plate in the one set having a nib which fits between ribs on a plate of the other set, the two plates being counected together by pins jrassing vertically through the ribs. Longitudinal spaces are left at intervals between the immer and outer plates for the introduction of wood or an equivalent material.
Batbitt's armor-plating, January 13, 1863, for ships or batteries, is composed of wedge-shapeal bars laid crosswise to two other sets of bars, the whole being dovetailed together and filled in with cast metal.
Montgonery's armor, February 10, 1863, ilepends much upon its resiliency to resist the impact of projectiles. The onter plates are notched into each other, and fastened together and to a corrugated plate hy a rod. This corrugated rubber strips, as at m, for making the joints waterplate rests against the outer casing, between which, tight. The port-holes are strengthened by iron
and the inner casing are cylinders of riulcanized rubuer placed perpendicularly to the casings, the whole being bolted together.
Brady'smethod of "Alfixing defensive ArmorPlates," March 3,1863 , is by attaching them edgewise to the object to be protected, and securing them by means of bolts, whose ends pass into cavities in the inner edges of the plates, and are made fast by being enlarged therein, or by being intersected by transterse apertures through which pins or keys may be passed.
in WAPPICH's system, March 3,1863 , the outer ${ }^{\text {llates }}$ have projections passing throngh the hull and interior plating, where they are keyed : each onter plate has also projections or lngs k, entering the casing d to a certain distance, and recciving Fig. 350

Fig. 349.

Montgomery's Armor.

Babbilt's Armor-Pinting.

Fig. 351.

Woor's Amor. d

Brady's Armor-Plating.
the bolts l, which are keyed to the interior plate: it has also notched flanges, or bent ents, passing into the casing; these are employed to bind the

Brady's Armor-Plating.

 plate: it has also notched
ends of the plates together, and increase the stability of the armor. The outer adjoining edges of the plates are grooved

Wrappich's Armor.
 for the insertion of india-

Tiffs's Armor.
plates 0 , extending aroumd their elges, and also by an encireling fame or ring γ, between the immer and out(1' phatiag. Eatly jlatemay iue so arranged as to be pushed out, uyon runoving the keys h, and others substituteel. This system ol plating is denigned lor circular tarrets, as well as lor plain or slightly curved surtiues.

Turrs's Construction and defente of Wir lessels, Marcle 24,1863 . The sides of the vessel are recessed by benting inward the frame and the plating thereon, thus manataing the symmetry of the ont ward form.
liecosses are made in the sile's, in which the fixtures $m \quad n$ are secured, laving eyes into which serew-holts $f f$ are hookisl. Therse serew-bolts pass through the easing to the outside of the strajes g, where they Sccew into nuts.

EAns's Defensive Armor for Marine and other liatteries, July 14, 1863 , contsists of imner angle-irons, the llanges of which pass between the horizontal layer's of armor-plates. Dow-el-pins, inserted in holes in the Hanges, enter the

Fig. 353.

Enls's Amor.
layers of armor-plating above and below them, thus binding the whole together. The plates are so arranged as to break joints.

Twining's "Memus of Checking and Fesisting Missiles," July 28, 1863, embraees an arrangement of successive plates or layers with suceessive intervals between, and with hugs, angle-irons, or projections, when necessiny; the mote of eonstructing the suceessive layers and spaces between is hy bending forward and back a single plate, or several plates in layers, liom the outside to the inside, the plates being bolted together occasionally at their contacting portions.
The arrangement of Dimpfel's armor, Aug. 4,

Twining's Armor.
1863, will be readily unAcrstuod by reference to the cut. The ends ol one series of plates are let into grooves of a transverse set of T-iron plates, which

Fig. 356.

are bolted to the baeking. It is intended for application to either land or marine batteries.
Calowela's Construction of slipis of War. This invention was patentell in Engl:und April 10, 1863 ; in the United States, Ianuary $19,1864$. The dexign embraces a morngated iron- ${ }^{\text {b }}$ plated rool with portholess in the corrugations ; the port-shutters are composel of a number ol separate $p^{\text {dates of iron or steel }}$ one alove another, and fit into grooves in the edges of the ar-mor-plates. Around the ressel, just above the water-line, is a

Collins's Armor.
projecesing lip, to which imbia-rubber, or other similar raterial, may be attacined.

Collinsis Armor for ships and Fortifications, Lpril 19, 1864, consists of a traming of wroughtion tubular ribs $B P$, with external coils of steel wire a, and smounding casinge of imhia-rubber $b b$. Corrugated phates e e confine the tuhes together, and serve as attachments for the inmer and outer skins $c d$.
Chillexter.s Ship's Armor, Nay. 23, 1865. In

Fig. 338

Carpenter's Amor. this device the mitelte? plates, of steel or wroughtiron, lave dovetaled projections fitting into correspouling grooves in their outer facings, which, as well as the inner backingplates, are of chilled castirou. Staples pass through the inner and middle plates and into the onter one; the loopol each staple is let into a recess in the side of the ressel, and is canght by a holt which passes through the side and is secured in the interios.
Th - following statement from the "Lomlon Tines" coutains the dimensions of a number of English ironclads, with the thickuess of their amnor, ete.

Names.						Thickness of Backing.
Achilles	6,221	1,25) 380	59	26	41	13
Black Prince	6,109	1,550 380	58	2)	4	18
liarrior	6,1091	1,250330	35	23	4	18
Arincourt	6,521	$1.300+100$	59	$3 i$	$5 \frac{1}{1}$	10
Minotuar	6.6211	$1,351+40$	59	35	$5 \frac{1}{2}$	10
Nortiumberland	6,62 1	1,35) 400	59	$3 ;$	5	10
11 ertor	+,089	\$00 230	53	32	4	19
Valiant	4, 0.3	83023	5	32	45	13
Defence	3,721	610240		15	$4 \frac{1}{5}$	13
Resistance	3,510	650230		15	41	13
Calelonia	4,125	1,0)0273		32	$4\}$	(Woml s'ip. side "99 in.
Orean	4,04-	$1,0012 \cdot 3$	ご¢	32	44	" ${ }^{4}+1+4$
Prince Consort	4,045	1,000273	j¢	32	45	" 2904
Hoyal Alfrel	4,048	800273	$5{ }^{5}$	32	4! 6	" 29 "
Royal Okk	4,056	8.02%		32	4 +	" 293
Lord Clyde	+,05	1,070 2¢ 3		34	4\},5, 6	" 31% "
Lor 1 Warden	4.027	$1,(0) 28$	59	$3 \pm$	41, 5!, 6	"6315"
Zealous	3716	801252	59	15	4]	"30] "
Bellerophon	4.246	1,0003'10		12	6	10
Pallas	2.352	600295		5	41	Hood ship,
Farorite	2,094	th0 225		8	41	" 23 "
Revearch	1,2-3	200135	$3{ }^{3}$	4	$4\}$	" 19 "
Enterprise	933	160190		4	4	"191 "
Viper	13.	10150		2	$4 \frac{1}{4}$	10
Yisen	134	160169	32	2	4	10
Water Witch	77	13515		6	45	10
Prince Albert	2,524	500240	45	6	$4\}$	18
Royal Sovereiga	3,763	800240		5	5]	(Wood ship,
Scorpion	1,55	35029		4	3, 4\}	9
Wivern	1,55\%	350200	42	4	3,4 \}	9

"The British naval authorities have lately tried a practical, if expensire, experiment by anchoring their biggest and newest iron-clad, the "Glatton," in Portland hanbor, and detailing another ship to make her turret a target for 600 -pound projectiles. The Admiralty is probably satisfied with the trial, for although the turret was pretty badly damaged it was not disabled. The experiments will be continued in the hope of finding a system of iron-plating which will resist any possible projectile, and a projectile which will knock to pieces any possible system of iron-plating." - English Paper.

This is of a piece with the old problem, whi: 's modern slang wonld call a conumdrum: "When an irresistible liody comes in contact with an imnovable object, what is the result ?"

Ar'mor, Sub-ma-rine'. Submarine armor may be held to include all the devices to be attached to the person by which one is enabled to descend in the water, be protected from extrenie pressure while submerged, be fuminhed with rital air and with means for signaling the persons above and for assisting the ascent to the surface when necessary. These derices have been used in connection with the diving-bells, but the latter is not a necessary anxiliary. In the article on the diving-bell some instances of submarine armor are given, but only as incidentals.

Submarine armor has not as clear clams to antir-: uity as the diving-bell, if we accept the accounts of Aristotic and Jerome. The earliest distinct account of the diving-bell in Enrope is probably that of Iohn Taisnier, quoted in schott's Tichericen Curiose, Nuremberg, 1664, and giving a history of the descent of two Grecks in a diving-bell, "in a very large ket. the, suspended by rope, mouth downard"; which was in 1538 , at Toletlo, in Spain, and in the presence of the Enpletor Charles V .

Beckman eites a print in elitions of Vegetius on War, dated in 1511 and 1532 , in which the diver is representel in a cap, from which rises a long leather pipe, terminating in an opening which floats above the surface of the water.

Dr. Halley, about 1717, made a number of improvements in the diring-bell, and anrong them a leather cap for the head of the diver, with windows in front for the eyes. This helmet was usel by the diver when he left the hell, from which he received a supply of air through a flexible tube.
Tlie essential parts of submarine armor ronsist of a belmet and a jnotection for the hody: These are rendered necessary ly the great pressure of the water even at moterate depths. For instance, at a depth little exceeling five fathoms (30 feet), this pressure amonnts, ineluding that of the superincumbuent atmosphere, to ablout 29 pounds to the scyuare inch, being an excess of some $14 . \overline{7} 1$ ounds over that due to the atmosphere alone. For depths not exceeding 15 or 21$)$ feet, armor for the body is not perhaps absolutely essential, though very desimble if the diver is required to remain a considerable time under water : this part of the apparatus may be constructed of leather, vuleanized rublere, or gutta percha, or of metal. The helmet is almost necessarily made of metal. It has glass windows to cmable the diver to secs, and two tubes, - one for sulplying him with fresh atmospheric air from the smface, and the other for the ednction of the exbaled air. Weights are attached to the body of the liver or to the armor, if the latter is not sufficiently heary of itself, to enable him to exert his full power under water; the human body being very nearly of the same specific gravity as that fluill. A line is attached to the apparatus, by which the operator is lowered to any given depth, or hanled to the surface by the assistants, and hy which he can signal to them when necessary; for this purpose, however, another line is usually employell. Many diflierent constructions have been propiosed and exceuted. One of the best of the earlier forms was that of $\mathbf{~ I}$. Klingert of Breslau, 1795, in which the helmet was made of strong tin, and the jacket and drwers of leather. Inlalation was made through a tube embraced by the lips of the diver, who, fy the expansion of his chest at each inspiration, forcell ont of the helmet into another tube leading to dhe surface a puantity of previonsly exhaled air precisely equal to the fresls
air taken into the longs. In some of the older forms attached to the the helmet itsell was mate large enough to hold a quantity of air sumbient to sump the diver for a considerable length of time, differing little, in fact, from the diving-bell. The alparathe of Mr. Rowe, 1753, consisted essentially of a eopper tulne larm

Fig. 339.

Diring Apparatus. enough to contain the borly of the diver and a limited supply of ail which could be renewal from time to time by a bellows orforce-prmm, and having windows and wa-ter-tight holes for the amus. These cases have, however, heen completely superseched by the divingbell, and it by the more modern forms of armor, some of which will be mentioned. See Divise.

Fir. 359 shows a figure in a tiving-dress, attached to which is a reservoir of compressed air sulficient to last the diver several hours. It is strapped to the dress, and commmieates with the interior of the latter lyy a pipe which las a faucet. Expmusihe bags are attached to the shoulders, which are made boyant by indation from the compressed-air resectoir when reguired. The air-knapack is Weighted so as to cmable the diver to sink to his work. The ali-tube enters the mask at a point over the rar. The artist has made rather aldose fit of the dress and mask, and the elfeet is rather too chembie.
la Fig. 360 is shown a respimator designed to be
diver whereby air is supliced from a forcepmp in the vessel which tloats on the surface of the water. It hats an induction ant as celuction valve, which both open in the

Hawkins's Mouthpieve for Dierng Aipraratus same direction, giving way respectively to the halant of tresh arir and to the force of the extalat beath. While the breath is being inspired hy the liver the imbetion-valve is open to almit fresh air, amb whon expitation ocems, the induction-valve is closest, and the air passes out by the eduction-valve and the texible tube, which latter reaches to the surface of the water.

In Fig. 361 the diver is completely ineased in the armor, which has llexible jointed limbs ocerpied by the legs and arms of the occupant, ant enabling lim to nove from place to place and grasp, the ohjects of his seareh or perform his other daty in the premises. The joints of the limb-casings have articulations corresponding to those of the person, and are tiexest and extended by the natural motions of the diver. The prosthetic hands, which are attacherd to the encls of the tubular arm-casings, consist of tong, or nipplers, operated by rods, which are moved by the matural hands inside. The hooly and head of the person oceupy the chamber, which is large enongh to permit free motion, and the chamber is attached to the person by lands, and a girdle about the loins. An exterior reservoir, partially encireling the chamber, contains compressed air, whieh is almittel to the chamber by a faucet, as the air may become viliated by breathing. The opening of another fancet permits the vitiated air to escape through the tule which leals to the surface of the water. If the

Fig. 361.

Philips's Submarine Armnr.
perator wish to ascend without assistance, he turns another faucet, which permits air to pass from the clamber into a collapsed hag attached to the top of the apparatus. As the bag becomes inflaterl, it displaces water and renders the whole apparatus buoyant. To descent again, he closes the rock leading to the ballonn, and opens another which allows the air to escape from the balloon, which is collapsed by the pressure of the water: The compressed nir is intrucel to form a supply for the trip, the conntetion with the surface consisting of a lifting and lowering rope and the eduction air-pipe.

Othel armor for submarine explorations consists nerely of helmets which have the necessary windows to allow the diver to see his work, and are proviled with induction and ednction tubes to furnish the operator with a supply of rital air and carry olf that which is vitiated.

Some exploring apparatus are adapted for making observations without tlescemling. These comsist of tubes, telescopic or otherwise, the lower end heing brought into near proximity to the oljenet; and in one case - Inight's Englinh Patent, ahout 1847 - a second tube was providel, lown which was projected light from a lamp or the reffected light of the sum, so as to illuminate the object whose character or position it was desired to ascertain.

In 153.9. Thornthwaite (England) arlopted a waist-belt of india-rubber cloth, to which was connected a small, strong copper ressel charged with highly compressed air: The belt is put on in a collapised state, and the direr descemls: but when he wishes to rise, by a ralue le allows the compressed air to fill the belt, which increases his levity and assists his ascent.

The armor used by 11 r . Dean in 1834, when he descended to the wreck of the lioyal George (sunk ofl Spithead, August 28, 1782). Was composed of in-diat-rubber, made perfectly water-tight, anl laving a metallic helmet which rested on the shonlders and arlmitted free motion of the head. Three glass winlows admitted light and allowed the diver to examine the remains of the slip. A flexible tube was connected to an air-pump above, and admitted air to the lielinet. A sinking-weight of 90 pounds was attached to his person.

A race in sulnnarine armor took place in Boston harbor on the th of July, 186S. The course was 2,100 feet, reaching fiom Long Wharf to the Cunard Docks on the East boston side. Each diver hat a submerged direction-line, and each armoved safely, being accompanied by his hoat with its usual air-pump risocring. The time made was 17, 18 $\frac{1}{2}$, aml 21 minutes respectively. Each received a mize.

Ar-mo-zine', (Fubric.) A thin plain silk, generally black, and used for clerical robes.

Arms. The cluly was the first olfensive weapon. By knots and points it became a mace ; an ellop and a pole converted it to a battle-axe. It was adapterl for thrusting by giving it a point, abel hecance a puke or spear: and when adapted to be thrown became a dart or javelin, which might he recovered by a line, as among the 3 oors. Shortened and pointed, it became a dagger or poniard, and by receiving an alge hecame a sword, scimeter, or similar weajon. Pointed, and associated with n motor to propel it, we see the arrow and its bow, which is, critically considered, a really beautiful inrention. See Arcuery.
"The first weapons of mankind were the hands, nails, and teeth; also stones aml branches of trees, the fragments of the wools ; then flame and fire were used, as soon as they were known: and lastly was discovered the strengtly of iron and brass. But the use of brass was known carlier than that of
iton. inasmuch as its substance is more easy to work, amel its abundance greater."-Lccratul's; d. 51 Br c. at. 44

History commences after the invention of the how and arrow, and the Australian race seems to have diverged from the parent stock before its introlluction, as they, and they only, do not possess it. 'lhey have a curious analogue, howerer, in their flexible spears, which are bent, when andinsted for throwing, so that their reaction in straightening may increase the force of the projection. The perriliar course of their light when they dial not straighten perfectly may have suggested to them the rery miluue weapout, the hoomerang, which was imported into England as a curiosity perhaps 30 years ago.
luring the historic period we find the most anlcient weapon moted in the Pible is the sword. It was the "instrument of violence," as Jacolsealled it, wherewith Simeon and Levi slanglatered the Shechemites (Gemenis xxxiv. 25).

1 hineas, the grandson of Aaron, carried a javelin. Ehnd lad a shot't dagger (Julges iii. 16). Davill declined Saul's sword, and used a sling. litit afterward tonk the sword of Galiath. Many centurios before, all these wrapons had veen used in China, Intia, A-syia, and Eqyot.

Pinny ascribes the invention of the sling to the Phoniolams. The La'earic lslanders were celehated fur their expertness in its use.

Slings amb bows wert employed by all the nations of antiquity, but among those who attained the highest military reputation, as the Greeks and Ronans, were looked uron mernly as anxiliary wetp01ss, and the soldiers who used them were consitideril as an inferior elass. The heary-anmal soldiels, who composed the strength of their armies, were armed with the spear and sword. The former, as used by the Giecol:s, was some 16 or even 18 fert in length, anil emabled them to fomn a line of battle 16 men derp, a soid mass capable of withstamling the most violent slocks, or of breaking the finmest ranks of any enemy who was not armesl and disciplined like themselves: it was, however, deficient in mobilityand activity. The Fomans, on the contrary, pleforred an order of formation amd weaprons which admitter of greater activity and allowed more scope to the effolts of the individual solilier. lesides a lighter elnar, their principal weapon was the pilum, a short antl nassive jarelin with a triangular inon head, which was darted liy hand when within a few paces of their opponents, after which they drew their swords and arlvanced for close conllict. The lioman footsoldier's sworl was a short, two-edged weapon, greatly resembling the foot-artillery sword formerly used in the United States Army, and was adapited for either cutting or thusting, though the solelier was instructed to prefer the latter as more afietive and permitting him to preserve a better guard of his own person.

The formation of the legion was in eight ranks, and a distance of three feet was proserved between each file, as well as each rank, thus allowing ample rom for the maximuns effort of each separate man.

The offensive amms of the cavalry were a javelin and a long broalsword.

Cavaly does not seem to have performed such an important part among the Greeks and Fomans as it did among the more Eastern nations, as the Parthians, whose mounted archers, on more than one occasion, defeated and almost annihilated the legions of Rome.

Noimportant change in arms, except the introtuction of the cross-bow, seems to have heen matle matil the introduction of gunpowder; though the charac-
ter of the forces employed underwent a complete revolution. As Europe settled down into the gloom of the Midule Ages, discipdinel armies becane unknown, and the barlarous nations of the North who had uverrun it, in the conrse of time becoming converted into peaceful tillers of the soil, had lost their former military habits, and in times of war deyeneratedinto hittle better than camp folluwers.
C'avalry, including the knights and men-atarms ly whom they were attembed, constituted almost the entire strength of an army, and being neariy invulnerable to the ordinary weapons nsed by the foutmen of that day, such as pikes and bills, were capmble of putting to flight or slaughtering with impunity many times their own mumber of the latter, who were in general destitute of armor of any kind. The introduction of fire-arnis has gradually effected an entire change in the composition and discijpline of matern armies, and though the lance and sworl or saber are still employed, they are used merely as anxiliaries. Sce Ahthlebiy, FhesAn:us, Pliojectiles, etc. For a list of arms of varions kinds, eutting, missile, etc., see Wearins.
" Ships' arms are cammons, earronade, mortars, howitzers, muskets, pistols, tomalawks, cutlasses, bayonets, and boarding-likes." - Ammral suyth.

Arm'-saw. Another mame for the hand-saw.
Arm'strong Gun. A description of orrlnance adopted in the Euglish artillery for all field-guns and many of larger caliber.

It is built up of diffierent purts, so disposed as to bring the metal into the most firrorable position for the strain to which it is to be exposed. See Cannos.

Fig. 362.

The illustration does not show the mode of building up the gun, but illustrates the mote of breechloading. The inner portion of the barrel is made of coiled iron or steel, welded ; that mode of constructing being alopted to avail the tensile strength of the metal in resisting the bursting force of the discharge. The mode of reinforcing dillers somewhat in the different calibers and styles of the arm, but consists, generally speaking, of a number of reinforee bands of superior strength and thickness, over and in the vicinity of the charge-chanber anil the parts weakened by the transverso cavity in which the breechblock is slippeed.
a is the charge-chamber.
b the gas-check.
c is the lireech-block which slides in a transverse slot d. The breech-block is traversed by the vent.
e is a breech-screw having an axial aperture m, through which the charge is introducell from the rear, when the breech-block c is withdrawn. After the charge is inserted in the chanber a, the hock c is replaced, and the breech-serew c is serewed up, foreing a projection on the anterior face of the breechblock into the couical seat at the rear of the bore,
and tigltening the gas-check l in its seat, to prevent any ceseape of gas reirwarilly.
Ar'mure. (Fubric.) A tady's dress-goods, having a cottun chaia and wookn tilling, twilled.

Ar'my Wag'on. A wagon designed for the use of foot-soldiers on the piains, and so cunstructed

Fig. 363.

Army IVagon.
that the men can quiekly jump off the seats when attacked, and spming back again at once. The term is also applied to wagons for stores and ammunition.
Ar'nott's Stove. The origimal form of Dr. Arnott's stove is slown in Fig. 364, and perhays illustrates its peculiar principle better than do the subsequent modifications.
$a b d$ represent a box of sheet-iron, divided by the pratition $g h$ into two chanbers, communieating freely at the top
and bottom; c is the firp-box, formed of iron, lined with firebrick and resting on a ciose ash-pit with a daor at b, near which is a valved. opening by which air en- 3 ters to feed the fire when the door is shut ; i is the tloor of the stove by which fuel is introduced ; c is the chimney-fine. When the ash-pit
 door and the The Arnott Stove. stovedoor are shut, the quantity of air admittell by the valved opening in the ash-pit is only just sufficient to support combustion, aul only a small corresponding quantity of air can pass away by the climney. The whole hox then soon hecomes filled with hot air, or smoke from the fire circulating in it, and readering it everywhere of as uniform temperature as if it were full of hot water. This circulation takes place,
because the air in the front chamber around the fire-box, and which receives as a mixture the hot air issuing directly from the fire, is hotter, and therefore specifically lighter, than the air in the posterion chamber, which receives no direct heat, but is always losing heat from its sides and back; and thus, as long as the fire is burning, there must be circulation. The whole mass of air revolves, as marked by the arrows, with great rapidity. The quantity of new air rising from within the fuel, and the like quantity escaping by the flue c, are very small, compared with the revolving mass. The methods of regulating the supply of air will be noticed presently.

With this stove, Dr. Arnott, during the severe winter of 1836-37, was able to maintain in his library a

Fig. 335

The Arnott Stove. uniform temperature of from 60° to 63°. The quantity of coal used (Welsh stonecoal) was, for sereral of the colder months, 6 lbs . a day, - less than two cents' worth, -a smaller expense than that of the wood used in lighting an ordimary fire. The grate or fire-box, fully charged, held a supply for twenty-six hours.
Another common form of this stove is shown in Fig. 365. $A B C D$ is the outer casing; E the fire-bux over which is a dome k, with a funnel p, to carry off the products of combustion ; h is the stove-door, and g the regulator by which air is admitted. The device for automatically regulating the supply of air is described undel Thermostat (which see).

Ar'que-buse. This piece, an carly attempt at a portable fire-arm, had a massive stock laid to the

Fig. 366.

Arquebuse.

shoulder, and an offset near the muzzle by which it night be rested against an ohject, to break the recoil. It was fired by a match. It was used in the battle of Morat, where the Swiss defrated Charles the Bold, $1+76$.

Ar-ras'tra. One form of machine for comminuting ore. The name is derived from the Spanish word meaning " to drag," and is indicatire of the machine. It consists of a pan in which the ore is placed, and a vertical rotating post, to whose radial arms are attached thongs by which blocks or mullers are dragged over the ore in the pan. They are very common in Mexico, where they operate upon argentiferous ores, ani, according to Humboldt, do excellent work. They have heen superseded to some extent by other forms of grinding-mills. See Amalgamating Mills; Ore-stasp; Ore-chushele.

Three arrastras are patented in the United States.

Fig. 337.

Fig. 367 has the distinct arrastra characteristics, and is designel for the reduction of precious metals from ores and tailings: it has a cast-iron pan provided with two flanges, placed on opposite sides, and terminating in a hall-pivot, which rests in a cup-shaperl bearing on the frane, by which means the arrastra can easily be tipped when the contents are to be drawn off. A cup-shapel cavity serves also as a hearing for a ball-pivot at the lower end of the hollow shaft.
In another form the circumferential band on the inside surface of the arrastra is connected with the

Fig. 368.

positive pole of the battery, and the metallic radial gutters are attached to the encircling wive connected to the negative pole. The arrastras being filled with the pulserizel ore, water, and mercury, the electric current is caused to pass through the mass, and is intended to facilitate the separation of the metals from their chemical combinations, and further their amalganation with the meren'y.

Fig. 369 is designed as an improment on the Bertola Mill, October 20, 1857, lut differs from it in the fact that the mullers f are linked to the arms

k of the rotatingshalt, so that each is free to accommodate itself to the material over which it is draggem. 'The basin in which the mullers rewolve consists of at cireular iron trough through whose center the rotating axis passes up, being driven by machinery buncath. The muller, in his former patent, was not operated as in an arrastra, was not dragged, but was a hlock slipped over the cential hoss in the pan, and formed of an amular disk from whose opprosite elges a portion was removerl, leaving concave sides. The botton of the muller was grooved, and the part removed left spaces for the ore on each side, between

Kig. 370.

Bertola's Mill, 1857. it and the bisin. It was revolved by a sloaft alowe, loweres into operative contact with it as required, and the pulp was diseharged by opraings near the bottom, which were mostopred when the pan was tilterl on a horizontal axis. Openings above and at the bottom, respectively, discharge the water and the amalgam $p^{1}{ }^{1} p$.
The arrastra, as usually constructei, and described by Plillips, consists of a circular pavement of stone, about twelve feet in diameter, on which the quartz is ground by means of two or more large stones or mullers dragged continually over its surface, either hy horses or mules, hat more frequently by the latter. The periphery of the circular pavement is surrounded by a rough enrbing of wool or Hat stones, forming a kind of tub about two feet in depth, and in its center is a stout wooden post, firmly bedded in the ground, and standing nearly level with the exterior curbing.

Working on an iron pivot in this central post is a strong, upright woolen shaft, secured at its upper extremity to a horizontal heam by another jommal, which is often merely a prolongation of the shaft itself. This upright shaft is crossed at right angles by two strong pieces of wood, forming four arms, of which one is made sufficiently long to almit of attaching two mules for working the machine. The grinding is performed by four large blocks of hard stone, usually porphyry or gianite, attached to the arms either by chains or thongs of rawhide, in such a way that their edges, in the direction of their motion, are raised abont an inch from the stone pavement, while the other side trails upon it. These stone's each weigh from three to four hundred pounds, and in some arrastras two only are employed, in which case a single mule is sufficient to work the machine. Fig. 371 is a sectional view of a Mexican arrastra as usually constructed; A is the upright shaft; B, the arms, to which the mullers C are attached : and D, the central block of wool in which the lower beaning works.

Some of the arrastras nsed by Mexican goldminers, for the pruprose of testing the value of quartz veins, are very rudely put together, the bottom being made of unhewn that stones laid down in

Fig. 271.

Mexican Arrastra.

clay; but in a well-constructed arrastra, intended to he permanenty tmployed, the stones are carplully dressed and closely jointed, and after heing phaced in their respective positions, are grouted-in with hydraulic cement.

Ar-rest'er, Lieht'uing. An instrument used on telograph-lines, hy which static electrivity of high tension (lightning) is discharged from the line to the earth, to prevent injury to the telegraph instrinments or the operators.

It consists of an interposed resisting medium Which is traversed by a current of high temsion, and allows the charge to mass to the earth, hut which opposes the passage of the ordinary voitaic curpent. See Lightiving Ahreater.
Ar'ris. The external angle or edge formed by the meeting of two plame or curved surfaces, whether walls, or the sides of a stick or stone.
Ar'ris-fil'let. A triangular piece of wood placed under a lower course of slates, tiles, or shingles.

Ar'ris-gut'ter. (Carpontry.) A V-gntter fixed to the chipping-eaves of a building.

Ar'ris-pie'ces. The portions of a built mast benuath the hoops.
Ar'ris-wise. Diagonally arranged; said of tiles or slates.
Ar'row. The missile which is projected by a bow. linndles of arrows were called shecres.
It is usually of reed or of wond, aml tipperd with the best accessible materials; such as bone, flint, obsilian, metal.
The old English rule was to have the arrow half the length of the bow, and the latter the length ol the archer, so that a cloth-yard shefft was used by a man six feet high.
The bott was a peculiar arrow adapted to he shot from a cross-low. The arrow of an arbalest was ternucl a quarrel.
hmmense qquantities of flint arror-heads are found in the Celtic barrows throughout Europe. The ar-row-heads of the Scythians and Greeks were of hronze, aud had three flanges like a bayonet; such have been found at Persepolis and Marathon. The "barbarians," say the classic writers, use barbed (aduncec, hamatel) and poisoned (rencnata) arrows. The poison on the arrow was called toxicuem, from its relation to the bow, and the word was extended to poison in general.
The shaft was of polished wood, cane, or reed. The latter actually gave names to the weapon, arundo, calamus. The Egyptians used reed shafts; their arrows whe from 22 to 34 inches in length, and are yet extant.
The monuments show feathered shafts.
In the time of Homer, arrows were sometines pisoned. The poisonelarrows of the Indians of Guiama are blown through a tube. They are made of the hard wood of the Cokarito troe, are abont the size of a
knitting-needle nine inches long, and mounted on a yellow reed four or tive feet long. Une end is sharpened, and poisoned with woorai; the rear end receives a pledget of cotton to act as a piston in the tube. The eflective range is about forty yards. The hardwood spike can be removed at pleasure ; twelve or fifteen such spikes are carried by the hunter in a little box, made of bamboo. The poisoned spike is cut half through, at about a quarter of an inch above the point where it fits into the socket of the arrow ; and thus, when it has entered the animal, the weight of the shaft causes it to break off, the shaft falls to the ground uninjured, and is fitted with another poisoned spike and used again.

In like manner the arrows of the Busbmen, Africa, often have the slafts partly cut through, so that they may break and leave the point in the wound.

The serrated weapon of the sting ray is nsed by the Malays for heading some of these blow-arrows, with the express intention that they might break off in the wound.
The arrow-heads of the Sboshones of North America, said to be poisoned, are tied on purposely with gut in such a manner as to remain when the shaft is withdrawn.

A similar idea is carried out in a Venetian dagger of glass with a three-edged blade, having a tube in the center to receive poison. By a certain wrench the blade was broken off, and remained in the wound.
"In passing overland from the Fissequito to the Demerara," says Waterton, "we fell in with a herd of wild hogs. An Indian let fly a poisoned arrow at one of them; it entered the cheek-bone and broke off. The hog was found dead about 170 paces from the place where he had been shot. He afforded us an excellent and wholesome supper." The wild tribes of the Malayan peninsula, who use poisoned arrows, eat the meat of anintals killed by these deadly weapons, without even troubling themselves to cut out the wounded part.
There is reason for supposing that the discovery of the various poisons used for weapons, and the practice of applying them to such a purpuse, arose spontaneously and separately in the various quarters of the globe. Poisoned weapons are used by the Negroes, Bushmen, and Hottentots of Africa; in the Indian Arehipelago, New Hebrides, and New Caledonia. They are employed in Bootan, Assam, by the Stiens of Cambodia, and formerly by the Moors of Mogadore. The Parthians and Seythians used them in ancient times.

The composition of the poison varies in different races; the Bushmen, Hottentots, and others, using the venomous secretions of serpents and caterpillars. In the Bosjesman country, Southern Africa, the natives hunt the puff-adders, in order to extract the poison. They creep upon the reptile unawares, and break its back at a single blow. The poison-glands are then extracted; the renom is very thick, like glycerine, and has a faint acid taste. This is mixed, on a flat stone, with an acrid poisonons gum, called "parki" ; after being worked until it becomes of the consistency of thick glue, it is spread over the barbed bead of the arrow and for about two inches up its point. The arrows are then dried in the sun. Ereh warrior carries some half-dozen of these devilish weapons, a wound from one of which is as deadly as the bite of the adder itself.
In Ceylon the cobra-tel poison is extracted from certain venomons snakes, such as the Cobra de Capello (from which the poison takes its name), the Carawella, and the Tic polonga; arsenic and other
drugs are added, and the whole is "boiled in a human skull." Three Kabra-goyas (Hydrosaurus salrator) are tied near three sides of the fire, with their heads toward it; they are tormentel with whips to make them hiss, so that the fire may blaze! The froth from their lips is added to the boiling mixture, and as soon as an oily seum rises to the surface, the "cobra-tel" is complete. Probably the arsenic is the most active ingredient in this poison.
The Ceris are said to prepare poison for their arrows in the following manner: "They first kill a cow, and take from it its liver; they then collect rattlesnakes, scorpions, centipedes, and tarantulas, which they confine in a hole with the liver. The next process is, to beat them with sticks, in order to enrage them; and, being thus infuriated, they fasten their fangs and exhanst their venom nom each other and upon the liver. When the whole mass is in a state of corruption, the women take their arrows and pass their points through it ; these are then allowed to dry in the shade."

The Indians of Choco and Barbacons use the "Veneno-derana," or fror poison, which is obtained by placing a species of yellow frog, that frequents the swamps, over hot ashes, and scraping off the viscid humor that arises. After thus torturing the frogs, they are allowed to escape, in order that they may serre another time. "Veneno-de-culebra," or snake poison, is also said to be used in Choco.
(Fortification.) An advanced work at the foot of the glacis, consisting of a parapet whose faces form a salient angle. It has communication with the covered way eut throngh the glacis.
(Surreying.) One of the iron-wire pins employed in marking the chainage. One is placed in the ground at the end of each chain.

An arrow is ten inehes long, with a loop at the upper end, and is all the better for a red flag to render it conspicuous.

Called also a chain-pin.

Ar'se-nic. A soft, brittle, and poisonous metal of a steel-gray color. Equivalent, 75 ; symbol, As. : specifie gravity, 5.7. It rolatilizes, exhaling an odor of garlic ; fuses at 400° Fah., and is easily inflamed. It combines with oxygen in two proportions, forming arsenious and arsenic acids. The former salt is As. $7.5,0.24$; the latter, As. 75 , 0. 40. The former is the common white arsenic of commerce, very poisonons, and a dull white powder. sp. gr. 3.07.

It is used to alloy lead for shot-making, causing the metal to pour more readily, and hardening the shot.
Ar'se-nic Fur'nace. A furnace in which arsenical pyrites is decomposed by heat, prodncing white arsenic, which is an oxide of the metal chemically known as arsenious acid, the arsenic of commerce. Arsenic is combustible, oxidizing so rapidly as to burn with a livid Hame, the fumes being condensed in large chambers which resemble the successive stories of a house. The Hoors have openings, so that the fumes trarerse each apartment, and the light powder is deposited.

The furnace is a muffle m, with an iuclined sole, and having a fire-chamber beneath. The sole rests upon brickwork which bas numerous openings, forming circulatory flues d around the muffle. The arsenical pyrites is introduced at the bopper f, and the smoke escapes by the flues t t.

The condensing chambers have openings by which the collected arsenic on the respective floors is removed, the lower chamber being entered by the duct o, which proceeds from the muffle.

Fig. 3 I2.

Arsenic Furnace.
The deposit in the lowest elamber is the purest.

Ar-te'ri-al Com-pres'sor. (Surgical.) A form of tourniquet invented by Signoroni, to be used in amputations at the hip joint, to control the cireulation at the groin without impeding the return by the veins.

Ar'te-ry Claw. (Surgical.) A locking forceps
Fig. 374.

Artery Forceps.
for seizing an artery.
Ar'tery For'ceps. An instrument for catching anartery. These forceps are made straight, curved, plain, or rattoothed, spring-open, spring-shut, or catch.

The illustration shows three forms.

Ar'te-ry-o-tome'. A post-mortem or dissecting instrument, for slitting an artery.

Ar-te'sian Artesian wells are so called because it was generally supposed that they were first used in the province of Artois, France. They appear. however, to have existed in Egypt at a very remote date, and are said to be
found in the province of On-Tong-Kiao, in China, of the depth of from 1,500 to 1,800 feet. The pinciple of their action is this: water percolating through $\mu^{\prime \prime} \cdot$ vious strata, such as sand, gravel, or chalk, is finally arrested in its downward couse by an impervious stratum of rock or clay, causing it to accumulate in the pervious stratum above as in a reservoir, and when the source of supply is higher than the level of the ground at the place where the well is bored, the water will rise to the surface, or even considerably above it ; in many cases issuing from the mouth of the well with suflicient force to throw a jet of the water to a great hight, or admit of its being carried high enough for distribution to the upper stories of buildings.

The term "artesian" is only properly applied to wells in which the water rises to or above the surface, so that in case a large number are collected in a single neigh borhood, some or all of them, particularly those toward the higher prett of the basin, may become converted from artesian into ordinary wells. In the London basin, where a great number of artesian wells have been bored, the general level of the water has been very much diminished.

It generally happens that more than one, frequently many, water-hearing strata are penetrated before one is reached which has a sufficient head to cause an overflow at the surlace; in such cases others hesides the lower one may be made available, if thought advisable.

The wells of the London basin will perhaps afforl as good an illustration of the theory and action of artesian wells as any other example ; the character and suecession of the heds having been more carefully studied and worked out than almost any othets where such wells are located.

These wells derive their supply from the pervious strata of the plastic clay and chalk. These stiata are covered in part by the formation called the I.ondon clay, which is, in most of its beds, tough anulinpermenble to water, so that the rain falling on those parts of the porous chalk and other pervious staita below it, which are not covered by the superjacent imperviousclay, percolates through them till its farther progress downward is stopped hy the "gauk," another stratum of impervious clay, and accumulates tween it and the overlying elay, which acts as a cover to this vast subterrancous leservoir to the level of the line $B A$. The water, reaching points, as C, at the lower levels of the junction of the chalk and clay, the pervious and the impervious strata, comes to the surface in the form of springs which act as dischargeoutlets. In this case a horizontal line, as $A B$, drawn throngh C, indicates the general level of the water in the basin, unless disturbed ly faults or shifts in the strata permitting a part to be carricd off at a lower level. In the latter ease, if the ontlet had an area of capacity for carrying off an amount in exeess of the supply received from the clouls, it would determine the water-level; if less, the level would finctuate somewhere between this lower point of discharge and the line $A B$, in proportion to the amount of rain falling on the exposed portions of the pervious strata.

If a horing be made anywhere through the overlying clay beds, it is evident that the water will rise by hydrostatic pressure until it has attained the same level as in the chalk beds below, and if the surface of the ground at that point be brlow this level, the water will rise to the surface and orerflow as at G or H, which it did a few years ago in the valley of the Thames between London and Brentford, thongh it is snid that latterly there has berm an average fall of about two fect per year in the wells; of the London basin, so that in many of those wells

ARTESIAN WELL.

Fig. $3 i 5$.

which formerly overflowed the water is now raised by pumps.

At St. Ouen, in France, water is brought up from two strata at different levels, the ascending force of the water from the lower stratum being greater than that in the upper.

Fig. 376.
 This is effected by means of two pipes, one within the other, with a sufficient interval between them to allow the free passage of water. The smallest pipe brings up the water from the lower stratum B to the level of the highest part of the fountain $b^{\prime \prime}$, while the water from the upperstratum, which does not attain so ligh a level, passes up through the outer pipe to a^{\prime}; by this means, should the water from the lower stratum be pure and that from the upper impure, the former may be brnught up and disclarged separately without being mingled with or contaminated by the former. Both these streans are used for supplying the canal basin at St . Ouen, which is above the lerel of the Seine.

The well at Calais is 1,138 feet, and that at Douchery, in the Ardennes, France, 1,215 feet, in ilepth. The English wells are of less depth, varying from 70 or 80 to 620 feet. The fountains in Trafalmar Square, London, are supplied by wells of this kind, 393 feet deep. Those of London are all in the chalk, and it is believed that by deeper boring, so as to reach either the upper or lower green-sand formations, a more ample supply of water could be obtained.

The essential apparatus for boring as genernly practiced consists of an anger or borer attached in rods (which are successively screwed on to each other as the work progresses, antl which atford a measmue for the depth of the boring), and tubes of an exterior diameter equal to that of the well, which are pushed down olle after another to prevent the caring in or filling up of the well by earth or rock. One r_{-}^{f} the most celebrated artesian wells is that at firpucie, a suburb of Paris, which took nearly seven years and two months of difficult la bor to complete; it is 1,802 feet in depth, and when the water-bearing statum of green-colored sand was reached, the water was discharged at the rate of upwards of $\$ 80,000$ gallons in 24 hours; the force was such that the water could be carried to a hight of 120 feet above the surface.
The temperature of the water from the depth of 1,802 feet was considerably higher than the mann temperature at the surface. In the cellars of the Paris Observatory, at a depth of 94 feet, the thermometer was foind constantly to remain at $53^{\circ} .06$ Fah. ; in the elaalk, at a dejith of 1,319 fer.t. it marked $76^{\circ} .3$; in the gault, at 1,657 feet, $79^{\circ} .6$; and the water flowing from the well has a uniform tensperature of $81^{\circ} . S$, indicating a rate of increase of $1^{\circ} .7$ for each 100 feet below the limit of constant teinperature.
The springs which supply the King's Batl, at Bath, England, have a temperature of 117°, and the spring of Orense, in Gallicia, has a temperature of 180° Fah.
The artesian Brine-well of Kissingen, in Bavaria, was begun in 1832, and in 1850 water was reacheed at 1,878 feet. The depth reached by farther boring was about 2,000 feet. The water las a temperature of 66° Fah., and issues at the rate of 100 culvic feet per minute. The ejecting force is supposed to be derived from a subterranean atmosphere of carbonic-acid gas, acting with a force of 60 atmospheres. The tubings are concentric, water rising between the onter and middle tubes, prassing down between the middle and inner tuhes to the bed of rock salt, where it is saturated, and then raised in the middle tube to the surface.
The artesian well at Passy, near Paris, is prolably the largest well of the kind that has ever bects sunk. It is carried through the chalk in to the lower green sands, which were reached at a depth of 1,913 feet, the bore finishing with a diameter of two feet.

Six years and nine months were occupied in raching the water-bearing stratun, when the yield was $3,349,200$ gallons pel day of 24 hours, subseduently increased to $5,582,000$ gallons, and then continued at $3,795,000$ gallons per day. The total cost of the well was $£ 40,000$. It was lined with solid masonry for a depth of 150 feet, then wood and iron tubing was introduced to 1,804 feet from the surface, and below that there was a length of copper pipe pierced with holes.

The variety of boring tools which have been employml in making artesian wells is very great, and the utiaty of some of those figured and described in works on the subject, if one may be allowed to judge from their shape and appearance, is very questionable. The mode adopted hy the Chinese, who have for many ages been in the habit of boring for salt or fresh water is one of the most primitive.

Their wells are often from 1,500 to 1,800 feet deep, and bored in the solid rook. A wooden pipe five or six inches in diameter inside is sunk into the earth, and covered with a stone having the same aperture as the pipe. A steel tool weighing 300 or 400 pounds. concave above and romeded beneath, is suspended by a cord from the extremity of a lever and lowered down the tube ; by learing on the end of the lever, the piece of steel is suddenly elevated about two feet and allowed to fall by its own weight, heing
Fig. 37. partially rotated at each movement. When three inches of rock have been crushed, the steel is mised by means of a pulley, bringing with it the material which has accumulated on its upper concavity.

Should the attachment of the steel head be broken, another steel head is employed to break the first, an operation perhaps requiring months. Under favorablecircumstances it is said nearly two feet of rock may be penetrated in 24 hours.

A modification of the above has been employed in Europe, in which the upper part Rock-Drill.of the tool is inclosed in a cylinder (see Fig. 377). These are suspended by a rope, the twisting and untwisting of which imparts a sutfi-

Fig. 3 is.

Weti-Fiming.
cient circular motion. When theapparatus is withdrawn from the bole, the lower end of the tool closes the bottom aperture of the cylinder, which brings up the mass of comminuted rock to the surface.
A common mode of boring is shown in Fig. 378. Two men walk around and turn the handle of the boring-tool, which is screwed into an iron roul. In moderately soft ground the weight of the two men and the rotation of the handle will cause the boring-chisel to penetrate, but in rock it requires to be hammered down, the men shifting its position from time to time to enable it to act on a fresh portion of the rock. This operation is great-
ly facilitated by suspending the boring-rouls Fim 3 39. from a beam, fixed at one end and worked by a man at the other, assisting by its elasticity the efforts of those below in alternately raising and depressing the tool to give it the necessary pounding motion. When the hole has by this means been opened as far as the length of the tool will allow, it is withdrawn, and a valved cylindrical anger (Fig .379) introduced, which being turned, the valve is opened by the pressure of the comminuted rock or earth below, and fills the cylinder, which is then withdrawn. See Auger ; Earth-boring.

For raising and lowering the apparatus, a Clearer. tripod formed by thrpe poles is erected over the mouth of the pit, from which a block and attached tackle is suspended; this is made fast to a claw, represented at Fig. 380, which is passed nuder the shoulders of the upper rod. When this is raised sufficiently, a fork is jrassed under the shonlelers of the section below, the upper one is detached hy means of a suitable wrench, and the lifting again proceeded with. Instead of the Fig 350. springing beam, a windlass is sometimes employed for giving the percussive motion to the tool; several turns of the suspending rope being taken around the windlass, the friction of the rope will be sufficient, when aided by the strength of a man having hold of the end of the rope, to prevent it from slipping when the nindlass is turned, the man taking up the slack and aiding the np- \qquad ward motion. When the whole ajparatus Fondis raised a short distance in this way, the claw. rope is slacked, and the apparatus falls with its whole weight, penetrating and crushing the rock below. The windlass is kept. constantly in motion in one direction, and the percnssive motion is maintained by alternately holding fast and slacking the end of the rope.

In Fig. 381, a is a plan and elevation of an auger used for boring in clay or loam. b is an " S " chisel for hard rock. c exhibits a hollow valved angry for boring through sand or bringing up rock previously pulverized by the chisel. d is a spring reaner for enlarging a hole previously bored; this is passed down through the juipe, and, on reaching its hottom, expands to a distance regulated by the screw and swivel connecting the two spring cutters, the cutting edges of which are placed reversely. Figs. 35^{2} and 383 exhibit different kinds of tools for earth and rock.

The rods frequently break in boring, and for raising the portion broken off below, varions devices have been contrived, one of the most simple of which is reprosented in Fig. 384. It consists merely of a worm, which screws aromed the rod, which is only retainerl by friction when lifting. This is only availalle when the weight of the broken part is insuflicient to overcome the friction.

The furms of horing and elevating tools which have been employed have been much modified by

W'll-Boring Tools.
th:s experience in boing the oil-wells of the petroleum region. A great impetus was given to the

Fig. 383.

Well-Ering Tools. exercise of ingenuity in this line by the exigeneies of this branch of industry ; the inventions inchading boring. tools, toolgrabs, tool-jars, derricks, rodcouplings, reamers, welltubes and couplings, tube - packing, " seed - bags," ejectors, and engines specifically adauted to sinking the
shaft and raising the oil.
The boring of the artesian well at Belcher's Sugar Re'inery, St. Louis, was effected by a simple wedgeshapel drill, the size of which varied according to the diameter of the bore; this drill was screved to
a wroughtiron bar 30 feet long and about Fig $3 \leqslant 4$. 21 inches diameter, weighing several hundred poumls. To the bar was sciewed a jain of slips, so that the drilling was effected by the weight of the bar alone. To this were fastened the joles, each of which was 30 feet long. These were screwed together, and were made of two pieces ol split hickorywool joined and riveted in the center. I'o the last pole was fastened a chain, the other end of which was attached to a spring-heam worked by a steam-engine rumbing with a speed of about So revolutions per milsute and haring 14 inches stroke. The boring-apparatus was constantly turned by hand-power. The boring was commenced in the sping of 1849 , and continued at inter- Rodvals till March, 1855. For performing all the work connected with the boring, the labor of four men was, in general, daily required. This well was finished at the expiration of 33 months' steady work, and attained a depeth of 2,197 leet, at a cost of $\$ 10,000$; that at Grenel.e, $\{00$ feet less in depth, was more than serell wars in boring, and is said to have cost abont $\$ 70,000$. From this depth of 2,197 feet the water can be carried to a hight of 75 feet above the surface. It is a miueral water, having a salty taste and a strong odor of sulphur, and 1 rossesses great medicinal virtues.

The well bored at the county buildings of st. Louis Co., Missonri, has reached a depth of 3,235 feet without obtaining a flow of water.
The artesian wells at Chicago are 700 feet deep, and discharge about $1,250,000$ gallons daily, with a head of 125 feet above the surface of Lake Michigan. The water is very pure and cool for the depth from which it comes, having a temperature of 57°.

The well at Lonisville, Kentucky, is even deeqer than this, and yields a medicinal water allied in quality to the Blue Lick and Big-Bone Lick, springs of the same state.
Some years ago a boring was commenced in the mblic square surrounding the State Honse at Columbus, Ohio, with the intention of endearoring to oltain a luad of water which could be earried to the upper part of that building for its orinary supply, as well as in case of fire, etc. A depth of rather more than 2,700 feet was penetrated, mostly, if not entirely, through Silurian strata, but none was reanhed where the water had a sufficient hearl to rise to the surface.

Artesian wells were made in ancient times in the Oasis of El-Bacharich, and were descrihed by Olynopiodorus, a native of Theles, who lived in the fifth century A. D. Their depth is said to be from 200 to 500 cubits, and the water issues at the surface. They have been noticed by Arago. A Fremchman has reopened several of those which had hecome stopped. The reopened wells are from 360 to $4 \varepsilon 0$ feet deep.

The Monitear Algéricn gives an interesting report on the newly bored Artesian wells in the Salara Desert, in the province of Constantine. The first well was bored in the Oasis of Oned-Rir, near Tamerna, by a detachment of the Foreign Legion, conducted by the engineer, M. Jus. The works were begun in May, 1856, and, on the 19th of Jume, a quantity of water, of 1,060 gallons per minute, and of a temperature of $79^{\circ} \mathrm{Fah}$. rushed forth from the howels of the earth. The joy of the natives was unbounded : the news of the event spread towards the south with unexampled rapidity. People came from long distances, in order to see the miracle; the Marabouts, with great solemnity, cousecrated the
newly created well, and gave it the mame of "the well of peace." The second well, ini Temakin, yiehlel 9 gallons, of 79° temperature, per mimute, and from a depth of 279 feet; this well was called "the well of bliss." A third experiment, not far from the scene of the secoul, in the Oasis of Tamelhat, was crowned with the result of 33 gallons of water per minnte. The Marabouts, after having thanked tha soldiars in the presence of the whole popatation, gave them a bauquet, and escorted them in solemn procession to the frontier of the oasis. In another unsis, that of Sidi-Nached, which hat been computely ruined by the drought, the digging of "the well of gratitude" was accompraied by touching secues. As soon as the rejoicing outcries of the soldiers haul annonnced the rushing forth of the water, the natives drew near in crowds, plungel themselves into the hlessed waves, and the mothers batheel their children therein. The old Emir coule not master his feelings; tears in his eyes, he fell down upon lis knees, and lifted his trembling hands, in order to thank God and the French. This yidels not less than 1,136 gallons per minute, from a depth of 177 leet. A fifth well has been dug at Oum Thionr, yielding 29 gallons per minute. Here a part of the tribes of the neightorhool commenced at ouce the establishment of a village, planting at the sume time hundreds of date-pahns, and thus giving up their tomer nomadic life.

Ar-tic'u-la-tor. 1. An apparatus for obtaining correct articulation of artificial dentures.

The lower plate is modeled from the natural jaw,

an 1 moves on cone-slaped pivots in V-shaped gronves withont hinges, being retainel in position ly elas-

Fig. 386.

Articulator. tic rubber hands or rings. A bickward, forward, and lateral motion is proviled for, corresponding with the movements of the natural jaw, by which the arvangement of the ilenture can be praetically testell without disturbing the articulation. The upper plate has a backward and forwarl movement of two inches, and may be retained at any point by the set-serew. The upper plate has a double bend, so that, when reversell from the position shown in the cut, an increase of one inch in the space is obtained between the plates, allowing for both upper and lower dentures.
2. An instrunent for the cure of stammering. A tube in the mouth permits the passage of air, when the museles of the mouth are suddenly closed hy spasmodic action. A strap around the throat has a gad whose pressure is regulated by a spring. Its action is to keep the glottis open, and prevent the spasmodic constriction which is the cause of the tronble in articulation.

Ar-ti-ficial ——. An ohject imitating nature,

 such as an artificial stem or flower: sometimes having a prosthetic purpose, as an artificial limb or eye.See under the respective heads:-

Arm, Artificial.	Leather, Artiticial.
Auricle "	Leech "،
Cork "	Leg "
Ear "	Limb "
Eye "	Nipple "
Flowers "	Nose "
Foot '*	Palate "
Fiel "	Pearls "
Gems "	Pupil "
Gums "	Stone "
Hant "	Teeth "
Horizon "	Tympanum "
Horn "	Wood "
Ivory	

Ar-tiller-y. The word seems to have a very extended signification, having been originally applicul to military engines of every description capalile of throwing heavy missiles, as the ballista, catapuit, etc. Uzzialı mate use of them at Jefusalem 810 B. C. They are described (2 Chronicles xxvi. 15) as "invented hy cumoing men, to he on the tuwers and upon the bulwarks, to shoot arrows and great stones withal." The Chinese claim to have usend camon 618 B. c., and engines for throwing heavy stones were used in Sicily 300 b. c. Nach Roman Legion under the early emperors was furnished with an artillery train, eonsisting of 10 larger and 55 smaller engines for throwing stones and darts, which accompanted it on its marches. These engines appear to have correspondeal to the siege artillery of modern times, and were merely employed in the attack and defence of fortified places. Their want of portability probably prevented them from hing of much service in pitched battles on the open lindl. The date of the introduction of fire-arms as mitilery appears involved in great obscurity. The atillery of the Moors is said to date back to 1118 ; from the: few faint and imperfect allusions which occur here and there in old writers, it seems probable that their invention bore someanalogy to rockets, or the projectile was self-propelling.

The following are some of the dates ascribul to the introduction of some military engines and artillery :-
C'atapult invented by Dionysius of Syracuse, B. c. $3 \sim 9$ Gunpowder artillery used in China
A.D. 85

Cannon throwing stones, weighing 12 pounds,
300 paces
757
The Noors use artillery in attacking Saragossa
The Moors use engines throwing stoncs and darts by means of fire

1157
The Chinese empluy cannon throwing roundstone shot against the Mongols

1232
Cordova attacked by artillery . . 1280
A mortar for destroying buildings, ete. described by Al Mailla, an Arab bistorian . 1291
Gihraltar taken by means of artillery . 1308
A camon in the arsenal at Barnberg . . 1323
Balls of iron thrown by meaus of fire used by the Moors

1331

Ten camnon prepared for the siege of Cambray
The Moors defend Algesiras against Alphonso Xl. by means of mortars

Four pieces said to have been used by Edward 111. at Crecy
An iron gun with a square bore, for carrying a cubical shot of 11 pounds' weight, made at Bruges
Artillery used by the Venetians at the siege of Chioggia
Artillery used by the Turks at the siege of Constantinople
Red-lot balls fired hy the English at the siege of Cherbourg
The great cannon of Mahomet II. entployed against Constautinople
Louis Xl. of Frauce has twelve cannon cast to throw metallic shot, for use as a siege train.
Brass cannon first cast in England
Iron
Howitzers introluced
Naritz of Geneva introdices the method of casting guns solid and boring them out
Carronades inrented by General Melville
For continuation of the subject and details, see Ond-
Nance; Jol:tars; Projectiles; Weapons, etc.
In European services, artillery is divided into

Field Artillery
Foot "،
Garrison "
Heary

Ar-tiller-y Car'riage. In the United States service, wrought-iron is now exclusively used as a material for garrison and sea-coast gun-carriages.
Experiments have also been made, promising a successfinl result, upon wronght-iron for field carriages.
The only field carriages so called now used in the United States service are those for the 3 -inch rilled and the 12 -pounder smooth-bore gun, the 6 pounder smooth-bore, the 12,24 , and 32 pounder howitzers having gone out of use.
The tern "field carriages" is in the service only applied to such as are employed as light artillery: those allapted for the $4 \frac{1}{2}$-inch rifled, the 18 and 24 pounder smooth-bore guns being denominated sicge; and those for the larger calibers, from 32 -pounder to 20 -inch, and for the larger rifted guns, being denominated sea-coast and garrison. The construction of field and siege carriages is necessarily very similar, both being intended to transport the guns mounted on them, as well as to afforl a support during firing; while garrison gun-carriages are merely intended to subserve the latter purpose, not requiring to be moved, except from one front of a fortitication to anotlier.
The main wooden parts of a field gun-carriage are the stock, the cheeks, and the wheels.

For gun-carriages which are intended permanently to remain in position, an additional fixture is required, - the chassis; a frame, as the word implies, on which the carriage rests, and by means of which it is aimed in a horizontal direction, and upon which it is run backward and forward.

The iron parts of a field gun-carriage are very numerous, the principal being the lunette at the end of the stock; the frunnion plates, on which the trunnions of the gun rest; the cap-squares, which cover the trunnions and prevent the gun jumping off at the moment of firing ; the prolonge hooks, around which the prolonge is coiled; and the bands at the ends of the chceks and around the axle.

There are also arrangements for supporting the troo ram!ners and sponges, the worm, and the maneuvering handspikes.

Ar-til'ler-y Lev'el. An instrument adapted to stand on a piece of ordnance, and indicate by a pendulous pointer the angle which the axis of the piece bears to the horizontal plane. By its means any required angle of elevation is given to the piece.
Ar'ti-mor-an'ti-co. An alloy of tin, sulphur, bismuth, and copper, unade in initation of the ancient jewelry. It resembles gold of 18 carats purity, and is made in Italy for factitious trinkets.
Artz/ber-ger. A device which originated on the continent of Europe, and was used in England in the early part of the present century as an intermeliate between the piston-rod and the axle to be driven.

The power of the steam-engine, as in the Griftith Steam Carriage, 1821, is communicated from the piston-rods to the axle of the driving-whecls, through the means of sweep-rods, the lower ends of which are provided with driving pinions and detents, which operate upon toothed gear attacherl to the drivingwheel axle. The object is to keep the driving.pinions always in gear with the toothed wheels, however much the engine or carriage may vibrate.
As-bes'tus. A fibrous mineral which nay be split into threads and filaments and resists fire. It is also known as amianthus, or earth-flax. The name indicates the substance, or rather the quality (in Greek, asbestos, - inextinguishable). It had many uses among the ancients. Mineralogically suraking, it is a variety of hornblende and pyroxent, and occurs in many parts of the world. It is found in great abundance in a few localities in the Uniter] States, and great attention is now directed to fitting it for the uses of the arts and manufactures.

The notices of its uses among the aucients are numerons. Herodotus refers to cloth made of it by the Egyptians. Its uses for paper, napkins, socks, drawers, handkerchiefs, are referred to by Varro, strabo, and Pliny. Narco Polo mentions it, and Bay, ista Porta speaks of its being spun in Venice. Askestus cerements and wrappings for the bodies of the deall previous to incremation were in common use with those whose circumstances permitted it. Slirouls of asbestus of the time of the Roman Enperors have been discorered, and are in the museums of the Tatican and of Naples. The Romans dug their asbestus in Corsica ; their mica in spain.
lts modern uses are indicated in the following patents, and the enumeration is made at some length, as the subject has been but lately revivel, and one interested can in no other way so readily reach the' present state of the art, - to horrow the conventional phrase, which is as good as any other.

1. Safes, lining for: W. Mlarr, English, 1834.

Hyatt, sereral patents, United States, 1869-70.
2. Lamp-wick:

British patents:
2071 of 1853.
145 of 1857.
264^{7} of 1855.
1610 of 1863.
Lord Cochrane,
3. Ahsorbent in lamps :

Boyd, 1869. Beschke, 1566.
in carburetors :
Bassett, 1862.
4. Fire-brick and crucibles:

Peters, 1862.
English patent 2318 of 1862, asbestos, fireclay, and graphite.
Lewis, 1871. A covering of asbestus twisted into a rope and wound around a crucible.
5. Packing for hot-air engincs : Lanhereau, 1859.
for explosive engines:
for steam - engines :
combined with hair:
loose flock asbestus;
Drake, 1865.
Diake, 1565.
Murphey, 1870.
Hoke.
6. Boiler covering :

Hardy, 1869.
Murphy, 1870.
Piley, 1871.
Marfey, 1870.
7. For forming a radiating surface, as in gasstoves, fire-grates, and broilers.
8. In prorcelain manufactures, of teeth especially, phaced on the side of a muthe to isolate the biscuit from the slide, to prevent its becoming attached thereto in the process of baking.
9. As an anti-friction composition for journalbearinos, pistons, ete.

British patent, 2048 of 1858. Devlin, 1860.
Peters, 1862.
Devlin, 1865.
Bo eticher : with soajstone and cotton, 1864. Kelly: with graphite and iron-filings, 1870. Johns: with caoutehone,
10. For maldel articles:
11. For roofing cement : Kilwell, is6s.
12. Flooring cement:

Whitmarsh, 1868.
Johns, 1868. Moore, 1868.
13. Fletricinsilator: Englis Whitmarsh, 1867
13. Electric insalator: English patent, 362 of $186^{\circ} 5$.
14. In refrigerators:

Hyatt, 1870 .
15. In ink: Smilie, 1863.
16. For paper: Enghish patent, 1413 of 1853. Johns, 1868. Schicetter on Paper, an old German book, describes asbestas paper, and contrins a specimen.
17. For co!tins - mixed with clay: 1870.
18. For ropes strengthened with other materials, Stevens, 1870 and 1871.
19. For yarn : separated inte filaments by alkaline treatment, and then treated liks wool:

Iosenthal's patent, 1872.
As-bes'tus Stove. A stove heated by gas and havilug asbestus spread over the perforated pipes, in order to obtain an incandescent mass, which radiates leat, but dues not consume.

Ashestus is used for lamp-wicks; as a filling for iron safes; for firemen's clothes; and in the laboratory as a wiapper for articles which are to be consamed to ashes. See Asbesters.

As-cend'ing Let'ter. (Printing.) Capital letters, and the sumall ones which rise above the line. They are b, d, f, h, k, l.

As'ci-a. (Surfical.) An axe-shaped bandage.
Ash'es E-jec'tor. An arrangenent on board large stean-vessels to rednce the labor of hoisting out the ashes in buckets.

A chamber or tube is forned, rising from the stoke-holes, and opening above the water-line into the sea. By means of a jet of steam the ashes are directly driven from the engine-room into the sea, through the tube, the arrangentent of which prevents the mossibility of its being choked ul. A similar method has alsn been allopted on stationary landengines whose boilers are fixed below ground.

Ash'-fur-nace. A furnace in which the materials for glass-making are fritted.

Ash'lar; Ash'Ier. (Masonry.) 1. (e) Fough Ashlur ; a block of treestone as bronght from the quarry.
(b) Smooth Ashlar; a block dressed ready tor use.
(c) Plune Ashlar; a block in which the marks of the tool are dressed ont.
(d) Too'ch Ashlar; a block in which the surface has parallel vertical flutes.
(e) Rentlom-tuoled Ash'ar; a block whose groov. ings are irregularly ent with a broall tool.
(f) Chiseled Ashlar: a random-tooled ashlar, wrought with a narrow chisel.
(a) Poasted Ashlar; same as chiseled.
(h) Pick or Hummer-dressed; it is known as Common Ashler.
(i) Bastard Ashlar is ashlar-work backed up with inferior work.
(j) Pointel Ashlar; the face-marking doue by a pointed tool or one very narrow.
(k) Rusticated Ashlar; the face of the block projects from the joint, the arrises being beveled. It may be rough or smooth-faced, or varionsly tooled.
(i) Herring-bone Ashlar has a tooling of oblique flutes in ranks running in alternate directions.
(m) Nigged Ashlar; a building-block dressed with a pointed hammer.
(n) Prison Ashlar; the surface is wrought into holes.

A smooth face around the joint is called a margindruft.
The walls of the principal entrance of the gate at Thebes are at their base not less than 50 leet in thickness. The stones are squared on all sides, not merty on the external faces, and are bnitt-in solid, no rubble-uork being introduced to till up the space between the facing walls.

The fuce of an ashlar is the front exposed surface when built into the wall.

Flanks: the sides.
Beds; upper and lower surfaces.
Back; rear surface.
2. (Ashlar.) A facing of squared stones or thin slabs used to cover walls of brick or rubble.
3. (Carpentry.) A vertical strut or quartering miting the floor-joisting of the garret with the rafters above, forming the studding for the wall of the half-story room, cutting off an acute angle which may he utilized for elosets.

Ash'leach. A hopper in which ashes are placed while the soluble salts are removed by lixiviation. The leach is suspented upon journals which have bearings in the standards of the frame. The axis is at or about the center of gravity, so that the leach may he tipped to discharge its spent contents. A hook and staple hold it in operative position.
Ash'ler-ing. (Carpentry.) Short upright pieces between the floor-beans and rafters in garrets for nailing the

Fig. 887.

Ash-Leach. laths to. This cuts off the sharp angles between the floor and ceiling, friving a more convenient and tasteful appearance to the romm. Ashlaring.

Ash'-pit. A cavity below the grate-bars of a funace for receiving the ashes.

Ash'-plate. The back plate of a furnace.
Ash and Coal Sift'er. Sifters for coal are mate on a large scale for nfines, and are actuated by machinery, the object being to remove the lust which is umsuitable for ordinary stoves and furnaees. They consist of rotary wire-screens into which the coal is passed, or of a succession of inelined screens over which the coal passes by gravity, the jarriug of the pieces assisting in keeping open the meshes of the screen.

For household use, as asb-sifters, they assume several forms, - rutary sereens; reciprocating sieves

Rotary Sifter.
in boxes; oscillating sieres atapted to fit the tops of barrels ; consecutive inclined sieres, which sort the material into grades ; and sifters adapted to the ash-pits of stoves and furnaces.

In Fig. 388 the wire sieve is volute-shaped in transverse section, and its horizontal shaft revolres on bearings in a case. The lid of the latter opens to charge the sieve when its open mouth is presented up. wardly, as in the cut. By revolving in one direction the contents are retained in the sieve, except the dust, which falls through the moshes. The operation completed, the siere is revolved in the other direction, which
discharges the larger contents into a receptacle placed to receive them.
ln Fig. 359 a central hearing is supported by radial arms inside the barrel, ald supports the circular sieve which is oscillated above it. The central post of the sieve passes through a hole in the cover, and a cross-handle above affords the means of agitation.
The sifter for stove-hearths has a handle and a srout, and is placel below the hearthplate in the ash-pit of the store. lits office is to eatch the asles from the grate. It is vibratable in place, while the hearth-plate prevents the escape of dust. The finer portions fall into the pan below, and the contents of the sitve are thrown on the fire. There are orer eighty patents on ash and coal sifters.
As-phaitt' Pave'ment. As emplovel in Eurone, this is phelared from a dark brown bituminous limestone which is found in the neighlorhooll of the Jura Mountains. This stone is reduced to powder, mixed with mineral tar and grit, and the whole exposed for several bours to a strong heat in large culdrons, being continually stirred until the ingredients are thoroughly nited. The composition is then run into molds forming cakes abont eighteen inches square andl six inches thick, and weighing 125 or 130 pounds. The blocks are laid mion goon, well-rammed foundations. They do not appear to stand the wear incident to a large city, but
hare been laid with alvantage in corridors and as pasement in railroad stations in Europe. Vaious analogous compounds have been patented in the United States Ior paving and roofing. See PaveMEST ; Ronfins.
As-phal'tum Fur'nace. Asphaltum, or native litunien, is lajgely used for pavements, roads, roofs, and as a water-proof cement. For navements, cte., it is mixed with sand or gravel, and laid while hot upon a foundation of broken stones, pebliles, or gravel. The Seyssel Asplalt is a compound of a bituminous limestone, ground fine, heatel, mixed with a small portion of tar, and consideratle sand. The material is brought from the Jura Moustains, and, for a while, was sery pupular in Europe.

Beds of mineeal pitch exist in many paits of the world, and are arplied as fuel, to jield a liquid hydrocarbon, for laying woodwork, as cement, and, us has been said, for joofing, praring, etc. As it refnires to be laid on while hot, a portable funaace (Fig. 420) is requined, from whose builer it is ladled

Asphalum Furnice.
ont and spreal in its warm, plastic condition upon the surface to be treated.

A number of formulas for compounding the material will be given under Roofing (which see).

1n laving parement, the thickness of the asphaltum is regulated by strips of wood, diriding the space into transrerse sections. The material is spread by the shorel or a wnoden spatula, and the surface hereled by a floating rule which rests upon the upper edge of the strips. Slate dust, fine sand, $p^{\text {laster of Paris, etc., may be dusted upon the top. }}$

As'pi-ra'tor. An apparatus for passing a regulated supply of air in coutact with a contrivance which determines its chemical claracter or its condition, hygrometric or otherwise; or for passing given quantities of air in contact with a substance whose changes are the subjeet of ohservation. A jar filled with mater is provided with a cock, by which the water is allowed to escape at a given rate. The space in the jar, ahose the water, is connected hy a flexible pipe with the duct in which the chen!ical ingredients are placed or with the hygrometer chamber. The uses are various, and will reatily ocenr to the expert, in connection with the quantitative admission of air or gases to chemical solitions,

Fig 392.

ignited tapers, or an air-pump; and by a third, communication is organic matters. The measure of the water which has tlowed from the jar is of course coincident with the air which has taken its place.

The use of the aspirator is recommenderlin the healing of great amputations, by Maisonneuve, Surgeon of the Hôtel Đieu, Paris. The liquids exuling from the surface of the wound coming in contact with the ail; poisonous putrefaction rnsues; to arrest this action, Dr: Maisonneuve, after dressing the wound with lint saturated with antiseptic liquils, brings into use an aspiratory apparatus which withdraws the contaminated air from the presence of the wound.

A form of aspirator invented by Sprengel is now much used in the laboratories in Europe, esprecially in exprediting filtering. The water from a reservoir passes in by the supplypipe A, and drops into the discharge-pipe $C_{\text {, }}$ carrying with it a pellicle of air; this is repeated in quick succession, and the effect is to withdraw air by the pipe B, from the chamber with which the said pipe is connected. The disclarge-pipe C is 30 feet long. The vacunm attained is said to be as high as 29 iuches of mercury.

Sprengel used mercury, which permits a dischargepipe of say three feet in length. Bunsen lengthened the pipe and used water.
Guerin's apparatus for this ${ }^{\text {murpose }}$ consists of a hemisplerical balloon provided with three tubulatures, the central and largrest one being fitted with a manometer of very simple construction, a graduated glass tube terminated by an india-rubber ball filled with mercury. The ball is inclosed in the balloon, so that in proportion to the vacuum effected in the latter the former is dilated, in consequence of which the mercury in the inbef falls, a scale showing the amount of fall, and hence also the degree of rarefaction in the balloon. The second tubulature receives a tube communicating with the receiver of
effected betweer the balloon and each pratient or lospital bed by means of india-rubber tubes, so that "pmeumatic occlusion," as it is called, may be ex. tended simultaneously to all the patients contincel in the same surgieal ward. There are stop-cocks for regulating the degree of vacum in the cential vessel, and the part under treatment is coverd with a sort of india-robber hood which protects it in cach case from the action of the external air.

Aspirators are also used to prevent the heating of grain in bulk, by causing a constant circulation of air through its mass.

The aspirator, substantially as shown in Fig. 393, is used in mantaining a partial vaeum in the rondensers of steam-engines, vacuum-pans, cte., where a discharge-pipe of 30 feet perpendicular length can be obtained.

The aspirator is also used in picking up pieces or sheets of paper, for feeding into paper-folding or envelone machines.

As-pir/ing Pump. 1. A punp in which the mechanical action is due to the foreible ejection of air from the lungs. A suction-pump.
2. A pump used to draw air from a chamber or vessel. See Asphiator.

Ass. (Paper-M(cking.) A post in the bridge of a ${ }^{\text {lulp}}$-vat to lay the mold upon while the water drains from it. Used in the hand-made paper work.

As-say'. An operation for testing the proportion of any metal in an ore or alloy.
There are several modes of procedure : -

1. By specific gravity.
2. By the touchistone.
3. The wet methorl, - by liquid solvents.
4. The dry methorl, - ly fluxes and fire.

As-say' Bal'ance. A delicate balance used in assaying. Spe Balance.

As-say' Fur'nace. A

furnace with a chamber or mutfle in which the metal is exposed to heat.

The furnaces used for cupellation differ considerally in slape and mode of construction : one fom is

Fig. 394.

Curel. represented in Fig. 395.

The muffle α is an oven-shaped vessel made of baked fire-clay, clused at one end and open at the other, and generally having also openings in its sides and top; its in-nerclosedextremity usually rests on a ledge or shelf in the furnace, and its open end is luted to the entrance of the furnace, and has before it a small platform on which the hot cupels (shown on an enlarged seale in Fig 394) call
stand when withdrawn from it. In this position it can be ellaally heated in every part, while the apertures in the sides and top allow a current of air to pass throngh its interior and into the furnace itself.

As-se-gai'. A light projectile spear employed by the Kiattirs.

As-sem'bling. By assembling is understood the act of putting in their resprective places and fastening together the component parts of an article composed of a number of distinct pieces, so as to form a complete and perfect whole ; as, the cheeks and stock of a gun-carriage, with their connected parts; the lock, stock, and barrel of a musket, etc.

The term is more peculiarly applicable to the fitting together parts which are mate strictly to fixed shapes and limensious so as to be promiscuously in. terthangeable.

The system of interchangeability of parts was first introluced into the French Artillery service by General Gribeauval, about the year 1765.

Previous to this time each part of a gun-carriage was made specially for that carringe alone, and cold not be nsed for repairing any other, unless after extensive alterations. Gribeauval simplitied the system, or rather want of system, then in rugue, by reducing the carriages into classes, and so arranging many of the parts that they could be applied inJiscriminately to all carriages of the class for which they were male. This system was farther simplified and extended, and was finally applied in the United States arsenals and armories to all articles mule up of pieces, the improvements in machinery enabing most articles to be made accurately to pattern without depending on the eye and hand of the workman. This has been carried to a very high pitch of improvement by means of the machinery at the Colt's arms factory and other manufactories of small-arms in this country; and the bcanty and utility of the system, by which exact equality of dimensions is insured in every one among thousands of almost microscopic screws and other small parts, are particularly exemplified in the work of the Aneerican watch and sewing-wachine companies.

This system of interchangeability and assemblage, which by enabling a large proportion of perfect and serviceabie articles to be manle np from the parts of similar articles which have been broken or injured in use, instead of permitting them to be cast into the scran-heap, is one of the most beautiful triumphs of modern mechanism.

It has proved itself capable of adaptation to large as well as small nachinery, and is now applied to the locomotives of the Pennsylrania Central Rail. road, whose parts are made interchangeable.

The first notice in this country of this excellent mote of manufacturing a number of articles designed to be exactly similar, is the breech-loading rifle of John H. Hall, of North Yarmouth, Massachusetts, patented May 21, 1811, and which he refers to in the following terms in a letter to the War Department: "Only one point now remains to bring the rifles to the utmost perfection, which 1 shall attempt if the goverument contracts with me for the guns to any considerable anount, namely, to make every similar part of every gun so much alike that it will suit every gun, so that if 1,000 guns are taken apart and the limbs thrown promiscuously together in one heap, they may be taken promiscuously from the heap and will all come right."

In 1816, 100 of these arms were made ; 2,000, in 1827. In 1836 Congress voted $\$ 10,000$ to Hall, being at the rate of one dollar per arm for all made on his principle to date.

As-sem'b'ing Bolt. One used for holding to-
gether two or more remorable pieces, as the cheeks and stock of a field gun-carriage.
As-sis'tant En'gine. An accessory locomotive, to assist the ordinary train engive in ascendin'o heavy grades.

A donkey engine. A small engine used in operating a large one for moving the lever, or carrying the fly-wheel orer a dead-center.

As-size'. A layer of stone, or one of the cylindrical blocks in a column. The number of assizes in the Great Pyramill was 203 (lienrick). Sevrial have been removel from the apex, which now presents a platform of 25 feet square. The assizes vary from two feet two inches to four feet ten inches in depth. From five to twelve feet is the common length of the stones, except in the king's chamber.

A column is said to be monolithic, or else to consist of assizrs.

A-stat'ic Nee'dle. A magnetized needle whose polarity is balanced so as to remove its tendency to assume any given direc. tion.

It was in 1820 that Oersted, of Copenhagen, announced that the conducting wire of

Astatic Needlc. a voltaic circuit acts upon the magnetic needle, and thus recalled into activity that endeavor to connect magnetism with electricity which, though apparently on many accounts so hopeful, had hitherto been attended with no success. Oersted found that the needle has a tendency to place itself at right angles to the wire, a kiud of action altogether different from any which had been suspected.
If two similar magnetized neerlles are placed parallel, but with their poles turned in opposite diruetions, and are suspended by a thread without twist so as to move treely, they have little tendency to place themselves in the magnetic meridian.

The action of terrestrial magnetism upon one needle neutralizes its action upon the other, and consequently the needles remain inlifferent. A needle of this description is calle a astatic, and is used in the construction of the astatic galvanometer:

If one of the needles be placed in a coil of wire excited by an electric current, on the passage of the current the needle is deflected; and itsdeflections are more considerable than those of a simple needle, because there is, in the first plac, bat little resistance to overcome, and secondly, because the current acts upon two needles insteal of one, the upper needle being deflected in the same direction as the lower.

As'tel. (Mining.) Overhead boarding or arching in a gallery.

As-tig'ma-tism Ap-pa-ra'tus. (Optics.) An instrmment for detecting the presence and amonnt of the defect in vision arising from a certain want of symmetry in the lens or cornea.

It may consist of two revolving rings divited to 5°, each ring being furnished with springs to hold a cylindrical glass; a diaphragm fitting in one riug, and a movable slit in the other. The object is to test whether the eye has greater power to detect distinct separation between closely ruled lines in a vertical, or horizontal, or intermediate position.

As'tra-gal. (Carpentry.) a. A suall molding of a spmicircular section with a fillet beneath it.
b. One of the rabbeted bars which hold thie panes of a window. The astragals of the lanterns in the

Stevenson lighthouses are diagonal, so as not to intercopt the light in the azimuth which they subtend.
(Orducnce.) An outwardly curved molding. Thu astragal of a cannon is the molding at the front chid of the chase.

As'tra-gal Plane. (Joincry.) A bench plane atlapted for cutting astracral moldings.

As'tra-gal Tool. A wood-turning chisel having a semicirenlar concave face, for turning beads and astracals.

As'tral Lamp. Λ lamp with an amular oil reservoir connecting by two jipes with the wick tube, the latter being on the summit of the peclestal. It is designed to obviate the interception of light by the oil reservoir, which when placed centrally casts a shade upon the talile.

In the arrangement shown at Fig. 397 the oil is contained in the annular chamber a surrounding the burner b, which is of the Arganel kind (sce Aleand), and the lower part of the chimney, and thence deseends to the foot of the wick through the two tubes c c.

It will be seen that the downward rays of light from the bumer are not at all intercepted in the immediate vicinity of the lamp, except by the two small oil pipes, and that they are not materially interfered with, within a radius beyond which the light would be insutticient for reading or working by ; even this is obviated in a considerable degree by the gromml-glass globe d surmounting the annulus, which diffuses and equalizes that part of the light which is not rast downward. The chimney e assists combustion, and carries off the volatile products thereof.
As'tro-labe. The common astrolabe (not the astrolabe of Hipparchus, used in determining the

Fig. 398.

Astrolabe. altitudes of the stars) is used for measuring angles. It is graduated to degrees, and sometimes to quarter-degrees. A strip is attached in the direction of the diameter, passing through 0° and 180°, and has a tongue by which it is placed centrally uюn the stand. This strip has two fixel dionters or sightvanes. Another strip turns about the center, one end of which in the half - astrolabe (hoth ends in the full astiolabe) traverses
the graduater limb and carries other sight-vanes. The middle line of this alidade coincides with the axis of the sight-vanes and the center, and is marked upon the leveled edge of the alidade as an index. The diopters are both ocular and objective, for fore and back sighting. A snall compass may be attached at the center, and the tongue fitted up with nut and screw so as to permit the cirele to be brouglit from the horizontal to the vertical position for the purpose of measuring altitudes.

To measure an angle with the astrolabe, the latter is placed with its center over the vertex of the angle, and turned until the fixed diopters sight in the direction of one side. The movable strip with its diopters is then sighted in the direction of the other side, and the angle contained between the two strip's is read off. Telescopes may be attarled in place of the alidades. Thus arranged, it becomes allied to the theodolite.

Tycho Brahe's Astronomice Instauratec Mechaniea gives several cuts of astrolabes. The astrolabes of Hipparchus, Ptolemy, Alhazen, and Tycho Brahe did not agree in all particulars of construction. They have been suprerseded by more improved instruments.

The astrolabe was invented to ascertain the position of the sun with regard to the ecliptic. (Whewell.) The instmment as described by Polemy consisted of circular rims, movable one within the other, or about poles; and contained eircles which were to be brought into the position of the celiptic, and of a plane passing through the sun and the poles of the ecliptic. See Ahmillaiy Sphere.
The astrolabon which Martin Behaim attached to the main-mast belongs originally to Hipparelns. When Vasco de Gama landed on the east coast of Africa, he found the Indian pilots at Melind acquainted with the use of astrolabes and cross-stafls.

As-trcm'a-ra. A concave representation of the heavens.

As-trom'e-ter. An instrument invented by Sir John Herschel for comparing the intensities of light of the stars one with another by the intervention of a natural standard, such as the moon or the planet .funiter, brighter than any of the stars to be compared, and giving an amount of light which, if not alisolutely invariable, varies in such a manner that its clanges are susceptible of calculation. Jupiter, being suffieiently bright, and his light being increased or diminished only in proportion to his distance from the sun, is considered as well adapted for the purpose.
The process, as described by Sir John, "consists in deflecting the light of the moon by total intermal reflection at the base of a prism so as to enterge in a direction exactly coincident with that of the undeflected ight of one of the stars to be compared. It is then received upon a lens of short focus, ly which the image of the moon is formed, which, viewed at a considerable distance by an observer placed in or near the axis of the lens, will appear to lim as a star. This artificial star is then approached to or removed from the eye until its light is judged to be exaetly equal to that of the real star, which lying in nearly the same direction from the observer will be seen side by side with the artificial one by the same eve, or with both eyes at once without the aid of a telescope, as in the ordinary mode of matural vision. The distance of the eye from the focus of the lens being then measured, the prism and lens are to be placed so as to form another similar artificial star in a direction nearly coincident with that of the other star under comparison ; and, another equalization being made and distance measured, it is obvious
that the intensity of the lights of the two stars, or at least their effects on the retina under the circumstances of comparison, will be to each other in the inverse ratio of the distances so measured respectively."
The term "astrometer" has been also applied to an object-glass micrometer, as well as to an instrument for finding the rising and setting of stars and their pusitions.

As-tro-nom'i cal Clock. A clock regulated to keep regular time ; siderenl, not mean.

As-tro-nom'i-cal In'stru-ments. The first phenomenon recorded in the Chinese annals is a conjunction of five planets in the reign of Tchuenhiu ($2514-2430^{\circ}$ в. c.). The record is verified by Fr. de Mailla and others, and identified with 2461 b. c. Saturn, Jupiter, Mars, and Venus were, with the moon, comprised within an arc of about 12° in the constellation Pisces. The emperor Yao, 2367 в. C., determined the length of the moon's year.

An orrery is said to have been constructed in the second century A. D. in China; the account states that it represented the apparent motion of the heavenly bodies round the earth, and was kept in motion by water dropping from a clepsydra.

The heliozentric, the true theory of our solar system, wastaught in Ancient Egypt, and there Pythag; oras learned it. This great philosopher perceived its truth, and carried it to Asia Minor, where it languished and died. The Egyptian race were originally emigrants from Asia, probably Arabians, and myy have brought their astronomical knowledge with them. It is also possible that the Chaldees were participants in the true theory many ages before Greek explorers touched the borders of the Mesopotamian nations.

Eratosthenes of Cyrene, the Alexandrian astronomer, set on foot the first Hellenic measurement of an are of the meridian, having its extremities at Alexandria and Syene, and for its object the approximate measurement of the earth's circupference. The measurement was the paces of pedestrians, but is interesting as among the earliest recordel instances of this broad generalization, where a philosopler rose from the consideration of the narrow limits of a single country to the knowledge of the magnitude of the entire globe. A more ancient Chaldean measurement is mentionel, the count being obtained in camels' paces, $4,000^{\circ}$ paces to the mile, $33 \frac{1}{3}$ miles to half a degree, - circumference of the earth, 24,009 miles. See Comptes Remulus, T. XXIII. p. S51, 1846.

Another measurement of a degree of the meridian was made under the orders of the Khalif Al-Mamun in the great plain of Sinds-char, betireen Tadmor and R.kka, by observers whose naures have been preserved to us by Ebn Junis, tenth century.
"Each sage went for what he wanted to the proper murt of science: for not ouly Pythagoras stadied astronomy at Heliopolis, where it was professed with the greatest echat; bat Eudoxas got his gemetry at Memphis, whose priests were the nost profond mathematicians ; and Sulon was instructed in civil wisdon at Sais, whose patron deity being Minerva (as we are told by Herollotus and Strabo), sh...ss polities to have been there in most request."Whibuistoy"s " Divine Legation of Moses," Vol. 1. B ow 11., ed. 174?.

The earliest observations in Babylon were 2234 B. c. Of their instruments we have no record: dials and zodiacal circles probably. Tbe invention of the zodiac is hy many experts credited to the Eryptians, and the reasons cited are entitled to high consideration. It is of high antiquity, and if
pre-Egyptian was derived from the Orientals. Mazzaroth, cited in Jub xxxviii. 31, 32, 1robably referred to zodiacal division.
One of the earliest instruments on record is that in the Memnonium, the great palace of Rameses 11 . It cousisted of a golden zodiac or circle on which were engraved the days of the year, with the beliacal rising and setting of the stars by which each day was known. This golden planisplere was placed immediately over the sepulchre, upon a base 365 culits ($547 \frac{1}{2}$ feet) in circuniference, or abont 182 leet in diameter, and one cubit in thickness. It was divided and marked at every cubit with the days of the year, the rising and setting of the stars according to their natural revolutions, and the signs ascertained from them by Egyptian astrologers.

Rameses reigued in the fourteenth century b. c., the century after the settling of the land of Cancan by Joshua and the century before the Argonautic Expedition. The golden circle was carried away hy Cambyses when he plundered Egypt, 525 в. c., abont the time of Kung-fu-tze (Confucius).

Ptolemy Energetes, 246 B. C., placed in the square porch of the Alexandrian Museum an equinoctial and a solstitial armil, the graduated limbs of these instruments being divided into degrees and sixths. There were in the ouservatory stone structures, the precursors of our mural quadrants. On the floor a meridian line was drawn for the adjust. ment of the instruments. There were also astrolahes and dioptras. The above were used from 246 b. r. to A. D. 417, and similar instruments at Cordova, A. D. 1000. Tubeş with sights were prohably used at both places; lenses being added in 160 s.

See articles under the following headings:-
Altarimeter.
A pomecometer.
Armil.
Arnillary Sphere.
Artificial Horizon.
Astrolabe.
Astrometer.
Astroscope.
Azinnth Circle.
Azimnth Dial.
Pack-staff.
Collimator.
Comet-Seeker.
Compass.
Cosmolabe.
Dipleidoscope.
Dip Sector.
Equatorial Telescope.
In Europe, the Arahs were the first to luild observatories; the Giralda, or Tower of Seville, was erected under the superintendence of Geber the mathematician, about A. D. 1196, for that juppose. After the expulsion of the Moors it was turned into a belfry, the Spaniards not knnwing what else to do with it. The same people mistonk the vertical gnomons of Quito - beneath the line - for idols, and upset them, crossing themse.ves derontly. Of the obelisks of Egypt, the round towers of Irelind, and the gnomons of Quitn, the last is the least distinctly phallic.
The native observatory at Renares, India, is an elevated terrace, and will afford us a good idea of the probable appearance of the observatories of Ancient Chaklea; of the Caliph Almanza; of Uleg Beg, grandson of the great Tamerlane. The latter is saill to have hat a quadrant as higl as the Chureh of Sancta Sophia at Constantinople.

Sir Robert Barker's description of the observatory

of B nares is as follows: "We entered this building, an I went up a stairease to the top part of it ueat the riv er Ganges, that led to a large terrace, where to my surprise and satisfaction, 1 saw a number of instrumonts yet remaining in the best preservation, stupradonsly large, immorable from the spot, and brilt of stone, some of them being npwards of twenty feet in hight; and thongh they were said to have bean erected many humlred years before, the gloduations and divisions of the several ares apparel as well cot and accurately divided as if they hal been the performance of a modern artist. Th? execution in the construction of these instruments exhibited a mathemation exactness in the fixing, haring, and fitting of the several parts, in the nscessary and sulficient supparts to the very large stones that compose them, anl in joining and fastening them into each other by means of leal and irons cramp: The situation of the two large quadrants, whose ralius is uine feet twa inches, by being at right angles with a gnomon at twenty-five degrees elevation, are thrown into such an oblipue situation as to render them the most diffienlt, not only to construst of steh a magnitude, but to secure in the position for so long a pariod, and affords a striking instmee of the ability of the architect in their consiruction; for, by the shadow of the gnomon thrown on the quadrants, they do not appear to have altered ia the least from their original pasition ; and so trae is the line of the guomon, that, by applying the eye to a small iron ring of an inch diameter at one enl, the sight is carrial through three others of the same dimensions, at the extrumity of the other end, distant thirty-eight feet eight inches, without obstrustion."
The earliest modern observatory of importance in Eirope was erected by the landgrave of Hesse Cassel in 1561 . It oceupied the whole upper portion of his palace, and was well furnished with astronomieat instruments. Tyeho Brahe, about the same period, mate material improvements on the landgrave's instruments, and constructet a quadrant capable of showing siagle minutes. He afterwaris erected an observatory on the island of Huen, under the patronage of the king of Denmark; it was fumished with qua lrants, sextants, circles, astrolabes, globes, clocks, and sun-lials. These instruments were diviled to single minutes, and some were so diviled a.s to read to ten seconds.

The roval observatory at Paris was completed in 1671 , and was placed in charge of 11 . Cassini, after having been furnished with instruments at a very great expense.
The Greenwich Observatory was erected five years later: Flamstead, under the title of Astronomer Roval, was its first superintendent.
The Yate College Observatory was started in 1828, a donation made by Mr. Clark being expended in bying a telescone of Mr. Dollond of London. It has a foeal length of ten feet, and five inches apurture.
The Williams College Observatory was the first regularly constituted observatory in the ['niterl States, i836. It has a Hersehelian reflector of ten feet focus, mounted equatorially; also a transit instrument and compensation-clock.
The Hudson Ohservatory of the Western Resprve College, Ohio, was built and furnished in 1838, laving an equatorial, transit, and clock.
The lligh School Observatory of Philadelphia was furnished in 1840.

The West Point Observatory abont 1841.
The Tuscaloosa Observatory it 1843.
The Washington Ouservatory ahout 1844.
The Georgetown, D, C., Observatory in 1844.
The Cincinuati Observatory in 1845 .
The Cambridge Observatory in 1847.
The Amherst Observatory in 1847.
Dartmouth, Newark, shelbyville, Ky, Buffa'o, Michigan University, Alhany, and Hanilton College, lave also observatories.

A good artiele on the astronomical observatories of the United States may be found in Harper's Magazine, June, 1856. See also "Observations at the Washington Observatory," volume for 184..

For more full details than in'the artieles named, see Chamhers's Astronomy ; Dr. Pearson's Prartieal Astronony; Loomis's Practical Astronomy ; Simnis Treatise on Instruments; Heather on Mathematical Instruments.

As-tro-nom'i-cal Lan'tern. One with panes or slides laviug perforations whose relative size and position represent stars in a given field of the heavens.
As-tro-nom'i-cal Tel'e-scope. A telescope in which the inage is inverten, composed of a conv-rging object-glass $A D$, aud of a converging eye-glass $C D$. Rays of liglit falling from any point M of a

distant object M, and falling E on the whole surface of the objectglass are refracted into the upper point in the principal focus. In like manner those proceeding from the point N^{-}are refracted into the lower point, and thus an inverted image is formed at the focus of the object-glass. The eye-glass is placed so that its focus shall coincide with the place of the image, consequently rays diverging from any point on the imare, and falling on the lens $C D$, are rendered parallel and enter the eye at E, where they produce distinct vision.

The length of the telescope is equal to the sum of the focal distances of the two lenses, and the magnifying power is equal to the focal length of the ob-ject-glass divided by the focal length of the eye-glass.

This telescope was first described by Kepler in his Dioptrice, 1611 , but does not appear to have been executed till 20 or 30 years later.

A large instrument of its class was mounted at York, England, hy Cooke. See Fig. 401.
lt is mounted equatorially on the German princi-

Cooke's Tetescope.
ple, having a finder at the side, as is usual with that class of instruments. Sidereal motion is communicated to the instrument by clock-work. Its ohjectglass is 25 inches in diameter.

The new refracting instrument for the Naval Observatory of Wasbington, D. C., is heing made by Alvan Clark, of Cambridge port, Mlass., and will probably be completed during the present ycar (1873). Its object-glass is complete, and has a diameter of 27 inches. It is the largest of its class, and great hopes are reasonably entertained of its performances.

Large telescopes, equatorially mounted, are in the observatories of Cambridge, Eng., Cambridge, U. S., Chicago, Albany, Alleghany, and Pulkowa, Russia. The equatorial of Melbourne, Australia, is a reflector. See Telescope.
As'tro-scope. 1. An astronomical instrument composed of two cones, on whose surfaces the constellations, with their stars, are delineated, and hy means of which the stars may be known; an iniperfect substitute for the celestial globe. - Webstrai.
2. An astronomical instrument provided with telescopes, for observing the stars, invented and described by William Shukhard, of Tubingen, in 1698.

As-tyllen. (Mining.) A small-dam in an adit or mine to prevent the full passage of the water.

At-a'bal. A Moorish musical instrument resembling a tahor. - Croly.

At-a-rim'e-ter. A philosnflical instrument used in a fixed observatory.

Ath'a-nor. The origiual Base-Burning Furnace. It was used by the old alchemists to ensure a constant supply of fuel to a furnace intended to keep up a continued heat for many consecntive days.
Alongside the furnace-chamber was a hollow tower containing charcoal, and fitted with a close cover to prevent the passage of air. The lower jart commnnicated with the fireplace, and as the contents of the latter burned away, the fiel from the tower subsided into the fireplace and kept up the fire.

The subject has bern amplified of late years. Watt introduced it into his steam-boiler furnace ahont 1767. Many stores are now constructed on that principle in England and in the Enited States.

At what time the venerable alchemists first contriverl the athanor we do not know. We presume that Hermes Trismegistus, Aristotle, and their colaborers of Ergpt and Rome, may have done without it, but that it may have arisen when Hoger Pacon, Alhertns Magnus, Paracelsus, Raymond Lully, ant Basil Valentine set about the search. This latter scoje embraces several hundred years of valuable services.
The supply-chamber is termed a Magazine (which see). See also Smoke-consuming Furnade; Sture, Base-bithneng; Cooking-Stove, Base-berning.
At'las. 1. A size of drawing naper meantuing 33×26 inches, and weighing 100 pounds to the ream.
2. The Indian satin of commerce.
3. (Architecture.) Plural, Allantes. Male human figures serving as pillars; called also Telamones. The name is derived from an intended resemblance to Atlas or Ajax. A somewhat different style of figures, in which the attitude exhilits the ajpearance of less violent exertion, are called Persians.

Fernale figures employed for the like furgose are termel Carratides.
At-mi-dom'e-ter. Bahington's atmilometer for measuring the evaporation from water, ice, or show, consists of an oblong hollow bulb of glass or enpper, commuuicating by a contracted neek with a globular bulb beneath, weighted with mercury or shot. The upper bulb is surmounted hy a glass or metallic stem graduated to grains and fractions, on the top of which is a light shallow metal pan.

For use, the instrument is placed in a vessel of water having a cover with a circular hole in it through which the stem protrudes.

Distilled water is poured into the pan on top until the zero on the stem is brought lown to the level of the cover of the vessel in which the instrument floats. As the water in the pan evaporates the stem rises, aml the amount of evaporation in grains and parts is indicated by the scale.

An adjustment for temperature accompanies the imstrmment, - Buande.
At-mom'e-ter. An instrument to measure vaporous exhatations. An craporometer or hygroscope.

It was invented by Professor Lestie for determining the rate of evaporation from a humid surface in a given time.

A thin ball of porons earthenware, two or three inches in diameter, with a small neek, has cemented to it a long and rather wite tube of glass hearing divisions, each of them corresponcling to an interna section eynal to a film of liguid that would cover the onter surface of the ball to the thickness of one thousanulth of an inch. The divisions are ascertained hy calculation, and are numbered downward to the extent of 100 to 200 . To the top of this tube is fitted a brass cap, having a cullar of leather, atul which, after the cavity has been filled with distilled water, is secured tightly. The ontsite of the ball being now wiped dry, the instrument is suspended out-of-loors to the free action of the air. The quantity of evaporation from a wet ball is the same as from a circle lavir. twice the diameter of the sphere. In the atmometer the humidity transudes through the porous surface just as fast as it evaporates from the extermal surface, ant this waste is measured by the descent of the water in the stem. As the process grees on, a cormesponding portion of air is introduced into the ball and rises into the tube.

A modified form of the atmometer consists of a vessel of yorous earthenware, luving a giveri area of surface and filled with water, poised at the end of a balunce, and the loss in a given time noted by weights an the other emt.

A thrmometer inserted into the vessel will indicate the temperature of the evaporating liquid, and would form a hugrometer on the principle that the degree of colld generated hy evaporation is proportional to the dryness of the air.

At-mos-pheric Alarm'-Whis'tle. A whistle blown by the air. It is principrally used as a natio cal alarin, bring attached to a buoy, or placed on a bile or Hoating vessel, to warn ships from a shoal or suit of land. It is to be distinguishod from audible alarms probluced hy elock-work or other maehinery by which a blast of air is impelled through a whistie or horn. These are considered under For-Alanim; Nautical, Abalin; which see.

Cadell's Atmospheric Alam-Whistle, 1867, is somded by the alternate cluetion and induction of air from or into an amular chamber, which is partially filled with water and oscillated by the motion of the vessel, assisted by other power, if necessary. The motion may be made to work an air-pump to inerease the energy of the blast, or its etlectivetess may be augmented by gas, generated by chemical action in the clamber.
The chamber D has air-spaces $b b^{\prime}$ communicating by valves $e c^{\prime \prime}$, on "ither side of the dividing plate a, with the bast-whistle $J . \quad d d^{\prime}$ are vacumm whistles. whiel a t alternately as the chamber sways in one direction and the other, supplying air to that side of the chamber which is abandoned hy the water. The funmel G is the means of supplying the chamber D with water. Oil upun the surface of the water in

chambers $b b^{\prime}$ prevents evaporation. $e e^{\prime}$ are values to the vacuum-whistle ports. I is an ail-chatmher.

At-mos-pher'ic Churn. A churn in which atmospheric air is diven into the milk in orler to agitate $i t$, and also to obtain the specific elfect of the air upon the milk in aggregation of the oleaginous globules.

There are many moles of doing this:-

1. The airpum?

In this case the ail is driven liy nuectan. ical means into and throush the milk by means of a piston working in a cylinder, or by a brilows.

In thes exanule (Fig. 403) the air is

Fig. 403.

Atmcspheric Churn. driven by the bellows C throngh the pipea $b l$, passes out at c, and is clistributed though the nilk by the perforatenl diaphrapm F, G is a vessel in which hot or cole! watur may he p!aced to temper the milk. The bel-lows-handle E is supported by a post on the churn A. 2. The centrifugal ehurn-dasher.

This is uscully a vertical tube with radiating arms

Atmospheric
Churn-Dasher.
at the bottom. As the tubular dash- in whieh water er is rotated, the air is expelled at was injocted into the ends of the radial amms, a supply entering at the open uyper end of the tube.

There are many molifications of this principle, but they all possess this substantive feature.
3. The reciprocating dasher.
ln this case the tuhular dasher has a valve which opens, on the upward motion, to admit air, and closes when the dawn stroke ejects the air from the tube into the milk.

In Fig. 404 the dasher is duplicated, the npper part being connected to the tubular shatt B and the lower part to the inner plunger $I F$. As the tube B rises, the plunger I descends, the valre g closes, and air enters at the upper valve-way in A. As the tube B descends, the upper valve closes, the ylunger expels the air through the valre-way a, out at the bottom of the thae and into the cream.
In anotler form (Fig. 405) air at any lesired tentperature is forced into the churn at a joint near the

Fig 405

Almospheric Churn.
bottom by the reciprocating air-pumps, and has exit through the lid. As a piston rises, air enters beneath it by the valves I in the supply-pine H. As the piston descends, the valve closes, and the air is delivered into the cream by the pipe L. The action of the pistons is alternate.

At-mos-pher'ic En'gine, Invented by Dr. Papin, of lilois, France, in 1695 ; improved ly Newcomen, 1705, and Watt, 1764 . It was the first good steam-engine on a working scale, and is the foumlation of the Comish engine. The present fom of the engine has Watt's improvements.

In it the steam from the boiler is conducted beneath the piston, rather allowing it to rise than actually lifting it, as the weirhit of the pumpr-rod causes the punp-plunger to descend. The eflectire stroke is obtained by the condensation of the steam bencatla the piston, when the pressure of the atnosphere on the latter lifts the pmop-ron and the water:

In another application of the engine, the atmosphere raises the pump-rod, and the weight of the latter forces up the water.

The illustration shows the old atmospheric engine,
the air at the valve Q. The slide B is then lowered, so as to shut ofl the supply of stean ; the injectionfancet I is oqenet, diselarging water into the condenser E, causing both pistons to descencl. This is the effective stroke of the engine, and as the piston of the air-pump destends, the results of condensation, together with some steam and air, flow through the valve-way between the condenser and air-pump chamber, to be ejecterl, as the piston A rises, on the return stroke. The risiug of the piston A closes the intermediate valve and opens the eduction-valve Q.
The latent lieat of steam being about 950°, steam at 212° may be said to have 950° latent and 212° sensible heat, $=1162^{\circ}$. Steam mixed with $5 \frac{1}{2}$ times its weight of water at 32° will raise the latter to nearly boiling heat, though the water requires a great increment of heat to raise it a few degrees more, as so much heat becomes latent in passing to the condition of stean.
The formula for construction of these engines is given as follows by Cresy.
The cylinder las a diameter equal to half its length.
The velocity in fect per minnte should be 98 times the stuare root of the length of the stroke.

The stroke of the air-pump should be half that of the cylinder, abal the diameter of the air-piston three eighths that of the steam-piston.
The area of the steam passage is : as 4800 is to the velocity in leet per minute, so is the area of the cylinder to the area of the steanm passage.
To ascertain the quantity of steam, multiply the area of the cylinder in feet by half the velocity in feet; add one fitth for cooling. This result divided by 1480 gives the quantity of water required to supply the boiler.

Twenty-four times this quantity of water is required for condensation.

The injection-aperture should be one thirty-sixth the diameter of the cylinder; the conducting-pipe one ninth.

To ascertain the power, multiply 6.25 times the square of the diameter of the eylinder in inches by hall the velocity of the piston in feet per minnte ; the prodn t expresses the elfective power, or the number of pounls elevated one fo it high per minute ; the lorse-power i; found by dividing the result ly 33,600 .

At-mos-pher'ic Grov'ern-or dn apparatus for governing the motion of machin ry by means of an imprisoned bolly ol air subjected to pressure. The illustration shows one fonn of apparatis in which the brake-lever D may be brought into contact with some moving wherl of the mathine to he regulated. The pressure of the air in the cylinder A upon the

piston C is the measure of the power brought upon the brake D. This pressure may be alecreasell by allowing air to escape thongh the stop-cock F, or increaspll hy the artion of the valvel piston B, b^{\prime}.

At-mos-pher'ic Ham'mer. A power-hammer Iriven by the fore of compressed air.

In some eases the air is employed merely to lift
the hammer; in other cases air is also cmployed as an adjunct in the effective stroke. In the latter case the opreation is much like that of the stran-hammer, the main difference being in the sulustitution of air for steam.

In Hague's English patent some forty years since, an atmospheric hammer is shown, in which the helve is aised by the pressure of the atmosphere beneath a piston above the hammer-lielve, the air being exhausted from above the piston ly means of a pman?; the hammer falling by its own weight when the air is arlmitted abore the piston.

In Fig. 409, $a b$ is the hammer turning uion the fulerum at $l ; c$ the anvil ; d a cylinder situated immediately over the bammer ; e the piston connected with the hammer by the bar f and the slings g; h a slide-valve worked by the lever l, which is

Fig. 409.

Hague's Atmospheric Hammer.
struck by a pin on the bar f when the piston arrives at the top of the cylinder, depressing the valve so as to shut off commmication with the air-pme and almit atmospheric air above the piston, permitting the hammer and piston to fall by their own weight.

Towards the close of the descent, the hammer, by means of a line attached to it and to the lever l, rewerses the position of the latter and of the slidevalve, thus re-opening the communication between the cylimder and the air-pump. k is the pijpe leading from the air-pump to the cylinder: m is a rock for shatting ofl the communication with the air-pump when the hammer is not at work; $n n$ are slanners for opening and shutting the cock.

The atmospheric hammer (Fig. 410) has an airpump and hammer combined in the same framb.
c is the hanl-wheel which derives its motion from the motor, - steam or water, as the case may be. v is the pitman, and p the piston operated by a wrist on the band-wheel c and condensing the air in the cylinder 0 . The compuresed air is stored in a reservoir $a b$, and conducted to the valve-chamber:

In this chamber are a slide-valye k and stationary valve ${ }^{\prime}$ ' l ', the former operated by the valve-rod io from the friction-wheels $y d$.

The head of the hammer h is attached to a piston g. which works in the cylinder' f, into which air is almitted - like steam to a doulde-acting steamengine - altemately above and below the piston. The friction-wheel \dot{b}^{\prime} is spline-keyed upon the shaft

Fig. 410.

Atmo-pheric Hammer.
d, and is aljustable unon the latter longitudinally, so that its perimeter shall come in contact with the under side of the wheel y at points more or less distant from the axis of the last-mentioned wheei. In this way the valve is made to adnit more or less air to the cylimder according to the force required and the duty to be performed. If the wheel b^{\prime} be near the center of wheel y, but little motion is imparted, the strake is quick, and the blow light ; but if the wherl b^{\prime} ' is carried nearer to the periblhery of the wheel y, the hammer is slower in its motion, and a more forcible blow is giren.
The valve-plate $d^{\prime} d^{\prime}$ is adjustable, but not involved

Fig. 411.

in the active motions of the machine. Its adjustment affects the area of opening in the air in-ductionvalve ports.

The stopcock t is an escape for air when required. j are hamnier and anvil faces, resplectively.

In another example (Fig. 411) the hanmer is reciprocated by pitman connection K to a wrist on a crankshaft C, operated by a band on wheel N. The light of the hammer F above the anvil is graduated by the adjustment of its piston-
$\operatorname{rod} I$; and its stroke by the adjustment of the wrist as the cmonk-shaft.
B is the standard of the frame.
The hammer (Fig. 412) derives the decision of its blow frome the force of compressed air. The hammer-head is atatched to a piston B moving in a cylinder F, the latter being connected by a pitman D to a crank-wlieel E rotated by the motor. As the cylinder ascencls, air enters the holes in the cylinder, and the air being compressed below the juiston, the hannmer is lifted. As the eylinder descends, air is compressed abore the piston, and is stored up to produce a sudden blow, by instant expansion after the crank and con-necting-rod turn the

Pneumatic Hammer.
lottom center.
At-mos-pher'ic Line. The equililrium line of an indicator card, which shows that the steam lyesure is equal to that of the atmosplare.
At-mos-pher'ic Pump. One in which the pressme of the air forces water into the pipe below the plunger. The usmal fom of 7 ifl -pimm ${ }^{\text {l }}$, thongh some lift-pumps elerate the water foom innmense iepoths in mines. The attempt in 1641 of a Flormitine pump-maker to make an atmospheric jump whith would elerate water 50 or 60 feet having failed, the Grand Duke asked Galileo to account for the failure. His reply was not to the purpose, but Torricelli ten years afterwayds explained the canse. Galileo was by this time "in his grave." Malice hat "ilone his worst . ., . nor steel nor poison" could "touch him further."

At-mos-pher'ic Rail'way. The idea of conveying earnages in a tube ly means of atmospheric pressure serms to lave originated with Dr. Papin, of Blois, in France, abont the end of the screnteenth century. This extremely versatile man was the first to aply steam to raising a piston in a cylinder. Ife was the inventor of the Digester, and to this was first applied the lever-weighted safety-valve, also the Doctor's invention. The experiments actually entered upon by the philosopher of Blois, in the matter of compressel air, were principally directed to the transmission of power thereby. See Aif is a Means of transmitting Power.

He piaced air-compressing engines in positions where the compression could be efliected by a fall of water, and jipes were to convey the air to the mime, where it was to be allowed to expand against a piston and work a pmmp. For some reason the project failed in its execution, but has leen more successful in other hands.
The suggestion of conveying coods, parcels, and passengers by compressed air appears to lave been rather a chance suggestion than to have been seriously entertained, and it has been again and again revived in the 130 years that intervened between Papin
and Medhurst, who again arged the project about 1810.

Medhurst, in 1810, pmblished anaccount of "a new method of conveying goods and letters by air," and in 1812 exterded the idea so as to provide for the transmission of passengers, whon he proposed to transport at the rate of fifty miles per hour. His project consisted of an air-tight tube, containing a pair of cast-iron whecl-tracks on which the carriage hats to run. The carriage had the form of the tulse and a certain amont of packing to prevent the leakage of the air, which was condensed behind it and formed the propelling power.
His calculation was as follows:-
To obtain a spreed of 50 miles per hour, in a tube six feet in diameter, would require a constant im. pelling force of 861 pounds moving at the rate of 73 feet per second, enflat to the power of 180 horses. Taking the consumption of fuel of a steam-engine of that size at 12 bushels of coal per hour, three tons of goods might thims be conveyed 50 miles at a cost of $12 s$, and at the speed mentioned. The project fell uron the dead ear of the public.

Twetre years afterward the idea was revived in a changed form. Retaining the tube and carriage of Methurst, Vallance, in 1824, obtained a patent in England for his modifeed plan, which consisted in using a partial vacuum in front of the carriage, allowing the natural atmospherie pressure in the rear to impel the carriage. In this he differel from Papin and Medlurst, who proposed a plenum in the reat, and not a vacum in the advance.

Vallance's tumel was to he of iron or vitrified clay, and he constructed a short tube in his garden at Brighton, which worked on the moderate scale on which it was applied, and was oceasionally noticed in the journals of the day.

So far all the inventors have proposed that the cartiage shall travel in the tube in the manner of a piston. The next proposition introluces a new feature.
In 1934, Pinkns, an American citizen residing in Enghanl, took out a patent for an apparatus whic'a he temend a Puemmatic Railway, and laid the foundation of most of the successful applications of the atmopheric principle which have since been introducerl.
Pinkus's pateut embraces a main with a continuous longitudinal slot on its upper surface, and an elastic gravitating valre to fill the slot. The tube was to be about forty inches in diameter, laid down between a pair of rails on which the carriages were to run, and having within it a piston attached by a rertical arm to the leading carriage of the train. The vertical arm passed through the slot in the up-
per part of the tube, and displaced the valve as the piston advanced, the valve clusing in the rear of the arm after allowing some air to enter. The valve consisted of a thick cord saturated with a composition of wax and tallow.

Cleger patented some improvements in 1839.
The valve works on a linge of leather or other flexible material, which is practically air-tight, sim-

Fig. 413.

Clegg's Talve closed.

Fig. 414.

Clegg's Talve open.
ilar to the valves commonly used in air-pumps; the extremity or edge of the valve is eansed to fall into a trougli containing a composition of beeswax and tallow, or other sulstance which is solid at the temperature of the atmosphere, and becomes lluid when heated a few degrees above it.

An onter flap of sheet-iron I covers the leather valve when the slot in the tube is closed belind the colter C, and is raised before the colter by the oblique roller D, Figs. 414, 415.
The tube A was coated inside with hard tallow, to make it perfectly smooth, and the piston B was furnished with a rod S, about 14 feet long, to which were attached rollers $H H$, which pressed open an air-tight valre along the top of the tube as the piston advanced. The piston was attached to the first, or driving, car by means of a colter C, and to the driving ear was attached a copper vessel, several feet in length, heated with eoke, for the purpose of melting the composition after the valve had been pressed down by the closing roller.

The valve bechind the lifting-bar was held up for a sufficient time by the rollers $H H$, to allow the air to pass in belind the piston.
The pipe was diviled by valves into three-mile sections, a stean-engine working the air-fmmp of each. The main was cast in sections nine feet long, joined by an oil cement.

An experimental line was laid down at Worm-

wood Scrubs by Clegg and Samuda. The hine was half a mile long, with a rise of 1 in 120 for a part of the distance and 1 in 115 for the remainder. The diameter of the main was nine inches. The exhanstion was produced by means of an air-pump $3 \bar{i}$ inches in diameter and 20 inches stroke, worked by a condensing engine of $\mathbf{1 6}$-horse power.
This arrangement was employed from 1844 to 1855, on the line from Kingston to Dalkey, Ireland, $1 \frac{3}{4}$ viles long. It is statel that an exhaustion of 15 inches could be produced in two minutes, and a rate of 50 to 60 miles an hour could be obtained. The rise is $71 \frac{1}{2}$ feet in 3,050 yards.
The diameter of the main was 15 inches. The double-acting air-pump was $66 \frac{1}{2}$ inches diameter, with a stroke of 66 inches. It was worked by a high-pressure condensing-eugine of 34 inches diameter and 66 inches stroke, working expansively.
The stoppage was effected by a powerful brake, and, if necessary, by an arrangement operatable from the ear, by which the valve was opened in advance, so as to destroy the racuum.
Railroad engineers expressed very rarious opinions on the feasibility of the new project, Brunel and Stephenson took opposite sides, as usual, and the plan was tried in South Devonshire, on the Croylon Railway, and elsewhere. It esentually failed by reason of complexity and liability to get out of order, leakage of air impairing the vacuum.
The adrantages are: facility in ascending heavy grades, reudering less cost necessary in leveling and grading ; and security against collision.
Another form of convering the motion of the piston in the atnospheric tube was invented by Pilbrow, and was intended to avoil the continaous opening in the tube, and the necessity for the valve which closed it on the Pinkus principle. Pilbrow made a toothed rack on the edge of his piston, which rack engaged with a series of piuions in air-tight boxes attached to the sides of the tube at short intervals. The rertical axes of these pinions passed up-

Fig. 416.

Pibbrov's Atmospheric Railicay.
ward through stuffing-boxes, and at the top, were provided with other pinious which geared into racks on the sides of the carriages. Thus, the motion of the piston rotates the pinions successively as it advances along the line, and they communicate motion to the carrage. It is not known to the writer whether this device ever came into practical use.

Keene and Nickel's Atmospheric Railway (English) was designed to act by compressed air in a tulve laidalong, under gromed, between the lines of rail. Statiouary above the surface are certain standards with groored sides, in which are elastic pipes fell from the reservoir-pipe below. Beneath the carriage to he driven are rollers which are made to condense the elastic $l^{\text {ij }}$ pes into the hollowed sides, and the air, being aulmitted in the rear, expands agrainst the leripheries of the clrums beneath the carriage, and forces them to rotate and the carriage to adrance.

Hexry's Atmospheric Railway, English Patent, August 7,1845 , specifies a side slit in the atmospheric tube, and the longitudinal ralve closed by the pressure of a long bag or hose, inflated with air and protected by a shieh of wrought-iron holted to the tube.

The racuum in the tube is produced by first filling with water a number of large, close reservoirs cou-

Elerated Railvay.
nected with the tube by pipes and valses, opuning the commuication between the two, and then allow: ing the water to run off.

The same mode of produciug the vamunt was described in Artices's English Pateut, February 24, 1844.

In another application of the air, a tuhe laid thronghout the line is filled with eomprensel air, and is used as a reservir wherefrom compressed-air loromotives may renew their sumply of air.

This is suggested in comnection with one fom of Elerated Railway.
lu one form (Atmospheric Elevated Railway), the tube, which extemls the whole length of the railway, is filled with compressel air, for the surnly of the tanks on the cars, which form reservoirs for the supply of the air wherely the air-mpines are driven. The tube at suitable intervals has valves and discharge-pipes for the supply of the engines on the cars.

The original proposition to use a transportationtube and compresion or exhaustion of air for the converanve of lighter articles of freight and letters, has been put in practice suceessfully. A compuy was formel, ant a premanent line laid fown in $\mathbf{1 8 5 9}$, for conveying parcels and light goods from the

Enston Square station and the Post-Office in Eversholt strect, London, and an extension was opened in 1805.

This realizes the dreams of Papin and the hopes of Mellhurst, nearly two hundred years after the busy speeulations of the first and fifty years after the disappointment of the second.

A late act of Congress (1872) appropriates $\$ 15,000$ for a pmomatic dispateh-tube between the Caprol and the Government Printing-Oltice, Washington.
The pneumatic dispatch-scheme has been [ut in operation at the Crystal Palace, Sydenham, England, to convey regular passengers.

The tube extemels from the Sylenhan entrance to the armory mear Penge Gate, a distance of about a quarter of it mile; and it is, in fact, a slmple brick tumel, nine fieet high and eight feet wide, - a size that remlers it capable of containing an ordinary railway-earriage. The piston is rendered partially air-tight by the use of a litinge of bristles extending nearly to the brickwork of the tunnel and its floor. A finn 20 fret in diameter is employed to exhaust or to force in air, and perhaps it is impossible to clevis any other expechent so well calculated to answer the rerguired prorpose. It must be remembered that either a plenum or a vacumm erpivalent to . 5 of a'r inch of mercury is quite suffisient to propel even a heary train at a ligh speed on a moderately level line. In the present instance the motive-power is suphled by an old locomotive borrowed from one of the railway-companies, which is temporarily mountel on brickwork. The tires have been removed from the driving-wheels, and these last put the fan in motion by straps.
The line is a quarter of a mile long; a very small portion of it, if any, is level, but it has in it a gralient of one in fifteen, -an incline which no engineer would construct on an ordimary railway ; and as it is not a level line, so it is not a straight one; for it has curves of only eight chains radius, which are shorter than those nsmally found in existing railways. The entire distance, 600 yards, is traversed in about 50 secomls, with an atmospheric pressure of but $2 \frac{1}{2}$ ounces. The motion is, of conrse, easy aml pleasant, and the ventitation ample, without bing in any way excessive. See Pseumatric Tebulah: Dispatch.

At-mos-pher'ic Spring. A spring formed by a confined holly of air either operating ly means of a cylinder and piston or by an air-tight bag.

It has been suggested for gnn-carriages, to tuke the jar of the recoil, and also for railroad-cars. See Paeumatic Splinge.

A-tom'ic Weights. The appended list of chemical equivalents differs mneh from those of oht er and other authorities, but is offered as the hest within the reach of the present writer. It differs also from a short list of chemical equivalents on page 66.

TADLE OF ATOMLC WEIGHTS.
compiled accorrling to the Latest Determinatinns, for the Use of the Sturdents of the School of Mines,

Columbia College, Jan., 1872
dy c. f. Chandler, ph. d.
Ifydrogen $=1$.

Oxymen,	stmbol. 0.	OLD.	NEW. 16.
Almminium,	A.	13.7	27.4
Antimony,	Sb.	122.	122.
Ars:nic,	As.	75.	75.
Buriun,	Ba.	68.5	137.
Bismuth,	Bi.	210.	210.
Boron,	B.	11.	11.
Bromine,	$B r$.	80.	80.

('arlmium,	syaboL Cd.	OLD. 55°	SEW.
Cusium,	C's.	133.	133.
C'alciun,	Ca.	20.	40.
C'arbon,	C.	6.	12.
Cerimm,	Ce .	45.7	91.3
Chlorine,	Cl.	35.5	35.5
Chromium,	Cr.	26.1	52.2
Cobalt,	Co.	30.	60.
Columbium,	Cb .	94.	94.
Copper,	Cu.	31.7	63.4
Didynium,	D.	47.5	95.
Erbinm,	E.	56.3	112.6
Fluorinc,	F :	19.	19.
Glucinum,	G1.	4.6	9.2
Gold,	Au.	197.	197.
Mifdrogen,	H.	1.	1.
Indium,	1 ln .	56.7	1134
Iodine,	1.	127.	127.
Iridium,	1 r .	99.	198.
I $10 n$,	Fe.	28.	56.
Lanthanam,	La.	46.	[12.
Leat,	Pl.	103.5	207.
Lithium,	Li.	7.	7.
Magresimm,	Mg.	12.	24.
Mancranese,	M11.	27.5	55.
Merenry,	Hg	100.	200.
Molybilenum,	Mo.	48.	96.
Nickel,	Ni .	29.	58.
Nitroyen,	N.	14.	14.
Osmium,	Os.	100.	200.
Oxygen,	0.	8.	16.
l'alladium,	Pd.	53.	106.
Phospharus,	P.	31.	31.
Tlatinum,	Pt.	98.7	197.4
Potessium,	K.	39.1	39.1
Thodium,	Ro.	52.	104.
Diubidium,	13.	85.4	85.4
liuthenium,	Ru.	52.	104.
Sclenium,	Se.	39.5	79.
Silicon,	Si.	14.	28.
Silver,	Ag.	108.	108.
Sodium,	Nu.	23.	23.
Strontium,	Sr.	44.	88.
Sulphur,	S.	16.	32.
Tuntalum,	Ta.	182.	182.
Telhrium,	Te.	64.	128.
Trerbim,	Tb.	37.7	75.4
Throllium,	72.	204.	204.
Thorinm,	Th.	59.2	118.4
Tin,	Su.	59.	118.
Titanium,	Ti .	25.	50.
Tungsten,	W.	92.	184.
l'mium,	U.	60.	120.
T'enadiem,	1.	51.3	51.3
I'trium,	Y.	30.8	61.6
Zine,	Zn.	32.5	65.
Zirconium,	Zr.	44.8	89.6

At'om-i-zer. The atomizer is designed to reduce a liquid into spray for disinfecting, cooling, or perfuming purposes.
Several different moles of operation are adoptel. One style consists of a blast of air presented at right angles across an opening in the end of a tube which communicates with a supply of the liquin. This acts somewhat on the principle of the Giffard Injector, raises the liquid, and ly contact disprerses it, rellucing it to a fine spray. The contiguous air and Huid tubes are commected to the vertical or cup, tuhe, so as to he reversible in relation thereto.

The atomizer-tulue is used to diffuse a conled liquill in spray to remler it more effective in alsorb-
80. ing the sensible heat of a room or vessel. There are

Atomizer.
many adaptations to boats, the frame of the shade, which is secured to the gas-burner in the usual manner. The atomizer is also used in connec. tion with an aircarbureting apparatus.
ln the early and simple forms of inhalers the liquid was raprorized by heat, and this is a desirable condition for some modes of treatment. In many
 cases, however, the increased temperature produces injurious effects. A means of changing the liquil into mist, which does not act on the Giffard principle, as in the modern form of atomizer, is shown in Fig. 420. The rotary wheel has hollow, radial arms, terminating in rery small orifices, through which the liquid is thrown in jets by centrifugal action. The liquicl is ejected against oblique plates attached to the ends of the radial arms of another wheel which rotates in a direction the reverse of the former. The contact of the liquid with the plates reduces it to a spray, which pervades the chamber in which the operation is carried on, and the patient is cansed to breathe the mist either by a tube or otherwise.

In the anæsthetic instrument for dental purposes, each tule is bifurcated, so as to reach the inner and outer sides of the jaw simultancously, by the branches $d d$. The straight tulbe a carries the air-blast,

and thus draws a current of liquid whose rapid eraporation prodncescold and localanæesthesia. The lower end of the bent tube b is dipped in the liquid, and it discharges at its end, while the air-tube ac discharges just in advance of it, $p^{\text {rodncing a spray of the lipuid. }}$

The atomizer is adapted for operation by hand or foot bellows (see Fig. 181). It consists of a hollow curvel tube, made of German-silver, one extremity of which has an aljustable conical cap, while the other jasses down into the bottle throngli a perforation in the cork. A short distance abore the cork this tube has another tube joined to it at riplit angles, and which is attached to the intia-rubher tubing. Within the second tuhe there is contained a capillary one, which extends from within a line or two of the extremity of the caj nearly to the bottom of the bottle, and heyond the bottied extremity of the larger tule. Near its uppe: extremity this capillary tube perforates a celinder of motal, which almost completely occupies the caliber of the larger tube, and would entirely plug it upexcept that it has longitudinal grooves upon its surface. Pressure
apon the hand-ball forees air throngh the other ball, and so to the cavity of the eurvel tube. One column of this air passes upward through the tube, and the other lownward into the botte. The upwarl colum passes through the grooves in the circumference of the phag into the cavity of the cap, and escapes throngh the eapillary oritice at its tip. This colum of air, passing ore the extremity of the capillary tube, creates an vanm in it, which is supphied by the liguil contents of the bothe, upon which one of the columns of air is pressing. The other columo of air divides into spray the drops as they issme from the inner tube.

The theaters of the Romans were fitted up with mumerous concented pipes, that passed in every direction along the walls, and wre comnected to cisterns of water or to machines for mising the latter. Certain parts of the pipes were very minutely perforated, and were so arranged that, by turning one or more cacks, the liguin] escaped from them, and descended mon the andince in the form of dew or extremely time rain. This elfectually cooled the heated air, and must have heen excectingly refreshing to the immense multitudes, especially in such a climate as Italy.
"The dining-room; of Nero's golden house were ceiled in such a mamer that the attendants could make it rain either thowers or liquid perfumes. At one feast 100,000 erowns were expended in perfumed waters." - Ewbank's Iydruulics.

It is possible that the Romans extinguishel flames in the same manuer. See also Sif Willian Congreve's English patents No.s. $3201,360 \mathrm{n} ; 1809$ and 1812.

At-tached' Col'umu. (Architcture.) One partially imbadd in a wall. An inserted columm.

At-tach'ment Screw. A binding serew.
At'tic. An upper story, when the ceiling is horizontal. Otherwise it is a gerret.

At'tle. (Mining.) Rubhish containing little or no ore. Synomyms: mhlle: atall: athal.

At'wood's Ma-chine'. A sci-

Fig. 422.

Atworot's Machine entitic appuatus to illustrate the theory of aceeleratel motion.

It eonsists of a wooden colunm, about 10 feet high, resting on a bas: and supporting a series of anti-fric. tion wheels, which support a large central roller, over which passes a cord having equal weights at each ant, so as to be in equilibrio. By means of a gmoduated stall at one side the rise of one aml fall of the other weight are indicated in feet and inches.

A small additional weight, being adked to one of the large weights, canses it to desend with a velocity due to its excess of gravity over the other; and this leing very small, the motion is correspontingly slow, rendering the resistance of the air inappreciable, and emabling the rate of deseent to be asecrtained with great accuracy.

The counterpoise weights of this apparatus enable the constant acceleration of speed caused loy gravity in a fatling body to the shown and measured within the space of a few feet moris accurately and satisfactorily than conld le done by the fall of a weight not thas comnterpoised from a considemble hight.
It may also be employed to illustrate the laws of
retarded motion, impact of bodies, and resintance of thids, as well as other phenomena of a simitar nature.

Athazen the Saracen, A.D. 1100, in his " Rook of the Balance of Wislom," considered the sulijert of gravity, and asserted that it dminished with the distance. It was reservel for Newton to detemine that it decreased as the square of the distance. Alhazen detemined correctly the relation between the velocities, spaces, and times of falling hoolies. The University of C'ordora was the intcllectual center of Emrope in his clay. The klalif Alkamen's library was so large that its catalogue filled 40 vohmes. The neople of Cortovib conld walk pavel strects at nighlit 10 miles in a straight line, by the light of jmblic lamps, when Londurs and laris were dark and dismal mul-holes.

Galileo, bom 15ut, considened the sulject of acceleration of force, and determined the relation between the spaces of descent aml the times. He used inclined phanes, ly the aid of which her conveniently diminished the velocity without changing the nature of the result.

Au'ger. The lirst boring-tool may he assumed to have heen an awl of some kind. Pliny states that Dredalus inventel the gimbet, - 1240 B . \because It was destitnte of a serew-point, but it may have had a hollow pod, and a cross-heal fomming a hamelle. Awls are shown in Egytian tombs of 1706 and 1490 в. c. The surew pint was added to the emlet in course of time, and, within our own recollection, the twisted shank, which makes it sedf-diselarging. This lint was taken frem the anger flop er, which may be called a magnified gimket, now that their' suceific features lave fuecome so closely assimilated in form and function. The anger (icrelira) was a Greek tool.

The T'credo nurul is is much older still, and caries an anger in his head; - a great bore he is.

From the early descriptions, the auger appears to have heen considered a shipwright's twol. It formedy had a curved, sharpened end, and a concavity to hold the chips; this was a pod anger. To this a lip, was suliseqnently added for some kinds of boring, and in course of time the depression grew into a spiral, which allows the chipis to escalue while the boring procerds, instead of withdraning the tool as the pod becomes filled.

The Tristed Aumer is an American invention, and was made by lilley, of Mansfield, Comucticut, about the begiming of the present century, and afterwarls by Gumley, of the same phace.

L' Hommedieu's Auger.

Shetter's Ammritan Auger.

Augers may be classitied as augers; hollow augers; amular augers; taper augers; augers with secondary borers, reamers, or countersinks, or having expausive cutters. Auger-gages, anger-handles, and machines for making augers, will be considered separately.
L'Homemieu's Auger, 1809 (Fig. 423), has two pods, two cut-ting-lips, a central screw, and a twisted shank. It is hardly fair to say that it is perfect of its kind, as so many improvements hare followed; but it is, on a smaller scale, like Stephenson"s "Rocket" Engine, the typue of its class. The form of auger which in England is called the "American" pattern was patented by Shetter, March 21, 1831. It has a spiral blade around a cylindrical core, and was long a favorite. The "good workmen" who "never quarrel with their tools" do not seem to hare retained this form in the estimation it once held. lt probably ofters more impediment to the discharge of the chips than does the shank made from a flat blade twisted into a

Fig. 426.

 spiral. Some auger-shanks have an increase twist as they recede from the point; this gives a greater freedom of discharge by increasing the caliber of the canal as the chipls ascencl.In the auger (Fig. 425) the cutting-lips commence at the screw or point, and extend therefrom nearly at right angles, until about half-way from the center to the outer point, and then curve upward and formard, giving a nearly semicircular form to the outer portion of the lips, which are curred in the horizontal and vertical planes.

The anger (Fig. 426) permits the formation of cutting-lips at any point on the length of the spiral, by cutting off the twist at any point, in a plane rertical, or nearly so, to the axis of the auger, aml then Kasson's sharpening its edges. The frout surfaces Kasser.
dus the

The S'otting Augor euts laterally, the work being fed against its side. It is used in woodmurtising and slutting machines. The twist is formed into a number of chisel-shaped lips rising from the edge of the twist and presenting slarp edges in the direction of the bore of the auger, so that the wood may be cut laterally if pushed against the instrument after the hole has been bored to a sufficient depth for the proposed mortise or slot. The end-lips may be mate chisel-shaped or hollow like a gouge, as lesired. If the anger or bit be held in the rapilly revolving arbor of a mortising or boring machine, the mortise may be cut at full depth, at one operation, by moving the wood laterally agrainst the auger. The corners of the mortise are afterwarls cut ont by a chisel.

Holloce Augers are used for forming tenons on the ends of spokes, bedsteat-rails, chair rounds and legs, table-legs, and many other Sloting articles. Those on a more extended scale,
dug-r. which allow the material to ${ }^{\text {rass clear through }}$ thern, are properly turning-machines, and are adapted for making scytbe-snaths, broom-bandles, ete.

The hollow auger, as a tool, operates to a certain length on the object, after which the auger or the object is withdrawn. Means for measuring the stroke are frequently found in the construction of the tool, as by the depth of the socket; but other means may be used, and are known as auyer-gayes.
This tool (Fig. 428) is adjustable for boring holes of different sizes. The rotary disk has eccentric slots acting upon pins inserted into the backs of sliding cutter-heads, so that they are driven out or drawn in simultaneonsly, and fastened by a jam-nnt, which holds them in the required adjustment. The above is adapted to be used as a bit in a brace.

Fig. 429 has cross-handles like an auger. The cutting-tool is so attached as to project within the opening, and the size of the tenon is regulated by the adjustment of the angular
 rest. The tool has the usual auger-handles, in which respect it differs from most of its class. They are

Fig. 429.

usually attached to braces or to mandrels rotated in bearings similar to those of the lathe-head.

A dozen others might be cited, but these are probably sufficiently descriptive.

Fig. 430.
Annulur Augers ent an annular groove; leaving "land" on the inside and outside of the channel. The example (Fig. 430) is adapted for boring eylindrieal bloeks out of a board, the lower edge of the tube being serrated. Fitted inside the tube is a cylindrical plug with a central point. On the reduced shank of the plug is a spiral spring, whieh keeps the point extended, except when pressure is applied to the tool in boring.
The cutters on the end of the tube (Fig. 431) make an annular groove and leave a core of woal in the center, the chips being withdrawn continuously by the spiral blade on the tube. The cutting-lips start at the periphery of the bit, and extend towards the center in concare lines, till they terminate at the inner portion of the tube, where their direction approaehes a line parallel with the axis of the auger. In a subsequent form a
 number of tubes are arranged concentrically, Annular so as to cut concentric, annular grooves sim- Auger.

ultanenusly, and produce a nest of cylinclers ont of the same stick or board.
Yet another form is found in the tool (Fig. 432) sometimes known as a button-tool. It has an nuright center standard, with a fine feeding-screw on the lower end. The cutter is attached to a radial arm, and is alljnstable, so as to describe the diameter required for the hole. The cutter is fed to its work by the thread on the standard, and the chips are
 ejected by the curved neck.

Taper Augers are used for reaming out bungholes, making butterprints, etc. The center bit boresahole, and is succeeded by the taper reaner, which has a throat for the chips, cut through from the erlge of the bit on one side to the opposite side of the stock.

The bunghole Ricumer (Fig. 434) has a tapering pod, and a cuttinglip on one side : the lower end is closerl to receive the chips, and is open at the top, except a bail to which the handle is fistemed. On one side is an adjustable gage and index to determine the size of the bore.
The orthary form of bunghole borer is shown in Fig. 435. This has a volute-shaped blade with a sharpened, salient spiral edge and a gimlet point. It, like most of its class, is for reaming out bungholes and taps.

Angers are sometimes provided with seconlary borers, reamers, countersinkers, or expansive cutters.

In Fig. 436 the reamer or secondary borer is formed in two pieces, and is clamped to the angershank at the required distance from the end of the tool, and at the same time is adjustable to ream out a hole of the rectuired diameter. The clamp is shown separately in the upper portion of the figure. In Fig. 437 the countersink is attached to the

Bunghole Reamer. pin. passed through one in the series of holes in the shaft, engages a hole. in the oblique series in the plate, and determines

Fig. 435.

Crocker's Taper Auger.
the radial adjustment and consequently the diameter of hole bored by it.
The shanks and turned cuttingedges of the expanding bits in Fig. 439 pass through a mortise in the head of the tool, and are secured to their aljustment by a key. Their radial adjustment adapts them to bore holes of varying sizes.

In Fig. 440 the cutter is adjustable eccentrically, and is leld by a dovetailed groove and tenon. The cylindrical core is solid, and the center point is removable. The spiral has a shary edge. The adjustment of the cutter on its eccentric pirot varies its radial sweep in boring, and it is thereby adapted to bore a hole of the required size, within the limit of its capacity.

Among the other uses of augers may lee mentioned that of felling trees in the Mammoth Grove, Calaveras County, California. This grove is in a gently sloping ralley, heavily timbered, situated on the divide or rinlge between the San Antonio branch of the Stanislaus liver, in latitude

Fig. 437.
 38° north and longitude $120^{\circ} 10^{\prime}$ west, and 5,200 feet above the level of the sea; here, within an area of about eighty acres, amil high above the surroumling trees of the forest, can be seen

ALGER.

the stately beads of these evergreen forest giants, the Sequoia gifgutea. These trees are now growing

Fig. 439.

Expansible Auger. in many parts of Great Britain and France, from California cones or burs, and no native trees are equal to them in the rapidity of their growtlı.

There are twenty of these trees that will average 25 feet in diameter at the base. One of the largest now standing is called the "Mother" of the Forest," and has been stripped of its bark 116 feet high, and still measures in circumference at the base $8 \pm$

Fig. 440.

Expansible Anger.
feet ; 20 feet from the base, 69 feet; 70 feet from the base, 43 feet 6 inches; 116 feet from the base, 39 feet 6 inches; circumference at the base, inchuding bark, 90 feet. Its hight is 310 feet, and it is supposed to be 3,000 years old; the arerage thickness of the bark is 11 inches, but in some of the trees it is as much as $22 \frac{1}{2}$ inches.

The "Big Tree," as it was callerl, contained 500,000 feet of inch lumber. It was fellend ly five men working $22 \frac{1}{2}$ days, making $112 \frac{1}{2}$ days' labor to fell one tree. This tree measured 92 feet in circumference at the base. It was not cut down with axes, but was bored down with long pump-augers, and the wooll remaining between the holes was cut off with chisels on the end of long sticks. A building, in which was a telegraph-office, was erected on thie stump, which served as a floor, having been hewn off smooth. A bowling-alley was also built on the remainder of the tree, after a large part of it had been worked up into canes and sold.
The bouly" of the "Father of the Forest" which
lies half buried in the earth, measures 110 feet in circumference at the base, and 200 fieet in length to the first branch, and, being hollow, a person can walk that length erect. The estimated hight of this tree when standing is 400 feet. The "Bmmed Tree," prostrate also, is hollow 60 feet, and persons can ride on horsehack through it for that distance ; it is 97 leet in circumference, and was 330 feet high. There are several other trees of immense size, and variously named.

Au'ger-bit. A boring-bit with a twisted shank, which clears the chips out of the hole.

An auger of a size adapited to be set in a brace or stock, to be revolved thereby.

Au'ger, Earth-bor'ing. A tool for boring holes in earth which is not too compact. There are quite a number of these, varying in detail, but possessing the same general claracteristics. The ordinary kind (Fig. 441) has a nearly circular disk, with a lip projecting downward, to scrape up the earth which accumulates above the blade as the latter is rotated. The blade is occasionally raised to the surface to dump its loarl.

This raising to clump, the load is a general characteristic of posthole angers, and renders the operation somerhat tedious. The delay has induced arrangements for enabling the tool to hold a large

Fig. 411.

Post-Hole Auger. amount of earth, and attempts to make its discharge contimuous.

In Fig. 442 the shaft has a point, cutting-lips, and a floor on which the earth is received. It is foreed into the ground by the screw on the shank, which rotates in a nut at the junction of the legs of

Fig. 442.

the tripod, which is raised above the spot where the auger enters. The end of the serew-shaft is keyed to a stirrup, in which it turns. Above the stirrup is a coupling-piece, having inclined projections fitting in corresponding recesses in the upper part of the stirrup in such a manner that the shaft is made to operate the screw Then boring a hole in the ground, and a reverse motion of the slaft will raise the serew out of the ground without turning it.

In Fig. 443 the shaft las a screw point and angular wings, above which is the floor of the dirtchamber. The soil is scoopred up by the usual flange, and is elevated in the chamber ly the spiral,

Fig. 4t3. which is braced by the axial rod. The cylindrical case is the measure of its capacity in withdrawing a lomb.
Other inventions might be cited, lont the above represent all the varieties excepting minor difterances.
All these are worked by hand, and remove the soil by litting the tool at intervals from the hole and diseharging it. This may le considered the normal character of a post-hole auger.
There are nmmerous devices for penetrating the ground where the appraratus acts to disintegrate the matter with which it comes in contact: these are called Drals, Dhiven WellTubes, Well-Bonems, ete., and may be found describerl under other heads.

The first is either jarred or rotated to grind its way through soil and rock, and is associated with devices for lifting the detritus ly sand-pump, by a stream of water, or ly the upwarl force derived from the concussion of the drill with the rock.

The second consists of a tube which is driven or serewed into the earth, and is generally intemed to remain as the permanent pump-tube ; for this purpos: it has a solid point, to withstand the contact of the obstaches which it is exprected to pirree or displave, and holes which are unclosed to admit the water after the wet stratum is reached; these will be explained under their appropriate heading.

The third are devices of a more ex-

Mr Mrehen's Earth-boring Auger. tensive character than merehole-liggers, and are used in sinking drtesion wells, oil and salt wells, and in boring for mineral lodes.

Au'ger-fau'cet. A faucet with an attached anger, by which the necessary hole is made in the head of the cask. As soon as the auger has abont penetrated the

Fig. 444.

stave, a blow is given to the anger, which breaks away the seale of wood, and the same blow settles the anger. into its position. The bit is attached to the faucet, and is projected or retracted by a rack on its shank within the fancet, actuated by a thmmbserew. A frustal projection on the cap aftorls means for operating the device by a brace.
Au'ger-gage. A device to be attached to the
 shank of an auger to limit the penetration. The countersinks of some of the comprond angers and the sockets of the hollow augers eflect the same purpose in some cases.
The example (Fig. 445) has a pair of bars, secured by temperscrews to the spiral shank, so as to form a gage of depth.

Aunther form has a telescopie tube attached to the shank, larger in diameter than the worm, and allunted as to length by me:ns of two temprerserews whose rmls bear against the spiral shank.

Fig. 446 is for making tenons of a given length on the enls of spokes, rete., and is adapted for hollow angers. The rear of the stock has a thread traversed by an aljustablescrew, which, by contret with the end of the stick, determines the depth of the hole and consequently the length of temon to be cut. at jam-nut secures the adjusturnt.

Au'ger-han'dle. The

Gage for Hollow Auget. tang of the auger is inserted perpendicularly into its handle, and the end is usually clinched or riveted on to a washer. Mans have been contrived for making the anger removalle from its handle, so as to make one of the latter answer for varying sizes of angers, and to dislocate the parts for convenience of stowage.

The devices for this purpose consist ruspretively of a slotted sleeve, a noteled key, a mut on the screw-shank, gripuing jaws, a spring catch.
lliny (died A. D. 79) recommends for anger. landles the wood of the wild olive, box, val, elm, and ash. He says nothing about the augers.
Au'ger-mak'iug Ma-chine'. Auger's are made by ditlerent processess. They are cast; swaged between dies; twisted as they fass through lies or by the successive motions of the jarts of sectional dies; or they are grasped by tongs and twisted by the hamels of a skilled workman, and alterwards finished between dies.

One maker casts the screw-auger in a two-part flask, the jattern of the central shaft and the segmental spirals being so divided as to permit them to be drawn from the sand priectemeal.
Many of the inventions in this line refer to dies of peculiar form, and successions of dies of such form as to cause the blank to gradually assme the shape repmired. One has a pair of swaging dies, by which the twist is fomed cither by a succession of blows or by drawing throngh. The lips are mate between lies of the required form, or are hint down by an operation subsequent to the formation of the spiral shauk.

Fig. 447 is a machine for turning the lips of augers. The spinal shank is clamped hetween the jaws with the tips projecting toward the wrench. The latter being advanced, the loub in its center cmbraces the center point and the l_{j} ss of the auger. The workman then seizes one of the hanthes of the wrench-whed and turns it towarts himself, and while the anger is leed straight by the engagemment of its center point in the axis of the hat, the wrench bomes the lips into the required position, the lips leing turned simultaneonsly and their shoulders being left in the same line. Fig. 1 is a side chevation ; Fig. 2 a horizontal section ; Fig. 3 is a face view of the wrench, and Fig. 4 is a view of the blank before the lips are turned.

In another machine the revolving and longitudinally moving shaft has a trausverse slot in its end,

in which the flat portion of the blauk A (Fig. 449) is inserted, the shank being held by a pair of tongs.

Fig. 448.

> Machine for making Augers.

A series of dies, D (Fig. 44S), arranged to clasp and hold the anger as fast as it is twisted, completes the process in one operation. The screw C on the shaft B gives an intermittent longitudinal movement to adrance the blank, which is twisted by the continnous rotary movement. A (Fig. 449) represents the blank, which is forged or swaged in a drop, aud has a longitudinal rib or feather running alour its center to insure the repuisite stiffness and strength.

The shaft B (Fig. 445) is provided with a cylinder C, haring a scretw, or spiral groove, ent upon its surface, with a gaining twist. A pin securel to the frame under the cam works in the grooves, serwing as a nut. The shaft, being rotated by the crank or a pulley, is drawn back as it turns by means of the screw-cam. When half a turn is made,
means of the cams on the shafts E. The first jair of jaws seize the auger, aud, being the exact nega-

tive of its twist, lold it fimly and prevent further twisting. The next pair come to their work on the next half-tum, aud so on until all the jaws have performed their office, when springs under the jaws force thero simmltaneously apart as the cans rotate past their centers. It will be seen, by refrence to Fig. 449, that the faces of the jaws are dies, exactly corresponding to the twist of the auger.

Au'ger, Square-hole. An auger to cut square lroles was described in the Jounal of the Franklin Institute. Philadelphia, 1826, as the invention of Mr. A. Branch, of New York. It consisted of a twisted auger operating in a square socket which had a shajp lower edge, aml which cut away the margin of the stuase hole ns the auger itself bored a round hole in alvance.

Havcock's Squere-hole Borer (Enclish) was in operation about the same time in London, an:d oplerated in a substantially simi'ar manner. a is a strong frame, fastened by serews b to the bench c; d is an octagonal socket tapped to receive the rertical serew c; to this screw is attached, by a circular tenon and mortise, the square perforating instrument f, which slides up and down through a rectangular hole in a brass guide g when the screw c is turned by the cross-handle at top. The square incision is made by direct pressure downwarl, at the same time that the center-bit m cuts out a ronnd hole, the chips rising np and passing out at
the two open sides of the square cutter. h is a phece of wood being horeed.

The detaherl angry is shown on a larger scale ; the tenon i is inserted in a cavity in the screw c, and marle fast by a cross-pin which goes through both. This artangment allows a ready substitution of augers of diflerent sizes. The lower extremity of the revolving portion holds the center-bit m, which, owing to the collar n, cannot ascend or descend withont the siluare cutter which cuts ont the angles beyond the range of the circular borer.

The splure-cutting tool is a har of steel with a round hole drifled ont of the solid, and the edges are formed by filing and griming them to the bevels, shown in the enlarged figure.

Menmer's Mueh ine for boring Angutur Holes, May 24, 1864. The holes are bored by rotary cinters ; fixed, anl reciprocating in a plane at right angles to the axis of the lole. The relatively fixed anger makes a roumd hole, as usual ; certain cutter's which partake of the cireular motion have also a reciprocation towards and from their axis of rotation, being projected outward and again retracted fonr times in a rotation, to cut out the angles left by the round auger, thins making a square hole. See Bohingmachine.

Au'ger-twist'er. A machine for giving the twist to blanks for screw-angers. There are many

Fig. 451.

Auger-Twister.
forms of machines for this purpose; in one the hank is pressed between rolls upou a slide-rest, which are drawn together by a hand-screw. The blank is twisted simultaneonsly with the action of the rollers $g g$.
The twist is regrlated by the rate of lougitulinal motion of the rest E upon the ways of the lathe, relatively to the rate of revolution of the front center a, which carries the blank. The degree of proximity of the rollers y g is cletermined by the right and left screw J, which gives an aljustment of the carriess G on the rest E. The screw J is operated by the hand-crank shown in the plan-view.

In auother form the anger-otie consists of a series of pairs of circular metallic plates, superimposed on

Fig. 452.

Auger Die. each other, each plate haviug a peculiarly shaper mortise through the ceriter, and proviled also with? projecting and overlapping struls upon its periphery. When these plates are arranged so that all the mortises are in line, they admit the flat har of heated metal, which forms the auger-blank. The upper plate is then revolved, and after a certain extent of motion its stud engages the one below it, which is moved to
a corresponting extent, and the action is inprarted to cacla disk in consecutive order, bringing the Hat hlank into a regular spiral. The opruing of the disk-sections releases the anger.

Au-get ${ }^{\prime}$, Au-gette', (Mining.) A priming-tube connecting the charge-chamber with the gallery, or phace where the slow-matel is applied.

Au'ral In'stru-ments. Su'AColstic lastrivMENTS.

Au'ri-cle. An artificial external car, made of gutta-pereha, bleached and colored. Ketained by hand or clasp.

Auricles consist of two trumpets slaped like ram': horus, and comnected by an arljustable spring passing over the crown of the head. They are lattened on ont side in order to fit closer. The monthpiece, being above the ear, is prointed forward; the neck, passing hack and downwards close to the par, tapering towards the ear-piece, which is made of soft rubher or ivory. They are easily concealed, especially by ladies, who can dress their hair over them.

The interior ear is furnished with the means of dealing with the three characteristics of sound : its typanum, for intensity ; its cochlea, for pitch; its semicirenlar canals, for quality.

Au-ric'u-lar Tube. A speaking-tube; either portable for the use of deaf jersons, or hetween stories, apartments, or parts of an apartment, for the conveyance of
 messages.

Au'ri-lave. An ear-lrush,
Au'ri-scalp. An instrument for operating upon or cleaning the meatus auditorius.

Au'ri-scope. (Surgical.) An instrument for ascertaining the condition of the Eustachian passage.

Au'rum ful'mi-nans. Ful. minate of gold. A powier of gohed and aqua regia. So called from the rejort it makes when exploded by percussion or attrition.

Au'rum mu-si'vum. Sulplucet of tin, used as a bronze powder.

Aus-cul-ta'tion In'stru-ment. An instrument for the purpose of distinguishing diseases of the viscera by observation of sounds in the part afferted. It is particularly applied to the thorax. See S'rethoscope; Pleximetri, etc.

Au'tho-type. A type or block containing a fac-simile of an antograph. Such are or were nsed for franking olticial envelopes, signatures to rontine correspondence, and as labels to prevent firndulent imitations of the contents of the prackage.

Au-to-chro'no-graph. An instrument for the instantaneons self-recording or printing of time.

Au'to-clave. A French stew pran, with or hil grouml on, steam tight. The lid is clanpeed down on its seat hy twisting it ronnd under ears on the side, or lyy means of a bail and screw, a gasket of linen being used. It is a form of Dr. l'apin's digester, and should have a safety-valve. Sic Dussime.

Au-to-dy-nam'ic El'e-va-tor. One in which the weight of a falling column of water is made to elcvate a smaller column to a light ahove the source; and in which the danges of the valves are antomatically producel.

Such are water-rams, the fountain of IIero, ete. See Water-elevator.

Au-to-ge'ne-ous Sol'der-ing. The junction by fusion of the joining ellges of metals, withont the interwention of solder. The elgges, heing brought together and brightened, are held under a jet of
burning gas urged by a blow-pipe, which melts the exlges so that they run together.

Au-to-graph ic Ink. Ink suitable for transferring to stone, writings or drawings executed in it upon prepared paper. Transferring ink.

melted, and worked into an ink.
Au-to-graph'ic Pa'per. Paper preparel to receive a drawing or writing in a suitable ink, and to part with the same to the surface of the lithographic stone or zinc plate, in the process of transterting. The paper is covered with size, which resists the penetration of the ink into the paper. The drawing or writing is executed on the sized surface, so that when the paper is damped it may become detached from the ink, instead of carrying some of the ink away with it, as it would do if the ink were allowed to be partially absorbad by the praper. The size is made of

$$
\begin{aligned}
& \text { Stareh } \\
& \begin{array}{l}
\text { fum-arabic }
\end{array} . \\
& \text { Alum }
\end{aligned} .
$$

This is spread on the paper, which is then dried and pressed.

Or, fortiansfer of writing to stone, lay on the paper three successive coats of calves'-foot jelly, one layer of white starch, one layer of gamboge. Allow each to dry before applying the next. Smooth by passing throngh the lithographic press. Write on the gamboge surface. In transferving, damp the paper, place the ink-surface on the stone, and run it through, the press. The ink leaves the gamboge surface and adheres to the stone.

A very fair transter may be obtained from a good quality of writing paper.
Au-to-graph'ic Press. A portable printingpress for taking impressions of antograph signatures from a lithographic stone, or form of type.

Au-to-graph'ic Tel'e-graph. livented by the Abbé C'aselli. An instrument for trausmitting astographic communications, accomplished by the aid of two pendulums having a movement absolutely synchronous. One of the pendulums carries a pen or pencil of fine platinnm wire, in connection with the line and the line battery; over the surface of the dispatel previously written in insulating ink: upon a metallic paper. The other pendulum, at the corresponding station, carries an iron pencil, lik?wise in eonnection with the liue, over a paper prepared with a solution of the yellow cyanide of potassium. The electric circuits are so disposel, that when the platinum point in its passage over the original writing tonches the metallie surface of the paper, there is no emission of current along the line; while, on the other hame, when the point tonches the insulating ink, an emission of current takes place, and the iron point passing at the other end of the line over the prepared paper leaves on it a blue mark. The morement of the two pentulums being precisely equal, the reproduction of the dispatch is absolutely exact.

The same apparatus has been made to transmit portraits executed in insulating ink npon metallic paper.

Au-to-mat'ic Fire. The automatic fire or explosire mixture of the Greeks was male from equal parts of sulphur, saltpeter, and sulphide of antimony; finely pulverized and mixed into a paste, with equal
parts of the juice of black syeamore and liquid asphaltum, a little quick-lime being adienl. The rays of the sun would set it on fire. - Drinper.

Au-to-mat'ic Lamp. A lamp, used by tentists in the operation of vulcanizing. When properly adjusted, the How of gas or alcohol is arrested by a spring cut-oft, released by the breaking of a fusible alloy, and extinguishing the flame when the heat reaches a point slightly above that required to finish the process of vulcanizing.

Au-to-mat'ic Mal'let. A tool used by dentists in plugging teeth. There are several forms, but they agree in the delivery of a blow by pressure of the tool on the filling of the tooth carity. See Dental Hammer.

Au-to-mat'ic Valve. A valve operated by the fluid in progress, in contradistinction to one operated by the prositive action of a part of the machinery.

Au-tom'a-ton. A machine whose motivepower is concealed within itself, or, as the term is more generally understood, a machine which initates the actions of men or animals, and, heing moved by clock-work or other similar instrumentality, appears to perform certain acts by its own volition. Among the most remarkable of antiquity were the automatons of Hero of Alexandria, who flourished about 217 B . с. They were made to move, as if alive, by machinery under the floor, and to utter sounds by the action of air triven liy water through small pipes, or by means of air iarefied by heat. His works are extant in Greek, and have been frequently translated. They contain many curious anticipations of modern devices, as well as many curious tricks and effects no doubt intended as a part of the machinery of the prients to amuse the speculative and astound the ignorant. Arclyytis's tlying love was made about $400 \mathrm{~B} . \mathrm{r}$. Friar Bacon's speaking head, 1264 A. D. An antomatic coach, horses and passengers, was made by Camus for Louis MIV. when a child. Vaucanson made an artificial duck which quacked, ate, and drank; its fool undergoing a clange simulating digestion. Vaucanson also constructed a flute-player, 1738. The writing antomaton was a 1 latograjh, deceptively worked by a confederate, 1769 . The automaton chess-player was also a deception, 1769. Maelzel made a trumpeter in 1809. An autonaton sleaking sereral senteuces was exhihited in London about 1810. See Brewster's "Natural Magic."
The speaking machine inrented by a Tiennese, exhibited in Europe many years since, and lately in this conntry, is not an antomaton, but is played hy keys. The thorax is a bellows, and the somids are made by the passage of air past reeals which simmlate the larynx, and modulated by artificial tongue, palate, teeth, and lips.
The drawing automaton constructed by M. Droz, of the Chaux de Fronds, was a figure of a man "the size of life, operated by clock-work and sjrings, and capable of executing six different ilrawings. It nsed a metallic style, and drew on vellun. The transitions from one point to anuther were done by lifting the style, witbont slurring. It is fully described in Dr. Hutton's Mathematical Dietiomary.
M. Malliardet's writing automaton executed four pieces of writing in French and English. It was the figure of a boy resting upon one knee and drawing with a pen upon paper laid on a brass tablet. The writing consisted in each case of several lines, and, after finishing each line, the figure returnel to the beginning of the line to tot and cross the letters. The hand has two horizontal and one vertical motion : the down strokes of the pen were made relatively thicker by an increase of pressure.

The nmmexed engraving is a lac-simile of a drawing executed by the alutomaton of M. Droz.

Au-tom'a-ton Bal'ance. A machine for weighing planchet or coin, automatically sorting the pieces into finll anul light weight, uesprectively. Sec Cons-wemiming Machine.

Au-tom'e-ter. An instrument to measure the quantity of moisture.

Au'to-phon. A barrel-organ, the tumes of which are produced by means of pertorated sheets of millboard.

Au'to-phyte Rib'bou. A Swiss ribbon printed by zine pilates which have been produced by the photoznen process from a real lace original.

Au'to-type. A phototypic process. The gelatine is whiplod into a froth with warm water and sugar, skimned, cooled, cut into hlocks, and mixed with the pigments. To this creamy fluid the sensitizing agent, bichromate of potash, is added, and the liquid is conveyed to a trough in a room with orange-colored curtains, where a traveling sheet of paper is covered on one side with the compound. The tissue with its coat of sensitive varnish is then dried, and a piece of the reguired size is exposed to the sun's rays in conncetion with a collodion negative obtamed in the ordinarymanner. The required time having elapsed, the tissue is taken out of the case and plunged into cold water with its face downwards on a plate of glass, metal, or another paper, coated with a light solntion of gelatine and cluome alun. The sufaces having united, the whole is phunger in a bath of hot water, when the parts of the composition not hardenel by the action of the light are dissolved, and the paper slips ofl, the tongher parts remaining attached to the plate, and successive rinsings remove the clond of colored gelatine mutil the pieture is free. This is the Swan process of Carbon I'rinting (which see).

The next step is to prepare the "plate" for the printing-press. This consists of a mode of mounting the carbon-pint upon a substratum of similar material backed by a glass or metallic plate, so that the picture may be used as a printing surface A mixture of gelatine, albumen, and bichromate of potash is mixed anul filtered. A sheet of plate-glase, about lall an inch thick, is then leveled in a dryingbox, warmed 1 ! 1 to a temperature of 100° Fahrenheit, and coated with the preparation. In ahont two hours the first eoating is dry. The second coating consists of gelatine, alhmmen, and bichromates, with the ablition of a small quantity of an alcoholie solution of resinous gums; to this is adeled a soupron
of nitrate of silver with a few drops of a solution containing an alkaline iodide. After washing ont the excess of bichromate from the first coating, the second preparation is applied to the plate, which is again subjected to a high temperature in the drying-box, and becomes thoronghly dry and ready for use in two or three hours. The tough "negative" film is then laid down upon the plate-glass of the pressure-frame, and the plate, now completely coated with a sinsitive surface, is laid upon it. The whole is exposed to the smalight, and the progtess of the pinting can be easily ascertained by looking throngh the plate from the back. Alter exposure, the phates are will washed in cold water, rinsed thoroughly, aml allowed to dry; they are then ready for the pues. Subsequent operations depend unon two simule traths: first, that the gelatinous film will ahsorl, water; and, secondly, that any greasy mixture of the nature of printer's ink, or any pignent prepared in like fashion, ablors the contact of water, and absolutely relinses to allhere to those portions of the plate which have alsorbed that fluid. The sucerss of the operation does not depend uron the relief of the plate, lint on the faculty ol gelatine for absorling water, and them, as a matter of conse, resisting the impositicen of a fatty ink. See Helatiple.

Au'to-ty-pog'ra-phy. Invented by Gcorge

Wallis, London.

By this methool drawings are so executed that they can afterwards be impressed into soft-metal plates. The drawings are executed meferably on grelatine with a peculiar material which is salient nud makes a suluken impression in the plate against which it is driven by passing between a pair of rollers.

The resulting plate is priated liom as an orlinary eopurphite. See also Molung from

Aux-il'ia-ry or Feed'ing En'gine. Is fitted to sunply thlmbar luilers with feed-water when the large "ngines atre hut working and the ordinary feedpump are therfor inartive.

Aux-il'ia-ry Screw. A screw in a fully masted ressel; used in calnus, working to windwarl, or in emergencies. It is so rigged as to be mshipped whelu not in nas.

A-vant'-fosse. (Fortification.) A diteh at the foot ol the glacis.
A^{\prime} ve-ler. A machine for ridding the grains of harley of their arms or acels. A HemmelingMathan, which ste.

A-ven'tu-rine. A fancy glass of a brownish color with gold-color spots, produced by small fragnemts of copper and iron in the mass.

A-ven'tu-rine Glass. This omamental glass is nsed for weights ami ware, the filings of metal giving a spangled apprarance; in imitation of a resplendent varicty of teldspar, whose color ariss trom inbedted minute lamellar crystals of oxite of iron.

It is prepared by fusing together for 12 hours a mixture of 300 prarts pounded glass, 40 parts of copper scales, so parts iron scales, and cooting the mixture slowly.

A-ver-unica-tor. A long name for a promingshears with a long handle, to which the fixed blate is attachedl the movable blate is operaterl hy a cord and reopened by a spring. It makes a drutccut. See Phosivg-sheatis.

Awl. A pointed, piercing instrument in common use anll of great antingity: It is eviclently ohler than the neeile, which has not yet supmeded its use, thongh it has supplanted it in ordinary sew. ing. The hieles which covered the osier framework of the coracle of the ancient Britom, and the birch
bark which covers the canoe frame of the Chiplewa Indian, were and are sewn into place by means of an awl, which opens the way for the thong or deersinews. The awl is referred to in Exodus xxi. 6, and Deuteronomy xr. 17, where a Hebrew servant who refused to leare his master when his sixth year of bondage was completed, was hrought to the doorpost and his ear bored through with an awl, after which he became a slave for life. The Egyptian awl of the time of Thothmes Ill., contemporary with Moses, is shown in a Theban tomb. The pointed instrnment was placed in a nearly spherical handle, to fit the palm of the hand. An awl differs from a needle in this, that one is attached to a handle and is retracted, while the other passes throngh the article and carries the thread which is attached to it.
The sewing-machine needle, so called, is really an

Fig. 454

Packing-Viedle and Bodkin. awl, except in that small class where the needle and its attached thread are driv. en through the fabric, making a manning stiteli (Smith's, Dales's, and others). In many kinds of goads and materials it would seem so much better to have the awl prorided with an eye near the end, that it is singular it did not come into general use for sewing machines many years back. The idea was not new, for in the needles used in packing hampers $\{a$, Fig. 454) the eye was placed near the point as in it bodkin, b, and the twine was pnshed through between the meshes of the lid and the hasket, so that it conld be grasped by the hand without pushing the needle clear through. The unholstery needle and thatching-needle are ancient and eye-pointed.

The eye-pointed needle was one of the principal claims in the patent of Elias Howe, Jr., which netted him so large a fortnne, and which, originally granted in 1845 , was made by an extension to last to 1867.

Awls vary in shape

Fig. 455.
 with the purposes for which they are intended, The round awl tapered to a point, a, is nsed for a marker or scratch-awl. The aml of a diamond shape, l, is used by har-ness-makers to form an opening for the needles which carry the threads. The round-shanked, bentended awl, c, is used by shoemakers to make a entred elamnel, which is followeal by the bristle forming the point of the wax-end. The hrad-awl, d, is used by carpenters to form an opening for brads, etc. It has a cylindrical shank, sharpenel to a chisel-edge at thee end. The awl c, used by wireworkers, is square, and sharp on all four edges; its shape renders it less liable to split the wool.

The sewing-awl (Fig. 456) is used by workers in leather.

The pegring-awl is straight, and is strong enougls
to drive into wood. The ferrule on the Fig. 457. end of the handle is provided with a hollow shank made siguare. Un the outside of the shank is a smew-thread, over which screws a cap having a hole for the insertion of the awl. The flange of the anl is nipmed between the cap ${ }^{\prime}$ and head of the ferrule and firnly secured.

In one form of pegging-awi the sorket gripping the awl is surrounded by a sleeve, which is projected by a piral spring within the handle, so as to assist in extracting the awl by pressing upon the leather.

A convenient kit of small tools inclosed in a handle is shown in Fig. 455. The serrated shank of either tool is clasped in the gripper as the latter is screwsed into the socket. A receptacle Peysing-Aict. in the large end loolds the tools.

The anl-handle in Fig 459 is a locking pliers, whose jaws are adapited to hold either of the tools; those not in use are inclased in the hollow handle when the latter is closed. boss on the end of the handle forms a hammer. The figure shows an elevation, open ; and a section, closed.

Fig. 453.

In Fig. 460 the eyepointed awl introduces the thread, which is fed from a spool concealed within the handle.

Fig. 459.
Fig. 460.

Lasting-Aucl.

Awn'er. A machine for taking off the arels or aums of barley. See Hemmbling-machine.
Awn'ing. A shield or shade for protection from the rays of the sun; usually attached to buildings, and especially to protect store-fronts and atd to the comfort of pedestrians. The ordinary mode of supporting a roll of canras, by means of rafters resting against the luilding and upon posts at the curb, need lardly he described. The canvas is tacked to a roller and is furled by neans of a munning rope, being protected, when furled, by a pent-roof on the wall of the building.

So far as ingennity has been exereised upon this subject it has generally been upon modes of lowering and winding, haring especial reference to shading sidewalks and show-windows. Some devices, however, have been intended for window-shades, and are modified in slape and mole of operation to suit their location.

Awuings of linen were first used by the Romans
in the theater, when ©. Catulus derlicated the Temple of Jupiter, B. c. 69. After this, Lentulus Spinther is said to have first introduced cotton awn. ings in the theater at the Apollinarian Games, July 6 , B. с. 63 ; they were red, yellow, and iron-gray. By and by, Cesar the Dichator covered with awnings the whole Roman Forun, and the Sacred Way, from his own honse to the ascent of the Capitoline Hill; this was 46 13. c., and is said to have appeared more wouderful than the gladiatorial exhitition itself. Afterwart, without exhibiting gannes, Marrellus, the son of Octavia, sister of Augustus, when he was edile and his uncle consul the eleventli time,

Fig. 461.

Awning. on the day hefore the Kalenils of Angust, July 31, 23 н. C., protected the Formm from the rays of the smn, that the people engaged in lawsuits might stand with less injury to their lealth. Pliny says: "What a change from the mamers that prevailed under Cato the Censor, who thought that the Forum shonld even be strewed with caltrops!"

The awnings extended, by the aid of ropes, over the amphitheater of the Emprer Nero, were dyed azure like the heavens, and bespangled with stars. The atri$u m$, or hall of andience, of the Roman honses, had an opening in the middle, which was covered in summer with a red awning.
In Fig. 461 the awning is rolled upon a shaft having permanent lrearings in the bux which assumes an architectural form in the ental)-

Fig 462.

Metallic Auning. lature of the shopfront. The hem of the awning is fas. tened to a bar, which, when closme, forms the arehitrave, but which swings open when the awning is unfurlen from the roller in the box, and is supported by jointed extensionbars from the pilasters of the store. front. As the awning unwinds, the hoisting-rope coils on the roller, and becomes the means of refurling.
ln Fig. 462 the metallic plates whieh form the awning are arranged to lap one over another, each plate being fitted between guiles, which are attached to the lower end of the plate imnurliately above it. The plates are comnected to toggles, which are operated ly amms and a winillass, to raise nul fold the plates, or to distend them into Hfective position.

In the Lonver awning earh slat of the awning is jivoted in the rafter, and is commeeted by crank-arms to a har which is operated by eords, so as to act, like a Venetinn shutter, upon all the slats sinmltaneously and exclude the direct rays of the sum, while pernitting a diffused or reflected light to enter the store.

In amother form the light wooden slats of the awning fold over each other like the leaves of a fan. The slats ar artanged on a suitable frame, anct

there are two pulling cords, one of which spreads the awning and the other folds it up.

Fig. 464.

Lazy-Tongs-Extension Awning.
In Fig. 464 the loweredge of theawning is attached to the hoards, which are secured to the side extensors. The extensors are nade in toggle-sections, operating as lazy tongs. The upper edge of the awning is coiled on a roller operated by a cord ; it is held by a pawl, to keep the canvas stretched. The sjiral spring acts to keep the arm extended.

Fig. 465 shows front and tapered side-slats, which slide one beneath the other, being comected together by plates with hearled stuils, which work in slotted plates affixed on the adjacent slats.

The ent-slats collect like the folding jarts of a fan; the root-slats take position in vertical parallel series when closed.

Axe. A chopping and felling tool. It has an eye by which it is attached to the helve. The edge is in the plane of the sweep' of the tool ; it therein differs from the adze.

Pliny, who wrote about A. D. 50, felt bonnd to state an inventor for everything, and ascribed the invention of the axe to Diedalus, of Athens, about $1240 \mathrm{n} . \mathrm{c}$. It is, however, to be suppasel that
when Cecrops, three hundred years lefore, forsaking the British Museum. Egypt and leaving civilization behind him, landed in Greece, he had axes wherewith to clear a spot for the village he formded.

About the year 1093 в. c. we reall that the Hebrews went to Plinistia " to sharpen every man his axe" (1. Simmel xiii. 20) ; and about 893 B. с. "the axe-head fell into the water" while the man was chopping (2 kings vi. 5). Previous to these two latter Tates, and two hundred years before the time of Dedialns, we find that the Mosicic law, 1451 b. c., had anticipated the following sulposed case :-
"As when a man goetl into the wood with his neighbor to hew wood, and his luand fetcheth a stroke with the axe to cht down the tree, and the head [Hubrew, iron] slippeth from the helve, anul lighteth nipm his neighbor that he die, he shall lice unto one of those "ities [of refuget and live."

In Dentronomy x.x. 19, it is forbiden to "fore an axe" against the firuit-trees of a besieged city, 1451 п. c. Later, so valuable was skill in the use of this tool, we learn that " a man was famous accorling as he hal lifted up axes upon the thick trees " (Psalus lxxiv. 5).
The axe las a cutting edge of steel attached to a wrought-iron head, which has an eve parallel to the chord of the curved cutting edge. It is found among all mations who have the material and skill for its manufacture, the substantial form having descended from the stone age, when a withe or elastic handle was bent around a circular depression on the head, and the edge was sharpened to the extent the constitution of its material would bear, or according to the means at hand for dressing it ; as in the case of chipping an edge on a flint hatchet.

The accompanying cut represents a stone axe of highly polislted, dark greenstone, found within a primitive canoe, at a depth of 25 fret below the surface of the ground, in the Valley of the Clyde, Scotland. The canoe was hewn out of a single oak, and was exhumed from beneath the site once occupied by an ancient church. This axe is exactly like a number which have been recovered from the mounds and fields of the West. It is the same weapon termed a celt by archrologists.

The axes, fasces, trumpets, sacrifices, divination, and music of the Romans were introduced from the Etrurians. Anger and oracle still exist in the land of their adoption.

The mention of the axe ($\dot{\alpha} \xi \mu \eta)$ accurs frequently in Greek authors. A crooked one for shiphuilders, and a donble-blated one for a weapon, are also mentioned. The English word stale for an axehelve is derived from the Greek.

The Roman lipennis was a double-bladed axe with the eye in the center, like some of onr modern ones. See Doublef-bitten Axe.

The Egyptian axe was of iron, steel, or bronze ; the color seems to indicate the former metal in some "asps, but it was generally of bronze. The handle was split to receive the blade, which was secured by bronze pins and leather thongs. It was used as a weapon in felling timber, shivering gates, etc.

Figure 468 shows three Egyptian axes. The larger one belonged to Salt's collection, and is now in bits have been found

Fig. 468.

The blade is of bronze, $13 \frac{1}{2}$ incles long and $2 \frac{1}{2}$ inclies broad. It is secured hy silver pins in a tube of the same metal. The tube was adapted to contain a wooden handle.

The other figures are of axes from Thebes.

The Peruvian axes, chisels, knives, and awls were made of an alloy of copper and tin. The lits of their axes were about the same shape as omrs, but the leads were inserted in the landle instead of the handle in the axehead. Iron was unknown among them. Tin, added in certain proportions tothecopper, gives it the hardness of steel. See Alluys: Annealing.

Copper axes with single and double
 in a tumulus near Chillicothe, Ohio. A small hole through the middle of the two-edged axe indicates that it was secured to the helve by lashing.

Fig. 469.

Egyptian Axes.

Peruvian Knife or Axe.
The single-bitted axe is solid and well hammered, and weighs two pounds five ounces. It is seven inches long and five broad at the cutting edge, having an average thickness of two fifths of an inch. Its edge is slightly curved, after the manner of modern axes, and it is beveled from both sides. Copper chisels, gravers, etc., are also found in the American mounds.

Lubbock states that the hronze axes, of the ages when that metal predominated, were all destitute of eyes for the handles.

The following are various kinds of axes : -

Barking-axe.
Battle-axe.
Bill-hook.
Brick-axe.
Broalaxe. Cavil.

Chip-axe
Cleaver.
Double-bitted axp.
Felling-axe.
Grubbing-axe.
Halberd.

Hand-axe.

Hatchet.
Jedding-axe.
Machete.
Pickaxe.

Side-axe.

Slate-axe.
Stone-axe.
Tomahawk.
Zax.
Pole-axe.
Sre these in their alphabetical places in the body of the work.

The felling-axe of the artillery is of the following dimensions:-

Length,	7.25 inches.		
Width of top,	3.50		
" " edge,	4.75	'6	
Thickness at toj,	0.75	"	
" " eye,	1.25	"	
Size of the eye,	2.25	"	$\times 0.75$ inches.
Handle (hickory),	27.	"	long.
Weight,	6 pou	nds.	

In the most reeent process for making axes, hammered bar-iron is heated to a red heat, cut ofl the requisite length, and the eye, which is to receive the handle, punched through it. It is then reheated and pressed between concave dies until it assumes the proper shape. It is now heated and grooved upon the edge to receive the piece of steel which forms the sharp edge. To make the steel adhere to the iron, borax is used. This acts as a soap to elean the metal in order that the parts may adhere. At a white leat it is welded and drawn out to a proper edge by trip-hanmers. The next process is hammer-ing-ofl the tool by hand, restoring the shape lost in diawing out; it is then ground, to form a finer edge. Atterwards it is ground upon finer stones, and made realy for the temperer. The axe is now hung upon a revolving wheel in a furnace over a small coal-fire, at a peculiar red heat. It is cooled successively in salt and fresh water, and then tempered in another funnace, where the heat is regulated by a thermometer. It is then polished to a high finish, which will show every jlaw and enable it to resist rust. it is then stamped, and the head blaekened with a mixture of turpentine and asphaltum.

Axes have been made partly of iron and partly of steel, or of difterent qualities of steel, by pouring into a mold tirst one of these metals in a molten state, and then the other metal, thus superseding welding. The steel portion is east thick in the first place, and then drawn under the hammer.

Axes are cast, rolled, swaged between dies, or forged with the hammer.

The portions of an axe are known as the bit, poll, eye, and head.

Inserting a steel bit in the cleft head is known as stecling, and thms are axes refitted when the old head is worthy of such repair.

Fig. 470 shows an axe with a head of iron, cast into and around a steel bit, previously inserted in the mold. The ase is then linished and dressed.

The axe (Fig. 471) is made by pouring steel from a crucible into a mold, a core maintaining the share of the eye.

In Fig. 472 the steel is bent and lapped around the edge of the iron lwrtion to which it is welded, instead of being inserted in the split edge of the axe-hemb, - an inversion of the position.

The continuous hank, from which axe-heads may

Fig. 473.

Axe-Blank.

Fig. 474.

Lippincott.

The bifureated edges of the steel bit in the example (Fig. 474) are inserted into a scarf on each side of the stoek, whieh is thus made to lap over the bit, and is welded down thereon, as in the left-hand figure.

Fig. 475.

Axe-Machine.
In the axe-making machine (Fig. 475) a series of dies are arranged in the bed beneath and the recip)rocating block above. They cut off the blank for the axe-hend, and shape and weld it white being held between the dies by means of a mandrel in the hands of the attendant. At the side of the machine is a punclo for trimming the eye and a trip-hammer with suitable dies for trimming the head. The axp under treatment is moved fromone operative part of the machine to another, and swaged to form by suceessive blows.

Fig. 476 represents a machine in which the axe is made by snceessive oprations between rlies.

Fig. 476.

Hutchins's Machine for making Axes.
In this illustration, Fig. 1 is a front elevation ; Fig. 2 is a side view of the dies $p p$, and Figs. 3 and 4 are sections of the dies. Fig. 5 is the iron blank. Figs. 6, $\overline{7}$, and 8 are the shapes it suscessively assumes as it comes from between the rollerlies $e \varepsilon$ and $p p$, and the bending apparatus $\approx s t$. The dies, by successive operations, give it the proper shape on both sides; it is then placel on the upper face of the former, which corresponts to the innel surface of the eye. The heal is gripled by the jaw, which is depressed by a treadle; the carriage is depressed by the crank-rod, and the rollers z z bring the iron to shape.

In the machine (Fig. 4ī) the axe-heads are mann-
Fig. 47 F.

Axt-Blank Machine.
factured hy compressing only one half thereof, at wach operation, between dies or swages of the reyuired shape projecting from the face of the rolls in which they are set, so that the axe-head can be inserted and withdrawn without coming in contact with the rolls; the adjnstable guide g is either at tacherl to the dies or separate therefrom, for the purpose of applying the pressure necessary to form the heat.
axe-head, in such a manner as to leave any excess or deficiency of iron in the poll of the axe-heacl, thus securing exact uniformity in the two sides thereof, and enabling axes of various sizes to be made from the same dies by simply adjusting the distance of the rolls and the gage.
In another machine the end of Fig. 478. a heated bar is inserted into the machine; the blank cut off : the eye punched by oval punches, while the blank is held and compressed by the movable sections of the die-box, one of whosesides is sharp-edged to oper the blank for the insertion of the steel bit.

Fig. 478 splits and opens a long bar, so that it may be cut up into axe-blanks ready to receive the steel bit. The apper part of the figure shows two runs of rolls, one for rounciag and ther other for splitting. The lower figure shows the split blank A, with two prongs c, to be elosed by the blacksmith upon the steel bit which is inserted between them while the parts are at a welding

The axe is usually fastened to its helve by wedging the latter tightly Fig. 479.

Axe-Blank Machine. in the eye, splitting the

Axe-Helve Fastening. end of the helve for that purpose.

The eye is peculiarly shaperl in Fig. 479, one edge being rounded, and the helve of corresponding shape is driven upon it by a welge at the back.

In Fig. 450 the helve has a metallic strap secured on the end, and this fits between welges in the eye. A bolt passes through a cap-piece, and extend: through the strap and into the helves. A wrench tightens the bolt.
Fig. 451 shows a metallic cap for the hand-hold

Fig. 450 .

Fig. 481.

of axes. It is secured by a dowel-pin, which penetrates the helve, and a tenon on the latter, which enters a socket in the eap and is wedged therein.
Fig. 482 shows an axe-testing machine. The axe to be testerl is slipped upon the bar C, towards the

Fig. 482.

Axe-Tester.
standard B, until it lits tightly. The gage-plate E is then allowed to descend upon the edge of the axe D, when, by placing the eye over the slot, the slightest variation from truth may be detected.

Ax'is. A matlumatical term. See Axle.

Ax'le. 1. (Machinery.) A sliaft or rod on which a pulley, ilrum, or wheel is juced.

Axles in machinery are known as Live axles whencommunicating power; as Dead or Blind axles when rmuing, but ineffective, temporarily or otherwise.

Hollow axles are tubular, as their name indicates. They become slecre-axles when the tube is occupied by a rod or tube forming a live or deud axle, or a fixed axis, as the case may be.
2. (Vehicles.) The transverse bar beneath a vehicle, upon whose ends the wheels are placed.

In the carriagc-axle the wheels rotate on the axle-spindle, the axle-tree being relatively fixed.

In the eur-axle the wheels are fast to the axle, which rotates therewith. The axle has bearings in boxes. See Car-axler.

Carriage and wagon axles are made tubular fis strength and lightness; tubular axles are made from welded iron pipes, such as are used for water anilgas. The endsaredrawn toa taper for the spindles, a butting-ring is then welded on, and the end fitted with a plug on which a thread is ent fur the nut. Hollow axles are also made by taking two swagred hollow portions and welding them together. Sis pratents of Lewis, 1871, 1872.

A dividrd axle is one which is bisected at its midlength ; the pruts being coupled or otherwise, as the case may be.

The claims to antiquity of this highly uscful portion of the carriage do not aflord much room for enlargement. The cart and the chariot, whatewr may be their order of precendence as regards time, aflord the earliest sperinens. The details of early forms we comprised in the axle-tree, two spindies, and their linch-pins. Skeins, huts, straps, clijes, hoxes, bushing, lubricators, and other devices, sem to have been reservech for the moderns. Axles are uade of wood or mutal; in the former rase the spindles for the whents are strengthened and pre-
served by metal (sue skeins), and the axle-tree itselt receives strapis and bands, secured by clips and bolts, for the same purpose. Pliny, A. D. 79, recommends ash, oak, and clm for the manufacture of

Pig. 483.

Compound A.cle.
The anus of the compomel truss-axle (Fig. 483) at each made in two parts with an intervening oil-space. One of the parts is placed edgewise, vertically, ami the other flatwise, horizontally; the two being united by collars, which form butting-rings, and by serew-muts, which latter also secure the habs into the axles.

In Fig. 484 each enul of the woollen axle-tree has a cast-metal sleeve, on the outer and of which is a polygonally shaped recess, for a finished metallic spindle, whose slamk screws into the end of the axle-tree. A collar on the spindle abuts upon the end of the slecve and holds it in phace. A caj, screws on the sleeve, and its tlange projects into a face-groove on the imer ent of the hah. A similar

Fig. 484.

provision on the outer nut also temls to exclude grit from the bearing surfaces.

While most wheels revolve on thr spindles of their axles, others are fast to and rotate with their axles; in the latter case hear. ings are proviled for the axle (as in Fig. 485), in which the parts of the divided axle rotate in bearings attachet to the axletree: Each prortion is receiverl in a long socketpiece, bolted totheaxle, and
 is retained by a set serew, whose immer end passes into an amnular groove in the periphery of the axle.

In one form of divided axle the tongne is piroted to the front sill-puece of the wagon-frame, coincidently with the pivot of the slottenl middle seretion

of the axle－tree，and the tongue is not affected by the contact of the front wheels with obstructions in the road．The middle section of the axle－tree forms a link in which slip the inner ends of the two outer sections，in which the axles of the wheels have their bearings．Each wheel is seeured to its portion of the axle，and pach section of the axle－tree is secured by homeds to its respective end of an equalizing har， which uscillates on the tongue as the wheels sworve ont of their comse or change their parallelism with the hind wheels．The tongue－homids are hinged to their sections of the axle－tree，so as to allow the required vertical motion to the tongue，whieh has also a hingeing joint．
Fig． 487 shows a means of securing the wheel to the axle．It is intended for children＇s carriages，and

Fig． 487.

Denison＇s Carriage－Axle．
the fastening is not exprosel at the outer end of the limb．A rod is fitted in the spinille of the axle，and provided at its onter ent with a button eccentrically attached．The button in rertain positions bears mon the outer end of the hub，and the inner end of the rod is secured by a staple and key．
The bent or crank axle is much used in eity thays，its purpose being to lower the bed withont rellucing the size of the wheels．Bringing the floor of the velicle nearer to the groum obviates lifting the load to any great extent．The bent axle，to enable the bell of the cart or wagon to come near to the ground，while retaining a large wheel，is a com－
mon device in England in city and rurd vehicles． One fom of driving wheel－ixles for locomotives is also bent．Baldeley，a contributor to the early volumes of the Mechanie＇s Magazine，London，advo－ cated their nse，and may have heens the inventor．
Paterson（England）proposed that cariages should have axles of micyual lengtl，so as to avoid＂track－ ing，＂and thus prevent the fomation of ruts．
A turning－axle is the lore－axle of a rarriage，which turns on the fifth wheel．

A leading－axle is an axle of a locomotive，in front of the driving axle or axles．The term is applied especially to the English engines，Which are not sup－ ported in front by a four－wheeled truck，as with us．

A trailing－axle is the last axle of the locomotive． In English engines it is under the foot－plate．

A crumk－axle is a driving－axle comected to the piston－rods of a loconutive whose cylinders are inside，techuically speaking．
Adriring－uchecl axle，or driviny－axle，is the one on which the driving－wheels are keyed．The power is either applied to cranks on the axle，or to wrists on the driving－wheels themselves．
Ax＇le－ad－just＇er．A machine for truring an axle by straightening out the beuds；or one for setting the spindle in proper line relatively to the axle－tree．Sce Axle－setting Machine．
Ax＇le－arm．The spindle on the end of an axle， on which the box of the wheel slips．
Ax＇le－bar．An axle－tree with an arm at each enel tor at wheel．
Ax＇le－box．Carriage axle－boxes are bushings for hubs．Their sluty is to take the wear iucident to revolving on the spindle of the axle．Sonse of them are so arranged as to mite the wheel to the axle without the intervention of linch－pins or axle－ nuts．Others have rollers to diminish the frietional hearing of the spindle in the box．Others have devices for taking up lost motion．Other devices refer to modes of easting，secming in the hubs，re－ newing the bearing surfaces，providing thimbles and sleeves of soft metal，which pre－ vent the coutact throughout of

Fig． 488. the spindle and its hearing．

In Fig． 488 the spindle las a permanent conieal collar，and the box is formes in two por－ tions，which screw together；a groove at the point of junetion
 forming a seat lor the collar on the spimble，and holding the latter in the hub of the wheel．The collar is intended to le the only bear－ ing portion，the hole throngh the box surrounding the other parts of the spindle being made large enough to enalle it to revolve without tonching．

Some what similar is Fig．489，in which the conical collar on the spindle B is nsed for the same jurpose． The inner portion of the hox，however，is formed of

two semi－eylindrival pitees E ，which are held in place，on their portion of the spimulle，by a eylindrical hand C ，which slips ower them when the parts are in position．The segnents have threarls cut upon them，upno which the outer portion of the hub is serevel．The tap，reel end of the spindle B abuts

against a ronieal seat in the outer end of the box. A hole at this end admits oil. and is ther! 1loggerl.
In Fig. 490 the spindle of the axte has a groovert collar, whieh occuphes the position of the usial but-ting-ring. The open end of the boxing has an intermal threat serewing upon the divided nut, which chasis the collar on the spindle. The box aul nut are keyed together by a screw, so as to run together; the nut clasping the permanent collar, so as to keep the wheel on the spindle.

Fig. 491.

The axle-hox shown in Fig. 491 is east solitl throughout, and is closed in front by a "apl. Linchpins are attacherl to the axle, and have projections which enter an interior anuular groove of the bos, so as to keep the latter on the axle. The oil-hole at the enl of the box is chosed by a serew-plug atter oil is applied.

The axle (Fig. 492) has corresponting ammular grooves in the adjacent fares of the axle-spindle and the box. A hole in the hule permits a ball

Axle-Box
to be dropped into this groove, and the liole is then plugyel. Thu ball opposes the withdrawal of the box from the spindle. One view is a vertical, and the other a horizontal, longitudinal secetion.

Fig. 493 has whilled cast-iron balls, whieh are the means of uniting the box to the spinulle; the

Fig. 493.

balls protruding into gromess in the respective parts. The flamge on the enol of the spimelle has a noteln to facilitate the introluction of the halls into the groove of the spindle. 'The outer groove is formed at the junction of the cap and the box, which are secured together by bolts.

Fig. 494 shows another form in whieh a collar is thmed on the inner end of the spindle, and inside the collar is a groove occupied by an amular (ali)-pinere F. The (aly F ' is to be attached to the inner mil of the hub A, to loht it on the spintle of the axte. The lijes d, on the inmer face of the cap, enter between the projections b on

Fig. 494.

Axte-Collar, etc. the face of the hub. The cal is then partially rotated, locking the two fortions together; the engagement being maintainet by a spring pin H in the lub, which enters a perforation in the cap F. To detaeh the wheel, the spring pin is retracted and the cap loonened, pemitting the wheel to be removed from the spinthe.
The lox in Fig. 495 has an exterior threal by which it is screwed firmly into the hub. The ends of the spokes rest upon the threat. The box is widened at its inner end, so as to enclose the butting ring upon the axle, and the flange of the box is bolted

Fig. 495.

Axle-Box. to an annular phate on the inside of the butting-ring, so as to hoted the box to the axle, thereby securing the wheel in place without any attaching deriees on the outerend, such as linch-pin or axle-nut.

An axial bolt in Fig. 496 serews into the end of the spinulle, and its head rests against an amular washer, which is of sudicient diametur to alont against the end of the hox and the hub also. The braring of the attachment is thms upon the onter end of the spinulle, the usual buttingring on the axle is suppersedel, and the bark of the hub removed from any
 rontact with sustaining devices when the whed vibrates longitudinally on its spinulle:

In the asle (Fig. 497), friction-roblers revolve in the ammlar chambits of the box, and lessen the friction of the spindle; the latter has a rolling contact, instuad of al frictional one.

Thu planetary system of rollers is a very common devier, and a givat favorite among inventors. It is applied to heanings of all kinds.

The hox (Fig. 498) is in two portions, which form conical or bevelod butrings of uneyual inelinations at vach ind of the hat! ; their inclinations being in

reversed of opposing directions, and the outer having the greater inclination of the two. The attach-

Fig. 498.

Axic-Box.
a sand core for the oil-chamber.
Ejon the butt-end of the box (Fig. 500) is an ammlar flange with a concave reress formed on its

Fig. 499.

inner surtare: the slanp edge of the Hange sinks intu the wooden lunh, and a metallic nut with a cor-

Fig. 500.
 responding sharp flange is similarly sunk into the other end of the hulb. The object is a firm attachment of the box in the hub.

A bearing surface, conpletely eureloping tlie spintle, is either a bushing for the box, or is allied to a thimbleskein. This skein may be a cast-iron thimble, a wrapping of wire, a bearing of Babbitt-metal, or an infolding plate of sheet-metal. See AxLE-sKELN.

Axle-hoxes of railway-cars are differently constructel, as may be seen by the example annexed. They consist mainly of a box, bearing, packing, oil-chamber, and removable cover.

Arrangements are made to facilitate the removal of the bearing from the journal of the axle, for the inspection of the journal, or the renewal of the bearing, while the oil-hox remains in its place; also to
so combine the oil-box with the axle and jaw, that the oil-box may lie easily removed therefrom, for the purpose of renewing the packing in the rear end, etc. See CAK AXLEBux.

Axle, Car. The bar connectjug the oplrosite wheels of a pair, adapted to sulpport a railway. carriage, or rail-road-truck. The wheels are fast to the axle, and the latter runs in bearings in axle-

Fig. 501.

Car Axle-Box. boxes. In this respect the caraxle differs essentially from the carriage-axle, which is relatively tixed, the wheels rumning upon it. See: Cap-axle.

Ax'le-clip. (Velicles.) A clevis or bow which unites some other prart to the axle; as the clip of the thill coupling. The axle-cap or strip, and the ends of the perch-braces, are fastened by clips to the axles.

AxTe-clip Tie. The cross-bar which unites and fastens the ends of the how-clip ly which a carriage-axle is clasped.

Fig. 502.

Ax'le-gage. A tool by which the spindle is so adjusted in relation to the axle-tree, as to gire the required seing and gather.

The swing is adjusted to give the downward inclination, and the axle is bent to conform to this guite. The guther is given by the adjustable standard.
The swing is the outward inclination of the top of the wheel, and is to meet the requirements of the conical axle, so that the bottom edge of the spindle shall ride about horizontal. Were the spindle destitute of swing, the wheel would ride ontward, bearing heavily against the linch pin or nut.
The guther is the forward inclination of the spindle relatively to the general line of direction of the axle-tree. It is to bring the forward edge of the taper spindle into a direction nearly transsersely across the vehicle, so as to prevent the riding out of the wheel against the hub, which would result from placing a wheel on a conical spindle without gather.

Fig. 503 shows a somewhat different form of the gage, in which the concare end of the sliding gage is placed on one spindle, and the other spindle set by the adjustahle bars.

Fig. 503.

Ax'le-guard. One of the petestals in which the boxes of an axle play vertically as the springs yield and recoil. Also called horn-phetes, jows, housiness, pedestals.

Ax'le-hook. (Rored IV'agons.) A hook in front of the axle for the attachment of the stay-chain which comects the axle and the donble-tree.

Axle-lathe. A lathe adapted to turn axles, shafting, and other relatively long articles which are liable to be swayed or bent by their flexibility or by the pressure of the entter. Bearings are provided at points between the lathe centers, and sometimes the cutters are duplicated so as to act upon opposite sides simultaneously, as in Fig. 504.

Fig. 504.

shaped cutters secured to two jaws, which appoach each other by the rotation of a right and left hand serew in a fixed rest.

Whitworth's fimous lathe is of this character. See Drilex Lithe; Car-axle latue.
Ax'le Lu'-bri-ca-tor. A device for containing a supply of oil and supplying it to the spindle inside the axle-box.
There are many forms of this, some having reservoirs of oil in the spindle, others in the box, others outside. In some the lubricant is led to the wearing surface by gravity, in others by cotton wick, in others ly a moving cup. See Carradae-wnerl Lublicator.

Fig. 505.

Foster's Machine for making Carriage-Axles.
Ax'le-mak'ing Ma-chine'. In Fosten's Mirshine for making Corringe-Acles, a bar of metal is led into the machine and automatically formed into axles, which are cut off as finished. Slaping rollers form the jommal and taper the bar of the asle, and dies form the collar by lengthwise pressure of the bar. The rolls act simultaneously nuon opposite sides of the bar, and have dies which act coincidently to shape, and sharp edges to cut oft at the given length. A pair of rolls are arranged to act perpendicularly to the die-rolls and in concert therewith.

Fig. 506.

Gorton's A.rle-setting Machine.

Ax'le-nut. A serew mut on the end of an axtespindle, to kerp, the wheel in place. See N't'T.
Axte-pin. A linch-pin, a fore-lock: a little bar passing through a mortise near the end of the arm, to holl the wheel thereon.
Ax'le-set'ting Ma-chine'. The A.cle-selting Machine (Fig. 506) is for setting the spindles true on the ends of the arle-trees, giving them the required set and gather.
The uprights $A C^{\prime}$ on the frame B are adjustable by set screws to any distauce. The upright C has a jointed bar D projecting lrom it, which rests on a screw-roll E. This bar is a straight edge, to show the taper of the axle: for when the same is placed on the uprights, as shown in the engraving, and the stop, F brought up to it by the screw, the taper will lee given ly the gage G, shown in dotted lines. If the axle does not touch the stop F, it is too high on the end, and must be brought down by the blacksmith. If it touches at the end and not at the shoulder, it is too low, and must be treated accordingly: The axle is then turned end for end, and the operation is repeated. The T-end on the frame is to set the T -foot of the gage against, as shown. The augle of the gage is obtained by setting the gage-foot against the spoke, and putting the straight edge H in the axle-box, as in the smaller figure.

Fig. 507.

Axle-Adjuster.
A more portable form of the same general character is shown in the Axlc-A(ljuster (Fig. 507). It consists of a bar hooked on to the axle-tree in two places.

The bar is fastened by clann Mand fulcrum-block F. The eye-bolt L is hooked over the end of the -pindle, and the adjustment of the latter is accomp lishel by the screw S and set nuts $J K$.

Axle-skein. A band, stip, or thimble of metal on the wooten arm or spindle of a carriage-acle to take the wear from the rood.
Ax'le-sleeve. One placed around a railway.

car axle in orler to hold up the broken ends if the axle shoulil be fractured.

Axle, Tel-e-scop'ic. An extension axle to allow the numning wheels of a carriage to be slipped in or out to adapt them to rarying gages of tracks.

Axte-tree. The axle, or transveme bar, on whose emils the wheels of a vehicle are secured.

The temn "trer" infleates that it was originally of
wond, and is applied as a sulfix to many words, such as Bridyc-Trce, Single-Tree, Double-Tree, Boot-Tree, Chess-Tree, Siaddle-Tree, etc. See Axle.

Jones's axle-trees (English Patent) are made of wrought-iron, with pieces of steel welded beneath them near the ends so as to form the spindles. In hardening, the work is heated by a forge fire, a quantity of prussiate of potash mixed with carbonate of ammonia is dusted upon the metal, which is then plunged ints the cooling tank, water being allowed to run upou it from a cistern. The prussiate of potash case-hardens the iron. The wheels are on the wrought-iron suspension-principle, having chillediron hubs.
Axle-tree
Clamp. A
tool for giving the proper pitch to a uew axlespindle, or for straightcning one which is bent.
Ax'mins-
ter Car'pet.
Fig. 509.

Axte-Tree Clamp.

A carpet with a flax or jute chain and a woolen or worsted filling which is formed into a pile.

The pratent Axminster carpet, as made at Glasgow, is made first as at woren fringe, which is afterwards adapted to a thick flax backing.

The carpet is named from the town of Axminster, Devonshire, Englant, where the mannfacture was funnerty canied on. It has been discontinuril at that 1 lace. $1 t$ is of the Turkey variety. The linen chain or wark is placed perpendicularly between two rolls or beams, one of which caries the warp, and the other the finished carpet. Small tufts or bunches of different colored worsted or "nolen are tied to or fastened under the warp; and when one row of these tufts has bern completed, a linen weft thread is thrown in and firmly rammed down. Another row of tufts is then knotted in, the selection of colors heing such as to carry on the pattern. To guide ther weaver as to the position of the colors, a paper design constantly langs before hiru. The linen chain and weft are entirely concealed.

Ayr Stone. A scotch stoue, called "Water of Ayr," ussel as a whetstone and in surdacing metals previons to polishing.
Az'i-muth Cir'cle. The azimuth circle, as an astronomical instrument, is used for determining the azimuths of stars. The azinuth is an asr of the horizon intercepted hetween the meridian of the place of the ohsmration and the vertical circle passing throngh the object.
Az'j-muth Com pass. This compass is gradnated in degrees insteal of heing divided by rhumbs, like the Muriner's C'ompass. It has sights to allow the angles to he taken more acenrately, and is designed to show the bearing of objects in respect to the magnetic netidian.

By a comparison of the magnetic azimuth of a heavenly body with the true azimuth as found by calculation, the rariation of the needle is determined.
The instrument is shown in the accompanying figure. The sight-plates ascend perp-ndicularly, and their slits are bisected by a perpendicular threal or wire, string as sights.

Azimuth Compass．
The ring of the gimbals rests with its pivots on the semicircle beneath，the loot of whichturns ina socket；so that，while the box remains steady， the compass may be turned around so as to bring the sights into coincidence with the sun or other object observed．

The pirots of the gimbals，in this as in steer－ ing－compasses，shonld lie in the same plane as the point of suspension of the neerlle，so as to dim－ inish the irregndar vibration as much as possible．
ln the inside of the compass－box lines aredrawn perpendicularly down from the points where the sight－threads meet the sides of the box．These in－ dicate the mumber of degrees，and parts of a degree， which the object bears from the magnetic north or south，on which account the miklle of the apertures of the sight－vanes，the threads，and the above－men－ tioned lines shonld be exactly in the same vertical plame at the time of reading off the observation．

On one side of the compass－low is nsually a mut or stop，which，when puslued in，arrests the vibratory motion of the card while the observer is noting the rearling．

Az＇i－muth Cir＇cle．The cut（Fig．511）illus－ trates an equatorial dial，according to Dr．Hooker probably a Kronti－urit，or azimnth circle，in the observatory at Benares，huilt by Jey－Siug，Lajah of Jiymagar，upwards of 200 years ago．

Dr．Hooker cless ribes the astronomerroyal at the time of his visit as a＂pitiful object，＂half naked， with a large sore on his stomach，who represented hinself as being very hungry．Science，it wonh seem．has not been properly appreciated in that vi－ cinity since the decline of the Mohanmedan power． See Dr．Hooker＇s Himalayan Journals，Lonlon， 1855.

The equinoctial and equatorial sun－dials of he－ nares are considered under Dinl，where it will be seen that the former has a ghomon 30 fert long，and is ascended by steps；pach quadrant is nine fret long．The fact of the ascent by steps throws inter－ esting light upon the passage in the Second Book of Kings，chap．xx．，where the＂lial of Ahaz＂（ 742 в．с．）is referred to．White says that the Hebrew word signifies a staircise，and in this form donbtless were the dials of the Mesoprotumian nations，and that seen at Damasens by Ahaz，and afterwards copied by

him in the one set up in frusalem．See Astro－ nomical．Instrmments，where the hare dial of Be－ nares，refermel to ly Dr．Hooker，is shown on the elevated terrace on the left．V（ry remarkahle and interesting are these relies which carry us back to the old times when，and the old means whereby，the astronomers of Chaldea amd Egypt observed the heavens．When we consider their great tiscoveries， and recolleet that they were destitute of lenses，ats well as of menns for minute and incurate graluation of instruments，we may well hold them in high re－ spect．Sie Abmil ：Armillafy siplere．

The sun－dial of Delli was also used as an observa－ tory，and is described by White，of the East Indian Military Stall，as＂a large circular fuilding，having a mumber of openings or windows in the walls，and a pillar or gnomon in its center．Each of thesie windows had an appropriate astronomical term，anu at night the position of the heavenly hoolies was de－ fined by the window or house in which it might be seen ly a person stationed at the pillar；and during the day the time was regulateal from the particular window through which the smm shone on the gno－ mon．＂The gnomon cast a shadow on the cireular wall，which was graduated for that purpose．Sce Dlal．

The gnomomerected by the astronomer Uleg Beg， in 1437，at Sumareand，had a hight of 175.89 feet．．
Az＇i－muth Di＇al．An azimutl dial is so calleal becanse the shadow marks the sm＇s azimuth．The stile，or gnomon，is perpendicular to the plane of the horizon．
Azogue．A Spanish ship fitted for carrying quicksilyer．

B.

Bab'bitt-met'al. An alloy, consisting of 9 parts of tin and 1 of conper, used for journal-boxes; so called from its inventor, Isaac Babbitt, of Boston (natent, 1839). Some variations have been made, and among the published recipes are

Copper				1	1
Regulus of antimony			1	5	
Tin		1	5	50	

Another recipe substitutes zinc for antimony.
The term is commonly applied to any white alloy for bearings, as distinguished from the box-metal or bruses in which copper predominates.

Bab'bitt-ing-jig. (Mfachinery.) A tool used in bablitting the shafts and journals of machines. It hollds the parts - of a harvester, for instance in their respective positions, and also in proper relation to their boxings, so that the anti-friction metal may he run around each of the journals in succession.

Ba'by-jump'er. A cradle, hasket, or sling in which it child is suspended. The suspensory cord is usually adjustable as to length, and, being elastic, permits a saltatory motion.

Ba'by-walk'er. A go-cart. A frame traveling on casters, and used to support an infant while learning to walk.

Bac. 1. (Nauticul.) A broad, flat-bottomed ferryboat, adapted for conveying horses and carriages, and usually navigated by a rope fastened on each side of the stream.
2. (Brewing.) A cistern with a perforated metallic bottorn, used for straining the hops from the beer previons to its entrance into the cooler. Also written brick:

Back. The part of an object against which the hack of a person leans, as of a chair, carriage, etc.

The rear portion of an object.
The upper part of a thing, as of an arch, handrail, saw, etc.

1. (Forging.) A cast-irou plate forming the backwall of a forge, and through which the blast enters by a tuycrc.

When the back consists of an iron cistern, it is called a water-back:

When it consists of a chamber in which the airblast is heated, it is a heuting-back.
2. (Bookbinding.) The part to which the sides of the cover are attached, and which receives the lettering.
3. (Architecture.) a. The rear surface of a wall.
b. The rear wall of a fireplace.
c. The extrados of an arch or vault.
d. The rear part of a stone or ashlar, paraliel with the facc or exposed surface.
4. (Cork-cuttirg.) The burnt side of a slab of cork.
5. (Brewing, efe.) A vat or cistern.
a. Water-bnct: : a supply cisteru in a brewery, ete., rontaining water for mashing.
b. Uuder-bach: a cistern below the mash-tun, which receives the wort therefrom.
c. Hop-back: a cistern below the copner, which receives the infusion of malt and hops from the latter.
d. Jack-back: the same as hop-back.
c. (Glue-making.) Settling-buck: a cistern in which a solution of glue from the kettle is received and kejet warn till the impurities lave time to settle.
f. (Distilling.) Wash-back: a cistern or vat in whicl the wort is fermented to form wash for distillation.
g. Spirit-back: the cistem which receives the spirit.

In this sense the word is nearly allied to bect; as a dyc-beek or soap-bcck in a dye-house. See Beck.
6. (Carpentry.) a. The upher surface of a handrail : the under side is the brcast.
b. The same distinctions apply to the ribs of domes and rafters of roofs.
c. The back of a window is the rainscoting below the sash-frame and extending to the floor.
d. The upper edge of a saw as opposed to the edge which is serrated.
7. (Mining.) a. The part of a lode nearest to the surface.
b. The ground betreen one level and another is the back ol a level.
8. (Shipbuilding.) a. The convex surface of a compass-timber.
b. Figuratively, the keel and keelson of a ship.
e. A timber bolted on behind the sternpost.
9. (Nauticul.) a. To back an anchor: to place a small auxiliary anchor ahead of the one from which the slip rides.
b. To back a suil: to brace a yard so that the wind blows in front of it.
c. To back astern: to give the vessel sternway.
d. To back a rope: to put on a preventer to take a part of the strain.
e. To back the worming: to fill the crevices between the strands, to bring the surface flush and even, ready for sering.

Back-ac'tion Steam-en'gine. One in which the connecting-rod, pitman, and crank are so arranged as to take up but little longitudinal space. The crosshead on the end of the piston-rod is commetel by parallel side-bars to a cross-tail, which, by a backwardly reaching pitman, is connected to the rank of the propeller engine. One of the side-bars passes above the crank, and the other below it. Being used for propeller engines, the crank and shaft must be amidships and the engine and appurtenances lie ujon the floor atbwart-ship. "Juniata" and ten sister vessels of the United States navy are of this class.

Back-bal'ance of Ec-cen'tric. (Steam.) The weight fixed to the back of an eccentric-pulley for the purpose of balancing the weight of the pulley on the shaft.

Back-bal'ance of Slide-valve. (Sterm.) The weight fixed at the extremity of the valve-lever for halancing the weight of the slides.

Back-band. (Suddlery.) The hand or strap which passes over the back of the horse and meets the belly-band; the two unite to girth the horse.

Back-cen'ter. (Turning.) The point on the back or dead spindle of a latle which supports that end of the work. The front-center is on the live. spindlc in the head-stock. It is set up by the backcentir sercu. See Lathe.

Back-cloth. (Calieo Printing.) The cloth sustaining the fabric in one formo of calico printing.

Back-cut'ting. (C'ivil Enginecring.) Earth obtained for a canal bank, when the excavated earth loes not suffice.

Back'er. (Slating.) A narrow slate laid on the back of a broad, square-headed slate, at the spot where a course of slates begins to diminish in width.

Back-flap. (Joinery.) The leaf of a windowshutter which folds inside the casing, and is concealed when elosed.

Back-frame. (liope-mating.) A wheel for twming the whirlew of a rope-making machine. The whirlers, to which the ends of the strands are connected, are stoched in the centers of the pinions a ua, which roll aromul inside the internally gemed ring b, as the frame $c d$ rotates. The frame $e d$, with its three amular gears $b b b$, and their respective

Fig. 512.

Back-Frame.

wheels $f a a$ a, are revolved so that the wheels f mesh with the internal cogs of the annular gear e, causing the wheels a a a of each system to rotate on their axes, and thereby twist the yarns into strands; to revolve around each other, and thereby lay up their three strands into a rope; while, at the same time, the three systems revolve around each other, and lay up the three ropes into a hawser or larger rope.
Back-gam'mon. A game of chance and skill, played by two persons, with filteen men each upon a board having twelve black and twelve red points. It is a Welsh game, and is said to have an antiquity of a thousand years. Rameses and his ladies played checkers. Chess cane from India; so did cards.

Backgammon is mentioned by Chaucer, Slakespeare, and Bacon as "playing the tables,"-a name by which it was then known.

Back-gear. (Twining.) The set of variable speed grear-wheels in the headstock of a powerlathe.

Back'ing. 1. (Masonry.) The coursed masonry next to the extridos of an arch, and resting thereon.
2. (Fubric.) The web of eoarser or stronger material at the back of such goods as velvet, plush, satin, Brussels carpet, ete.
3. (Printing.) Printing the second side of a sheet.
4. (Type.) lilling in the back of an electrotype. See Baeking-tp.
5. (Ship.) The rear support of an armor-plate. This is of timber, from twice to fonr times the thickness of the armor, with or without an inner skin, about one eighth the thickness of the armor-plates; sometiues supported by vertical frames.
Compound hacking consists of alternate layers of wool and iron, in the usual proportion of $4 \frac{1}{2}$ wood to $\frac{1}{2}$ plate-iron. Siee Ahimor-phating.

Back'ing-boards. (Bookbinding.) Those between which a book is grasped to be lail in the press while thu trok is rounded. Sce Cuting-press.

Back'ing-ham'mer. (Bookdinding.) The bookhinder's hanmer for rounding the back of a book.

Back'ing-off. (Spinuing.) The retrograde motion of the mule when it receles from the creel and draws the yarn from the spools. Its putting, run-ning-in, or going-in, is the motion towards the creel when the wimbing takes place on the spindles of the mule. Sem Nule.

Back'ing-up. 1. (Engraving.) Removing a hollow or mark from the face of a plate by blows from the peen of a hammer appied to the back, the face being laid on an anvil or stake. This mode is used by engravers in obliterating lines too deep to be treated by the scraper or burnisher.
2. (Type.) The process of fortifying with typemetal the back of the thin electrotype plate which has been deposited on the face of the mold obtained from the form of typle.

The lack of the copper shell receives a thin coating of tin, anl is then placed face downward in a shallow iron dish in which it is secured by rods. The dish is then suspented from a crane and swung over a bath of molten metal. When it has acquired the temperature of the bath, a quantity of type-metal is dippell up and poured over the back of the copper phate, forming a solid backing. A planing-maehine reduces the backing to an even thickness, bringing the whole to a thickness of say one seventh of an inch.

Back'ing-up Flange. (Jachinery.) A collar on a pipe by which
the latter is held to its bearings or seat.
Back-joint. Such a one as that formed by a rabbet on the inner side of a chimneyjamb to receive a slip.

Back-lash. The reaction or striking back of a piece of machinery, wheel, 1 iston, cte., when the power makes a temporary

Backing-up Flange. pause, or a change of motion occurs. It is a consequence of bad fitting or wear, and, in the latter case, indicates that the parts should be set up. The gib, cotter, and strap of the pitman connection are an instance of provision for said rearjustment.

In some cases springs are arranged to keep the parts in positive contact, so that no reflex motion occurs, to be taken up suddenly when the power is again applied.

Back-link. (Steam-Engine.) One of the links in a parallel motion which connect the air-pump rod to the beam.

Back-pup'pet. (Lathc.) The standard which holels the laick-center of a lathe on which one end of the work rests. See Lathe.

Back-pres'sure Valve. (Hydraulics.) A ball or clack-value in a pipe, which instantly assumes its place mpon its seat when a reflex or back pressure occurs.
The figure with the arrow shows the normal condition; the other figure slows the value on its seat.

Back-rope. (Nauti-

Fig. 514.
eal.) Ont of the ropes connerting the lower end of the dulphin-striker with the ship's leat.

Back-saw. A saw whose web is stiffened by a metallic back of greater substance; as, a tenon saw.

Back-sight. 1. (Fircoloms.) The rear sight of a gun. It may be of rarious forms. In the oldfashioned arms intended for round balls, it was merely a notch in a knob or plate near the breech of the gun, the proper elevation to he given being estimated by the marksman. As the effectire range scarcely exceeded 250 to 300 yards, this conld be done with sufficient accuracy by an expert marksman ; but with the introduction of the elongated bullet, giring ranges of 1,000 yards and upward, it became necessary to seek some more efficient means of securing the proper range at these long distances, so that the bullet might not either pass over or fall short of the object. For this pwrpose was introduced

the rear-sight (a, Fig. 515), consisting of an upright slotted branch, which was jointed to a seat on the barrel of the gun, or, in some instances, on the small of the stock in rear of the barrel. A notched slider on the upright branch could be elesated as desired, and by elerating the muzzle of the gun until this notch and the front-sight were in line, any range within the limit of projection of the piece could be attained.

This sliding sight has, in the United States service, been superseded by the leaf-sight (b, Fig. 515), which is more compact and less liable to derangement. Also called Folding-Sight.

Other back-sights, especially those first intraduced in Southern Germany, hare been made very different in form from those described; one variety (c, Fig. 515) being permanently fixed pernendicularly to the barrel, and haring notched holes at proper hights through which to sight, and another (d, Fig. 515) being segmental in shape, and moring circularly in a direction longitudinal to the barre 1 through a stud fixed tbereon.

Another form of back-sight (e, Fig. 515) vertically adjustable for range, and attached to the stock, has a graduated spring-piece slipping within a rertical slot in the small of the stock, and is adjusted as required. Its spring retains it in place, or it may be clamped by a set-screw or lowered below the line of the hind-sight on the barrel.
2. (Lereling.) The reading of the leveling-staff; taken back to a station which has heen passed. Readings on the forward staff are fore-sights.

Back-staff. (Optics.) A peculiar sea-quadrant, invented by Captain Daris, 1590. It has a graduated are of 90° united to a center by two radii, with a second are of smaller radins, but measuring 6° on the side of it. To the first are a rane is attached for sight ; to the second, one for shade; at the vertex the horizontal rane has a slit in it. The back of the ob-
server is turned towards the sun at the time of obserration. (Admiral S'myth.)
It is nor superseded by instruments of more modern type, such as the reflecting quadrant and sextant.
Back-stay. (Shipbuilding.) One of the guyropes, just abaft the shronds, extending from all topmast-heads to the sides of the ship, to stay the masts. They are attached to back-stay stools, which are detached channels or chain-wales.

Back-strap. (Saddlery.) The strap passing along the back of the horse.
In wagon harness it extends from the upper hamestrap to the crupper: or, in the absence of a crupmer, to a point of junction with the hip-straps.
In carriage harness it extends from the gig-sublle. to the crupper.

Back-sword. A sword with one sharp edge, in contradistinction to one which has twaedges throughout the whole or a portion of its length.

Back-tool. (Book-binding.)
A fillet, roller, or other handtool for dry-tooling or gilding the hacks of books.
Back'wa-ter. (Hydraulic Engincering.) Water reserved at high tide for sconring a channel or harhor by discharge at low-tide. See Fleshing.
Bad'ger Plane. (Joining.) A panel plane whose mouth is cnt on the skew, and from side to side, so as to work up close to a corner in making a rabbet or sinking.

Ba-dig'eon. A cement for stopping holes and corering defects in work.
Staticary's: plaster and freestone.

Joincr's: sawdust and glue; whiting and glue; putty.

Cooper's; tallow and chalk.

and lime slaked together, with stone-powder or sienna for color, and mixed with alum-water to the consistence of paint.

Ba'e-tas. (Fabric.) A plain unchecked woolen stuff, manufactured in Spain and Portngal.

Baft, Baft'as, Baf'fe-tas. (Fabric.) a. A blue or white cotton goods, used in the African trade.
b. A kind of East Indian cotton piece-goods.
Bag and Spoon. (Hydrutelic Enginecring.) An implement used in dredging for river saud.

Bag and Spoon.
It is a hoop of iron with a steel lip, and has one edge pierced with holes, for the attachment of a leather bag by lacing. The spoon is suspended by a chain, and has a long liandle by which it is guided.

Being sunk in position, it is drawn along the bottom, hoisted by a crane, and dumped into a lighter or mud barge. The bag is perforated for the escape of water. The cut shows the bag overboand, and about to be sunk to the bottom by means of the pole.

Ba-gasse ${ }^{\prime}$ Dry'er. Pagasse is crushect cane as it comes from the mill, deprived, to a great extent, of its juice and stecharive matter; also of the leaves, which are stripped from it previous to grimbing. Accorting to Wray, good mills only extract from 70 to 75 per cent of the succharine matter which analysis shows to be present in the cane, and the remaindes, after the water is exaporated, joins with the fiber and other carhomaceons matters to form a finel, coal and wood being very expensive in sugar-cane regions.

The bagasse is sometimes carted to the field, to be dried by the sun, but a number of United States
patents have been granted for apparatus for drying it hy artificial heat. Other furnaces are constructed merely for burning it to get ride of it. Vast piles of it accumulate round the mill-houses.
lu Meraick's patent of April $10,1845^{\circ}$, the hagasse is tratusferred to an inclined chate, whence it is taken by an endless apron, which passes around reels or drums, and conducts it through a series of three heated compartments, linally depositing it on a plate or platfonn in front of the furnace, or other convenient position.

Another form of the Bagasse Dryer consists of an inclined open-ended cylinder, having a steam jacket and hollow bolts, through which escapes the water evaporated from the cane. The steam is introluced through hollow trumnions, and the dryer-tube is rotated by pinion and aunular gear, as shown in the figure. The material is fed in at the upper end, and works gmanally to the lower end, where it forms a

pile of ary stuff, and is forked into the furnace beneath the sugar-pans and the engine which runs the establishment.

Ba-gasse ${ }^{\prime}$ Fur'nace. A furnace for consuming the bagasse (or megass), the cane remaining after the pressure of the sacecharine juice therefrom. It generally consists of a kiln or large chamber with a flue to the furnace-space beneath the boilers which make steam for the cane-mill.
The principal reason for burning it is to get rid of it, as it accumulates around the sugar-house and

Fig. 519.

becomes quite a muisance. By dint of making a roaring fire, it may be consumed, and perhaps add something more to the fire than it subtracts by the evaporation of its water. The example (Fig. 519) shows it as dumped in a pile upon the grating ahove the fire. The leat resulting from the combustion
of the bagasse and fuol thence passes beneath the boilers which drive the sugar-mill, and, in some sugar-

Fig. 520.

houses, heat the vacumm-pans, defecators, surfaceevaporators, and run the pumping-engines.

Fig. 520 shows a furnace for burning the canerefuse, and the relation of the furnace proper a to the discharge-apron b of the cane-mill, the feeding devices c cand the furnace d, of the steam-boikers. The bagasse does not pass beneath the boilers, but the flame of the furmace a is carnied into b throngh the flue c, and additional air is admitted beneath the grating of d by dampers in the ash-pit.
Bag-clasp. A clamp or cincture for closing the mouths of bags. See Bag-fistexer.
Bag-fast'en-er. A device for clamping or tying the mouths of bags below the hem. A substitute for a bag-string.
A number of different modes are shown in the illustration, and will be brietly described.

a. A sheet-metal tasg, with a curved tapering slot, is permanent!y attarliod to one end of the string. The other end of the string becomes jammed in the slit.
b. The metallic tigg attached to one fild of the string has a thimble in which the other end of the string is jammod by a we!lge.
c. One encl of the string las a permanent ring. The other end is rove through an eyslet in itse'.f, and jams against the ring.
d. One loop is permanently attarhed to a slotte 1 lever. The latter is rove throug? the other loop and turned over beyond the dead-conter, so as to jau the loop against the standing part.
c. The standing end is rove through tro holes in the tag, and foms a loop which jams down upon the peint end of the cord.
f. The point end is jammed between two pivoted, cogged sectors.
g. The perforated leather tag is riveted to the hag, and the thong is rove through the holes so as to bind tightly.
h. One end of the cord is knotted to the loop of the wire. The other end is passed round the bag and jammed betrreen the jaws.
i. A pair of hinged clasps whose free ends interlock.
j. A spring device, acting in the manner of a brooch; a spring pin engaging a catch.
k. A lever attached to one end of the cord engages - loop on the other end, and is thrown over to carry the loop to a surved portion, which holds it securely:
l. Similar to the last, but hariug a means of adjustunent.

Bag-fil'ter. (Sugir-Refining.) A device some-
tines used in clearing saccharine solutions of feculencies and impurities mechanically suspended therein.

In one form the juice is allowed to pass through a series of conper-wite sieves of gradually increasing fineness before reaching the flannel bag; perhaps the more usual form is that in which the sieves are replaced by the series of vertical Hanmel strainers arranged in a lower chamber, having a stopeock, into which the juice is admitted from a compartment above.

The example consists of a sirup-cistern S, in whose Hoor are short pipes of conical form, to which flannel bags f are tied. The juice, passing down each of the pipes, distends the bags, and drips down their
 onter surfaces, collecting in the chamber below, whence it is drawn by a fancet.

Bag-frame. The metallic frame to which the leather or cloth part of a canpet-bag or valise is seeured, serving to implart stifiness and aflord means of attachment for the handle and lock.

Fig. 523

Bag-Frame.
Eag'gage-check. A tag or label to be attacher\} to a trmuk, to indicate its destination; usually, also, its point of departure, and frequently the name of the railway company attaching the said check.

The derices are nimerous.
a (Fig. 524) shows a cheek or label-holder of two metallic portions which fown a frame for the inclosed card, on which is inscrihed the name of the place of destination. This is used also for mail-bags.
b is a lock-up case for a number of such cards, either of which is exposed at the opening as may le required.
c has two series of numbers on wheels, and the places of departure and destination are indicated hy numbers agreeing with the sclielule of stations.
a has the places of departure and destination on the respective sides. Either of the readings may be hidden by the strap which is rove through the loop at the other end from that of its attachment to the check. On the return trip, the other side of the check is exposed by the inverse reeving of the strap,
c bas a disk mith a circunferentially mumbered margin. A mumber agreeing with the schedule-num. ber of the station for which the haggage is bound is exposcel at the opening in the plate. By an arrangement of the strap, the hatter is made to holl the
lisk, so as to sccure the required presentation of figure.

Fig. 524.

Baggage-Check:s.
f has the scrics of station-numbers in a rorr; the strap is so rove through the slots as to indicate the station (29) at which the baggage is to be put off.
g is a metallic case inclosing a card with the numbers of the stations printed thereon. A puuch-mark indicates the station of destination (14 in the illustration). The strap holds the parts of the case together, being rove through the loops.
h has a dial-plate and pointers, which indicate the station of departure and destination.
i is a metallic disk with radial slots and correspoming numbers. The strap is so rove through the slots as to give the required indication.
Bag'ga-la. (Nautical.) A two-masted Arabian vessel, frequenting the Indian Ocean. A dhow. The capraty is from 200 to 250 tons.
Bag'ging. (Fabric.) 1. A coarse fabric made of old ropes, hemp, etc., for covering cotton-bales.
2. The gunny-cloth of Inilia is made from jute. In Bengal, from one or two sprecies of Corchorus; in Bombay and Madras, from the Crotularia juncea.
Bag-hold'er. A contrivance to hold up a bag with the mouth open really for filling. There are many forms, - some adapted for large grain-bags, others of a smaller size for flour, seeds; still smaller, for ordinary groceries and counter use.
a has a platform on whieh the sack stands, and its weight spreads the horns within and distends the mouth of the sack.
b has a lolder arljustable as to hight, and a hopper to which the mouth of the bag is attached.
c has clasping bars oprerated by a foot-trigger.

Bag-lock. a. A peculiar form of lock, used for satchels, etc., frequently merely a piallock. There are many varieties, - snap-latches, clasps, thumb and key bolts, etc. la the illustration are shown several varieties, which do not require explicit description.

Fig. 526.

b. A lock for mail-hags, usually some form of padlock, seal-lock, or shackle.

Bag-ma-chine'. A machine for making bags of paper or textile fabric. The term is usnally applien to machines which make paper-bags for salesmen's and domestic uses. In some of these the paper is handled as in an envelope-machine, blanks of a certain size and shape heing previously cut out ; these are fed one at a time to the machine, either antomatically or by hand, and are gummed, folled, and delivered in a pile. In other machines, the paper is made up into a hollow tube, like a stove-pipe, and is ferl to the machine which makes an obliypue cut, forming a flap which daubles over to close the hottom of the bag at a subsequent operation. Sec Paper-mag Machine.
Looms are constructed specially for making seamless bags, having a circular shed for that piurpose. After making the length of two hags, the sheds are united, so that the tubular portion is closed and a single web of double thickness is formed. A couple of inches of this is enongl, and by a transrerse midway cut this double portion, thus divided, forms the
closure of two bag-bottoms. The donble bag-length of the tubular portion is also transrersels divided milway, the cut forming the months of two liag.

Bag-net. (Fishing.) A landing-net, or net bag. shapd. for sweeping a stream, or to be set in a stream to ct.ch fish.

Bag'nette. (Architecture.) A small molding, like the astragal. When enriched with foliage, it is called a clupplet; when plain, a head.

Bag'pipes. An ancient Greek and Roman instrmment. The leathern bag receires air through a valred tube from the lungs ora bellows, and is squeezed by the arm to drive the air into the piles, which are onerated by the performer. The bass pipe is called the drone, and the tenor or treble piple the chanter. lt is now considered a Scotch or lrish musical instrument, though Jero is reported to have solaced his gentle mind with its strains. Formerly common throighont Europe, it is now nearly restricted to Scotland, lreland, parts of France, and Sicily.

It is the common country instriment of the Punjaub. The sikh instrument rather resembles the Italian pfiferari than the pipes of the Scottish Highlanders.
"After dinner tre had a fellow play well upon the bagniples, and whistle like a bird exceeding well." Pepus's Diary, May, 1661.
lts notes are remarkable for power rather than sweetness, and require uncommon skill in the performer to render them even molerately pleasing to a cultirated ear, unless from the force of habit or the asociations connected with the instrument. De gustibus non ist disputandum, - the Romans Harored their sausages with asafetida.
lipers are still attached to the Highland regiments in the British service.

The antipuarian notices of the instrument are in the Musurgia of Luscinius, 1536, and in "Don Quixote."

Fig. 227. 2

The Irish bagpipe mas originally the same as the Scoth, but they now differ in haring the mouthpiece surplied bir the hellors A, which, being filled by the motion of the piper's arm, to which it is fastened, fills the bag B; whence, by the pressure of the other arn, the wind is conveyed into the chanter
C, which is played on by the fingers like the common pipe. By means of a tube the wind is convered into drones $\alpha a a$, which, being tuned at octares to each other, produce a kind of cronan or bass to the chanter.

The lower cnt represents the improred or umion pipes, the drones of which, tuned at thirds and fifths by the regulator, hare keys attached to them so as to produce chords, parts of tunes, or whole tunes. eren without using the ehanter. Both drones and chanter may be rendered quiescent by stops.

Bag-pump. (Hydraulics.) A form of bellorss-
pump in which the ralved disk a, which takes the place of the bucket, is connected with the base of the barrel by an elastic hag distended at intervals by rings. It is descriked by Dr. Robinson in his "Mechanical Plilosophy." It is much older, howerer, than this work, and has been insented again and again, from time to time.

Bag-reef. (Nautical.) The lowest reef of a sail.

Bags. (Porcelain.) Theflues in a porcelain oren which ascend on the internal sides and enter the oven at elerated points, so as to heat the upper part. See Ores.

Bag-tie. Sce Bag-fastever.
Bag-weigh'er. A form of steelyard adapted for this purpose. See Steelyard.
Bail. The arched handle of
Fig. 529.

Bail. The arched handle of Sag-Pump. a kettle or bucket, to which it is nsually comected by loops called ears, on the latter. The ends are usually bent around the ears, so as to be permanent, though loosely attached; but sometimes the hail is juinted, and adapted to be hooked to the ears as occasion may require.
The bails of common mooden buckets, such as are used in the house or sugar-camp, have their linoked ends inserted into perforated metallic plates, or curs, which are tacked to the staves.

The crane-ladle of the foundry has a bail; the smaller ladles have crutched handles.

Bails. (Nautical.) The frames that support the a wning or tilt of a boat.

Bail-scoop. A scoop or piroted trough, designed for draining bodies of water.

That shown in the cut was contrived by Mr. W. Fairbairn, and is adapted to be worked by the singleacting Cornish engine.

The scoop S turns on a center at C; its other end is connected at R to the end of the engine-bram B, supported on a snitable foundation $F^{\prime} \quad D$ is the drain, and L the level of the water in the river or place of discharge. The stroke of the engine raises a reight snspended from the beam and depresses the end P_{R} of the scoop, into which water is arlmittel through the upwardly opening valves I. The weiglit then ilescends br its orn gravity, elerating the immersed end of the scoop sufficientls to discharge its contents into the water at L. The dip may be regnlated by shifting the connecting-rods.

The scoop is made of boiler plate-iron, and is 25 feet long and 30 ride, with two partitions across it to strengthen the sides and afforl bearings for the ralres. Seventeen tons of water can lue raisel at each stroke by this machine, and with an engine of 60 -horse porer it will do a duty equal to three pounds of coal per horse-porrer an hour.

Farrbarri's bial-Scoop.
Bait-mill. A machine used by the "Bank" fishermen for cutting fish into bait. It is an oblong wouleni lux, standing on one end, and contains a wher armed with knives, and turned by a crank on the outside.
It resembles in form and operation a stusayc-cuttins in whine, but delivers a conser product.
Baize. (Fubric.) A coarse woolen faluic with a long nap, primipally used tor covering tables, screens, ete. First minde at Colchester, England, in 1660.
"Bonght me a new black baize waisteconte, lined with silk." - Pcpys, 1663.
"sir Thomas Clitlord talked much of the plain hobits of the spaniards: how the king and lords themmes wear but a cloak of Colchester bayze, and the ladies mantles, in cold weather, of white It unnell ; and that the endeavours frequently of setting up the manfictory of making these stufls thete, have unly been prevented by the lnquisition."-lbid., February, 1467.
Ba-la-lai'ka. (Music.) A musical instrument of the landour kind, of very ancient Selavonian origin. lt is in common use both with the Russians and Tintars. According to Nielnhr, it is also frequent in Egypt ann Arabia. The boty of it is an ohlong seni ircle, about six inches in length, with a neek or finger-board of two feet. It is played on with the fingers, like the bandonr or guitar, but has only two wires, one of which gives a monotonons bass, and hy the other the air is produced.

Bal'ance. The word butance is applied to many things: some in reference to their resemblance to the oscillating beam of the scales, such as the bat-(1ure-bcum or working-beum of some furms of steamengines; the bulance-hundle of a table-knife, which is weighted to lift the blade from the table-cloth; th: be'cunce-berm of a crane whose jib is poised on the post; the bulauce, or pivoted beam of one form of electrometer; the Un'ence-thermometer, which is poised on a stem, and is thrown out of equipoise by Huctuations in the length of the column of contained merenry.

The bulunce-cock of a watch affords a bearing for the ulper bivot of a watch-balance.

The bulcure-plute and balence-ring are parts for sustaining the upper pivot of a watch-balance. They dillier in shture, but that is their function.

The belance-spring is the hair-spring which gives the recoil motion to the uscillating balinec-echecl, whose pulsations lietermine the rate of morement of the timekeeper.

The brlance-verge is the arbor of the balance, and carries the pallets which act upon the scape-wheel.

The batance-weight is a shifting weight to poise the balanee, or a counterweight to balance the weight of uther attached parts, as in the driving-wheel of
a locomotive, ete. ; or a weight to partially conntrrbalance the weight of a valye, and enable it to he lifted more readily.

The electric bulunce is a form of eloctrometer.
The hymrometric bulunce is a form of hygrome. ter, in which the absorption of moistnre destroys the eyuipoise of a lahanced beam.

The hylrostutic bulunce is a modification of the ordinary balance, for the purpose of obtaining specilic gravities.

The steam-batance is the ordinary safety-valve which has a weighted lever. It was invented by the illustrious Dr. P'apin, of Blois.
The torsion-bulunce is a delicate electrometer, in whirls a horizontal bar is suspended from is wire which is twisted by the magnetic attraction or repulsion.
The specific-gravity balance was due to the discovery of Archimedes.

The "Book of the Balance of Wisdom," by AlKhazini, of the twelfth century, is a treatise on the specitie-gravity balance, which he credits to Archimetles, narrating the story of Hiero and the Syracusan goldsmith; and which, as he says, " is fommend upon geometrical demonstrations, anil deduced from physical causes, in two points of riew : 1. As it innplies centers of gravity, which constitute the most noble and elevated lepartment of the exact sciences, manely, the knowlelge that the weights of heary bodies vary in proportion to the differences in distance from a point in common, - the foundation of the steelyard ; 2. As it implies a knowlenge that the wrights of heavy bodies vary according to dillerence in rarity or density of the liquils in which the bouly weighed is immersel, - the foundation of the lalance of wisclom." The book of the Saracmic philosopher was translatell by Chev. Khanikolf, Russian ConsulGeneral at Tabriz, Persia; and an English translation is in the sixth volume of the "Journal of the American Oriental Society," New Haven, 1860.
In connection with the subject of the great relative weight and accepted theory of the value and purity of gold, the pious Moslem enters the following protest: -
"When the common people hear from natural philosophers that gold is the most equal of hodies, and the ore which has attained to perfection of maturity at the goal of completeness, in respect to equilibrium [stability of character, under circumstances which lissolve or destroy other metals], they firmly believe that it has gradually come to that perfection by passing through the forms of all [other] bodies, so that its gold nature was originally lead, afterwarls lecame tin, then brass, then silver, and finally reached the perfection of gold ; not knowing that the natural philosophers mean, in saying so, only something like what they mean when they speak of man, and attribute to him a completeness and an equilibrium in nature and constitution, not that man was once a bull and was changed into an ass, and afterwards into a horse, and after that into an ape, and finally became man."

This has been wrongly quoted; it is not fair to call Al-Kithâzinî a Darwinian.
The balance of Archimetles was a beam, with bowls suspremded from fixed points at each end, and a movable weight adjustable on one arm of the heam, which was graduated from the fulcrum to the point of suspension of one of the bowls. By adjustment on the arm, the weight was made a counterpoise equal to the ditference between the weights in the respective bowls.

The halance of Mohammed Bin Zakazîyâ differed from that of Archimedes by the introduction of the
indicator-needle attached to the beam, and called by portion to the weight, and the sensibility consequent'y the Arabs the tonguo, and by the substitution of a morable suspended scale for the movable weight to balance the difference between scales. Both were described and exhibited by Al-Khazini in his work above referred to.

1. The original form of weighing scales was probably a bar suspended by the middle, and with a board or shell suspended from each end, one to contain the weight, and the other the matter to be weighed. Parts of the original picture (Fig. J30) diminished. A cylinder of steel passing at right :angles through the center of the beam forms the axis; and its extremities, ground into sharp edges on the lower side, serve as the points of support. The two edges must be accurately in the same straight linu, and turn on smooth planes of agate or polished steel, carefully lereled. The prans should likewise be suspended from the extremities of the beam by agate planes resting on knife-edges. A ueedle or tonglie is usually attached to the beam, pointing directly uprard or dornuavd, wlen the beam is horizontal, for the jurpose of indicating the deriations of the buan from the liorizental yosition, oll a graduated scale. It is better, lowever. to bring the arms to terminate in [oints, and to flace a diviled scale kehind each. In this way the slightest deviation of the beam will be rendered erident, if the zeros of the scales be placed exactly in the same lerel. The scale is indisyensalile, because the balauce, if very sensitive, would require a long time to come to rest ; but it is known to be poised when the excursions of the needle on loth sides of the zero of the scale are equal. In order to ireserve the knife-ulges, the beam, when not in use, is supported on
are defaced by time, as indicated. An ancient Eryptim balance, consisting of a wooln beam anil a piece of lead at the end for a weight, was found at sakkarah.
In early timos, before the coinage of money, the precions inetals were weighed out, and the duty of weighins was regalated by the municipality. and att-ulual to by pablic weighers, as we see in the Egypian monuments and real in classic literature.

Abralam paid for the land he bousht in silver, wi,hing it out to Ephron, 400 shekels of silver.
The sons of Jacob also paid for the wheat they bo:ught in Egrpt at a giren price in metal, weighed out to the officers of Joseph.

For the early uses and gradual improrement in th - production of coin, see Consige.
The "balance" of the Bible was similar to that of Egypt, the en ls of equal length, and the beam suspended by its mil-length. The frequent reference to false and nnequal balance shorss that the lerer-balauce on the "steelyard" princinle was unknown to them.
The lever of unequal lengths on each side of its point of suspension affords a conrenient mode of deternining weights of rarious objects with lut a single wight, the object being suspended from the end of the shorter arm, while the hob is shifted aloug the graduated longer arms until it forms an exact connterpoise for the object reighed. This is called the sectlyterd, probably from its material and furmer length in Englami, and is also knorm as the Soman Bulance (Stalerce). See Steeltard.

Balances for delicate operations. such as those used int assaying and chem:cal manipulation, are mate with extreme care. The beam should be as light as possible consistent with inflexibility: for not only the iuertia, but also the friction, is increased in pro-
rests. Props should also be placed under the pans when loading or unloading the balance. The whole apparatus must be placed under a glass case, to protect it from the disturbing influences of currents of air.

The sensitiveness of a halance constructed with due care may be carried to almost inconceivable extent.

Analytical balances are usually made to carry 1,000 grains in each jan, and to turn with the fovo lart of a grain.

There are sereral large balances in nse in the English mint, calculated to weigh from 1,000 to 5 , 0 ivo ounces Trog. Some of them turn with $\frac{1}{10}$ of a grain, whesi loaded with 1.000 ounces in each scale, or with goodove part of the weight.

Fig. 231.

To the mode of suspending the beam and the scales
more attention has probably been directed than to any other part of the balance.
Of some of the European balances, -
Fox's bean has pivots, the conical ends of which play in hollow ayate cones of larger angle.

Uererhing's leam is coated with platinum or pallanlinm, the knife-edges and planes being of agate, and the instrument proof against acid fumes. The kuife-edges are let into dovetailed notehes in the heam. The beam is graduated, so that small differences of weirht can be determined by placing a small phatinum wire weight on one ol the divisions of the graduated beam.
steminell suspends the beam by wires or silk eords. In another of Steinheil's, the beam carries two small stenl spheres in the midlle, resting on a steel plane, and a sphere at either end, upon which rest the plane or slightly eonvex spherical surfaces of the plates, from which the pans are suspended.

Ansong the modes of delicately adjusting the parts to obtain perfect equilibrinm may be cited:-
In Durer's the final adjustments in the direction of the lensth of the beam, and in a direction perpendienlar to it, are affected by a cut at each end of the bean, making an angle of 45° with the axis of the beam, and capable of being widened by a serew.

In the Americen balanee the soeket in which one of the extreme kuife-elges is fixed moves in a slit in the direction of the length of the beam, and is adjusted by means of two serews.
ln Oempline's the adjustment of the distance of the extreme knife-edge from the middle knife-edge is eflected by a vertical cut in the metal of the beam, capable of being slightly widened or contracted ly screws.

Among the modes of checking the oscillation of the pans may be mentioned Dolberg's, which consists of har-brushes turning on a handle, and ascending till the ends of the brushes tonch the under side of the pan. The mode of obtaining quiescence of the pin in the periodical intemnittence of the coin-weighing apparatus is by a depressed ivory point above and an agate point beneath.

In Fox's balanee the beam is brought to zero by the attraction of a magnet.
The sensitiveness of a balance depends (after friction has been redueed to a minimum), first, on the proximity of the center of gravity to the point of suspension on which the beam swings; and the eenter of gravity must be direetly below the point of snspension. Secondly, on the fact that all threu knife-edqes are in the same plane, to prevent the farther lowering of the center of gravity when the bean is loaded. Thirdly, on the rigility of the beam, to prevent a similar lowering by springing.

See Faradiy"s "Chemical Manipulations" for suggestions in eonstruction and management of delicate balances used in quantitative analysis.

See also Coln-welehing Dachine; Countrer Sodles; Micnometer Balance; Platfura Scales; Sphing Balavce; Steelyard; Welghing Machase.

Fig. 532.

Chronometer Balance.
2. (Horology.) The oscillating or pendulum wheel of a watch, which gives the pulsations. Its axis is the verge.
In the earliest clocks it was in the form of a balance, and not of a wheel. It eonsist-
cd of two weighted arms, oseillating on a vertical axis. The clock of Henry de Wick, made in $13 \mathbf{F}^{9}$ for Charles V., had a balance of this description. The balance, so fur as wateles are concemed, is a wheel driven in one direction by the mainspring acting through the train of gearing, and returned by the force of the hair-spring. While watches of the varions kinds have balances, their escaprements gemerally constitute their distinguishing features by which they are mamed and known. See Escapement.

In regulating a watch, the length of the beat of the balance is increased or shortened to make the wateh go slower or faster. This is done by letting ont or taking up the hair-spring. See Hain-sping: Compensation Balance.

The clock or watch balance consists of -
The rim.
Verge; spindle or arbor.
Spring; which gives the reeoil movement.
Regulator; detemuines the length of spring involved in the movement.

Cock; affords a bearing for the upper pirot.
Potance; a step for the lower pivot.
Pullets; the plates on the verge, which engage the scape-whcel.
3. (Electricity.) A term applied to a device for measuring the resistance of an element of an electric cirevit. Also known as a Bridge.
Bal'ance, Al-loy'. Robert's Alloy Balance is intended for weighing those metals whose proportions are stated decimally, being constructed on the principle that weights in equilibrio are insersely as their distances from their points of support.

The point of suspension, a, of the balance is adjusted until the arms are respectively as the two stated 1roportions, - say 17 tin to 83 copper. The hall of

Robert's Alloy Balance.
the bean is livided into 50 equal parts, numbered from the one emb, and, the point of suspension being auljustel proportionally, the weight w is brought to a position where it enables the beam of the cmpty lalance to stancl in equilibrio. A quantity of copper being then placed in the scale suspended from the short arm will be balanced by the proportionate ynantity of tin in the other scale. See table in Allor, for converting fractions of a pond todecinal proportions.
Bal'ance-bar. (Hydraulic Enginecring.) A heavy beam lolted to the miter-post of a canal-lock gate, and resting upon the heel-post of the same. It extends over the wharf or pier when the gate is closud, and has two uses, - it forms a lever by whiel the gate is swung on its pintle, and it partially balances the outer end of the gate.

Bal'ance-bob. A weight on the inner end of a working-heam, to counterbalance the weight of the planger-piston. The balance-bob of the Wicksteed
engine of the Fast London water-works is a receptacle of ballast, weighing about $\$ 9,600$ pounds.
Bal'ance-bridge. A lifting bridge with a comnterpoise. A basctle Bridge, which see.

Bal'ance-crane. A crane having two arms, one of which is provided with arrangements for counterpoisiug, in whole or part, the weight to be raised by the other.

The following is a description of that employed by Stevenson in the erection of the Skerryvore Lighthonse.
$a b$ is a portion of a cast-iron pipe or pillar erected in the center of the tower, and susceptible of being lengthened as the tower rose, by means of additional pieces of pillar let in br spigot and fuucet joints. On this pillar a frame of iron was placed, capable of revolving treely round it, and carrying two trussed arms and a double train of barrels and gearing, worked by men standing on the stages $S S$, which
revolved round $a b$, along with the framework of the crane from which they lung. On the one arm hung a cylindric weight of cast-iron, W, which could be moved along it by means of the gearing, so as to increase or diminish by leverage its effect as a counterpoise; and on the other was a roller R. The roller was so connected with the weight on the opposite arm as to move along with it, receding from or approaching to the center pillar of iron in the same manner as the weight did. From the roller hung a sheave, orer which a chain mored, with a hook B at the end for raising the stones. When a stone was to he raised, the weight and the sheave were drawn out to the end of the arms at P of the crame, which projected over the outside of the walls of the tower; and they were held in their places by simply locking the gearing which moved them. The second tran of gearing was then brought into play to work the chain which hung over the sheare, and so to raise

Fig. 534.

the stone to a hight sufficient to clear the top of the wall. When in that position, the first train of gearing was slowly unlocked, and the slight declirity inwards from the end of the arms formed an inclined plane, along which the roller carrying the sheave was allowed slowly to more (one man using a break on the gearing to prevent a rapid run), while the first train of gearing was slowly wonnd by the others, so as to take up the chain which passed over the slieare, and thus to keep the stone from descending too low in proportion as it approached the center of the tower. When the stone so raised had reached such a position as to lang right over the wall, the crane was made to turn round the centre columu in any direction that was necessary, in order to bring it exactly abore the place where it was to be set; and, by working either train of gearing, it conld be moverl horizontally or vertically in any way that was required.

Bal'ance E'lec-trom'e-ter. An instrument
laving the poised heam of the ordinary balance, and adapted to estimate, by weights suspended from one arm, the mutual attraction of oppositely electrified surfaces.

In Harms's electrometer the beam is suspended from an insulated post ; one scale, carrying the weight, has its seat upon a post ; the other scale is a lisk which is suspended abore a similar disk electrized by connection with a charged Leyden jar. Hexley's quadrant electrometer has a pendulous pith-ball whose deflections are measured by a graduated arc.
Bal'ance-frames. (Shipbuitding.) Those frames of a ship which are of equal area and equally distant from the ship's center of gravity.
Bal'ance-gate. (IIydraulic Enginccring.) A form of fload-gate which has a vertical shaft as a center. As the leaves on each side of the pintle are of equal area, a very small power is necessary to open them in whichever direction the water may be pressing. By giving a preponderating area to the inner
leaves of the gate, they may be made self-opening or self-elosing as the current sets in or out of a channel. In this form they are commonly ased as sluicegates in Ilolland.

Fig. 535.

Balance-Gates.
Bal'ance, Hy'dro-stat'ic. See Specific-Gravity Balanee.

Bal'ance-lev'el. (Surveying.) An instrument suspended by a ring. When in equilibrium, two sights, properly fitted to the instrument, show the line of level.

Bal'ance-knife. (Cutlory.) A table-knife, of which the blake and handle counterbabance each other, so that the blade may not touch and soil the eloth.

Bal'ance-reef. (Vauticrel.) lin a square sail, a diagronal rect-band from the outer head-earing to the tack. In a fore-and-aft sail, it extends from near the outer point of the upger horizontal reef-band to a point higher up at the inner edge of the sail.

Bal'ance-rynd. (Mill.) An iron bar stretching across the eye of the runner, and by which it is poisch on the top of the spindle. In the illustration, I is the spindle of the rumer; B the cock-hcad, on which the butunce-ryud $F F$ is poised. The latter hass a capacity for rocking back and forth on the

Fig. 536.

spinlle to a given extent, as the rumer finds its atjustment on the bed-sfonc. The dhiving-block $D D$ sits on the square of the spindle, and the driving-
lugs $C C$ bear in the slots of the balanee-rynd, and drive the stone when the spindle I is rotated.

Bal'ance-sec'tion. (S'hipbuilding.) One of a pair of vertical cross-sections, one mear each end of the vessel, which are designed after the midship section and leading water-line.
Bal'ance Ther-mom'e-ter. A thermometer poised on an axis, and having ether and nercury in the respective ends. When an musual heat occurs, the ether is expanded, and drives the mercury farther towards the end, which tips the instrament and sounds an alarm. A form of five-alarm.

Another form of balance thermometer is an inverted tule, which acts as a counterpoise to a window, reagister, or damper. The upper end of the tube has an air-bulb, the lower end of the stem containing mercury, into a cup of which the end is submerged. As the temperature increases, the air expands, displaces the mercury, the tube rises, and the window or clamper is moved. The converse operation takes place when the temperature falls. See Thermometer.

Bal'ance-valve. A valve of any character in which stcam is admitted to bath sides, so as to remier it more readily operated by relieving its pressure upon the seat. The balance purpet-valve has two rlisks of slightly differing diameter, and placed on a single sten; the steam being admitted between the two, or above and below the upper and lower disk respecetively. The slight difference in size is in favor of the pressure of the valve on the seat.

The object is to secure a large opening withont great resistance.

Bal'ance-vise. (VVatchmaking.) A small tailvise, used by watchmakers.
Bal'ance-wheel. In horology this signifies the ratchet-formed scape-wheel in the old vertical-movement wateh. Its teeth are acted upon by the pallets of the verge B, which is the axis or spindle of the balance C, and the latter, in its oscillation, makes the time-beat, acting as the pendulum in a clock.
The term
 buthance-utheel is sometimes applied to the balance C, which acts as the mensurer of time, and balances or regulates the rate by applying its pulsations to intermit the action of the spring. So the tem balance-wheel has gradually been conferred unon fly-wheels which confer regularity of motion to the machinery to which they are applied.

The term balance is derived from its original form, consisting of weighted arms upon an oseillating axis, and laving a semblance to the bean of the balance whem it oscillates on its pivot or bearings. This was the form of the balance in Henry de Wick's cloek, constrinted for Charles V., in 1379.

Bal'ance-wheel En'gine. (Horology.) An instrument for forming the ordinary balance-wheel of a watch, which consists of a four-spoled, fullrimmed wheel of steel, and is made of a steel disk from which the segments are punched out, the crosser wheel being linished by a file.

Bal'ance-wheel File. (Horology.) Or Smingwhed File. A file adapted to ent out the sectors from the circular steel plate, which forms the blank for the balance-wheel.

Bal'co-net. A low, ornamental railing to a door or window, projecting but slightly beyond the sill or threshold.

Bal'co-ny. 1. (Arelitecture.) A projecting stage or platfom on the outside of a huilding, usually supported ly consoles or columns, and furnished with a rail or other enclosure.
2. (Shipucrighting.) The stern gallery of a ship.

Bal'da-chin. (Architucture.) A canops supported by columns, and raised orer altars, tombs, etc.

Bale. A bundle of stray, har, or other material, put upin compact form for transportation or storage.

Jany ingenious devices for putting up forage rations and cut-stuff for feed have been derised from time to time, especially since the United States military stations hare been so widely established.

The bale 1 is made up of a roll or rolls of har or straw, laid in coils, and fastened by cords or wires crassing it longitndinally at right angles.

In 2, the top and bottom of the bale are coresed ly transrerse stiz]s $d A$, curved so as to shed water, and the edges are protected by longitudinal strips $B B$.
3 shows a crlindrical bale, hasing a central hollow b extending from end to end. The ends are strengthened by segniental strips d d, which protect the edges, leaving the boly of the bale open to free rentilation. Longitudinal ties c c bind the whole together.

Fig. 53s.

Bales.
Ba-leen.' The plates of fibrous material with a bristly finise, which depend from the upper jaw of the riuht whalc (Balanue mysticetus). There are about 200 of these plates on each side of the month in the suter row. These are from 10 to 15 feet in length, and about one foot broad at their base. An inner row of smaller subsidiary plates is arranged obliquely. The material is called whalchome; but the word is quite inappropriate, asit is not of the nature of bone.

The material is used for the ribs of umbrellas. stiffening for corsts, for chimney and street brooms,
elastic brushes, heckles for flax-brakes, and is split into splints for plaiting like straw.

Strips of balcent have been aggregated by pressure, moisture, and heat, so as to become agglutimated, and thus form larger articles, such as walking-canes. Kortright's English Patent, 1841.

Artificial baleen is made in Germany, and consists of rattans impregnated with a strong black varnish. It is called rallosine.
Ba-leine'. A morable scaffold, emplovel in France to facilitate the tipping of the wagons in railroad embankments.

It consists of two trussel beams, which are laid with rails along the top, one end resting on the ground at the commencement of the embankment, or at the battery-head of an embankment in course of formation ; the other end of the balcine rests on a wheeled carriage, or an auxiliary railway, the rails of which are taken up at one end as the other progresses. When a car is tipped at the battery-head, the contents are discharged betreen the rails, and it is pushed to the other end of the balcinc. The same plan is followed with the rest of the loaded cars until the balcinc is full. The eupty cars are then coupled and withdrawn by the locomotive.

Bale-tie. A device for fastening the ends of the hoops by which bales of cotton are held in compact form.

The annexed cut shows 29 of these derices, which are selected from a much larger number, to illustrate, not only the derices themselves, but also the numbrr of nodes in which so apparently small a problem mar be solvel.

The name anl date are simply given. as the construction and operation will be generally understood without special explanation.
a. Sabatier (English), 1796.
b. Rlait: "، 1502.
c. Pheck " 1507.
d. Smith 1 S49.
e. McComn, June 15, 1856.
f. Broad, 1850.
g. Swett, Oct. 23, 1866 ; reissued May 7, 12
h. МсСомв, 1850 .
i. Cook, March 2. 1558.
k. Bromie, "o 22, 1859.
l. Beard, Oct. 16,1866 .

m. Jutidan,	Aug.	28, 1870.
n. Monaiss,	Auril	$6,1899$.
o. ADAMs,	Feb.	20, 1572.
p. l'eiton,	July	18, 15 ¢1.
q. LECKY,	Oct.	$29,1867$.
r r. SECHLER,	Mareh	19, 1 勺ij7.
s. Silerpard,	Aug.	$22,1871$.
t t Latisig,	Dec.	18, 1566.
u. ONIONS,	June	$5,1866$.
\%. Lee,	Oct.	16, 1566.
u. Milligan,	Nov.	$6,1866$.
x. Mernitt,	April	10, 1566.
y. Quant,	Oct.	$28,1565$.
z. McCosib,	Jan.	29, 1S6̂l.
u', SE.fVEL,	Oet.	23, 1566.
b, McComb,	6	23, 1866.
a^{\prime}. Whatey,	,	$9,1860$.
si". Ghiddey,	6	$23,1866$.

Fig. 540.

In connection with the subject of ties for bales may be mentioned the devices for baling cut hay, and fon baling feed and forage rations, to condense their bulk for transportation. The latter are esprecially intended for military and emigrant purposes.

One plan is brietly as follows:-
The hay is carried by an endless apron to a rotary cutter driven by power, and which, cutting past a fixed blade, ehops the hay into pieces of from three fourths of an inch to one and a half inches in length. After this it passes through a winnowing apparatus, which abstracts all dust and dirt therefrom, and then between crushing-rollers, which crush it flat and render it soft and Hexible ; in this condition it is plaeed in a strong $1^{\text {reess }}$ and compressed into a bate of great
solidity and compactness, which, when properly hooped or banded, is ready for transprotation. By these means the size of bale for a given weight of hay is materially reduced, while the thorongh removal of dust, etc., and the softening of the material from the crushing to which it has been subjected, increase its value for feeding purposes.

The bales contain about nime cubic feet, and weigh 200 pounds.

In baling forage rations, a feed of corn is placed in a feed of hay, and the whole condensed into the slape of a large brick.

Bal'ing-ma-chine'. (Hydrautic Engincering.) An appratus consisting of a square bueket, sliding on a nearly vertical ralnbeted beam, dipping at its lower position into the water in the hold or diteh, and discharging its contents upon deek.

The bucket has a thap-valve at bottom, which opens when it reaches the water. It is hoisted by means of tackle. When the bucket reaches the top, a part of the slide tilts over and tips the lucket, which discharges its contents. See also Ball-scoop.

Bal/ing-press. A press for condensing fibrons articles of considerable bulk into a compact form, for the purpose of shipment.
lt essentially consists of a bed, inclosing sides, and a head, platen, or follower, operated by means of screws, toggles, beaters, rope and pulley, or by other mechanical devices, as will hereatter appear.

The varieties may be thus enumerated, and will be considered in their alphabetical position under the following heads:-

1. Screw press.
2. Double-acting press.
3. Tuggle press.
4. Windlass press.
5. Beater piress.
6. Rack and jinion press.
7. Revolsing press.
8. liepressing jress.
9. Hydranlic press.
10. Rolling-puessure jress.
11. Portable press.

Other minor varieties and sub-varieties might be cited were there any object in multiplying definitions.

Ba-lise'; Ba-lize'. A timber frame raised as a beacon or landmark.
Balk. 1. (Curpentry.) a. A squared timber, long or slrort, suitable for a beam in a trame, a tie in a truss, a girder in a floor, a sill in a building, or for at shove or chock when of shorter proportions. Baulk ; Badk; Bawk.
b. A large timber in a frame, t restle, truss, or floor.
c. A whole timber. Technically, over 13 inches square. Half-timber is $6 \frac{1}{4}$ inches sifuare.
2. (Mititary Engineering.) A longitudinal timber of a ponton-bridge.
Ball. 1. (Games.) A sphere of ivory, wood, etc., used in billiards, bagatelle, croquet, and other ganes.

Balls for playing are made of varions sizes and materials, according to their intended $1^{\text {mipose. That, }}$ perhaps, most familiarly known, is ordinarily composed of an interior eore of india-rubber, usnally, if not always, made up of strips wound into spherical form, around which is wound woolen yarn, the whole heing covered with leather. Many are also utade wholly of india-rubber, and hollow.

Biliiard-balls are made of ivory, that substance combining in the highest degree the required qualities of resiliency and durability. Ten-pin balls are of lignum-vitr. Boxwood is preferred for croquetballs. See also Ivony, ARTificial.

The game of ball is mentioned by Homer (Odyssey, viii. 372), ant was credited by Plato to the Egyptians, among whom it was known in the twelth dymasty, say 2000 B. c.
The Athenians erectel a statue to Aristonicus on account of his skill in ball-playing.

Foot-ball is very much in rogue anong the American Indians, large parties of whom participate in the sport. Its practice among the Indians of the Plains is well described in Catlin's "North American Indians.'

Tennis was played in England in the sixteent! century. The tennis-court at St. James's was erected in $10 \% 6$. This game was for many years a farorite amusement with the nobility of England and France.

The invention of billiards is ascribed to Delvigne, 1571. We find cricket first mentioned in 1719.

Croyuet was introduced into England from Germany in 1830 ; its popularity in America hardly dates back more than a decade.
2. (Projectiles.) A missile to be projected from a fire-arma, e.g. a hullet or cannon-ball. These are made of lead tor small-arms, and of cast-iron for camuon, though in countries where copper was plentiful and iron scarce, as in Sonth America and Mexico, the former metal was employed, even when imported castiron cammon were used. The lack of tin, and perhaps want of skill, forbade the prople of those countries to east bronze orduance, though they could make copper shot.

Height of Cast-iron Balls.

Diameter in luches.	Weight in Pounds.	Diameter in luches.	Weight in Pounds.
I	. 1377	63	4234
$1+$.269	1	4723
$1 \frac{1}{2}$. 44	It	5243
12	. 737	75	54.09
2	1.10	7	$6+19$
21	1.53	8	70.60
21	2.15	81	77.31
${ }_{2}$	$2 \mathrm{C3}$	$8 \frac{1}{2}$	84.56
3 3 3	3.71 +11	${ }_{9}^{8}$	102 24
3 \%	5.90	91	103.98
34	7.26	$9 t$	11.05
4	8.81	$9 \frac{1}{4}$	127.12
41	1058	10	1370
4	12.54	10)	$11^{2} 28$
$4{ }^{4}$	14.15	$1) \frac{1}{4}$	159.51
5	11.21	131	111.06
$5 \frac{1}{4}$	19.92	11	14327
5	2239	11\%	19545
5	25.17	114	21312
6	29.74	11	22338
$6!$ 61	3361 37.81	12	235.04

3. (Printing.) A dabber for inking type or calicnprinting blocks. Its mission is nearly endel in either capacity. It consists of a piece of buckskin stuffel with wool so as to form a ball, and furnished with a handle. The correshonding device used by the engraver in spreading etching-ground is called a dubber.
4. (Fubrics.) A round cop of thread or yarn.
5. (Metcl-xorking.) A spherical tool for cutting; sulh as those for excarating bullet-molds, carions teeth, etc.
6. (Metallurgy.) A loop (Fr. loupe; Ger. गuppe) or mass of iron gathered into a lump in a puldlingfurnace, and in a condition fit for the squeezer or tilt-hammer.
7. (Machinery.) a. A spherical ralve, operated by the passing fluid, and limited as to its extent of motion by a cage, or by the size of the chamber.
b. One portion of that universal joint which consists of a ball gripped by a box and ring.
8. (Horological.) The weight at the bottom of a pendulum, sometimes called the liob.

Balla-hore. (Trutical.) A West India schnoner* with tore and aft sails only; the foremast rakes forward, the mainmast aft.

Ball-and-sock'et Joint. A joint formed by a ball working in a hollow cup, or socket, which allows it free motion in every direction within certaiu limits. See Universal Joint.

Bal'last. 1. (Railuay Engincering.) Gravel, broken stone, or cinders placed beueathandaround the sleepers of a railroad track, forming a solid bed which will not retain water. Drainage must be provided below the butlasting. In England, where it is also called meter, twofeet bed of ballast is deemed sufficient, no water being allowed to stand withina dep th of four feet below the rails.

Ballast has four duties to perform :-
a. To distribute the bearing over the surface of the earthwork.
b. To confune the track in

Ball-and-Sockel Joint. place.
c. To permit drainage of the surface.
d. To afford a certain degree of elasticity. A solid rock sub-way is too unyielding, and injures the rolling stock. Burned clay is a fair material. Cinders, shells, and small coal are also used in certain localities.
2. (Nautical.) Weight in the bottom of a boat or the hold of a vessel, to keep it upright in the water, and prevent its being uyset hy the force of the wind or the weight of its top-hamper.

On board vessels of war pig-iron is generally employed for ballast ; that of the British nary consists of iron pigs of about 300 pounds each.

Means have been provided for using water as hallast. Its evident convenience, both as to accessibility and facility of removal, hare induced considerable pains to be incurred in devices for containing it.

The employment of water-tight hags has heen sereral times attempted. These, when enpsty, are stored away in large boxes, and when required are spread out in the hold and filled by a connecting hose. There are evident objections to this mode.

Iron tanks have been built into the ship, occupying prositions on the Hoor, and at the stem and stern next to the dead-r"ood.

Tanks made by two bulkheads across the ressel have also been used. These are made of such a size that they may be used for coals or cargo when the ballast is not rerguired. The reservoir, whatever form it may have, must be quite full, to prevent the swashing of the water, and the bulkhead tauk has been found ditficult to fill and keep tight.

The plan suggested by Granthan, of Liverpool, a distinguished anthority on the subject, - is specially adapted for ships carrying coal, where little or no back freight is to be had. See Grantlanu's "Iron Ships." Weale's Series.

Bal'last Car

or Wagion.
(Railuay Engincering.) A dumping-car for transporting ballast for the roadbed.
Inthe illustra-
tion is seen the

English form, having a capacity for dumping to the reat or towarls either side. See Dumping-car.

Bal'last-en'gine. 1. (IIydruulic Enyinecring.) A drelgine-machine for raising shingle from the bottom of a river for hallasting vessels.
2. (Civil Enyincering.) A steam-engine employed in exearating amb shoveling gravel for ballasting a roal-hed.

Bal'last-heav'er. (Hydroulic Enyincering.) A drel rimer-mathine for mising ballast from a river-bed.
Bal'lasting (Enginceriny.) a. The gravel or brodin stone, known as mutal, which forms the rual 1 .
6. The inaterid beneath and around the sleepers of the nermment uray of at raitroad. See B.alasst.
Bal'last-light'er. (I'autical.) A barge for conreyinis hallant to a ressel.
Bal'last-shov'el. (Nuntical.) A square-borliel aml s.mon-pointed iron shorel.
Ball-cal'i-ber. A riug-gage for testing the diancter of gun-shot on board ship.
Ball-cart'ridge. Fir small-arms; powler anel

Ball-Caster. ball in an envelope. In contradistinction to blank-cartridge. See Cabrimioge.
Ball-cast'er. A caster for furniture, ite, having a sphere or ball instead of a common roller at bottom.
Ball-cock. A fancet which is opened or clused by means of a ball floating on the surface of the water in the rensel, allowing the cock to remain open until the water has attainced a certain hight, when it is dolled by means of a rod connection with the rising ball, falling again as water is withlrawn firom the vessel. It constitutes an anto:natic arrangemont for keeping the water at a

Fig. 544.

Ball-Cock:
tion of the arbor or shaft, white in its socket.

Ball'ing Fur'nace. (INctallurgy.) A furnace in which piles or fuy mets of iron are heated so as to form balls for rolling. In the puddliny-furnace, pig-iron is boiled to drive ofl' certain impurities, and the iron threin is formed into balls by the rubble or padde of the puldler, so as to be realy for the shingling. himmer or the squeezer which drives the slag from the bloom. At the same heat the iron may be rolled and become a merchantable article of barriron; but with some qualities of iron, and for the prodution of the finer varieties of bar and sheet iron, the birr from the first rolling is cut up by the shears, and made into piles or fagots, which are reheated to form buells for re-rolling.

The furnace resembles a pulding-furnace, with the exception that it is not designed for stirring and puddling, but the piles or fiegots are laid upon the Hoor of the reverberating chamber, am are there heated without ruming together, each being withdrawn as it attains the required condition. The bottom is made up from time to time with sand. It
is not a mere reheating, but the action of the fire and the almission of regulated quantities ol air remore certain impurities which have resisted the previous opreations.

Ball'ing-gun. An instrument for administering medicine rollenl into balls to horses. It consists of a purtially exhusted tube, on the end of which the bail is held hy pressure of air, and from which it is relensed by a piston when the ball is fairly within the esophagus.

Ealling-i ron. (Furricry.) A hook for cluming a horse's teet from the balls of snow, etc., retained by the shoes.
Ball'ing-ma-chine'. (Cotton Manufucture.) A machine on which cotton thead is wound into balls.

Fig. 545.

The ball a is made on a rotating spinille b, or on a braer cap or cover placed thereon, around which a steel rod e spins rapidly, carrying the thread and buidding it up on the spindle. This interior core (cap) forms a supplort for the ball, and receives on its closell end the ticket, number, and maker's name.
The size of the ball is regulated by the eye; the number to the pound varies from 16 to 600 .
The spindles have independent stop-motions, g, so that when a thread breaks any one or more may be stopped. The threal cones off a hoblin, and pisses through the hollow spinille of the flyer c, whose axis of rotation is oblique with that of the spimelle b, so that the thread is lail on spirally, the spindle continually rotating so that the thread has an advancing or receding coil, according to the direction of motion of the spindle. The gearing by which the parts are driven is sufficiently shown in the cut, and needs no special description. The figure shows one set of parts, hut the machine has a long parallel series of ball-wimders in a row on a single frame. The upper figures show the lall attached to and detached from its spinille, respectively.

It was invented by M. I. Bmnel. When he risited the mills of Strutt, in Derhyshire, about 1805 , he said he "observed they had adopted my [his] contrivance for winding cotton into balls."
Ball'ing-tool. (Ifetullergy.) A tool for aggregatiug the iron in a puddling-furnace, to lit it for
conreyance to the tilt or squeezer. A rabble (Fr. rieble).

Bal-lis'ta. (Weapon.) A machine used ancient.

Eallista.
ly fortlurwing darts or stones.

The name is aplied to twodifferent machines.
One resembles the cat. apnlt in the mode of ab taining the Iower, and the other is a cross-bow on a large scale, with a tackle to draw the borstring.
u. The more ancient ballista had a vibrating arm, which was drawn back against the tension of cords made of hmman hair, horse-hair, or catgut. When drawn back to its full scope, it was suddenly released, and its hend came with a violent blow against the cmils of the darts amanged on a table above and pointed towards the cueray.

Fig. $54 \overline{2}$.

Ballistic Pendulum.
b. The other hallista was a cross-bow, arranged upon a standing frame (Fig. 546). The string was retracted by a tackle, and was cast loose by some device, projecting a dart or a stone, as the case might be. The dart or stone lay upon a table, and was adjusted against the string before casting off.

Bal-lis'tic Pen'du-lum. This instrument is designed to determine the velocity of projectiles of cannon and small-arms. It was invented by Robbins about 1760 , and described by him in his tract on Gunnery. It has been improved by Hotton and Gregory, in England ; Piobert and Morin, in France; and Mordecai, in the Cuited States.
The original instrument consisted of an iron bar suspended by a transserse axis, and having a block of wood strengthened with iron plates to receive the impact of the ball. On being struck, the block swung like a pendulum, and pulled a ribbon throngh an orifice in the fixed framewark. The lengtlo of the ribbon withdrawn is considered equal to the chord of the are of ribration.

The use of the pendulun depends upon the dynamical fact that if a borly of small mass impinge with great velocity upon a much larger body at rest, and the two bodies after impact move on together with a velocity which can be easily measured, the masses of the two bodies being given the whole momentum after impact is known; and as this is the momentum of the smaller hody hefore iumact, the velocity with which it struck the larger body can be determined.

As now used, the block consists of a cast-iron case or mortar, partially filled with bags of sand or a block of lead. It is suspended by wroughtiron bars from an axis working on knife-edges in V-grooves, and the are of vibration is measured on a colper arc by an index carrying a vernier.

The arc of vibration being ascertained, the follow: ing points must be known, in order to calcnlate the relocity of the ball on striking: -

1. The respective weights of the ball and pendulum.
2. The distance of the centers of oscillation or percussion from the axis of suspension.
3. The distance of the center of gravity from the axis of snspension.
4. The angular velocity of the pendulum after impact.

The upper figure represents the pendulnm for small-arms; the lower one for ordnance.
The gun itself has been swung on a pendulum, and its arc of recoil measured to fumish datun for estimating the force of the discharge.
lt is also used to determine the quality of powder. See also Eprouvette.
The Chronoscope and Elcetro-Ballistic apparatus afford more perfect means of determining the point sought. Sue Chronoscupe: Electio Ballinta.

Ball-le'ver. A lever having a ball affixed at one end as a weight, which closes the plug of a cistern when the water has risen sufficiently. See Ballcock.

Ballon. 1. (Chemical.) A large glass receiver in the form of a hollow globe, aprertaining to a set of chemical apparatus.
2. (Nautical.) A long, brigantine-rigged ressel, used in siam, and made out of a single trunk.

Bal-loon'. 1. A bag or enrelope of silk or other thin textile fabric, around which is a netting of small rope or cord, from which is suspended a car or basket. The balloon is prorided with a ralve, controlled by a rope within reach of a person in the ear, to allow the gas by which the balloon is intlated to escape when it is desired to descend.

Galien, of Avignon, wrote on aërostation in 1575 ;
but the discovery of hydrogen made by Cavendish, in England, seemed to ofler a feasible mode of ac. complishing the object, anl its use was suggested for that purpose by Dr. Black, in 1767, who ascertained that a light envelope filled with this gas would ascend.

Fig. 548.

The first machine by which an ascent was made into the upper regions of the atmosphere was invented and constructed by the brothers stephen and Joseph Montgolfie', paper-manufacturers at Amotay, near Lyous, Frace. After experimenting unsuceessfully with hydrogen-gas, they tried lieating the air contained in the balloon by means of a fire in its open mouth, and in June, 1783, a captive balloon was by this means cansed to ascend over 2,000 yards. November 21,1783 , Pilatre ale Ruzier and the Marquis l'Arlandes ascended in a halloon of this kind, reaching a hight of 3,000 feet, and lamling nearly six miles from where they arose. December 1 of the same year, MM. Charles and Robert ascended in a balloon inflated with hydrogen-gas, alighting in an hour and three quarters at a spot about 25 miles from Paris, whence they had set out, and attaining an elevation of about 9,700 fect. After this, balluon ascensions, both in France and England, became comparatively trequent. The English Channel was crossed by a halloon; aml in making a similar attempt, Pilatre de Rozier and a companion named Romain were killecl. They had employed, in conjunction with a hyelrogen-balloon, a montgolfiere or fire-balloon below it, and on reaching a considerable light, the expansion of the gas caused it to flow downward directly upon the fire, inflaning the whole apparatus, which was speedily consumed, precipitating the aeronauts to the earth.
Balloons were introduced into the French armies at an early period during the wars of the Revolution, and were used at the battles of Liege, Fleurus, 1794, and at the sieges of Maintz (Mayence) and Elrenhreitstein, where they were found particularly usetul, as only by such means could operations in the elevated citalel be observed.
"The Frenclı armies are attended with a new spe-
cies of recomnitering engincers, whose duty it is to do everything relative to the preparation and use of balloons. The person who mounts in the balloon is furnished with laper and lencils of dillerent colors. The marks are made according to a system agreel on beforehand, and the paper, after being marked, is attached to a small rod like an arrow, one end of which is luaded and pointed, so that it strikes in the ground and stands npright." - Anmat Reyister, 1794.

Balloms were also employed by the Frencl in the ltalian campaigu of 1854 , at Solferino ; and subsequently, during our own civil war, a small con's of balloonists was attacheel to the Army of the l'otomac.

The celebrated French chemist, Gay Lussac, in 1s04 reached the hight of 23,040 leet, and carried $1 p$ with him the necessary means for making scientifie ohscrvations on the character and properties of the atmosphere at that great hight. This was for many years considered the most remarkable lalloon ascent per made, both in regard to the hight attamed and the ubservations made. The great temuity of the atmosphere in those elevated regions is said to have aflected 11. Lussac to such a degree that his system never fully recovered from it. An Englishı aëronant named Glaisher, it is said, has recently sueceeled in reaching the hight of seven miles. He was rendered seriously ill, and was supposed to have burst some bloodvessels.

Charles Green introduced the practice of inflating ballouns with ordinary illuminating-gas, making his first ascension with this mediunt on the day of the coronation of George IV., 1820. Illuminating-gas, besides leing muel cheapre than hydrogen, has the advantage of being more easily retained within the envelope on account of its crenter density:

In 1S36, Messis. Holland, Mason, and Green ascended from London in a balloon of 85,000 feet capacity, taking with them a ton of ballast, a fortnight's provisions, extra clothing, etc. They land il next day in the duchy of Nassau, laving made a royage of about 500 miles.
ln June, 1859, Mr. Wise, the well-known Ameniean balloonist, ascended from St. Lonis ant landed in Jetlerson Comity, N. Y., having traveled abont 1,150 miles.

Gifford's captive balloon, noted as one of the features of the Paris Exposition of 1867, was 93 feet in diameter, having a capacity of 421,161 cubic fcet: weighed 6,000 pounds, the netting and guy-1opes weiching 4,000 pounds additional. It was intlated witlı pure hydrogen-gas, and the car accommolated twenty-five persons. The rope by which it was held tapered gradually towards its lower end, so that in case of parting it would break near the gronnd, and not endangrer bystanders. It was wound ronnd a drum turned by a steam-engine. The eost of the balloon with its appurtenances, including machinery, was over $\$ 45,000$.
1I. Dupluy do Lome attempted a few years ago the constrnction of a navimable balloon of considerable dimensions. In order to maintain its permanence of form, a large balloon was provided with two interior suspended tubes, whose open lower ends commumicater with the air; a sinall interior balloon with valves was placell inside of the larger onc, and by its greater or less inflation compressed the tubes nore or less, cansiug the contained gas to rise or fall, so as to canse a uniform tension of the surrounding gas contained in the larger balloon. The longer diameter of this latter was parallel to its axis of motion, and the apparatus was to be propelled by a screw attached to the car and operated by hand-power. The rudiler was a triangular sail attaelied at its
lower edge to a pivoted horizontal yard beneath the car, near its rear, and operated by a rope at each end, extending to the steersman's seat.

The British military authorities assume that a hight of 100 fathoms at a distanee of 600 fathoms from an enemy affords an ample field of view. Cauneras arranged so as to include the whole horizon, enable the country to be photographed, and tele-graph-wires, which can be pail ont as fast as the balloon sails, afford communication with the earth or with another balloon.

Experiments made at Tours show that at a hig's of 1,000 to 1,200 yards the silk envelope of a balloon could be penetrated by bullets, but that the escape of gas was so slow that with a favorable wint the balloon might reach several miles before falling. At 2,700 yards the best shots failed to penetrate the silk; and this elevation is therefore considered the maximum necessary to insure safety.
The late Prussian and French war, and especially the siege of Paris, gave rise to the most business-like and systematic use of balloons on record. The nanufacture is thus described by a newspaper correspondent : -
"The type of the balloons construeted by M. Godard for the Postal Administration is entirely spherical. The proportions are as follows: Diameter, 16 yards; superficies, about 836 square yards; volume, 6,316 cubic yards. The stuff employerl is a strong glazed cambric, oiled and varnished. With machinery, forty thicknesses of this cambrie are cutoutat onetime. After this operation these strips are sewed together with a double waxed white thread, and the balloon is repeatedly rubbed with oil, in order to secure its impermeability. A valve in strong wood is set into the upper pole of the balloon ; this valve is closed by indiarubber springs. A long cord is attached to this valve, and traverses the lower pole, enabling the aëronant to regulate the descent ol the balloon. A network of tarred twine euvelopes the balloon. To the extremity of this net a wooden hoop is adjusted, to sustain the wicker-work basket, which measures about 3 feet in width and $4 \frac{2}{2}$ in length. Benches are provided for six persons. Around the basket the sand-bags and dispatch-bags, with three hundred yards of rope, are ranged. This latter provision is intended for throwing out to drag on the ground and diminishing the speed on descending.
"The weight, when filled with ordinary burninggas is about a ton, comprising six hundred pounds of sand-bags, three persons weighing about 150 pounds each, and 1,000 pounds of dispatches. It requires ten days for the manufacture of each. The cost of each is $\$ 1,200$."

Carrier-pigeons, also, were much used by the Pa risians during the Prussian investment of that city. The tying messengers who have their bomes in Paris afforded the means of communicating with the beleaguered city. The use of carrier-pigeons is very ancient. On a temple-wall in Egypt there is a sculpture of the time of Rameses 11. (1297 в. c.), representing that monarch proceeding in regal state to assume the crown of Upper and Lower Egypt ; and in the procession a priest is seen releasing from a basket four earrier-pigeons, to announce the tidings to distant points.

Ovid relates that Taurosthenes announced to his father in Egeria, by a pigeon stained purple, that he had obtained the prize at the Olympic games. Brutus used pigeons for communicating with the inhabitants of Modena, during its siege by Marc Antony. When Ptole:nais in Syria was invested by the French and Venetians, and was about to surrender, a carrierpigeon, bearing a message from the Sultan, was cap-
tured ; the missive containing promises of assistance was removed, and one substituted in which the Sultan expressed no hope of being able to assist them. The surrender was immediate. Pigeons were of great use to the Dutch during the siege of Leyden, so bravely resisted by the Prince of Orange.

The air-car is a proposed form of balloon, inflated with gas to secure lightness, and traveling upon wires stretched from pillars upon a definite route. Two pairs of wires are needed, - one pair for each side of the car, - and the upper and under wires of the respective pair run in the grooved peripheries of the car-wheels, which are rotated by a stean-engine on board. The car is cigar-shaped, and has sails to be used with favoring winds. The device for passing the posts is ingenious, but does not differ substantially from the mode of hanging the tracks of casterwheels for sliding barn-doors.

Signals have been made, and notices, etc., have been distributed, by means of balloons. One was inrented by Mr. Shepherd, and used in the Aretic regions in the search for Sir John Franklin. The arrangement consisted of a number of printed packets of oiled silk or paper, unon which direetions were printed, stating the latitude and longitude of the exploring shins, where they were going to, and the points at which provisions had been left. These were attached at proper intervals to a long slowmatch made of rope dipped in niter; and as the balloon traveled over the country, the mateh burned gradually away, releasing the packets consecutively, and distributing them over a wide extent of country.

Other clevices were also adopted for the same purpose, and are described under Signals.
2. (Architecture.) a. A mold at the base of a column.
b. A round globe at the top of a pillar.
3. (Glass.) A glass receiver of a spherical form.
4. (Fabric.) A cylindrical reel on which sized woolen yarn for warp is wound, in order to be dried by rapid revolution in a stean-heated chamber. The yarns are guided by passing between the teeth of a separator or rarel, which is a toothed instrument like a rake, between whose teeth the yarns pass. This acts as a guide in distributing the yarns over the length of the reel.
The yarns are wound from the balloon on to the bcam of the loom.

Bal-loon'-jib. (Nautical.) A triangular sail, used in a cutter, and hauled up to the topmast-head. Sometimes called a jib-topsail.
Bal-loon'-net. (Fubric.) A variety of woven lace, in which the weft threads are twisted in a peculiar manner around the warps.

Bal'lot-box. A box in which balls or beans mdicating a negative or affirmative, or slips containiug the names of candidates for office, are deposited.

Ballot-boxes of the ordinary construction afiord wo security from fraud, except the honesty and attention to duty of the receivers of ballots.

To guard against the improper placing of tickets in the boxes, they have been made of glass, so that the interior might be open to the inspeetion of the bystanters, and any surreptitious introduction of tickets therein at once diseovered.

The ballot was used in ancient times. It has been suggested that of this charaeter was the Urim and Thumnim spoken of in Exodus xxviii. 30 :-
"And thou [Moses] shalt put in the breastplate of judgment the Urim and the Thummim, and they shall be upon Aaron's heart when he greth in before the Lord: and Aaron shall bear the juilgment of the children of Israel upon his heart before the Lord continually."

The conjecture that white and black stones were contained in the pocket behind the breastplate, and, being takenz out by the high-priest in consultation, gave affimative and negative answers respectively, is not supprorted liy the weight of authority. It is rather supposed that images representing respectively Ur, light, and Thom, pertection, were placed in the breastplate, and indicated by a certain luminosity, or hy a failure to respond, an altirmative or a negative answer to the question propoumed. Such inatges emblematical of truth, were used in ancient ligyt, Grecee, Kome, and also in Chima, as well as mong the Hebrews. The image was suspended by a coril, so as to lie over the heart of the judge and the high-priest. Aaron became, in a certain sense, a julge in the matters of conscience or religious polity which were submitted to him. See Allam Clark's commentary on Exodus axviii. 30.
Ovid, in his "Metamorphoses," lib. xv. verse 41, as remured by Drydem, says:-
" A custom was of ohd, and still remzins,
Which life or death ly suffinges orlains:
White stones and black within an urn are cast; The first absolve, but fate is in the last." ${ }^{13}$
In the promise to the Church of Philadelphia, also: -
"To him that overcometh will I give a white stone, and in the stone a new name writt m , which no manknoweth save he that receiveth it." -Rce. ii. 17.

White was the emblem of purity, pardon, acceptance, choica, triumph, according to the occasion. By white stones judges indicatel their verdiet, the people voted their sultinges; and a white stone was to the conyueror in the public games the token of his triumph. Such a while stome was inseribed with the name of the compleror, and entitled him to be manataned for life at the pullic expense. The Athenian magistrates were chosen loy lot. Black and white beans were placed with the names in the urns, and the names ilrawn out with a white bean were lected.

The tess rue hnspitales seem to have been particularly referred to in the verse in Revelation. These were a sort of tally: two pieces of stone, bone, wood, of ivory were engraved with some common deviee, and a piece was kept by each of the two parties contracting a league of mutnal friendship and assistance. Such were handed down in the respective families, and guaranteed to the holders all the accommodations and offices of frimulship when visiting at the house of the holler of the other portion. Plantus refers to the custom. See Adam Clark in his comments on th's passage, and the authors relerred to by him.
Secret voting was practiced by the ancient Greeks and modern Venetians, from the latter of whom we lerive the term" "hallot." A tract, "The B netit of the Bailot," was published by Marvell in 1693.

Ball-peen Ham'mer. A metal-worker's hanhmer with a spherical peen.

Ball-screw. An implement for extracting bullets from the barrel of a gun in cases where it would be dangerous or impossible to expel them by firing. It is screwed on to the end of the ramrod, which, being turnenl, causes the screv: threaled pointed end of the ball-serew to enter the bullet, which is then withdrawn by pulling the ramod. The common form is shown at a, Fig. 549.

W'itzleden's ball-screw, b, has two jaws with sharpedred interior shoulders, constituting a portion of a con-
 cave serew-thread, which enters the bullet to prevent it from slipuing from the grasp of the jaws.

Ball-train. (Metal-vorking.) A set of rolls for rolling puddler's balls into bars. The word train signifies that more than one pair is used, the first being crushing rolls and the second finishing. The

Fig. 550.

result of the action of the two is bar-iron. See Romb-iNG-MILL.

Ball-trol'ly. A small iron truck, used in conreying the balls of puddled iron from the puddlingfurnace to the tilt-hammer or squeczer.

Ball-turn'ing Lathe. A wood-turner's lathe

for spherical objects, which are beld in a chnck on the live-spindle, while the tool has an adjustment in a horizontal are whose center is coincident with that of the ball.

The block from which the hall is turned is supported at one end only. The chucks are perforated, and the tool is mounted on a swing-rest having a rertical, lateral, and a longitudinal adjustment in its socket, and also a horizontal swinging morement across the axis of the mandrel. K is the rest on which the tool-holder J swings. The duty of the hammer $H F$ is to kuock the finished balls out of the chuck.

Ball-valve. A ralve of spherical shape, occupying a hollow segmental seat; raised by the passage of the huid, and descending by gravity. See Back-pressthe Yalve.

Ball-vein. (Mininy.) A species of iron-ore, founl in loose masses of a circular form, containing shining particles.

Bal-mor'al. 1. (Fabric.) A striped waolen stuff, deriving its name from Balmoral Castle in Scotland.
2. A sort of ladies boot, laciug in front.

Bal'ue-um. A vessel filled with some heated substance, as sand or water, in which a thing is placed for treatment that requires a more gentle heat than the naked fire.
Bal'sa. (Necutical.) A raft used on the coast of Sonth America, consisting of two inHated seal-skins, which are fastened together at one end to form the prow, and separated abaft by means of a plank. Flexible tubes for inflation are within reach of the navigator, who replenishes the bags as they require. The raft is floored with sticks and matting, and propelled by a double-bladed paddle. It is landed on the shore by the descending breaker, and immediately secured, to prevent its being drawn back by the retreating wave. It carries three passengers besides the navigator.
The Catavaras (which see) is often called by this name.
Bal'us-ter. (Joinery.) A small pillar supporting a hand-rail, coping, balcony, or terrace. A row of such makies a butustrade. They are usually cast hollow, or, whem solid, are turned out of stone or wood. The balnsters, hand-rails, and base are sometimes made of swayed sheet-metal.
Bal-us-trade'. A hand-rail with its supporting balusters, such as that of a terrace, parapet, balcony, staircase, altar, chancel, or inclosure.
Bal'us-tre. (Fubric.) A superior variety of gold cloth, manufactured at Vienna.
Bal-za-rine'. (Fubric.) A light mixed material of wornted anel cotton for ladies' (hresses.
Band. 1. (Fehicle.) A circnlar collar, hoop, or strap, such as that on a nave; a hub-band; an axleband.
2. (Arehifecturc.) a. A narrow, flat projecting surface. When narrom, it is a fillct; wider, it is a facia.
b. The leaden came which holds the lozenge-slaped panes in the old-fashioned casement wiudows.
3. (Fire-Arms.) One of the metallic sleeves which bind the barrel to the stock of a musket, etc.
4. (Bookbinding.) a. One of the cords at the back of a book to which the thread is attached in sering. Thongh now a cord, it was formerly a flat band, and hence the mame. It usnally, in the better formis of binding, makes a raised projection on the hack, and in large blank-books is formed by glueing strips of mill-board or leather across the back. In a tine breviary of the fourteenth century, in J. S. Grinnell's collection, it is a thick, rounded, white leather cord secured to beechwool side-boards.
b. The heati-band serves as a finish to the top and bottom of the sheets, and helps to keep the upper and lower parts of the back in slape when the book is closed.
5. (Husbendry.) A bundle of eight or ten stalks of wheat, or other small grain, used to bind a garcl of the grain into a sheaf.
Corn-shocks are bound with stulks, or with string, limn-burk (linden or bass), or rye-straue.

String or wire is the usual band on the automatic binding apparatus of rceping and binding machines, but a bunch of straw out of the sheaf is used in some machines.
6. (Machinery.) A flexible connection between pulleys, generally endless, but sometimes attached by its respective ends to reciprocating sectors, or a sector and slide.

Bands may be classed as belts, cords, or chains.
A bolt is generally Hat and thin, and requires a nearly cylindrical pulley.
A cord is usually circular in section, and made of catgut, raw-hide, twisted tibers, or wire. It requires a grooved pulley.
A chain consists of links or jointed bars, and requires a grooved, notched, or toothed drum.
7. A cincture, strap, or cord, with a means of fastening the ends together, and used to confine the materials of a hale, truss, or bundle. See Bale-tie.

Band'age. (Surgical.) A strip or piece of fahric, cotton, linen, or woolen, or an elastic, knitted, or shined fabric for wrapliug any part of the body. They are alpplied to dress liractured or lacerated parts, for the compression of bloodvessels and the retention in their natural situations of protruding or displaced parts.
They are simple or compound.
They are named from their purposes, as -
Untiting, dividing, capclling, rotaining, comprcssing, suspensory, varicose-vein, fracture, catamenial.
They are named from their forms, as -
The axia, like an axe.
The spice, like an ear of wheat.
The capistrum, a split cloth bandage to support the lower jaw.
The chiuster, a cross-shaped landage for stopping henorrhages from the temporal artery.
The 4 -lailed bandage, made from a single split cloth. and also known as Galen's.
The figure 8 , the T, the letter D, the stcllated, or star-shaped, the circular, the spiral, the reversed, the 18-tailed, etc.
They are also named from the materials with which they are treated, as starch, dextrine, plaster of paris, etc.
Ban-dan'na. (Fubric.) An India silk, printed in one color with white spots or oruaments made by the resist or the dischurging process. Bandannois.
In the resist process, the spots are printed with a composition to resist the dye by which the groundcolor is given. Subsequent washing then removes the dye from the spots, the ground-color remaining intact.
In the discharging process, the whole handkerchief is dyed of one color', aul is then printed in spots with a composition which discharges the dye at those points, so that, in washing, the spots come up white.
One mode of making the white spots in bandanna goods is by causing a solution of chlorine to percolate down through the red cloth in points circumscribed and defined by the pressure of leaden pattern. plates in a hydranlic press, thereby discharging the color in certain places.

Band-coup'ling. A device for uniting the two ends of a band. This may be a pair of ferrules, with
a ball and socket respectively, a hook and eye, strap hinges with a pintle, etc. See Belt-Coupling.

Band-cut'ting Ma-chine'. (Ayriculture.) An attachament to a thrashing-machine to cut the bands of the sheaves as they are thrown upon the feedboard. The band being ent, the sheat is spread out and theu pushed heal foremost into the throut, whence it passes between the cylinder and the concave, each of which is tootheus.

In Englanl, they prefer to save the straw in a less mangled conlition, and feed in sideways; the beaters being bars, not teeth.

Band-driv'er. A tool used in correcting irregnlarities in the hants of machinery.
Band'ed Col'umn. (.trchitccture.) One having cinctures at intervals.

Ban'de-lore. A toy illustrating the effect of gravity in producing a rotary motion. It consists of two disks, with a deep groove between them, on which is a winding cord. The latter being coiled in the groove, the bandelore is dropped, unwinding the cord-; at the cul of its stroke, the ratary motion being continued, it rewinds on the cord in the opposite direction, and climbs to nearly its original hight. By a little humuring and motion of the land, it may be mate to rewind the whole length of cord.

Band'ing-plane. (IVoorl-working.). The baml-ing-plane is allied to the gages, and is intended for cutting out grooves and inlaying strings and bands in straight and circular works, as in the rounded corners of piano-fortes and similar objects. It bears a general resemblance to the plow, but also has the double-pointel scorer of the gronving-plane. The central plate of the plow is retained, so as to furnish a guide for the central positions of the router and cutter, which are inserted so as to meet at an angle of about 50° between two short portions of the central plate. The whole of the parts entering the groove are compressed within the space of one inch, to pass through curvatures of smitl madius. A flexible steel fence is attached to the plow by two stays at its ends, while to the central part is attached a screw adjustment to confer upon the fence any required curvature, convex or concave.

Band'ing-ring. (Hat-meting.) Rumer-down. A ring lassed over the body of a hat while on the block, so that its edge shall impinge upon the break of the band, and form the brim at right angles to the crown in the process of blocking.

Band'let. (Architecture.) A stuall fillet or molding.

Ban'dore. (Music.) An ancient stringed instrument resembling a lute ; relerted to in Pepys's "Diary," 166^{2}, - "and music with a bantore for the base."
Band-pul'ley. (Muchincry.) A flat-faced whee!

Fig. 553.
 fixed on a shaft and driven by a band. lt is connected either immediately or mediately through other pulleys, with any power which drives machinery.
The illustration shows a two-part julley, having flanges, connected by bolts and nuts, on the hub and rim. A drum.
Band'rol. 1. (Archilecture.) A form of spiral molding in Gothic architecture. Bemitrole.
2. (Neutical.) A little streamer from a masthead.

Band-saw. The band-saw consists of an endless steel belt running over wheels and revolvel continuously. It is pliable, so as to conform to the laces of the wheels, and is serrated on one edge. The ends are joined by solder and by neat clamps. Arrangeurents are made for straining the saw by regulating the relative distance of the wheels ; this adjustment also permits the machine to take in saws of ditferent lengths. One advantage of the band-saw over the recimrocating saw is, that there is no lost time in its operation, and no eflort required to keep the work to the table, as the action of the saw tends to this result. There is no need of a pump or blower to clear away the sawdust, as it is carried continually downward.

In the machine
Fig. 653.
shown there are severaladjustments : one by weighted arm ${ }^{\prime}$, for raising the boxing of the upper wheel, and thus straining the saw ; another ly wheel b, for raising or lowering the table c, on which the work is placed; a wheel d, by which the sawguide c is raised or lowered, to luring it into the vicinity of the upper surlace of the work; a wheel f, by which the table is inclined when the work is to be sawed to a level.

In the band-saw representel by Fig. 554, the standard A supports a frame, on which is an mpright sliding-block and

arm sustaining a horizontal shaft running in hoxes. On this shaft is lung the upper wheel B, which, by
means of the screw and hand-wheel C, can be elevated or lowered as the length of the saw demands. The lower portion of the frame, under the table, supports the lower shaft and wheel, which is driven by the pulleys D. The two wheels lave a tlange, arginst which the back of the saw bears, and the laces of the wheels are covered with vulcanized rubber resting on a bedding of strong cloth. This gives sufficient allhesion to the saw to insure its action as a belt without slipping.

From the front of the upper frame depends a vertical bar E, sliding in boxes, to which it may be secured, at any hight required to accommodate the stuff to be sawed, by the thumb-nuts F. On the lower end of the bar is a guide G, laving four sides with recesses of varying depth, to accommolate the various width of different saws. This guide is in two parts, held together by a screw-bolt, and graduated in the distance of their faces by means of the screw-bolt and a four-pronged spring. The saw runs at the rate of 4,000 feet per minnte.

In the English practice, the minimun diameter of band-saw pulley is set at 30 inches; but for wider saws the diameter must be increased : thus saws of 2 inches to 3 inches wide ought not to be worked over pulleys of less than 4.2 inches in dianeter, and for a blade 6 inches wide the pulleys should be 70 to 80 inches.

Band-wheel. (Machinery.) This is sometimes termed a pulley, - a term which has, however, particular relation to tackle. The band-wheel has a nearly flat or a groored face, according to the shape

Fig. 655.

Band-Wheeh.
of the band. If it be flat, the face of the pulley is slightly rounded so as to keep, the band from running off. If the band be round, the pulley is groored to retain it, as in the wheel on the mandrel of the common foot-lathe.

Ban'gle. 1. (Nautical.) The hoop of a spar.
2. An ornamental ring, worn upon the arms or ankles in Asia and Africa.

Ban'gra. (Fabric.) A coarse Indian cloth, made from the fiber of a gigantic stinging-nettle.

Ban'is-ter. 1. (Architecture.) Originally, batuster. One of the rertical supports of a hand-rail on a balcony or stairs. Also the hand-ruil itself. "He ascended, holding on by the banisters."

The baluster has a curved outline, and is frequently provided with a base and cap, or ornamental moldings, while banisters may he plain or square.
2. A broad central upright in a chair-back.

Ban'jo. 1. (Music.) A fire-stringed musical instrument haring a head and neck like a guitar, and a body like a tambourine, consisting of a circular frame orer which sheepskin or parchment is stretched; it is of almost universal use among the negroes in the Sonthern States. Its simplicity; and the ease with which it is made and played, no doubt made it such a general farorite among then. Its thrumming sound
has a near resemblance to the tam-4ma of the Africaus and the Orient. The latter is a lizard's skin stretched over a gourd; a tambourine, a sort of drum.
The guitar appears in the senpptures of ancient Egypt and Ninroud, and is much used in modern Oriental countries.
In the kermanjeh, or Syrian fiddle, the bridgepiece is supported upon the parchment corer of the bolls.
2. (Noutical.) The brass frame in which a screnpropeller is hung for hoisting.
Bank. 1. (Cevllon, elc.) A creel for holding rows of bohbins; a copping-plate or coppiny-rati.
2. (Gluss.) The floor of a glass-melting furnace.
3. (J/usic.) A bench of keys of a stringed or wind instrument. Geuerally applied to organs which have

Fig. 556.

sereral ker-boards or banks of keys belonging to the different aggregated organs, which combine to form an instrument of great power.
Such instruments are malle up of a choir organ, grcat organ, and sucll, to which may he added a pedul organ or foot-keys, for acting on the larger pipes. Each of these is adapted for particular effects : the choir organ for light and solo parts; the great organ for powerful effects; the sucell for crescendo and diminucudo effects. Each has its key-board, one rising above another in front of the performer, and all within convenjent reach.

The keys are thus arranged in three bantis or tiers in the case described, and the keys of one bank, by a snitable device which may be thrown in or out of action as desired, may be corppled to the corresponding keys of annther bank, so that the pressure on one is commmicated to the other, to give the combined effect with a single manipulation.

Church reed-organs on a smaller scale and of portable size are frequently double-banked, the keys of one bank heing concerned in the use of a powerful set of stops, and those of the other with other stops of a more mellow and moderate tone. See Stor; Ongan.
The organ of S. Alessandro in Coloma, at Bergamo, buîlt by Serassi in 1782, has four banks of keys and 100 stops. The first and second bank belong to the great organ and choir organ ; the third is connected by mechanism, which passes underground to a distauce of 115 feet, 10 a thind great organ in another part of the church opposite the first.

The claviers of the Coutinental Furopean churches are frequently fixed in a detached urright console, at which the organist sits facing the altar and congregation, so as to be able to watch the service and introduce the music at the proper times.
4. (Mining.) The face of the coal at which miners are working.
5. (Nautical.) a. One tier of nars in a galley. When a galley is propelled by rowers seated on two or noore tiers of benclies, oue alove another, the galley is said to be double-banked, triplc-brenked, etc.
b. A seat for rowers in a galley; a thucurt.

Commom galleys have 25 banks on a side, one oar to a bank and four men to an our. Galcasses have 32 banks on a side, and six or seven rowers to a bank.
c. An oar is single-benked when it is rowel by one man. An oar is double-brenked when pulled by two men, as the captain's harge. This term is also sometimes applied when sequate oars are pulterl by two men sitting on the same seat.
6. (Printing.) a. A wooden table for holling the paper to le fed to the hand-press. The paper is slipped off the bronk on to a slanting board called tho horse, from whence it is taken sheet by sheet.
b. The support of the moving carringe of a print-ing-press.
Bank-a-larm' Tel'e-graph. An apparatus for eonveying to a director's rom, or police, notice of surreptitious entering of the bank, or for conveying regular notiees of "All 's well."

Bank'er. 1. (Bricklayiny.) A bench used by brieklayers in dressing bricks to a shape suituble for skew or gagerl work, domes, niches, ete. On one end of it is a grit-stone called a rubbing-stonc, and on other portions is room for oprating upon the bricks with the tin-sew, by which kerfs are made in the bricks to the depth to which they are to be hewn. An axe is used for dressing off the surface.
2. (Fine Arts.) A modeler's bench. It is about 30 inches high, and has a top 30 inches syuare. On this is a circnlar platform which turns on wheels, so that the figure can be revolvel to expose any portion to the light.
3. (Niutical.) A vessel in the deep-sea cod-fishery on the Newfountland Banks.
4. A seat cushion.

Bank'ing. 1. (Elgraving.) Raising a wall of wax aronni an etching on a plate, to form an embankmont to hold the acid used in bitiny-in. See Finusg.
2. (Stcom-Engineoring.) Banking up the fires consists in raking them to the brilge of the furnace, and then smothering them with cinders and small coal, the draft being at the same time eheckel. By this means the lires are kept in a state of languid combustion, but are ready to burn up briskly acain when stean is wanted at short notice, the red-hot mass heing then broken nlp, raked forward, and the draft reälmitted.

The tive is said to be draven forvord when fuel is adhled and the draft turned on.
Bank-note. A promissory note issued by a bank, anl intended to circulate as currency.

Chinese proper money was issued about A. D. 1100. "Blest paper crellit," as Byron says. Genghis Khan issued paper money, but all his power could not give it a purchasing value above fifty pre cent of its face.
lin "The Book of the Balance of Wistom," by Al-Khizizint, il learned Arab of the twelfth century, oceurs the remark that, in the first dirision of his book, are "added chapters on exchange and the mint, in connection with the mole of proceeding, in general, as to things salable and legnl-tonders."
The Bank of England commenced business at Grono's Hall, Poultry, London, in 1695. No notes were issued under $£ 20$.

Notes of $£ 5$ were issucd in 1793.
Bank-note En-grav'ing. The chicf object in the manufacture of bauk-notes is to render forgery imposible, or at least easy of detection. This is soudht to be effected by peculiarity of paper, design, and printing ; or lyy a combination of these means, ass is done in the Bank of England and other banks. The mechanical design, however, has chiefly been relied on for security. It has been the constant aim
to make the impression such as to render the gemnine note realily distinguishable by the pablic for its high art, and to the bank officials by sceret peculiarities in its execution. Until about 1837, colperplate printing was the only process in use for banknotes. In that year, however, Perkins effected his vahable improvenents in practical engraving. In 1855, electrotyp printing was introduced in the Bank of England ly Mr. Smee, and since that time the notes have been produced by surface-printing by the electrotype.

The desigu is engrased in relief on separate pieces of metal, - copperi, brass, and steel. From the aggregated pieces in matrix is ohtained by rleetro-leposition, and from this a plate is obtamerd by the same means. When barkel and mounted the plate is used for surface-printing.

In America and in the Bank of Ireland, the plates are prepared acrorling to Penkins's methol. The seprate designs forming the complete bank-note are first engraved hy hand on separate steel hocks, which are afterwards lardened, and are preserved as permanent patterns not to be printel from. These engravings are transferred to the steel rollers under heary pressure, the rollers being afterwards hardened ant used as dies to imprrss the engraving upon the printing-plates. The engraved plates for printing the bank-note are made of solt steel, and are never harlened after being engraved. Being of large size, - 20 inches by 16 inches, - they would most probably lose their flatness in hardening. Another reason for not hardening the plates lies in the fact that, when worn, the soft plates are casily repaired by re-aplipation of the rollers thereto.

The printing-plate, when reeriving its tirst impression from the master roller or die, is fixed upon the table of a strong press, from which a pressure of 10,000 pounds can be obtained, the pressure being regulated as repuired by means of a weighted lever. The position of two register-points in the plate is accurately noted by means of a micrometer microsrope, and registered in a book kept for the purpose The master-roller is then passed over the plate by the machine under the heavy pessure, being very steadily guided by a special parallel-motion arrangement. The table is provided with complete adjustments of peculiar delicacy, and the pressure of the engraving roller unon the p!ate is not produced by the roller descending upon the plate, but by the table being raised up to the roller.

When a plate requires remowing, it is arain fixed unon the table in the same prosition as before by means of the micrometer microscope and the register of its position ; the roller being passed over it deepens those parts of the impression which the continuons printing has worm away.

Bank-pro-tec'tor. (Hydraulic Engincering.) To prevent the wasling away of banks by the action of waves or curruts. See Fascine; Gluin ; Sheetplling; Crib; Pitching; Retaining-Nale; Dike; Sea-wati, etc.

Ban'uer. A small fringed flag, depending from its staff by cords attached to the ends of a crosspiere.
Ban-quette'. 1. (Fortification.) A raised bank at the foot of the interior slope of a parapet, on which the soldier stands to deliver his fire. See lethenchment ; Abattis.

A banquette is also found in some fortificitions at the foot of the comnterscarp, to enalle defenders to fire over the crest of the glacis.
2. (Civil Engincering.) a. A raised footway adjoining the parapet of a bridge.
b. A ledge ou the face of a cutting.

Ban'tam-work. Painted or carreld nork, resembling that of Japan, only more gand..
Bap'ta-te'rium. A back-mill or frlling-mill.
Bap'tis-ter-y. (Architceture.) A builling alpertaining to a cathedral or chureh, or a portion of the church itself, in which the ceremony of bajtism is performed. If a separate building, the baptistery was, in the earlier ages, either hexagonal or oetagonal in plan; afterwards they were made polygonal, or even circular.
When within the church, it is merely the inclosure containing the font, as in English churehes of the present day.
Bar. A word of rarious signification in different branches of the practical arts ; as

1. (Hydraulic Engincering.) a. A sedimentary deposit in a river, or at the embouchure of one.
b. A boom of \log s preventing navigation.
2. (Aantiarl.) a. A lever used in a canstan. They arelinserted like spokes in the capstau-head, and serve to rotate it. The analogons levers in a windlass are handspikes.
b. A flat iron rod securing a hatch.
c. A piece of iron or wool to secure a gin-port.
3. (1fechinery.) a. A bar-lathe is one whose shear is a single piece, frequently triangular in section.
b. A large arbor supported between the centers of a lathe, and carrying the entter by which a cylinder or gun is bored out. A boringbar. See Cylisder-boner; Boring-manhie.
4. (Mining.) a. A drilling or tamping rod.
b. A rein rumning across a lode.
5. (Weaving, ctc.) A drivingbns is a movable operating part in a lace-machine.

A bar-loom is a small-ware loom.
6. (Printing.) a. The portion counected with the handle of a hand printing-press, and acting to depress the platen.
b. The midille, long crosspiece of a printer's chase.
7. (Husbandry.) Shifting rails which are remorable from their mortises in the posts are termed bars, and the complete device is a sort of substitute for a fieldgate.
S. (Suddlery.) a. One of the side pieces uniting the pommel and cantle of a saddle-tree.
b. The mouth-piece of a bridle-bit whiel connects the two cheeks.
9. (Furnace.) Grate-bars or firc-bars support the fuel, and rest on beurcrs.
10. The crowbar is an iron lever used in many wars.
i1. (Carpentry.) a. A horizontal ${ }^{\text {risece of timber }}$ or metal connecting other portions of a framework.
b. A crosswise piece of wood or metal held by staples or bolts, and forming an inside fastening for door or shutter.
c. One of the thin strips of mood forming the divisions of a sash.
12. (I'ehicles.) The piece to which the traees are attaeliel ; a splinter-brer is permanently attached to the carriage; an equenlizing-brer, or crener, is othermise known as a double-fice, srings on a pirot, and has a sinule-tree or whifile-tree at earh entl.

Bar'an-gay. (Toulical.) An Indian ressel propelled by oars

Barba-can. (Fortification.) a. An advaneed work to defend a bridge, gate, or approach. Otherwise, barbican.
b. An embrasure.
e. A chanuel or scupper in a parapet to discharge water.

Barb-bolt. (Machincry.) One having jagged edges to prevent retraction after driving; a rag-bull.
Barbe-cue. In the Cingalese treatment of cof-fee-berries this is the dry floor on which coffee is sundried after the pulp is grated therefrom, and the beans in their parchment envelcpe have undergone a preliminary soaking. It is circular, of stone, with a white plaster surface, sloping array from the center, and smooth as glass. The coffee is smmed upon it for four days without removing the sac, in which a pair of berries are inclosed, the ohject being to dry it prerious to being lispatched to Kandy.

Bar'ber's Chair. One adapted for the special uses of a barber, with a vertically auljustable headrest, arms, an elevated footstool. In some barber's chairs there are drawers and shelves for the apparatus and appliances.

Bar-bette'-gun. (Fortification.) When a cannon is mounted so as to he fired over the crest of the jlarapet instead of through an embrasure, it is said to be mounted on barbellc.

In field-works, a wound of earth is thrown up against the interior slope of the work; its upper

Barbetle.
surface is nearly level, and of such a light as to allow the gin, mounted on its carriage, to be fired orer the ciest ; a slope, termed a ramp, is male at the rear of the barbette, and descends to the terreplein.

The parapet mar be on the summit of a fort which has lower tiers of gums in casemate, or it may be a mere earthwork. The term barbific is from the French, as are almost all our military terms. and it means a work adapted to he fired over, and yieliss a certain amount of protection to the gunners, the piece, and the ammunition. The carriage is alapted to be min "in and ont of battery" on a chassis, and the latter has a circular motion on a pintle, to enable the gums to be trained horizontally.

When the pintle is arranged at fiont, as shown in the figure, the amount of this circular motion is limited; on a center-pintle carriage the gun may be direeted toward any point of the horizon. Such a gun is called a pirnt-gun.

Bar'bi-can. See Barbacan.
Bar'ca. (.inulicel.) A Portuguese two-masted vessel. ['sell also in the Mediterranean. Barcom.

Bar-cut'ter. (1fital-rorking.) A shearing-machine whiel cuts metallic bars into lengths.

Bar-Culter.
The purposes are rarions, - for cutting hars into pieces for figgoting and reheating, for mail-plates, etc.

Ba-rege'. (Fubric.) A lady's thin dress-goods, all wool, phan or printed. So called from Bureyes, a town in the Pyrenees.

Bare-pump. (Hylraulics.) A portable suctionpump for drawing liguor from casks. Such are used in vinegar works, in wine and beer cellars, for

Fig. 559.

> Bare-Pump.
sampling, atc. In the illustration the piston is hollow, mul carries a spring-valve, which closes as the piston rises, and opens to allow the air to escape as the $ן$ inston descends.

Bar-frame. (Fumacc.) The frame which supports the ends of the grate-bars.

Barge. (Nuutical.) a. A vessel or boat of state or pleasnre; as the Buccutaur, the state galley of Venice : Cleopatra's galley ; the Lord Mayor of Londoi's large, etc.
b. A man-of-war's boat next in size to the launch. The boat for the special use of the commander of a theet or squadron is also called a barge. It is 30 to 32 feet long, has a beam equal to .29 to .25 of its length, is currel-built, and carries from 10 to 12 oars.
c. A large hoat for the conveyance of gools and passengers. Jn the United States they are frequently of 600 to 800 tons burden, have two upper decks,
and are destitute of motive-power, being towed by steamhoats.
Barge-board. (Cappeutry.) A board beneath the gable, hiding the horizontal timbers. It is per-

forated, scalloped, or crenated, to give it a light and ornamental appearance.

Barge-coup'Ie. (Carpentry.) A beam mortised into :mother to strengthen the building.

Barge-course. (Architccture.) a. That portion of the shingling or slating of a roof whicla projects over the gable-end.
b. A coping course of bricks laid edgewise and transversely on a wall.
Ba'ri. The portion of a roofing-slate showing the gage, and on which the water falls.
Bar'i-tone. (1/usic.) A kind of bass-viol.
Ba'ri-um. A uetal, the base of heavy spar (sulphate of baryta), discorered by Davy. It is of a grayish or yellowish hue, has only been procured in very minute quantities, and is rapidly converted into an oxide by the action of either air or water. It las never been applied to any practical use in the arts. Equivalent, 68.5 ; symbol, Ba. An oxide of harinm, when reduced to a white powder, is used to adulterate white lead, and also as a cosmetic, - hoth very bad practices; one injures the paint, and the other the complexion.

Bark-cut'ting Ma-chine'. Bark is reduced to a state of minute division to emable the water to dissolve out the tanmin more readily and perfectly.

Fancot's Bark-cutting Machine (French) is shown in side elevation and plan. $A A^{\prime}$ are two thuted cylinders which supply the bark previously spread upon the table a to the cutting-apparatus. " h is a raised ledge to keep the hark on the table. The entting apparatus consists of two parallel circles fixed unon a common axis C ', having steel plates or knives $B^{\prime} B$, which are disposed in a spiral form. The shaft C and fly-wheel s are driven by a band on the drun. D. A pinion at the other end of the shaft C carries a pinion I, which arts upon a wheel J on the axis of the fluted cylinder A, which is communicated by wheel E to cylinder A^{\prime}. By the levers $F^{\prime} F^{\prime}$ ant weight G, the two cylinders $A A^{\prime}$ are regulated to any required proximity. Inside the fluted cylinders is a longitudinal piece of steel b, which acts as a suplont for the bark as it is cut by the knives $E D$, its edge forming, as it were, one bar of the cuttingshears.

The cylinder which earries the cutting-knives makes about 130 revolutions per minute, and the quantity of bark cut is about 1,600 pounds per honr.

Fig. 561.

Bark-Cutting Machine.
Bark'er's Mill. (Hytlrautic.) The Barker mill has attained celebrity rather as an interesting illustration of the principle of reaction or recoil than as a practically useful machine. lt, however, has the essential features of the famous turbines and other reaction wheels.

It consists of a vertical tube haring an open funnel at top, and branching at its lower end into two

Fig. 562.

Barker's Mill. horizontal radial tubes. Each of these horizontal arms has a round hole on one side of it, the two holes heing opposite to each other; and the vertical tube, heing mounted on a spindle or axis, is kept full of water, flowing into the funnel at the top.
The issue of water from the holes on opprosite sides of the horizontal arms causes the machine to revolve rapidly on its axis with a velucity nearly equal to that of the efthent water, and with a force proportionate to the hydrostatic pressure due to the vertical column
and to the area of the apertures; for there is no solid surface at the apertures to receive the lateral pressure which acts with full force on the opposite side of the arm.

According to Dr. Robinson, this unbalanced pressure is equal to the weight of a column having the oritice for its base, and double the depth of the water in the trunk for its hight.

The machine has, for one hundred years, been a farorite subject with writers on dynamies, and has been modified by meechanicians.

De la Cunr (17i7) proposed to bring down a pine from an elevated reservoir, and, recurving its lower end upwardly, introdnce the water into a short pipe with ten arms which revolved in a horizontal plane in the manner deseribed.

The revolving arms may be mounted on a horizontal axis so as to obtain the requisite direction of motion without intermediate gearing.

In 1841, Whitelaw oltained a patent for an improvement, in which the horizontal arms assumed the form of the letter S. ln this machine the water is discharged tangentially, the capacity of the arms heing greater as they approach the center of rotation, so as to obtain a quantity of water at every section of the arm inversely proportionate to its relocity at that section. The transrerse sections of the arms are evervwhere parallelograms of pqual depth, but of width decreasing from the central vertical pipe to the jet at the outer extremity of the arm.
A small machine of this deseription was constructed, having a fall of 10 feet, the diameter of the circle described by the ends of the arms being 15 inches, and the aperture of each jet 2.4 inches in depth by 6 inches in width, the area of each orifice being 1.44 inches, the water expended was 38 cubic feet, the rerolutions 357 per minute, and the eflect equal to 73.6 per cent of the power employed.

Bark'ing. 1. Coloing sails, nets, cordage, etc., by an infusion or decoetion of bark.
2. Stripping trees of bark lor cork, dye, tanning material, or medicine.
Bark'ing-axe. An axe of proportions and shape adapted for barking trees.
Bark'ing-tools. For remoring the bark of trees for tanning purposes. besides the axe or hatchet for slitting the bark longitudiually, and for cutting

Fig. 563.

Peeling-Irons.

incisions around the trun!-, which enable it to be removed in lengths, the barker requires pecting-irans, which are thrust beneath the bark to loosen it. The operation is performed in spring, when the sap is abundant between the bark and the wood.

Rossing is not the exact equivalent of barking, as the former is a grinding or cutting action (usually),
the latter a pecling. See Loudon's "Encyclopedia of Agriculture."
Bark-grind'ing Mill. Weldon's Burk-1/ill, 1797, has at conical iron drum A provided with teeth, and rotating in a casing B, the upper part of which forms a liaring hopper. The casing and its contained grinder are supported by a framing F, and motion is given to the cone by a belt rumning upou a drum on

Bark-Grinding Mill.
the npper end of the shaft D, whose lower end is supported in a step or ink. A screw below the step, aflorts means for adjnstment of the cone in the casing, the faces of the two being toothed, so as to etlectually rasp the bark as it passes between their adjacent surfaces.
Bark/ing-mal'let. A short-handled mallet of hard wool. The face is three inches square, and the other end is sharpenel to a peen or wedge.

Iron is a preferable material, and the same tool may be used for ringing the tree and splitting the envelope of bark longitudinally, so that it may be removed by the peeling-iron.
Bark-mill. In Fig. 565 the bark is broken be-

Bark-Mill.
tween the breaker D and teeth ε, thence passing between the rough. bottom surface of the hopper and the rotating disk E, by which it is reduced to powder.

Bark-om'e-ter. A liydrometer so gradnated as to deturmine the strength
of ooze according to a given seale of proportions, water being zero.

Bark Pa'per. Thronghout Southeastern Asia and Uevanica the Broussonesic pamprifere, or paper mulbery, is a common tree, and its bark is caprible, ly soaking and beating, of assuming the appearmice of fine linen. It may be bleached, dyed, and jninted, and is a common material for dress in the islands of Oceanica. In Javil and Sunatra it is the common material for writing upon. When solilified anel burnishecl, it resembles parchment. Manuseripts in Europran musemms attest its ! fuality. The same bark mane into a pulp is used in China and Japan for making paper.

The processes auopted with hamboo and the mul-bery-bark are sulstantially similar after the reduction of the law material into a pulpy condition. The Chinese processes are as follows :-

The paprer-stuff being rinsed with water alone, or with water in which rice has been boikd, is brought to the state of pulp, and then transterred to a vat having on each side of it a drying-stove in the form of the ridge of a house ; that is, consisting ol two sloping sides tonching at top. These sides are covered externally with a smooth coating of stneco, and a the passes through the brickwork, so as to keep the whole of each side equally and noterately warm. A vat and a stove are phaced altemately in the manufactory, so that there are two sides of two diflerent stoves adjacent to each vat. The workman dipis lis mold, which consists of a sieve-like bottom and a movahle raised frame surrounding it, into the vat, and then raises it out again ; the water runs off throngh the perforations in the bottom, and the pulpy paper-stuff remains on its sufface ; the frame is then removet, and the sieve is pressed bottom upward against the sille of one of the stoves, so as to make the sheet of paper athere to its surface and allow the sieve to be withdrawn. The water speedily evaporates by the warmth of the stove, and before the paper is puite dry it is hrushed over on its onter surface with a size made of rice; this also soon dries, and the paper is then stripped off in a finished state, having one smooth surface, it being the patactice of the Chinese to write only on one side of the paper. While this is taking place, the molder has nade another sheet, and pressed it against the side of the other stove, where it madergoes the operation of sizing and drying, as the other had done. If sheets of very large dimensions are to be anade, the mold is sispended by a tackle and is managed by two men ; but in other resplects the process is the same as that just descrilhed.
Exeeedingly beautifnl paper is produced by this very simple method. Paper is mate in Judia in much the smme way and with nearly the same materials ; lut in the provinces north of the Ganges, and in Nepal, the common material is the bark of a species of Depplane (laurel), which, like that of the papermulberry, consists almost wholly of tiber.

Another mode atopted by the Chinese is to dip ont the pulp in a mold made of strips of bulrushes in a frame. The sheets from the frames are piled on a table with intervening strips of reed, by which they may afterwards he lifted leal by leaf. Each heap, is pressed by bourds and weights to express the water, and the following day, the leaves, being lifted singly, are laid on a plank in the sunshine to dry.

Bark-pit. (Tenning.) A pit partly filled with bark and water, in which hides are steeped in the process of tamming.
Bark-plan'ing Ma-chine'. A machine in which the layer of bark is subjecterl to the action of consecutive cutters, to separate the inner and outer layers.

The bark is passed beneath the rollers with the rough side uppermost, and the first cutter removes the in-

Fig. ${ }^{5} 66$.

Bark-Ptaning Machine.
most bark, the second the inner portion of the outer bark, the extreme outer portion of the bark leing discharged from the machine down the incline to the left. The dust removed by the respective cutters falls into separate receptacles.

Bark-ross'ing Ma-chine'. A machine for remoring the ross, - that is, the rough, scaly portion from the outside of bark. The ross has a lesser proportion of tannin, and by its removal a steep of greater strength may be obtained and rat-room saved.

Fig. 567.

Bark-Rossing Machine.
In the example (Fig. 567), the machine consists of two pairs of toothed rollers which feed in the lark and thrust it against the stationary knife, which divides the ross from the liber, and the spparated portions slide down different inclines to special receptacles.

Bark-stove. (Horticulturc.) A bed of spent bark and soil, heated by flues or steam-pipes, aider by a slow fermentation of its materials. It is used to make a hottom heat for plants growing in pots Which are plunged therein.

Bar-lathe. (Turning.) A lathe whose beam or shear consists of a single bar on which the puppets or stocks and the rest are arranged. The bar is generally of a thiangular shape in cross section, one flat side downwarl.

Bar'ley-chump'er. (Agriculture.) A machine for breaking the awn from the grain. (Prov. English.) A hummeling-muchine.

Bar'ley-fork. (Agriculturc.) A fork specially adapted for gathering up the unbonnd gavels of harley or other grain, the stalks of which are too short
to be readily made into sheares. For this purpose it is provided with an upright arrangement, as B, at the base of the tines. In the example shown, the

Fig. 568.

tines and handle are attached to the metallic sockethead A, the whole being braced and sulported by the bow B and brace G.
Barley-huller. (Milling.) Amachine for taking the hull or cuticle trom the grain of barley, making pot-barley or pearl-barley. The former has merely lost the cuticle, the latter has liad a further amount of its substance removed ly prolonging the process for double the length of time. The process is analogous to that of hominy-making. See Hellingmacmine; Homint-macmine.
Bar'ley-mill. (Milling.) A mill for decorticating barley; bringing it to the condition known as pearl-barley, the husk or the rind of the seed being remored. There are several ways of accomplishing this: 1. By the usual Englisic harley-mill, a stone roughened on its circumference, and rerolving in a metallic casing with holes like a grater pointing inward and upward.
2. By so regulating the distance between the ordinary runner and the bed-stone that the grain is not mashent, lout mexely the bran rubled off.

Bar-loom. (I'caring.) A loom for weaving ribluns.
Barm. (Brewing.) The foam or froth rising from malt liquors ; yeast.

Ear-mil'li-ans. (Fabric.) An old game for a kimb of fustian goods largely exported from England.

Bar'na-cles. (Mcnage.) A noose attached to a stock or handle, and nipped around the upper lip of a horse. It is twisted so as to be somewhat painful, in order to give the command of the heall to the person holding the same. It enables a man to hold the horse's head aloft to keep him from biting, occupy his attention, and measurably irevent his kicking.

Bar'o-graph. An instrument for recording automatically the variations of atmospheric pressure.

In Fig. 569 this is effected by means of photography. The operative and recording pratts are inclosed in a case (which in the figure is sulplosed to be remored) which rests upon the horizontal slah, and entirely excludes the entrance of light excepht through the slit $C . A$ is a gas-burner, the light from which is thrown by the condenser B over the top of the mercurial column in the harometer-tulee J, and lassing through the photographic lens D, is concentrated on a strip of sensitized praper wound around the cylinder E, which is, by clockwork mechanism at F, made to revolve once in forty-eight honrs.

The inage of that portion of the slit C 'abore the mercurial column is thus causerl to form a continnous dark band of irregular width ou the paper, lecoming narrower as the mercury rises, and widening as it descends in the tube, the width of the hand indicating not only the relative changes, but abolute hight of the barometer. A shutter operated by the clock-
work cuts off the light for four minutes at the end of each second hour, leaving a vertical white timeline on the japer.
ignorance of the real cause, - but was the pressure of the air upon the liquid; and that this pressure was equal to about 15 poumds to the square inch.

In 1647 , Pascal showed practically that the hight of the mercurial column was affreted by carrying the inverted tube to the top of an eminence. lle made the experiment on a church-steeple in Paris. To test the matter more completely, he wrote to his brother-in-law Perrier,

By the papansion of a zinc rol on each side of the barometer-tule, in comection with a glass rod and lever, thmmometric changes are made, and the true harometric changes, with corrections for temperature, are photographically resorved.

Bhoкe's Self-lingistering Barometer. Upon the colum of mercury is a Hoat carying a minor, on which a jencil of light is thown. The case is inclosed so as to exclude all other light, and the beam is rellected by the mirror upon a traveling slip of panter indicating the extent and time of barometric changes.

Ba'ro-ma-crom'e-ter. An instrument for ascertaining the weight and length of infants.

Ba-rom'e-ter. (Meteorology.) An instrument for determining the werght or pressure of the atmosphere. luvented by Torricelli about the year 1643.

Barometers are rariously named firom diflerences in construction, mounting, fitting, ete.; e. g. : -

Aneroid.

Holosteric barometer.
Hypsometer.
Long-range barometer.
Marine barometer:
Maxinum barometer.

Minimum barometer.

Mountain baroneter. Pediment barometer. Self-registering barometer. Sympiesometer.
Wheel burometer.

It is related that the pump-makers of Cosmo de Medici tried to raise water over 32 feet by means of a sucking pump, hut failed to raise it over 31 feet. They appliem to Galiko to resolve the ditticulty. He was mulile to do it, but bale them acceptethe fact. His diseiple 'Torricelli investigated the subject, and found that the forme, whatever it was, raised a column of mercury only 30 inches, which he jutged to be the equivalent of the 31 feet of water, and hence deduced that the moving agent was not a mameless "horror of a vacuum," - a term which covered the
who lived near the Puy de Dome, in Auvergne, to repeat the experiment on that mountain. "You see," he writes, "that if it happens that the hingt of the mercury ou the top of the hill be less than at the bottom (which 1 have many reasons to believe, thongh all those who have thought abont it are of a different opinion), it will lollow that the weight and pressure of the air are the sole cause of this suspension, ant not the horror of a vacuum ; since it is very certain that there is more air to weigh on it at the bottom than on the top, while we eannot say that nature "abloms a vacuum" at the foot of a mountaiu more than on its summit." On trying the experiment, M. Perrier found a ditference of three inches of mercury, "which," he says, "ravished us with admiration and astonishment."

Claudio Beriguardi, at Pisa, is snid, how-

Clautio leriguarti, at risa, is said, however, to have used the baroneter for detemination
of hights five years earlier than this. It is certain that the varying weight of the atmosphere at ditlerent hights was known before Torricelli.

Alhazen the Saracen, A. D. 1100, was aware that the atmosplure decreases in density with increase of hight, and therefrom explained the fact that a ray of light entering it obliquely follows a curvilinear path, which is concare towards the carth. Ite showed that a body will weigh differently in a rare and in a dense atmospluere, and calculated that the hight of the atmosphere is nearly $58 \frac{1}{2}$ miles, anticipating the discovery of Torricelli liy several centuries. "The Book of the Balance of W'isdom," by Al Khazini (perhaps the same as Allazen), gives a number of other Imminous statements on mechanics. We take the liberty here of stating that be also wrote on the doctrine of the progressive development of animal forms, but did not reach the Darwinian conclusion. "Not," as he says, "that man was onve a bull, and was then changed into an ass, and afterwarl into a horse, and after that into an ape, and finally became a man." This, he states, is ouly a misrepresentation by "common people" of what is really meant.

There is yet some dillerence between the true theory of progression and the doctrine of the Vedas, the Institutes of Menu (contemporary with Elijala and Homer, and the teaching of Pythagoras, 540 в. c. Rosalind, the charming, refers to the latter, apropos of finding the poetry tacked to the paln-tree:-
"I never was so berhymed since P'ythagoras" time that I was an hish rat, which I can hardly remember." - As you Lilie It.

The pious Moslem prays that the All-Merciful will, in the Day of Juigment, take pity on the soul of Abur -Raihân, who first compiled a table of specifie gravities, the discovery of the great Archimedes thirteen
hundred years before. Our own Draper desires to add a clause associating in this prayer the name of "Alhuzen, who tirst traced the curvilinear path of a ray of light through the air." It would not be hard to find good reason for associating the name of Draper with the illustrions two.

The barometer in its ordinary form consists of a tube $3 t$ inches in length, closed at the top, exhausted of air, and with its lower open end plunged in a cup of mercury which ascends in the tube by the pressure of the atmosphere. Changes in the weight of the atmosphere raise or lower the light of the mercurial column ; and a graduated scale alongside the tube, and embracing the range of motion, enables the reading of the variations.

The whet barometer has a recurved tube in which the mercury ascends and descends, thereby actuating a float which commects by a cord to the axis of an index-finger, which rotates on a graduated dial. It was contrived by Hooke in 1658, the year that the great Dutchman, W illiam of Orange, came to England.

The pendent or marine barometer is suspended on gimbals, which enable it to maintain its verticality during the rolling and pitching motions of a shipp, and has a contraction at the bottom of the tube to obviate ascillations of the nercury. It was introduced abont the year 1698-1700.

The invention of the aneroid barometer

Fig. 5.0.
 is att.
1804.

In the aneroid barometer (which, as its name implies, has no liquid) the pressure of the atmosphere is exerted noon an elastic metallic diaphragm abore a chamber partially exhausted of air. The motions of the diaphragm, due to charges of pressure, are transferred to an indexfinger which traverses in connection with a graduated scale. See Axerioid.
Barometers have been constructed in which the tube and cistern were filled with water instead of nuercury. The great lengtls of the column (nearly 34 feet at ordinary pressures) renders it extremely susceptible to slight atmos. pheric changes; so much so that eren momentary fluctuations can be observel at times during storus: but the difficulties in constructing and keeping in adjustment a barometer of this kimj have prevented its coming into practical use. It would obviously be useless at temperatures below $32^{3} \mathrm{~F}$.

A standarl barometer is one made with peculiar care, to serrcasastandard of comparison for less costly instruments of the kind, or for use in meteorological observations, ete., where great accuracy and susceptibility are desired. The tube has in a some cases a bore of an inch or upward.
a is the mercury-cup, b the adjusting screw, c the vernier, d the thermometer for data in making the corrections for temprature.

In reading the barometer two corrections are necessary:-

1. For the capillarity, or depression of the mernury in the tube.
Earometer. the mercury in
he temperature.
2. For the temperature. surface, and the convexity is greatest in tubes of small diameter.

The following is Jrory's scale, giving the corrections for tubes of different diaueters :-

Diameter of Tube. Inches.	Depression. Inclues,	Diameter of Tube. Inches.	
.10	.1403	.40	.0153
.15	.0863	.45	.0112
.20	.0581	.50	.0083
.25	.0407	.60	.0044
.30	.0292	.70	.0023
.35	.0211	.80	.0012

In siphon barometers, as the depression is equal in each leg of the tube, no correction is necessary.
The correction for temperature involves the consideration of the expansion of the mercury and also of the graduated scale. The latter, being minute, is, however, generally disregarded, and that of the mercury being . 0001001 for each degree Fahrenheit, it has beeu usnal to subtract from the reading आोरण of the obserred altitude for every degree of Fahrenheit above 32°. An example of the correction will stand thus:-

Thermometer, 54°.
Barometer, 30 inches.
$(54-32) \times 30 \times .0001=.066$, to be subtracted from 30 inches. kesult, 29.934 inches.

Calculated correction tables are published.
The holosteric barometer is one in which a fluid is dispensed with. The usual form is the Aserord (which see). The Vieli aneroid has a metallic diaphragm; the Bourdon aneroid has a bent tube capable of flexion. See Bourdon Barometer.

A form of bolosteric barometer is constructed on a principle similar to that of the hygrometric batance. Its action clepends on the diflerent specific gravities

Fig. 571.

Balance Barometcr.

of a short metallic arm a and a long and bulky wooden arm b, balanced on a pivot c at their common center of gravity ; the long wooden arm, displacing a greater bulk of air in proportion to its weight than the other, is depressed by the raritication and elevated by the condensation of the atmosphere, causing the two arms to oscillate about the sustaining pivot, the variations being shown by a scale d, to which the longer arm points.

From a manual compiled by Rear-Almiral Fitzroy of the English navy, and jublished by the Boand of Trade, the following is condensed :-

The barometer shows changes in the weight of the atmosphere, if any occur.

Changes in the level of the mercury are more emplatic than actual elevation.

If the mercury, standing relatively high, should fall, it presages a change, but not so great a one as if the mercury stood lower and fell to the same extent. The converse is also true.
The barometer foretells coming weather rather than indicates the present. The longer the interval between the sign and the change, the longer said altered weather will last. The converse is also true.

The harometer being at medinm hight and rising, the thermometer falling inticates dry weather. The converse: baroncter medinm and falling, thermoneter rising, rain; thermometer filling, snow.
The rising or falling condition of the mercury may be observel upon its unquer suface ; convex if rising, concare if falling.

Fluttering changes indicate unsettled weather ; slow movements the contrary. Rapid and continued fall is a sign of a storm, the wind being from the north if the harometer is low (for the season), and from the south if the thermometer is high,

Three causes affect a barometer :-

1. The direction of the wind.
2. The moisture of the air.

3 The force of the wind.
When they act separately they act less strongly, and when coincidently the change in the barometer is greatest.
Ba-rom'e-ter-gage. (Stcum-Engine.) An attachment to a boilet, condenser, or other chamber, which indicates the state of the vacum.

When a boiler is allowed to cool, the steam condenses, and a more or less perfect racnum is formed therein, subjecting the boiler to heavy external atmospheric juessure. This contingency is usually met by an inlet safety-valve, called a vacuum-valve.

When a condenser is in operation, it is desirable to know the condition of the vacuum, as a test of the efficiency of the air-pump.
When a receiver is pratially exhausted for experimental purposes, it is tesirable to obtain an indication of the tenuity of the contained air.

The Barome-
 ter-guge is a bent glasstule a, one end being plunged ina cistern of mercury b, and the other end c connecting with a steamboiler, condensel, or tank, as the case may be.
When the jet of water condenses the steam in the condenser, a partial vacunm is formed, and the external atmosphere is in excess of the internal - pressure, so that the mercury is caused to ascend the tube.

Another form is an inverted siphon, the mercury being contained in the

beme d, as in the Steam-Prcssure Gages.

Bar-o-met'ri-cal A-e'ri-om'e-ter. (Mctcorology.) An inverted siphon used for approximately determining the relative specific gravities of immiscible fluids, as oil and water, or water and mercury. For instance, if mercury be poured in one limb and water into the other, and the stop-cock at c be turned so as to establish a communication hetween them, it will be found that an inch of mercury in one limb
will balance $13 \frac{1}{2}$ inches of water in the other, showing the relative speecilic gravities of the two fluids to be as $13 \frac{1}{2}$ to me.

Bar-o-met'ro-graph. (Metcorology.) An instrument by which the variations of atmosplieric pressure are automatically recorded on a sheet of 1aper.
Naplen's instrument, patented in 1sts, is intended to mark the variations of atmospheric pressure during ant entire preriod of 24 hours. Connected with the barometer-tube is a vertical spindle carrying a eard which has on its surface a number of radial lines and concentric circles; the radial lines represent fractions of inches, and the concentric circles represent portions of time. Ahove the card is a lever carrying a vertical pricker, which is made to rise and fall at certain regular intervals of time, and to travel from the inner concentric circle to the outer one once in $2 f$ hours. On the vertical spindle, aud umderneath the card, is fastened a grooved wheel, aronnd which is passed a cord, while the other end is made fast to a float resting uron a column of mercury in a tube. The card has a fixed point representing 29.5 inches, which, at the commencement, is placed underneath the pricker: As the cohnme of mereury rises or falls by the varying pressure of the atmosphere, the printed card will thavel to the left or the right accordingly; and the variation of hight will be indicated by the distance of the punctured lines from the starting-point on either side.

A self-registering barometer, recently inventer in France, is shown in the accompanying cut. The records are continnous and comprirable, and are produced by the variations of an aneroid. The pressure of the atmospluere atfects four metallic hoxes, as in the ordinary aneroid, having their upper and unter faces unchlated; a vacum is made in eaclo of them separately, and they are attached together in one series, so that for an equivalent variation of pressure the movement is four times greater than it is for one box only. A very strong flat steel spuing f_{i} acts upon the barometric boxes in an opposite direction to the atmospheric pressure. This spring controls the indicating lever $L L$ by means of a connecting piece at the point B; this connector receives the action from the extremity of the spring, and communicates it to the lever $L L$ at a point very close to its axis, from whence it follows that a considerable multiplication of movements is the result.

The indications of the movements of the lever are registered in the following manner: A eylinder C is revolved by the regular movemient of an ordinary penduhum timepiece; it makes a complete revolution in one week, and carries a glazed paper which has been smoked black by means of a candle. At the extremity of the lever is a very fine spring, pointed at the end, which rests unon the cylinder and traces a white line upon the black ground. At the end of each werk the paper is changed for a fresh one, the record on the old one being protected by a coat of varuish.

The action of the self-registering and printing harometer, invented by Professor Hough of the Albany Observatory, depends upon the making and breaking of an electric circuit by the rising and falling of the mereury, for the communication of impulses to efectro-magnets, which unlock a train of clockwork so devised as not only to describe a constant curve upron a piece of paper, representing the hight

Fig. 5 it.

and in some countries is mainly cotton, resembling fiestian.
The old Roman toga was commonly made of this material.

Bar'rack. (Engincering.) A temporary building for quartening soldiers or for workmen. I'ermanent buildings, also, alesignel exclusively for occupancy by soldiers, are generally so called.

Also a structure erected for sheltering the workmen where work is 1 rogressing in an isolated position, to which access is at times difficult or impossible, on acconnt of the state of the tide or weather. Of this class were the

French Barometrograph.

of the cohmm at any time of day and night for many days in succession, but also to print upon pages, which may be subsequently bound, the hights of the column as often as may be desired, thus making a printed record. The barometer employed hasa siphon tube.
Bar'o-scope. (Meteorology.) An instrmpent which indicates the rariations in reight of the atmosiphere without indicating its absolute pressure. A weather-glass. Of this class are the instruments callet prognosticators, or storm-glasses, consisting of a tube containing a clear liquid in which a Hoceulent substance floats, rising and falling with variations in the weight of the atmospheric column, and thus indicating the kind of weather which may be expected.

Somewhat allied to these are instruments in which a flocculent substance is suspended in a menstrum ; the assumptiou of a milky appearance by the material indicates an excess of moisture in the air, and prognosticates rain.
The wheel barometer of Hooke is also a baroscone, as its clanges and indications are made risible by means. of a float in the mercury, whose counterbalancerl susprension-string moves a hand on an indexcircle.

Ba-rouche'. (Fehicle.) A four-wheeled carriage, having a falling top. It has two seats inside, arranged so that four persons can sit two facing other two, the seat for the driver being outside.
Bar-pump. (Hydraulics.) A small boat-pump for raising water, oil, etc., from large casks. Prob. ablt from Burr-pump. See Bare-prup.

Bar-quan-tine'. (Wruutical.) A three-masted ressel, spuare-rigged on the foremast, and fore-andaft rigged on the main and mizzen. Commonly found on the Northern lakes. Also spelt barkantinc.
Barque. (Niufical.) A three-masted ressel whose fore and main masts are square-rigged, like those of a ship, and whose mizzen is forc-and-aft rigoded, like a schooner.
Bar'ra-can. (Frbric.) A thick, strong stuff, known by this and similar names in most of the languages of Europe and Western Asia. It is made iu Ammenia and Persia of camel's hair, like cronlct, whose name also indicates that its material is derived from the same animal. The name has been preserved, while the fabric has been made of other materials, - wool, Hax, and cotton.

It was during the wool stage that the memorable Falstaff celebrated his achievements: "Four rogues in buckrain (barrecan) set at me."

An article called barracan is yet used in Europe,

- Barrack on Skenyuore Rock.
temporary dwellings erected by the Stevensons on the Bell Rock in the Frith of Forth, and on the Skerryrore Rocks, ahout 12 miles W. S. W. of the island of Tyree, Argyllshire, Scotland, for the protection of the men, prorisions, tools, and a portion of the materials.

Bar'rage. 1. (Fabric.) A Nomnandy fabric made of linen interworen with worsted flowers.
2. (Hydraulic Enginecring.) Barrage is a French word, signifying, in general, an artificial olstruction placed in a water-course in order to obtain an in. creased depth for narigation, irrigation, or other purposes. Barrage-fixe is a permanent dant of masonry. Barrage-mobile is a dam having a sluice by which the flow of water may be regulated.

Bar'ras. (Fabric.) A kind of paching-cloth.
Bar'rel. A word applied to hollow cylindrical objects, such as -

1. (Pump.) The piston-chamber of a pump.
2. A cask for containing linuids, usually having a capacity of from 30 to 45 gallons.

A cask for certain kinds of provisions, - flour, fruits, vegetables, etc., - holding 196 pounds of flour (American custom), or about $2 \frac{1}{2}$ bushels of fruit, varying according to the customary practice in regaril to striking or heaping the measure.

A measure of ear-com in the Sonthem States, shelling $2 \frac{1}{2}$ bushels.

The Dickenson Patent Wrought-Iron Parrels, used in the British navy, have a cylindrical form, with a soldered seam. An iron hoop b is riveted to each end. This hoop has a rabbet, and the thickerst part is riveted to the drum a, while the other portion formas a recess with the side of the drum for the reception of the flange of the head c, which is made by bending the periphery of the circulariron plateata rightangle to its plane. A pack. ing of greased hemp-bands is placed in the recess, the flange of the head driven in, and then the edge of the iron hoop is turned over against the bottom head, making an air and water-tight joint.

This is for the bottom heal. The upper head is removable without damage to the package. The npper portion of the hoop is net Hattened down as at the other end of the barrel, but a number of latehbolts are pivoted to the cover, and catch into openings in the side of the hoop.

The metal is coated insinle and ont with canvas saturated with a composition of eaoutehoue, 8 ; black resin, 4 ; Venice turpentine, 1.

This is ligested, spread on the cloth, and the latter is then run between rollers.
3. (Iforo'oyy.) a. The hollow eylinder or case containing the mainspring of, a watch, or spring elock

Fig. 577.
 (a, Fig. 577). It is commected by a chain with the fusec, and by the wintling of the latter the chain passes from the barrel, and the mainspring is wound. See Fusee.
When the fusce cannot be introluced into a watch, owing to the flatness of the movemont, the first wheel is attached to the borrol, which is then called a g) iny-barrel (b, Fig. 577).

Slop-works are attachel to regulate the aetion of the spring; that is, to prevent its being wound too tight or running down too far, using the mildle power of the spring and rejecting its highest and lowest powers. This is particularly necessary in watches destitute of the fiesce. SeeStop-wonk.
b. The elamber of a spring-balance.
4. (Firc-arms.) The tube of a gun from which the projectile is discharged.
5. (Music.) The eylinuler studded with pins by which the keys of a musical instrument are moved.
6. (Mctallurgy.) A cylindrical vessel moving on an axis, for amalgamating, polishing (tumbling-box), or making gunpowder. In the latter case it is partially filled with bell-metal balls, and is called a rolling-barrel.
7. (Noutical.) a. The main piece of a capstan, between the whelps and the pawl-rim.
b. The cylinder around which the tiller-ropes are wound.
8. The sonorous portion of a hell, which is attached by the remaining portion, the conon or car, to the suspensory arrangements.
9. (Pulley.) The cylindrieal portion of a drum or pulley on which the band laps.
10. (Sieam-Enginc.) The c'ylindrical portion of the locomotive boiler exteuding from the fire-box to the smoke-box.

Bar'rel-drain. A cylindrical drain.
Bar'rel-dry'er. A device for drying barrels after being coopered or washed, before refilling.

Fig. 678.

Barrel-Dryer.
The view (Fig. 578) is sectional, and slows tho tiers of main steam-pipes with vertical branch-pipes extending upwardly though the bung-holes into the interiors of the easks.

Bar'rel-fill'er. (Hydraulics.) A device for filling easks, provided with an antomatic arrangement for cutting off the supply of liquid in time to prevent

overflow, or calling attention to the fact that the vessel is ahout full.

In one form, the rising of the liquid in the barrel is the means of stopping the flow. In Fig. 579, the tube $A^{\prime} B$ is jointed at D. The end bearing the float
K is inserted into the barrel to be filled, and, as the float rises, it, through the medium of the rod L and jointed lever $M>O$, releases the detent H, allowing a spring to force up the rod g and depress the rod e, closing the valve E and cutting off the supply. As the projecting spout B is lightened by the absence ol the liquid, the counterpoise weight T lifts it clear of the bung-hole.

In another form, the liquid flows through a stopcock to enter the barrel; when the latter is full, the liquid overflows into a chamber in which a float rises and operates a lever to close the stop-cock.

In another form, as the liquid rises and closes the air-exit, the air condensed in the upper part of the barrel passes through a duct in the faucet, and by pressure on a diaphragm operates a lerer which closes the supply.

In some cases the eleration of the water-level operates a whistle, in another rings a bell. The ascending float, lowever, is the usual operative feature of the barrel-filler.

Bar'rel-fill'ing Gage. (Hydraulics.) An anto. matic indicator, used in connection with a fancet, to anmonnce when the barrel is about full, so that the supply may be stomped. Some gages merely show the hight of the liquid in the barrel: others give an alarm when it attains a certain hight ; others cut off the supply. See Bannel-fit.Ler.

Bar'rel-head Cut'ter. (Coopering.) a. A tool for rounding and chanfering barrel-heads. The

Fig. 680.

pirot c is stuck into the center of the head, and the tool rotated by the handle H. The angular cutter

Fig. 581.

Enmel-Header
F is adjustable on the shank B of the tool, according to the radius of the barrel-head.
b. A machine for effecting the same purpose. In the example the blank is placed between the clamping disks, and the frame turned so as to bing the blank in contact with the disked saw ; this movement also brings the bevel-wheel upon the arbor of the clamping-disks in connection with its motivewheel upon the saw-shaft. The frame is duplicated, so that while one blank is being operated on, another may be clamped in position.
Bar'rel-head Hold'er. (Coopering.) A clamp consisting of a pair of jaws for holding harrel-heads in position whie being trimmed around the edges.

Bar'rel-hoop'ing Ma-chine'. (Coopcring.) A machine for setting the hoops on a barrel. A circular ring has pendent drivers, aud is reciprocated by a rack-bar and pinion. The assembled stares are placed in upright position, and the hoops driven thereon by the downward motion of tle drivers.

Bar'rel-loom. (Weaving.) a. A loom in which a barrel, usually a square prism, receives the perforated cards which determive the figures. A jacquard loom.
b. One used for weaving figured fabries; the rising and falling of the lieddles which govern the warps being accomplished through the agency of pins on the revolving barrel.

Bar'rel-mak'ing Ma-chine'. (Coopering.) A machine or series of machines by which some principal part of the process of, or the series of processes in, making barrels is performed.

Brow's English Patent, 1825, embraces the following series of devices:-

1. A circular saw, witl a bench and slide-rest, having an adjustable guide consisting of a flexible bar, which is bent to the curve desired for the edge of the stare. A piece of wood of proper dimensions is clamped to the slide-rest, which is adranced by hand along the guide and presented to the circular saw, which gives the proper curve to the edge of the stave.
2. An apparatus with cutters, attached to a revolving standarl, by means of which the stares, secured by temporary hoops, are crozed.
3. An apparatus somewhat similar to the abore, in which the straight nieces of wood for forming the heads are held together, cut to the circular figure rerpuired, and beveled.
4. A machine in which the cask, after having been assembled and headed up by hand in the usual way, is revolved, while a cutting tool is male to traverse along its exterior, forming a smooth surface.

The arrangement of the machinery at Clen's Falls, N. Y., consists of three machines : the first for entting the staves to the required length, finishing the heads, and making the croze; the second jointing the staves in packs; the third forming the heads.

Bar'rel-or'gan. (Music.) An instrument in which the notes are sounded by means of pins or staples, arranged as to time and juace on the surface of a cylinder which is rotated by hand. See HAND. organ.
Bar'rel-pen. A steel pen which has a split cylindrical shank, adapting it to slip upon a round holder.

Bar'rel-pro'cess. A mode of extracting precious metals from ores. See AMalgamator.

Bar'rel-roll'er. A device for clamping the ends of a barrel, and manipulating it so as to allow it to turn freely when rolled along on its bilge.

A pair of handles of a conrenient size are crossed, and pivoted at the point of crossing like a pair of scissors. The opposite ends of the handles are each
provided with a disk of a cliameter somewhat less than that of the common barrel-heal. Each disk

Barrel-Roller.
Bar'rel-saw. (Coopcring.) A cylindrical saw for sawing staves, etc., to a curved form. They are afterward bent to the required longitudinal curve. The saw is mounted on a table, and means are provided for leeping it up to the work and retracting it therefrom.

Fig. 583.

Barrel Saw.
Cylindrical saws are also used for sawing chairbacks, brush-backs, and fellies.
Bar'rel-screw. (Shimuriyhting.) A form of screw-jack tued in a slupwright's yard to move heavy timbers or assist in launching.

Bar'rel-set'ter. (Gun-making.) A cylindrical mandrel used by armorers for straightening the barrel of a fire-arm and in truing the bore or exterior surface.

Bar'rel-vault (Ifasonry.) A cylindrical vanlt.
Bar'rel-vise. (Gun-smithing.) A bench-vise, having a longitndinal groove in its jaws to fit it for the reception of a gun-barel, which may be protected from direct contact of the jaw's of the wise by sheet-lead or other soft metal cheeks.
Bar'rel-wash'er. (Brewing.) A machine in which casks are cleansed after use, preparatory to refilling.
In one example, the barrels are clamped in the frames that turn on pivots in journals in an iron frame. The barrels are arranged at an angle to their line of rota. tion by a clamp with a corrugated surface that curves to suit the bilge of the barrel. To vary the angle to the plane of rotation of all the barrels simultaneansly, the clasj's are mounted in circnlar gnideway's on the clamping rails, so that they the frame forms the center. This causes a swashing motion of the water endways of the barrel, by which its interior is cleansed.
is pivoted at its center toitssulpporting armand so as to revolve freely. The handles are of such form that the disks may be applied, one at each end of a barrel, and pressed elosely against it, whereupon the barrel nay be easily rolled. may vibrate in arcs of which the axis of rotation of acting, and is worked by the lever a which pro

Bar-ret-tees'. (Fubric.) A kind of plain silk. Bar'rier. (Fortification.) An obstacle, such as a palisade or stockade, fur defending an entrance to a fortitication. It is provided with a central gate formed of strong upright timbers, cannected by transverse beams at top and bottom and a diagonal brace.
Bar'rier-gate. (Fortification.) A gate closing the entrance through a stockade or barrier.
Bar'row. 1. (Mining.) A heap of uttle, or rubbish.
2. (Vchicle.) A light carriage for transparting articles, moved by hand. See Hand-barrow anil Wherlbabiow.
3. In salt-works, a wicker case in which the salt is put to drain.

Bar'row-pump. (Hydraulics.) A combined suction and force pmmp, rendered portable by being mounted on a two-wheeled barrow, and adapted for agricultural and tire-engine purposes.

In the illustration shown, the punp is double-
Fig. 585.

acting, and is worked by the lever a, which projects over and between the handles of the barrow. b is the suction-hose; $\%$, discharge-nozzle ; e, air chamber ; g, cylinder.

Bar-share Plow. (Agriculture.) One having a bar extending backward from the point of the share. Used in tending crops, laying out corn-rows, etc.

Bar-shear. (Metal-working.) A machine for cutting metallic bars. It consists of a very strong

Fig. 585.

frame, having a fixed lower blade e and a vertically reciprocating upper blade d, between which the bar is sheared. a is the flywheel, b the main gear-wheel on the axis of the cam (hidden in the interior of the casing), which works the tail of the lever c and reciprocates the jaw d. See Barcutter.
Bar-shoe. (Ferriery.) A horseshoe which is not open at the heel, but is continued round at the rear. it is used with horses which are liable to contraction of the heel, to spread that part of the foot.
Bar-shot. (Ordnance.) A projectile formerly used, consisting of two cannonballs, or half-balls, united by a bar of iron, and employed for severing the rigging of vessels, as well as for field and fort artillery.
Shot used in proving ordnance may be considered as belonging to this class, consisting, as they do, of a bar with hemispherical ends, weighing twice or three times that of the solid shot used in service.
Bar-ti-zan'. (Fortifieation.) The overhanging turrets of a battlemient.
Bar'ut-ine. (Fubric.) A kind of Persian silk.

Ba-salt'ing. A process for ntilizing the scorix of blast-furnaces for making paving and building blocks.
Ba-sane'. (Leather.) French tanned sheep-skins for book binding. Bawsin.
Bas'cule. (Fr. sec-sew.) A form of bailing-scoop used by Perronet at the Bridge of Orleans was worked by 20 men, 10 at each end. 600 motions were given to it per hour, and at each motion 4 cubic feet of water were raised 3 feet ligh ; 2,400 cubic feet per hour.

It consists of a pair of scoops α a on a single frame, which is pivoted to oscillate upon bearings on the summit of posts b, secured to a frame planted on the bottom of the river, pond, or inclosure to be drained See Balling-scoop.

Bas'cule Bridge. A counterpoise drawbridge which oscillates in a vertical plane; the inner portion descends into a pit, while the outer ascends and closes the gateway.
A bridge which has its tiuck simply hinged to the cdge of the scarp or curling, and which is lifted by weight or windlass, is classed as a Lifting-bringe (which see). The bascule has an inner portion of roadway, which acts as a counterpoise to the portion which projects over the water-way. The inner portion lescends into a dry well when the bridge is

Bascule at Brussels.
lifted into a vertical position, the outer portion closing the opening in the wall outside of the portcullis, if there be one. This form of bridge was not uncommon in the castles of the feudal times, when the rich owned the poor, and learning had no refuge but in the Church.

Fig. 589

Bascule Nevf Brisark.

A baseute bridge at Brussels, called a batancingbridye, has an overweighed land end, so that it assumes the vertical when a chock bencath its inner end is removed. The land end works in a puadrantal pit lined with iron. The strut that supports the land eud is footed upon a set-ofl in the masonry, and a swinging strut limits the clepressio: of the bridge at its outer end. When tiltel, the bridge is held in position hy a rack and pinion.

Instead of the heavily counter-weighted platform, a pendent weight, chain, and pulleys may act upon a vertical arm to raise and lower the platform, which oscillates upon a horizontal axis.

Base. 1. (Ordumec.) The protuberant vear portion of a gun, between the knob of the cascabel and the buse-riny.

The base is the middle member of the cascellel when the piece has a base-ring and knob. la the simplieity of modern pieces, many mere ornaments anel extraneous matters are omitted. The bese is always present, forming the rounded contour at the rear of the breceh.
2. (Curpentry.) The skirting-bonrl next to the floor of a room.
3. (Surveyiny.) The main line of a survey, ascertained by actual measurement, upon which the subsequent trigonometrical operations are fomuled.
4. (Architceture.) The lower part of a structure : of a luilding it may constitute a basement ; of a column it may consist of basc-moldings and plinth.
5. (Fortification.) The line connecting the salient angles of two bastions.
6. (Dentistry.) A foundation resting immediately unon the gims, on or into which the artificial teeth are placed.

Base-burn'ing Fur'nace. A furmace or stove

Fig. 690.

Biぃе-Burning Stove. in which the fuel is contained in a hopper or chamber, from which it is fed to the tire as the lower stratum burns. The supply is thas continuous, the hopper holding a supply for any given time, according to its capacity.

The idea seems to have originated in the "Constant Furnace" of thealchemists. See Athanor.
James Watt contrived a smokeconsuming furnace on that prineiple. See Smuke-cunsuming Furnare.
The principle of the base-buruer is also found in the f trnace exhilited in 1685 by M. Delasme, at the fair of St. Germain. It consisted of a long tube like an inverted siphon, the longest leg of which formed the chimmey and the shortest the furnace. The fuel was depos. ited on a srating near the top of the short-
est lerf, being supplied from above. Soon after ignition of the fircl, heat was communicated to the longest leg or chimney, and by that means a current of air was caused to pass downward throngh the fuel and under the grate, where the smoke was consumed.

Base-burn'ing Stove. One having a magazine to hodd a supply of fuel, which falls out at the bottom as that in the fire-pot lecomes consumed. In the example, the grate is arranged to be dumped without plening the base of the stove, thus preventing the escaje of dust. The reservoir is constructed in three sectious. Above the mica windows is a register for the purpose of admitting air to the fire.

Base'ment. (Architecture.) The lower story or floor of a building; the story of a house below, or gartly below, the level of the ground.

Base-plate. (Machincry.) The bottom plate, to which the frame of an engine or machine is fastened. A bect-platc.

Base-ring. (Ordnunce.) A molding on the brcect of a gun, betwen the lase and the first reinforce. See Clannon.

Base-vi'ol, (Music.) An instrument of the violin kind, the largest of the class. It has four strings and cight stops, divided by semi-stops. It is played by a bow.
Bas'il. 1. (Cutting-tools.) The ground surface of a cutting.tool which forms an angle with the back; as of a chisel, graver, plane-bit, ete.

The broad-nxe, adz, firmer and paring chisels, gouge, plane-bit, graver, have but a single basil: one face is permanent and straight ; the sharpening is done unon the basil.

Chopping-axes, hatchets, machetes, stome-axes, bill-hooks, swords, tomahawks, turning-chisels, etc., have a double basil, if it may be so termed. They are sharpened equally on the two faces.
2. (Leather.) A sliepp-skin tanned with bark, and of quality for making slippers.
Bas'i-lisk. (Ordnance.) An old name for a long 48-jounder cannon ; so called from the snakes which superseded the dolphins common on other guns.
Ba'sin. 1. (Optics.) The disk on an optician's stake, in which convex lenses are ground.
2. (Hat-making.) The iron mold in which a felt hat is formed.
3. (Hydraulic Engineering.) a. A wet-dock with gates to restrain the reflux
Fig 691.

b. The space between gates in a dock.
c. A widened space in a navigable canal to permit boats to turn, or to lie and unloal, without interfering with the passage of other boats.

Ba'sin-fau'cet. (Hy. draulics.) A cock for regu-

l

lating the flow of water into a basin, etc. Some operate by turning, so as to partially or wholly unelose the month of the supply-pipe. In the example, the valve f is stepped in the screw-shaft D, and has an elastic disk at hottom, which rests on the suply-tule A, and is lifted from its seat ly rotation.

Other fancets operate by vertical pressure on a button or lever, which depresses a spring-valve and opens the water-way; the pressure being relieved, the efflux ceases.

Bas'ket. 1. A vessel made of flexible materials lappedorinterwoven. The art of interweaving wauds, leares, and splints is of great antiqnity. The ark of Moses was a basket of interworen bnlrushes, made water-tight by slime and pitch (Ex. ii. 3), 1571 B. c. The chief baker of Pharaoh dreamed that he had three white baskets puon his head filled with bakemeats, which probably meant cakes. This was 1717 в. с. (Gen. xl. 17.)

The ordinary use of the basket in gathering in the crop is indicated by the blessing of basket and store. (Deut. xxriii. 5.)

On opening one of the ancient tombs of Egypt, a lady's work-basket was fouml, containing the following articles, which may now be riewed by generations from twenty-five to thirty centuries subsequent to the time of the lady who used them. They are in the Abhott collection, New York City.

Two skeins of thread ;
A small white glass bottle ;
An ointment-box ;
A toilet-box to contain kohl, for blacking the edges of the eyelids, as in the days of Jezebel;

A wooden netting-neeule, charged with the original threat;

Two bronze needles ;
Oue blade of a pair of scissors ;
A piece of linen, partly damed;
Some bronze pins ;
An irory dress comb;
A wooden comb;
Four small ivory pegs, use uncertain ;
A bronze spatula, for spreading unguents ;
Some false hair, plaited.
Baskets from ancient Egynt, presersed in the Abbott Museum of Antiqnities, Ness York City, are made of grass, reeds covered with leather, and of date-tree fiber:

Pliny refers to the suppleness and gracefnl slenderness of the osier willow, as fitting it for the weaving of baskets and many utensils employed in agriculture.

In ancient Egypt, wicker-work baskets were made of osiers and the stalks of the palm-leaf. They were made with and without handles, for varions purposes, and of different sizes and shapes. Grain was sown from a basket; egys, figs, and grapes are represented in baskets in the field and the store-room.

Baskets made of palm-leares are preserred in the British IInseum.

The ancient Britons excelled in making baskets, which were largely exported and sold for high prices at Rome. British articles were transported to Rome in baskets, and the British name for these hampers was there retained, - bascuda. The Welsh preserve it as basgazed. When Britain was first known to the Romans, the natives male boats of basket-work covered with hides, and boats made in a similar way are still used in parts of Wales. See Coracle. Boats of split bamboo, woren like basket-work, are nsed in Hindostan, and in some parts of South America rush baskets cajable of holding water are made by the natires.
A two-horse carriage of basket-work, termed a "Holstein wagon," is nsed in some parts of Europe, and this material is very commonly employed in the United States for the bodies of sleighs, and sometimes for nony phaetons. Rattan is, however, the neater and more desirable material.

For the finer kinds of baskets particularly, osier is the material most commonly used, but for a coarser

Fig 592.

Splint Basket.
basket, strijs of split hickory, oak, or llack ash, are frequently employed. Osiers are prepared for the basket-maker by being split asunder or stripned of their bark, according to the kind of work for which they are intended. Previous to being stripped, they require to be soaked in water, and the stripping is jerformed by drawing the willows throngh irou brakcs, which remove the bark; they are next cleaned by a sharp knife, and exposed to the sun and air. The larked or white osiers are assorted into bmudles or fagots according to size, the larger ones being used for the strong work in the skeleton of the basket, and the smaller for the bottom and sides.

When the osiers are used for ordinary work, they are taken whole; but for fine work, they are divided by an instrument consisting of two edge-tools set at right angles to each other, which quaiter the rod longitudinally through the pith. These are next drawn through an implement resembling an ordinary spoke-share, keeping the outer part of the split next to the wood while the jith is presented to the iron edge of the instrument ; the split is further reduced and made regular in thickness by being drawn through a flat piece of steel having one cutting edge like a chisel; the flat is bent round so that the plain ancl cutting edges are made to approach or recede ly means of set screws, regulating the thickness of the osier.
lu basket-making, a number of rows are laid crosswise to form the start for the bottom, and are woren together by a spiral weft of wands, which pass alternately over and under the 1 adial wands, to which others are added as the size increases; the wands are bent up to form the sides, and other rods are woren in and out between each of them, until the basket is raised to the intended hight. The edge or brim is

Basktt-Making
finished by turning down the projecting cuds of the ribs, whereby the whole is firmly and compactly united. Handes are formed by forcing two or three osiers, sharpened at their ends and cut to the proper length, down the weaving of the sides close together, and they are pinned fast about two inches from the brim, so as to retain the handle in the proper position. The osiers are then bound or plaited, and the handle is finished.
Of late years much ingenuity has been exercised in devising forms of baskets for the carriage of fruit to market in packages of size proportioned to the character of the fruit. Osiers, splints, veneers, and paper have been employed. Some of these baskets are made frustum-shajeef, so as to pack in nests for return ; others have been mate folding or collapsible; others of such cheap material and workmanship as to be sold with the truit.

Vearer baskets are made with bails or handles, or simply as boxes. The parts are sometimes interwoven, but more often fastened by tacks or rivets.
\because. (Fortiticution.) In tield-works, a gubion or corbcille tilled with earth and built into a parapet.
3. (Hat-makiny.) A wicker-work or wire screen of an oral shape, which collects the filaments of hair as they are lightly thrown on to it by the bow, which separates them from the bunch deposited on the bench. See Buwing.

Bas'ket-car'riage. (Vehieles.) A small vehicle with a wieker bed, and adapted to be drawn by ponies.

Bas'ket-grate. A fire-grate for burning coal, in which the buttom and one or more of the sides are male of bars, with intervening openings through which air is admitted and heat emitted.
Bas'ket-mak'ing Ma-chine'. A ciroular wooden

eeper tone than the bassoon.
Bas-soon'. (Music.) a. A musical wind instrument made of wood, and capable of being divided near the mildlle, so that the two parts may be of a more convenient length for carriage. The bassoon has a reed and curred mouth-piece, and is played by means of keys and finger-holes like the clarinet, to which it forms the bass. Its compass is three octaves, from double A in the bass, to A in the second space of the treble, and its designation generally is the F or bass clef, yet in the higher passages, for the more convenient arrangement of the notes, the alto or tenor clet is often used.
b. A reed-pipe stop in an organ, tuned ((to the extent of its compass) with oper diapason, and depending for the jeculiar yuality of its tone (timbre) upon the particular slape and proportions of the tube through which the vibrations of the tongue are emitted. See STop.

Bass-re-lief'. (Sculpture.) Strictly speaking, lou relief, but frepuently used in a somewhat general semse to indicate the promineace of scnlpture from the plane surface to which it remains attached. See Rilieva.
Bas'so-rili-e'vo. (Sculpture.) The slight projection of a sculptured olject from the plane snrfaee, as in the case of the fignres on medals, coins, friezes, etc.; called, also, low-relief. See Rilifvo.
Bass-vi'ol. (Music.) A stringed musical instrument resembling a violin, but larger, and having a graver tone. lt is held in an upright position when played, the butt-end resting on the floor or some olject but little elevated above it. The instrumeat now generally known as the bass-viol is, in fact, the violoncello.

BAT.

Bast. A rope or cord made of the bark of the lime-tree, bass-wood, or linden ; also the bark made into ropes and mats.

Bas'tard File. One of a grade between the rough and the smooth, in respect of the relative prominence and coarseness of the teetb.

The order is as follows :-

Rongh.	Second-cut.
Middle-cut.	Smooth.
Bastard.	Dead-smooth.

The angle of the chisel in cutting the bastard file is about 10° from the perpendicular.

The number of cuts to the inch varies with the length of the file in inches.

| Inches . . | 4 | 6 | 8 | 12 | 16 | 20 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cuts . . . | 76 | 64 | 56 | 48 | 44 | 34 |

Bas'tard stuc'co. The finishing coat of plasterin'r when prepared tor paint.

Bas'tard Type. (Printing.) Type with a face larger or smaller than that usual to a hody of given size; as, bourgeois on a hrevier body.
Bas'tard Wheel. A flat bevel-wheel, or one which is a near approach to a spur-wheel.

Bas-ter'na (Vehicle.) The basterne of the Romans was a litter or species of sedan, carried by two mules, differing from the lectica in that the latter was borne by slaves. The name is derived from a people of the Carpathian Mountains, and was afterwards applied to a species of ox-cart or wagon nsed by the early kings of France.

The name survives in a modern European carriage.
Bast'ing-ma-chine'. A sewing-machine making the running stitch, and used in besting together the ends of pieces of cotton cloth, in order to form them into a continuous length for convenient feeding and handling during the operations of washing, blerching, singeing, printing, dycing, etc.

Bas'tion. (Fortificution.) A projecting portion of the main inclosure of a fortification, consisting of two faces and two flanks, sometimes single or dctached, but usually arranged on the angles of the fortification, and connected by a retired part called a curtain. In field-works, a series of bastions, formed at the angles of a square or pentagon, and thus connected with an exterior ditch, and sometimes

Bustion.
a glacis, frequently comprise the whole system of defence; but in fortifications of a permanent character these are surrounded by outworks, and the number of bastions may be increased indetinitely, the polygon forming the basis of the works heing adapted to the shape and capacity of the place to le defended.

Fig. 595 is a plan of two bastions ($1 / L$) comnected by a curtain with outworks, as antanged on the modern system.

The various parts not particularly described here may be found nnder their respective alphabetical heads.
A. Interior slope.
T. Terreplein of rampart.
R. Parapet of rampart.

A TR. Rampart.
a. Scarp.
M. Full bastion.
L. Empty bastion.
$p q$. Face of bastion.
$q G$. Flank of hastion.
$K \circ p q G$. Outline of bastion.
G H. Curtain.
t. Ramps.
B. Ditch.
D. Tenaille.
5. Caponniere.
c. Batardeau.
$\boldsymbol{F} \boldsymbol{F} \boldsymbol{F}$. Ravelin.
S. Redouht in ravelin.
b. Counterscarp.
n. Traverses in covered way.
C. Reëntering places of amis.
W. Redoubt in places of arms.
P. Salient places of arms.
I. Covered way.
X. Glacis.
A hollow bastion is one in which the terrentein is not continned to the rear beyond a certain distance, at which a farther descent ocems.

A full bastion incloses ground which is even with the rampart.
An empty bastion has a terreplein adjacent to the parapet, and the middle portion is much lower.

A bastion is said to be composed when two sides of the interior polygon are very unequal.

A detached bastion is separated from the inclosure by a ditch about its gorge, and not comnected by a

Bastioned lines are composed of long parapets of earth, protected at intervals by bastions. See LiNe.

Bas'tioned Fort. A fort having two or more bastions connected by curtains. The term is commonly restricted to field-works. The essential principles of a bastioned fort are, that it is constructed so that the most frominent part of each salient is on a line bisecting the angle of a polygon; the flanks are arranged 1 erpendicularly to the face of the oprosite hastions, so as to obtain a raking fire within easy musketrange.

Bat. 1. A mallet.
2. A club for striking a ball in various plays; as, base - ball, cricket, croquet, etc.
3. A rammer used by founders.
4. (Fiber.) a. Cleancot-
ton in loose and evenly spread condition. The product of the battins-machine, in which the eotton is seutched, Llown, and delivered in an even continnous wad, which, when womd on a roller or axis, forms a lap and is ready for curding.
b. A scutching or beating sword for hemp or flix.
5. (Plumbiny.) A phumber's tool, made of beech, about eighteen inches long, and used for dressing and flatting sheet-lead.
6. (Hat-muting.) a. One or more slivers of carded wool, or a body of blown fur. The subserpuent processes are shrinking and hardening; the first by inmersion in hot water, the latter by pressure and rubbing. Felting succeeds.

Web, lap, sheet, and sliver are synonymes in this connection.
b. In hand-work, a bat may be said to be a light assemblage of felting-hair gathered by the bow. It is compacted by pressure of the hands on a piece of leather called the hardening-skin, and by rubbing.
7. A half or other portion of a brick large enough to be worked into a wall.
Bat'ar-da'te. (Nuutical.) A square-stemmel rowing-galley.
Bat'ar-deau'. 1. (Fortification.) A wallacross the ditch to retain the water in that part of a ditch requiring to be inundated. Its crest is too narrow to atford a passage for the enemy.
2. (Enyincering.) A coffer-dam, or case of piling without a bottom, for building the pier's of a bridge. See Coffer-dam.
Bat-bolt. (1fechinery.) A bolt barbed or jagged at its luett or teny, to retain it within an object cast or solifified about it.

Batch. A lot of prepared materials or articles, snitable in quantity for ouce charging a pot, furnace, or oven.

1. (Glass.) The frit of a glass-maker compounded and sifted for use, ready for the gluss-pot or crucible.
2. A lot of dough or unbakel loaves.
3. (Mining.) A certain quantity of ore sent from a mine to the surface by a couple of men.
Bate. (Lcother.) The alkaline solntion employed in the preparation of hides, after liming and before tauning, to remove or neutralize the lime. See Baring.

Ba-teau'. (Nauticul.) a. A flat-bottom boat, used in navigation and propelled by oars or by poles.
b. A ponton of a floating bridge.

Bath. 1. A vessel in which the whole or a part of the person may be washed or bathed.
2. A house or place where such conveniences are provided.
3. A tank containing a liquid for galvanic or clec-tro-metallurgic purposes.
4. A vessel containing a flid metal ol heated composition, as a lead-bath or sand-bath.

Baths were long used in Oriental countries, and traveled by the route of Egypt to Greece. Homer meutions the use of the bath as an old custom. From Greece they reached Rome, imported, as it is said, by Agrippa. The therme (hot buths) were very splendiu, and adomed for a people who spent much leisure among the baths and their voluptuous accessories. The marble gronp of Laocoön was found in 1500° in the Baths of Titus, erected about A. D. 80 ; and the Farmese Hercules in the Baths of Caracalla, erected A. D. 217.

A rollicking Greek thas writes:-
"And lately baths, too, have heen introduced, things which formerly men would not have permitted to exist inside a city. And Antiphanes points out their injurious character : -

- Plague take the bath! just see the plight In which the thing has left we;
It seems t'have boil'd me op, and quite Of strength and nerve beref we.
Don't tonch me! Curst was he who taught a Man to soak in hoiling water!'

Athenceus, Epit. B. I. 32 "
Homer, however, mentions anuther set, who
"to the polished marble hath repair, Anoint with fresh perthues their flowing hair, Aud seek the banquet hall."

> lliart.

At one period there are said to have bepn more than 800 of these establishments in home, many of them doubtless of the smaller class, founded by private individuals. The erection of baths was one of the principal means by which many of the emperors endeavored to obtain lime and popularity. Nearly all these structures have yielded to the ravages of time, but sufficient remains are left to afford an idea of their general construction and arrangement.

The Baths of Caracalla were probably the most magnificent structure that atorned the ancient capital of the world; they occupied a quadrangle of 1,011 by 1,080 feet. The entrance was decozated by a portico composen of two storics of arcades, one above the other, erected upon half-colnmms, Ionie below and Doric above. Some of the tinest statues of antipuity lave been found within these rmins, giving an idea of their original magnificence.

These, like other structures of the kind erected by the liomans, were heated by stoves, und had arrangements for afforling three different kinds of baths, cold, tepid, and warm, accorling to the taste or requirements of the bather.

For a piece of money eqnivalent to about half a cent any Roman citizen could procure the advantages of one of these baths, which were accessible alike to the wheh and the poor.

The buildings were illuminated at night by lamps and candelatize, the light of which was, according to Seneea, thrown on crystal balls placed in the vanlting or on the walls, so as to produce the most dazzling reflection. Glass was introduced in the time of Pliny, who calls it a modern invention. He was mistaken.
lemains of baths have been found in all countries where the Roman power extended. At Chester, England, among the ruins of a bath were found hrieks stanped with the impression LEG XX, keading to the inference that the structure had been crected by the 20th lioman legion, sumaned the Vietorious.

Those of Pompeii are still in a wonderfiul state of meservation.
ln one of the baths of Rome, the basin was found to be coated with a cement so lard that it was impossible to dissolve it sufficiently to analyze its substance. It was a Roman paln (about three inches) thick, and capable of resisting not alone the heat of the water, but the action of any lieat whatever.

The Roman bath had six principal apartments:-

1. The Apodyterimm, appropriated to undressing, had shelves all round, on which to place the clothes, and had attendants to take charge of them.
2. The Frigidarium, or cold bath.
3. The Tepidarium, situated between the Frigidarium and the warm bath, and having a medium temperature.
4. The Callarium, heated by the dry heat of a stove; the Laconicum. Here the bathers sweated.
5. The Balneum, or warm bath.
6. The Eleothesium ; an apartment heated by the llypocaustum, or undergronnd furnace. Here the oils and perfumes were applied.

A douche bath is one in which the water is driven
or dropped forcibly upon the person or the part affected.

An earth bath is one in which the patient is corered with warm sand.
The names of other baths are sufficiently descriptive without detailed description under this general head.

Air-bath.
Electro-galvanic bath.
Medicated bath.
Mercurial bath.
Russian bath.

Shower-bath.
Sitz-Lath.
Stearn-bath.
Turkish bath.
Vapor-bath.
(Photography.) A solution in which plates or papers are immersed or floated ; or the vessel holding said solution. Baths are known as sonsitizing (the nitrate of silver bath), fixing, toning, or washing. They are of various forms, horizontal or vertical; the materials are glass, poreelain, or harl rubber.
Bath-brick. A fine silicious material, found in the ricinity of Bath, England, compacted into the form of bricks, and used as an abradant.
Bath-chair. (V'ehicle.) A small hand-carriage with a hood. So called from the city of Bath, England, whose mineral waters are moch freyuented by invalids, and where the vehicle seens to have originated. For the legends of Bath, see Pickwick and the History of Prince Bladud.
Bath-fur'nace. A furnace for heating the water supplied to a bath.
Bath-heat'er. An apparatus for leating the water in a bath. It may consist of a pipe which connects with the upper and lower parts of the bathingtub, and has a middle coil which traverses a furnace.
Bath'ing-ma-chine'. A portable room on wheels, for the convenience of bathers. It is run down into the water, so that the person is not exposed on the beach between the untiring-rom and the water.

Bath'ing-tub. A tub or tank for bathing purposes; usually of elongated form, to permit the bather to assume a recumbent posture. The sitz or hip bath is like a deep-seated chair, and the water covers the person from the waist to the knees.
Bath-met'al. A brass for cheap jewelry, composed of, brass, 32 ; zine, 9.
Bath-note. A folded writing-paper, $8 \frac{1}{2}$ by 14 inches.
Ba-thom'e-ter. (Fautical.) A measurer of depth. A soumling apparatus. The devices consist -

1. Of the common leep-sea lead and line.
2. Of devices for detaching the sinker on reaching bottom, enabling an attached tube to be drawn up separately, so as to secure a specimen from the bottom.
3. Of a weight within which a line is coiled to a void friction in lescending.
4. Of a sphere or spheres containing mercury, which the pressure at great depths forces into a tube or gage gracluated so as to record the depth attained.
5. Of a spiral rane actuating a train of clock-work which registers the number of revolutions made by the rane, and thus indicates the depth. See Suusiding Apparates.
Bath-stone. (Mrasonry.) An English buildingstone of the oülitic formation.

Bat/ing. (Leather Manufucture.) The operation of steeping hides and skins in an alkaline solution consisting of the dung of chickens, pigeons, dogs, ete.

In this they remain six or eight days, accorling to the temperature of the bate and the thickness of the hide.

The brting follows the liming or unhaining so'ution, and the object of the former is to neutralize the lime and render the leather pliable.

Dog's dung (album Gracum) was formerly and is
still applied; the ammonia probably being the active agent.

Sheep-skins are bated in bran-water.
The bating forms a chemical combination with the lime, the ammoniacal chloride parting with its chlorine to form the chloride of linue, which is readily dissolved in water.

MacBride, in 1734, showed the property possessed by hydrochloric acid of dissolving the lime in the manner accomplished by the bate.
Tersbelle used sugar in the proportion of four or fire pounds of cane-sugar or molasses to seventy gallons of water. This formed a soluble saccharate of lime.

Warnington, 1841, employed carbunate of ammonia.

Ba-tiste'. (Fabric.) a. A rery fine, white, thick linen cloth or cambric. Marle of a fine quality of white flax grown in the South of France, and called ramé. (Not the ramie.)
b. An East India goods of similar quality.

Bat-print'ing. (Porcclain.) One mode of porceluin printing; the other is termed Press-pmistisg (which see). The former is printed on glazed ware, the latter on the biscuit.

In bat-printing the lines of the engraving are fine, and the inpression is taken in linseed-oil on a thin slab of gelatine cut to the size. The oil laving been transferred to the glazed ware hy pressing the gelatine against it, is next dusted with the metallic color by means of cotton-wool. The color is melted and fixell in an cnamel-kiln.

Bat's-wing Burn'er. (Gas.) A form of gasbuner in which gas issues at a slit so proportioned as to give to the flame the shape of a bat's wing.

Batt. The hat-maker's term for the hasis of the skin, or bowed materials of a hat. Bat.
Bat'ten. A strip of wood or a scantling, as may be required, for rarious purposes.

1. (Carpentry.) a. A cleat or bar nailed transversely on a structure of jointed planks, such as a door or shutter, to prevent warping and preserve the relative position of the parts.

A batten door is formed of p lanks laid side by side, and secured together by slats fastened across them, without exterior framing.
b. A board 2 to 7 inches wide, and from 5 to 2 inches thick. (English practice.)
c. In furring, scantling secnred to brick malls to form a foundation on which plastering lath is laid.
d. A strip nailed to the rafters, to which slats are nailed.
2. (Plastering.) A batten is placed at exposed corners so as to be flush with the worked surface of plaster, and resist abrasion or blows. Called also an anyle-staff.
3. (Cotton.) A web or bat of fibers.
4. (I'earing.) The beam which forces up the weft. Lay or luthc.
5. (Nautical.) a. One of the strips placed around the hatehes, to keep down the tarpaulin which covers them.
b. Strips tied around standing rigging to keep it from chafing.
Bat'ter. 1. (Engincering.) The backward slope of a wall, to enable it to withstand an outward thrust, as of a bank which it retains. Reteining and breast uralls butter towarls the bank. See Breast-wall.
2. (Forging.) To spread metal outwardly by hammering on the end. The impact upsets the bar or rod, and extends it ontwardly:
3. (Pottery.) A plaster mallet used to flatten out a lump of clay which is to be laid and formed upon the uthirling-table.

The batting is done upon a batting-block of wet plaster.
Bat'ter-ing-gun. (Ortlnance.) One of heavy caliber, specifically adapted for demolishing works. Examples: the 18 and 24 pounder smooth-bore, and the $+\frac{1}{2}$-inch rifled gun of the United States service.
Bat'ter-ing-ram. Animplement, used before the invention of gunpowder, for making breaches in the walls of fortitied places. It consisted of a long pole or beam, with an itor head, suspended between uprights. The heal sometimes weighed a ton or more. The men who operated it were protected by the tesludo, a movable slied with a curved roof, adapted to resist the stones, etc., thrown on it by the besieged.

This machine is incorrectly stated to have been invented by Artemon, a Lacedemonian. It was employed by Pericles, abont 441 B. C. The pole was from 80 to 120 feet long, and suspended by cords on which it oscillated, being retracted by the united eflorts of a number of men, who pulled the cords and then allowed the spar to swing forward and bring its armed head against the masonry of the besieged fortress. Its eflects were sought to be aroided by lowering down bags which acted as fenlers to dearlen the blow, by burning the framework, or by hurling missiles at the operators. See descriptions of Romin military engines, and Josephus.

Assyrian antiquities upset the Greek claim of first invention. Battering-rams are shown in the seulptures of Nimroud. The machine is worked from within, upsetting the walls by dislodging the stones. The testudo was made of wicker-work, and ran upon six wheels.

- The battering-ram is mentioned by the prophet Ezekiel (iv. 2 and xxi. 22) about 590 B. c.

Bat'ter-ing Plumb-rule. (Engincering.) An instrument for leveling sloping work. The sides are cut to the required angle with the central line, over which the plummet hangs.
Bat'ter-ing-rule. (Engincering.) A rule or templet by which the batter or slope of a retaining or breust wall is regulated in lonilding.

Bat'ter-ing-train. (Ordnance.) A train of heavy ordrance for sie re operations.

Bat'ter-lev'el. (Engincering.) An instrument for measuring the angle of a slope. See Clinometer.

Bat'ter-y. A number of objects or devices in position ; as of guns, plates, ketlles, etc.
A position or place in which objects are mounted; as a sunken, barbette, or casemate battery.

Barbette battery.
Battery forge.
Battery gin.
Breeching battery.
Bunsen battery.
Callaud battery.
Carbon battery:
Casemate battery.
Covered battery.
Cross-fire battery.
Daniell's battery.
Double-fluid battery. Electric battery.

Grove battery:
Ginn battery.
Half-sunken hattery.
Hat-maker's battery.
Leclanche battery.
Leyden battery.
Magneto-tleetric battery.
Masked battery.
Mountain battery.
Open battery.
Ricochet battery.
Siege battery.
Single-fluid battery.
Electro-magnetic battery. Smee battery.
Elevated battery.
En-echarpe lattery.
Enfilading battery.
En-revers battery.
Field battery.
Floating battery.
Galvanic battery.
Many of these are described under their alphabetical heads.

1. (Fortification.) a. Barbette buttery; the guns are elevated to fire over the top of the parapet, and not through embrasures.
b. Breechiny battery; one employed in making a practicable breach in an enemy's works.
c. Blinded battery; one masked or bidden till the time comes to make it effective.
d. Casemuted battery; one firing through embrasures in a bomb-proof chamber.
c. Cavalier battery; one mounted on an elevated interior work.
f. Counter battery; one on the crest of the glacis, to cover the storming party.
y. Direct buttery; one firing perpendicularly upon a work.
h. Enfilading battery; one which flanks a work, entrenched line, or line of attack.
i. Fixed battery; one permanently established, as in a fortress.
j. Floating ballery ; one on a raft or ship.
k. Inelined battery; one on a sloping ground.
l. Indented battery; one with intlentations or occasional notelees which command the face.
m. Joint battery; one of two which form supports to each other.
n. Leveled battery; one in which the interior has the natural level, the parapet being gained by earth from the ditch.
o. Masked battery; one artificially concealed.
p. Oblique buttery; one to deliver an entilading fire.
q. Open battery; one of field artillery.
r. Ficochct buttery; one delivering its fire with small charges, the missile solling and popping along the ground.
s. Sunkin battery; the included space of wbich is excavated.

Fig. 596.
 . (.

•

2. (Metalluryy.) A series of stamps operated by one motive power, for crushing ores containing the precions metals.

The stamps a (four in the series shown) are raised consecutively by the cams b on the shaft c, to which motion is imparted by a belt on the pulley d.
3. A number of connected Leyden jars, adapted for coincident charging and discharging. See ExEcthic Battery.
4. An apparatus for generating galvanic electricity. See Galvanic Battery.

5 . A vessel with sides protected to withstand callnon projectiles, and pierced for heary guns, Distinguished from an ordinary war vessel by its comparatively imperfect capacity for navigating in all waters and weathers. A floating battery.
6. (Nuutical.) The guns mounted on each deck of a slup of war; as the main-dech, lower-deck, and spar-leck batteries.
Bat'ter-y-brush. A small brush, sliaped like a hair-brush, used for cleaning or hrushing off oxides formed on zinc, and for erenly distribnting the mercury or amalgam over the zinc.
Bat'ter-y Com'mu-ta'tor. (Telegraphy.) An apparatus by which the strensth of a current may be altered, so that one third, two thirds, or the whole of the elements may be brought into service by changing the place of a contact-peg. See Sabine, p. 104.

Bat'ter-y-forge. A traveling forge which accompanies a field hattery. The body is constructed like that of a caisson, except that in place of the two ammunitiou-chests it has a bellows-house a. This

Fig. 597.

Battery-Forge.

contains the bellows, and has a space partitioned off for irou and steel. In the rear is a box b, to hold 250 pounds of bituminous coal, and in front is the fireplace c, upon which the anvil is placed in traveling. Au upright plate of strong shect-iron is interposed between the fireplace and the front of the bellows-house. In the limber-chest are contained a set of blacksmith's and farrier's tools packed in four boxes (for field batteries). In the United States service battery-forges are divided into trro classes, A and B. One of the former accorapanies each field battery, and contains a forge as well as the blacksmith's and farrier's tools, iron aud steel, horseshoes, and spare parts necessary for making the more ordinary repairs to the irom-work of the battery.
Forge B, which is precisely alike in size and construction, contains nearly the same toals and stores as forge A, hat has, in addition, certain articles and spare parts which are less likely to become broken or worn ont in service. It remains in the rear with the fiell and siege train.
Bat'ter-y-gun. A gun having a capacity for firing a number of shots consecutively or simulta-
neously, without stopping to reload. There are a number of varieties.

1. A piece of ordnance having a number of loadchambers attached to a vertical axis, and consecntively presentell at the rear of a cannou-bore. As each takes its place at the breech, it is advanced into the bore and locked before firing. (Hal:Dy, 1862; Dodge, 1856.)
2. A chambered breech-piece, revolviug in a rertical plane, aud presenting its clambers consecutively at the open rear of the barrel, which is common to all the chambers. The principle of construction is that of the revolving chambered pistol. (Henrick, 1870.) See also Fnie-A:us, where Pucrle's Revolving Battery Gun, English Patent, 1718, is described and figured.
3. A number of parallel barrels artanged in rank, and having connected rents for intercommunication of fire. (Towssexd, 1871.) The infernal machine of Fieschi, which he fired on Louis Pliilijpe, was a row of barrels clincled to a frame, and had a train of powder which was laid over all the vents in succession, like the row of barrels in a 1 roving-house.
The Requa battery consists of 25 rifles, each 24 inches long, mounted in a horizontal plane ulon a field-carriage. It is breech-loading, the cartridges being forced into the chambers by a sliding bar worked by two levers. By a lever beneath the frame the barrels may be diverged, so as to scatter the balls 120 yards in a distance of 1,000 yarrs.
The weight of the battery-gun used at Charleston, S. C., was 1,382 pounds. Served by three men, it fired 7 volleys, or 175 shots, per minute. Its effective range was 1,300 yards.
4. Forms of many-barreled cannon, revolring on a vertical axis, the pieces being muzzle-loaded. (Misburx, 1866. Divergent, Natcher, 1864.)
5. A cluster of rotating barrels, consecutively loaded and fired by automatic action. (Gatlisg, 1861 -65.) This will have a longer description presently.
6. A cluster of barrels, in whose rear is placed a clambered plate, each of whose chamuers corresponds to one of the cluster of barrels, against whose rear it is locked before firing. The Mithailleur (which see).
7. A number of chambered blocks brought consecutively to the positions for loading, and then for firing, through a groult of barrels equal in number to the number of chambers. (Taylor, 1871.)
The Gatling gun has a revolving cluster of parallel barrels. In the rear of each barrel, and rotating therewith, is its own loading, fring, and spent-car-tridge-shell-retracting mechanism. All these parts are rigidly secured upon an axial sbaft, which is revolved by means of bevel gearing and a crank, as shown in Fig: 599, and also in Fig. 599, which are respectively rear and front riews of the gun mounted. In tbe rear of the cluster of barrels b is a stationary crlinder a, within which are the loading plungers, the firing-pin, and the cartridge-retractor.
Each of these parts moves horizontally and in line with the barrel to which it alpertains, the motion being attained by the pressure of lugs on the moving mechanism against stationary cam-rings in the cylinder as the cluster of parts revolves. The ammunition is fed in at the hopper g; or, as in an improved form shown in the full-page engraving opposite to page 250, the ammmition is contained in a feeddrum which is placed above the hopper, and delivers its cartridges one at a time from its successive rows. Its capacity is four hundred cartridges, and these may all be fired in one minute.
As the cluster of barrels revolves, the operative
mechanism in the rear of each barrel comes under the Arrangement is made for lorizontal adjustment to influence of the eam-rings in the interior of the cyliu- deliver a sweeping tire.
der. The loading-rod of a given barrel being in the most retracted position when that barel is uppermost, a cartridge drups into the groove in front of the said rod; as the barrels rotate, this rod is pushed forward, and drives the cartridge into the rear of the barrel ; a firing-pin, which traverses in a longitudinal slot in the loader-rod, is all this while being retracted, until the barrel is at its lowest position; then the firing-pin passes the retracting cam, and is abandoned to the influence of a spring, which drives the end of the pin forcibly against the cartridge and explodes the fulminate. Now comes into play a hook whose

Fig. 598.

Gating Gun (Farar Virvo).
shank runs parallel with the loader-rod, and withdraws the empty shell of the cartridge, which drops ont of the machine. The barrel then takes its turn again above, and so the work proceeds.
e is the working-crank, c the elevating-screw, d the trail, k the loup by which the trail is attached to the limber, $h i$ are the back and front sights, l the cheeks of the carringe. In the view on the opposite page the Gatling gun is represented as adapted to various services: mounted on tripod, on carriage, on horse, on camel. The weight of the guns is 125 , $300,500,600$ pounds, according to size. The firing is always une shot at a time, and a number of shots

Bat'ter-y-head. (Iailroad Enginsering.) The end of an embankment under formation, over which the contents of the gravel-wagons are dumped.

Bat'ter-y-wag'on. A four-wheeled vehicle, expressly adaptel for the purpose of transporting the tools and spare parts required for the repairs of a battery of artillery in the field; one is attached to each battery.
It lias a boily 98.8 inches long and 3 feet wide in the clear, and an arched wooden top, turning over on hinges like a trunk-lid. At its rear is a rack for forage. The wagon-body and the limber-chests carry

Fig. 599.

Gatling Gun (Front Vieve.)
equal to the number of barrels at each revolution of the crank. The recoil is practically nothing.

Fig. 600.

spare parts for the carriages, harness, etc. ; also har-ness-maker's tools, paint, oil, candles, axes, hatchets, picks, and miscellaneons tools.

In the United States service battery-wagons are designatet, according to their contents, C and D . The former accompanies the field-battery in its evolutions, and is posted a short distance in the rear in time of action. It contains the tools, materials, and spare parts necessary to repair on the spot the smaller casualties most likely to occur to the wood-work and harness of the battery.

Battery-wagon D is precisely similar in construction, but contains a different set of stores and tools, such as armorer's tools and laboratory implements,
as well as such spare parts of gun-carriages as are less likely to require replacement.

It remains with the vehicles of the field-train, and is only resorted to when the means afforded by wagou C are inadequate for the necessary repairs.
Bat'ting-block. (Pottery.) A block of wet plaster on which a dab of clay is Hattened out by a butter, to prepare it for being placed on the whirling-table, where it is formed by a mold and templet into a piece of circular ware.
Bat'ting-ma-chine'. (Fibcr.) A machine in which cotton partially Ioosened and cleaned by the willowing-machine (which see) is seutched, blown, and lapped so as to fit it for presentation in a soft, downy, and even wad to the carding-machine.

As a preliminary process, the cotton is carefully weighed, a given quantity being distributed on a certain surface of the slatted feed-apron, which has
oceasional black slats in order to mark certain areas. The cottou, being spread evenly over the given area, passes into the throat of the machine under the com-pressing-roller d, and then between the feed-rollers b, which are pressed together by a weight acting unon a lever c, which acts unon the brasses above the rollers. Passing the fluted cylinders b, the cotton is immediately exposed to the first scutchingbeater, which consists of two Hat bars $e e$ fixed at right angles upon a revolving shaft, so as to strike upon the cotton as it issnes from between the feedrollers. The scutcher nakes 2,000 revolutions per minute in near proximity to the grated concave C, through which dirt escapes: The cotton is wafted on to a traversing slatted apron D, which revolves on the rollers $f g$, passing beneath a revolving cagecylinder E, inclosed by the cover h, in the top of which is a dust-duct i, in communication with a revolving fan, which exhausts the air from the interior

Fig 601

Batting-Machiae.
of the machine, and therewith withdraws the dust. The reticulated cylinder E allows the air and dust to pass, but retains the cotton fiber, which is pressed into a but unon the apron D, and delivered to a second pair of feed-rollers 1 , when it is again exposed to a scutcher F, which acts similarly to the one before described. This seutcher has 2, 200 revolutions per minute, and delivers the cotton to an apron G, which carries it beneath another reticulated, dustwithlrawing cylinder in communication with the air-exhaust duct m.

The cotton thence passes in a flecey mass to the pressure-rollers of 1 , which detiver the compressed fleece to the cylinder whose axis is loaded by suspendel weights L, which bear it down upon the carrying-rollers $K K$, whereby the fleeee is condensed as it is wound. As the lap-cylinder I increases in diameter, the links rise, carrying the weights L, and when the lopp has attained the required size, the main nortion of the machine is thrown out of gear, while the twin rollers p p continue to revolve, and thus tear the bat apart in the midlle between the pairs of rollers op. The attendant then removes the lap, hooks up the weighting device, places another lapcylinder in position, starts the machinery, restores the action of the weight, and guiles the ardvanced edge of the bat around the cylinder. See Cotroncleaner.

Bat'ting-staff. An implement used by laundresses for beating linen in washing.

Bat'ti-tu'ra. The scales which tly off from metals while under the hammer.

Bat'tle-axe. This military weapon is of very remote antiyuity, being made of stone before the discovery of metals. (See Axe.) It was used by the Sace, wbo formed a part of the forces of Xerxes.

Fig 602.

Battle-Ares.

Brennus, the Gallic king, who eaptured Rome, was armed with a battle-axe, and in remote ages it appears to have been considered peculiarly as the weapon of an uncivilized people. It was, however, extensively employed during the Middle Ages, and was in use as late as the sixteenth century, when attempts were made to improve it by attaching a pistol to the handle.
a, battle-axe from Dr. Abbott's collection of Egyptian antiquities in New York; made of bronze, firmly bound to its original handle by means of slender interlaced thongs of leather. It was found at The bes.
The other figures represent battle-axes, more or less rude, of the times known as the "Roman period" and the "Middle Agres."

Bat'tle-dore. 1. (Glass-making.) A flat woolen paldle, used in flatting glass while still plastic, as in making the flat bottoms of decanters, etc.
2. An instrument of play, having a handle and a flat surfice, or palm, formed of a hoop, and stretcherl parchment covers. It is used in playing shuttlecock.

Bat'tle-ment. (Architceture.) An open or interrupted parapet on the roof of a building. A parapet with embrasures.

Bauge. (Fabric.) A French fabric made with thread spun upon coarse wool.

Bav'in. A fagot of brushwood, sometimes used as a faseine.

Baw'sin. Leather made from sheep-skin. (Fr, bascanc.)

Bay. 1. (Architecturc.) One of the lights or compartments between mullion and mullion in the great windows of the pointed style.
2. (Carpentry.) A portion of a compomd or framed floor inchuded between two girders, or a girder and the wall.
a. A case-bay is between two girders.
3. A tail-bay is formed of common joists, where one end of each is framed into a girder and the other rests on a wall.
c. A portion of a wall included between pilasters or buttresses, or of a ceiling between the beams of the panels.
3. The term is also used in a compound form:-
a. A bay of plastering; between two screeds which regulate the working of the float.
b. A bay of roofing; the small rafters and their supporting purlins between two principal rafters.
c. A bry of joists; the joists between two bindingjoists, or between two girders in a framed floor.

Hay-bay in a barn ; a sick-bay on shipboard.
4. (Ship.) That part on each side between decks of a man-of-war which lies forward of the butts.
5. (Bridging.) The portion between two piers.
6. (Mining.) The space between two frames in a gallery.
7. (Hydraulic Engincoring.) a. The head of a lock.
b. A compartment containing water for a wheel, as a fore-bay.

Bay-bolt. One with a barbed shank.
Bay'o-net. A piercing weapon, fixable on the muzzle-enul of a fire-arm. They were originally made at Bayonne, in France, in the latter half of the seventeenth century, and used by that nation in the Netherlands in 1647. The weapon was introlluced into the English army in 1672, and used at Killie: crankie, in Perthshire, where the forces of William of Orange, commanded by Mackay, were defeated by those of James II., under the command of Grahan, of Claverhouse, 1689 ; and also at the battle of Marsaglin, 1693, "with great success against the enemy,
unprepared for the encounter with so formidable a novelty."
The first known bayonet was a kind of long and slender rapier, with a wooden handle, or plug, which was inserted into the muzzle of the musket. Previous to this it had been customary to distribute musketeers among the pikemen, the two mutually supporting and assisting eaeh other. The above-named arrangement for fixing the bayonet does not seem to have prevailed long, and was soon superseded by a slotted socket on the lower part of the bayonet, which slippeel over the muzzle of the musket and was held in position by a stud on the larrel. The ring-bayonet was introduced in 1693, and the socketbayonet in 1703. This form continued in use for about 150 years, an annular clasp and screw being added about 1842 in the United States service.

The "sword" bayonet b seems to be of very recent origin, having been first recognized in the United

Fig. 603.

States army in 1856. Its utility as a weapon is very questionable. It is believed that this form of bayonet was first introducel in the French service among the Chasseurs de Vincemes, who used it in Algiers, in the Crimean campaign of 1854-55, and the Italian war of 1859.
It is secured to the rifle by a ring in the guard and a spring-eatch in the hilt.
The saw-bayonct, having a sworl edge and a saw back, is now being tested for the British arms. The spade-brymet has also its adrocates, it leing intended to enalle the soldier to intrench his position. The tendency seems to be to beat their spears into trowels and their swords into prrning-saws, but the peaceable intention is not applarent. See Intrenching Tools.

The bayonet-blade is forged under a trip-hammer, after which it is rolled to a proper form by sets of rollers aljusted to give it the requirell shape and taper. The socket is then forged, ind the two portions welded together. It is next twire swaged hy the "drop," then ground and polished ; the former on a stone, and the latter on wheels bound with leather and covered with emery. The bayonet is rigidly gaged, and then tested by weight and by blow to retermine its sonndness and temper.

Bay'o-net-clasp. A movable ring of metal surrounding the socket of a hayonet, in orler to strengthen the socket and render the bayonet less easily detachable.

Bay'o-net-joint. A peculiar form of coupling, in which one circular piece, having a slot lougitudiwal for part of its length and transverse the remainder, is sleeven over another. The interior piece is provided with a stud which enters the slot, and, by turning, the two parts become locked so as to prevent withhrawal by a longitudinal movement.

Bay'o-net Scab'bard. The sheath in which the bayonet is plaeed. It has a loop at its npper part, called the froy, throngh which the waist-belt prasses.

Bay-stall. (Building.) A fixed seat within a winlow-opening.

Bay-win'dow. (Building.) A bow-window; one projecting from the general surface of the house. It is usually of semi-polygonal shape, sometimes semicircular or semi-elliptical.

Bdel-lom'e-ter. A cupping-glass to which are attachel an exhausting syringe and a scarificator.

Bea'con. A structure erectel for the purpose of assisting navigation by pointing out those dangers which, owing to the dificulty and expense that wonld attend the placing of more efficient marks to serve by night as well as by day, are necessanily left without lights, or which, from the pepuliarity of their position in passages too intricate for navigation by night, are considered sulfici-ntly indicated by daymarks alone. They are generally place lon rocks or hanks only which are dry at some period of the tide. On rocks in exposel sitnations beacons are sometimes of squared masonry, firmly jogglesl tagether ; but in situations difficult of access, and where an uncompleted structure of masonry could not be safely left exposed to the storms of winter, an open framework of iron, firmly trussed, braced, and secured to the rock, is preferable. In less exposed situations, where the hottom is of rock, gravel, or hard sand, a conical beacon, composed of iron plates and partially filled with concrete, is sometimes employel.

In a comprehensive sense, a lighthouse is a bercon : but the term technically refers to clay marks, or to night marks where cressets are employed.

A sonorific bercon, so called, is one provided with an apparatus for sounding an alarm. See FogAlaki.

Bead. 1. (Carpontry.) A small salient molding of semicircular section.
a. Coch-bead.

Fig. 605.

Beads.
b. Quirk-bead.
c. Berd-bu".
d. Bead-flush
c. Double-quirked bead.

A small globular ornament, often occurring in a long series, forming a band or molding.
The strip on a sash-frame which forms a guide for the sash. The beads are known as the inside, outside, and parting beads.
2. (Eookbinding.) A roll on the headband of a book.
3. The proof of spirit, consisting in the appearance of the rising bubbles.
4. A perforated piece of glass, metal, or other material, allapted to be strung
in a series, and used for the purpose of ornament or in devotion. This latter use came from Asia to Eu:ople, and from the latter to America.

Glass beads originated with the Egyptians, - at least, such are the indications. One, in the possession of Captain Henvey, has a hieroglyphic inseription which shows its date to be about 1500 в. с. Glass bugles and heads for necklaces were much used by the Egyptians, and for a sort of network in the mummy-wrappings.

Beads strung in chaplets have long been in use for devotional purposes among Eastern nations, and are worn by the Chinese and Tartar Buddhists, as well as by the Turks and other Mohammedan nations.

The Chinese rosary is comprosed of 108 beads of stones and coral, which are sometimes as large as pigeou's eggs. The use of beads in the Christian Church is of great antiquity. St. Augustine mentions them A. D. 366 . Peter the Hermit had a scries of 55 beads. Dominic de Guzman, A. D. 1202, introduced the rosary of 15 large and 150 small beads. Beads were used by the Druids in the time of Cæsar.

Beads are made of a great variety of materials : goll, diamond, amber, pearl, coral, jet, garnet, crystal, steel, paste, wood, glass, etc., much the greater proprtion, however, being of the latter material. The manufacture is extensively carriel on at different places in Europe, that of each place being characterized by some peculiarity in the style or manner of manufacture. Immense numbers are made at Birmingham, certain vanietics of which are sold by thousands of dozens as dolls' ey'es.

At Murano, near Venice, where great numbers are made, tubes of glass of various colors are drawn out to a great length and cut into very small pieces of uniform length, which are then put in a heap with a mixture of sand and wood ashes, and stirred with a spatula until the cavities become filled. The mixture is then transferred to an iron pan suspended over a moderate fire, and stirred ontil the cylindrical bits of glass assume a smooth rounded form. (See Bead-fulinace.) When removed from the fire, and their bores cleaned out, they constitnte beads.

A very beautiful and costly sort of beads are made in imitation of pearls, from which the best qualities differ so slightly in appearance as to require an expert to detect the difference. The bead is blown into a thin bulb, and the pearly appearance produced by pouring into it a mixture of liquid ammonia mixed with the white matter from the scales of certain kinds of fish, as the bleak. The pearl matter is prepared by removing the scales from the lower part of the fish, washing them, and soaking them in water until the pearly film falls off and forms a sediment in the bottom of the ressel; this is dissolved in liquid ammonia and injected into the beads, so as to form a thin coating inside; after which the better kinds have melted white wax poured in, rendering them mnch more durable. Artificial pearls were invented by a Frenchman named Jarquin, in the time of Catherine de Medicis, and are principally manufactured in the department of the Seine, where great improvements have been made in the art; such as giving irregnlar fomns to the large bulbs, to increase their resemblance to pearls, and exposing them for a short time to the vapor of hydrofluoric acil, so as to remove the glassy appearance of the exterior coating. Mucilage of gum-arabic is also used instead of wax, which increases the translucency, and is not liable to be melted by heat.

Beads of agate, carnelian, and allied stones are made in British Indiat by breaking the stones into pieces of the required size, and chipping them with a hammer until rounded. They are then fixed in woorlen clams, and partially polished by mbbing on a coarse, hird stone, after which they are similarly treated by being rubbed on a board covered with emery and lac. The nolishing process is completed by placing a large number of them in a leathern bay partially filled with emery-dust and a fine powder derived from the stones themselves in drilling, and rolling the bag backwards and forwards for some ten or fifteen days by means of a thong passing around it and operated by two men seated at the opposite sides of a roons. The holes are afterward drilled with a steel drill tipped with diamond dust.
Bead and Butt. (Curpcntry.) Framing in which
the pancels are flush, having beads stuck or run upon the two edges. See ε, Fig. 605.
Bead and Quirk. A bead stuck on the edge of a piece of stntf Hush with its surface. See b, Fig. 605.

Bead-butt and Square-work. (Cierpentry.) Framing with beud and butt on one side and square on the other ; used in doors.
Bead'ed Wire. An ornamental wire having globular eulargements at regular intervals.
Bead'ed-work Lathe. See Milled Work; Gage-lathe.
Bead-fur'nace. (Glass.) A furnace in which glass beads are rounded after the cylinders have been cut to the proper lengths. The back of the furuace B has a step, into which the point of the axis t of the drum K, in which the beads are placed,

Fig. 606.

is inserted. This and the hook l, suspended from the upper projecting part N, serve as supports for the drum in its inclined position. The heat is maintained at a point sufficient to soften, but not to melt, the beads, and the rounded form is imparted to them by rotating the drum by means of the handle S.
Bead-loom. (I'eaving.) A gauze-loom in which beals are strung upon the threads, the intersections of the threads being occupied by the beads.

Bead-plane. (Corpentry.) A molding-plane of a semi-cylindric contour, generally used in stiching a molding of the same name on the edge or on the side close to the arris. A set consists of nine planes, each working a half-roun-l of given radius.

Bead-tool. (Hrood-turning.) A tool for turning convex moldings. Its end has a semicireular or other curved form, with a sharp edge corresponding to the contour of the bend desired.
Beak. 1. (Architccture.) A small pendent fillet forming a channel behind, to prevent water from running down the lower hed of the cornice.
2. (Shiprerighting.) The rostrum or prow of a ship. Piseus is said to have added it to the ancient galleys. It is now revived in the ram.
More technically speaking, a part of the ship before the forecastle, fastened to the stem and supported by the main knee.
3. (Carpontry.) The crooked ent of the holdfast of a carpenter's bench.
4. (Forging.) a. The point of an anvil. The horn. The beuk-iron or bick-iron is all beak.
b. A toe-clip or a horse's shoe turned up against the hoof.
5. (Noutical.) a. A ram, pike, or rostrum on the stem of a vessel to run town an opponent.
b. The part of a ship forward of the stem and supporting the figure-head.
6. (Chemical.) The rostrum of an alembic which conducts the vapor to the worm.
7. One of the jaws of a forceps or pliers, named after some real or fanciel resemblance to the protruding facial organ ; as, -

Hauk's-bill forceps.	Round-nose pliers.
Narrow-beak forceps.	Crane's-bill forceps.
Long-nose pliers.	Crou's-bill forceps.

8. (Gas-Fitting.) A gas-burner with one round, smooth hole $\frac{2}{2} 8$ of an inch in diameter.

Beak'er. (Glass.) An open-mouthed thin glass vessel, having a projecting lip, for pouring; used for containing solutions requiring heat, etc. Bcakerglass.

Beak'-head Beam. (Shipbuilding.) The longest heam in a ship.

Beak'ing-joint. The joint formed by the meeting of several heading-joints in one continued line, which is sometimes the case in floors and doors.

Beak'-i-ron. 1. (Sheet-iron Working.) Beak, Beck, Bick-iron, Bichern. An anvil with a long

Fig 607.

Beak-Irons.
beak adapted to reach the interior surfaces of sheetmetal ware.
a. A tool with a long beak, usell for rounding sections of stove-pipe, large tin-plate ware, etc. lts tang is set in a sfuare socket in the bench.
l. A tool with a shorter and cylindrical beak.
c. A tool with two beaks, which act as stakes or anvils in the interior of ware, differently presented.
d. A conical beak, intended to be grasped in a vise. A stake.
2. The horn of an anvil.

Beale-light. An argand burner, in which the flame is ferl with air under pressure, rising through the central aperture. Named after its inventor.

Beam. A straight piece of wood or iron in the frame of a structure, usually occupying a relatively elevated, horizontal, and transverse position: as the beams of a ship that support the deck (uniting the sides above the keel, the spine of the ressel); the beams of a house or barn, streteling across it, and supported by the side walls or posts.

Relative size; character, position, and importance have caused the word to be applied to a long straight piece in a machine or tool, whether poised (a), journaled (b), or fixed (c).
a. The poised beam of a balance, to whose respective ends the scales are attached. In the Roman balance or steelyard, the beam is not radically eqnipoised, bnt one end is longer than the other, so that a smaller weight on one end shall counterbalance a larger on the other in calculated proportions, as in many counter scales and all platform scales. The larger descriptions of the latter hare combinations of beams or levers.
b. The working or walking beam of a steam-engine, which is poised at its mid-length, and sustains at its respective ends the connecting-rod to the slide of the piston-rod, and the pitman which drives the crank of the paddle-wheel shaft. In the Cornish pumpingengine, in place of the pitman, is attached the pumprod. This oscillating piece is usually called a bcam, and such an engine is sometimes called a beain-engine. See also Side-beam Evgine.
c. The straight, cylindrical, horizontal bars in a loom, on which the yarn and fabric are wonnd, called the yarn-beam and the cloth-beam respectively.

1. (Building.) Specific denominations have been conferred upon beans in framed structures of wood.
a. Tic-berm; one uniting the ends of a pair of principal rafters, or a pair of posts, to prevent spreading or dirergence.
b. Collar-beam; a horizontal strut connecting and bracing two opposite rafters.
c. Dragon-beam; a piece of timber to receive and support the foot of the hip-rafter.
d. Straining-beam; one used in a truss or frame to confine principal parts in place.
e. Cumber-beam; a horizontal beam in a simple span, whose sill has two posts, two struts, and a camber-beain uniting the tops of the posts.

A beam bent or bnilt into an arched shape to support a sill or summer. f. Hemmer-beam; a tiebeam proceerling from the feet of a pair of principal rafters, bat haring its middle portion removed; the ends at the gap are stayed by ribs springing from corbels below, and support other ribs which spring into an arch.
g. Binding-beain; a tie-beam which binds together portions of a frame.
h. Girder-bean ; a tie-bean.
i. Truss-berm ; the principal horizontal timbers of a truss, called the top ani bottom chord, and from which proceed the stays and braces which hold and push respectively, so to speak, and confer rigidity upon the frame.
j. Summer-beam; a central floor or ceiling timber, resting at its ends upon the walls or the girders of the exterior frame, and supporting the ends of the joints which are notched into it.
k. Arehed beam; a beam bent, cut, or built into an arched form to support a structure. See Archel) Beam.
l. A built-beam is one made of several parts scarfed or ştrapped together.
m. A kerfed beam is one whose under side has a number of transverse kerts penetrating to a certain depth, so as to enable the beam to be bent. See Arched Beam.
n. Ground-bcam; a sill for a frame.
o. The box-beam is a form of girder having a double web, inclosing a box or ccll. (Nee Girder.) 1 it is nually of iron. See Figs. 216, 218.

Fig. 608 represents four forms of beams in English use.
B represents a girder on the suspension principle, the wuoden girder a a being stayed ly the tension-rods e ef, which are looped orer the cast-iron toe-plates $b b$. At points one third of their length from either end the rods are bolted to iron cross-pieces $d d$, which rest against blocks εe beneath the beam.
A is a cast-iron girder with a srought-iron tiebolt.
The next beam in the figure slows a pair of parallel girders with east-iron foot-plates c, embracing the ends of each, holding them at their distance, and affording points of attachment for the suspensionrods a $"$, which are secured by screw-nuts to the iron sadd!e-pieces $d d$, the latter being connected by links b.

Fig. 608.

The lower illustration (Fig. 608) is a combined wood and iron girder, used to support a large brew-ery-vat, weighing, when full, about 100 tons.
The main features of this beam consist of three cast-iron plates a a a, whose abutting ends rest against cast-iron blocks $c c$, and which form a kind of arch, supported by a bow and string truss $g g d d$. The ends of the beams rest on shoes b and wallplates g.

Mr. Hodgkinson, of England, is said to lave determined the true shape of a cast-iron beam, as deduced from his discorery of the fact that the renistance of cast-iron to direct crushing is more than six tinnes its resistance to tearing.

It consists (1, Fig. 609) of an upper flange a, web b, and lower flange c. The sectional area of the lower flange, which is subject to tension, is nearly six times that of the upper flange, which is subject to crushing. In order that the beam, when cast, may not be

Cust-Iron Beams. Sections.
liable to crack from unequal cooling, the thicknesses of the vertical web at its upper and lower edges are nearly equat to those of the flanges at top and bottom respectively.
The most usual shapes of cast-iron beams are shown in the views, which present cross-sections.
1, 2. Double-T beams.
3. Inverted-T beam.
4. Trough-shaped beam.

Fig. 610 shows a number of forms of sections of fagots for wrought-iron beams, the webs and flanges being made up of plates riveted together, and so disprosel as to bring the fibrous strength of the iron into the most advantageous positions. The fiegots, having been made up, are heated in a furnace, and then rolled by a train whose "passes" have the appropriate

Fig. 610.

Fagote for Beams.
size and shape to bring the beam, by successive oper ations, to the shape and size required in the finished beam.
2. (Shipluilding.) One of the curved transverse timbers of a vessel, supporting a deck.
The end of the beam B rests on a shelf S, which is bolted through the futtocks F, and its upper and lower sides are secured by dowels $d d^{\prime}$ to the water-way $I V$ and shelf S. A vertical bolt $a b$ ties the water-way, beam, and shelt together, white another bolt $f e$ secures together the water-way W, futtock F, and planking P. $c d$ is the convex curve of the wa-ter-way, for which

Fig. 611.

Bram. may be substituted the concave curve shown in dotted lines. The ucter-way forms a tie above the beam and below the spirkeliny.

F, frame.

$0 P$, outside planking.
$I P$, inside planking.
B, deck beam.
D P, deck
planking.
S, shelf to which the beam end is coakel.

IF, thick water-way.
w, thin water-way.
$E S$, binding strake or let-
, b,

ting-down strake.
\bar{K}, forked iron knee.
Ship's Deam and Fasten.
ings.
Dotted lines show the holts.
A midship-becem is a ship's deck-beam about the waist.

An orlop-beam; a beam of the Jower deck, or where one would be were it laid.
3. (Nautical.) a. A fender-beam is the inclined bean of an ice-breaker, shod with iron. A beam to protect a quay or jetty by receiving the impact of the ressels alongside.
b. The shank of an anchor from one of whose ends the arms diverge, and whose other end passes through the stock, or conversely.
c. The width of a vessel is called her breadth of beam.
4. ($1 /$ earing.) a. The roller on which the yarn is wound, and from which it is let off as the weaving progresses. The yarn-beam.
b. The roller on which the goods are wound by a take-up motion as the wearing progresses. The cloth-beam, or breast-beam.
5. (Ruilroat Enginecring.) The suing-beam is a cross-piece supported by the frame of the truck, and sustaining the car-body in such manner that a certain lateral motion and play is allowed.
6. (Currying, ctc.) The board orer which a hide is placed to be unhaired, struck, or shaved by the knives adapted to those processes.

The umheiring-beum is a cylindrical talle on which the hides from the lime-pit are placed while the hair is scraped off:

The striking-bcam is a cylindrical horse on which the hides are occasionally scraped by a triangular steel knife, during the time they are drying after removal from the taming-liquor.

The currier's beam is an inclined post over which the hide is stretched to be shared by the currier's knife.

The currier's beam in a slanting position is shown in the ancient paintings of Kourna, Thebes.
7. Sucipe-beum; the counterpoise lever of a drawbrilge.
8. The oscillating lever of a steam-engine. A working-beam or sidc-lewer.
9. The main picee in the frame of a plow to which the handles, clevis, and standard are attached.
10. The straight working-edge of the stock of a square or berel.
11. The bar on which slide the soekets carrying the points, pencil, or pen, of a beam-compass.
12. The pole or tongue of a carriage (not much used).

Beam-board. The platform of a steclyard or balance.

Beam-cen'ter. (Steam-Engine.) The pin on which the working-beam vibrates.

Beam-com'pass. Sometimes called a trammel. An instrument for describing

Fig 613.

Beam-Compass.
large circles. It has a berm or rod, and two sliding sockets which carry the steel point and the pencil or pen points. Set-screws on the sockets hold them to their places on the beam.

Beam-en'gine. (Stcam-Enginc.) An engine with an oscillating beam, to whose respective ends the connecting-rod from the piston and the pitman from the crank are attached.

In the Cornish engine the connecting-rod is at one end and the promprod at the other end.

To avoid the elevation of the working-beam, so common in our Atlantic and Eastem river steamers, the sile-lever engine has been invented. This brings the engine into more compact form, throws the weight nearer to the keel, and places the engine below the water-line in some cases, - an espeeial advantage in war-vessels. See Side-beam Exgine; Marine Stean-engine; Lever-engine.
The old atmospheric engine of Newcomen was a beam-engine, and he is justly regarded as the inrentor of the working or walking beam. (See Steamevgine; Atmospheric-engine.) The pmup-rod and the piston were suspender by flexible compections from arcs on the ends of the working-beam. When Watt came to the work, he derisell the parallel motion as a means of commumicating a vertical motion to a rod from a point on a beam which oscillated in an arc.
Beam-fill'ing. (Masonry.) Filling-in courses of brick or stone between the ends of beams or joists where they rest upon a wall.
Eeam'ing. 1. (IVearing.) The operation of winding the yarn upon the beam of a loom.

The yarn-threads are laid uniformly in the order in which they were placed in the warping-mill by means of a separator or ravel, which consists of a number of pieces of cane fixed to a rail of wood, so as to resemble a rake. The threads pass between the teeth, and the yarn is spreal on the beam to the reguired width.

2 . (Lcather.) The operation of working hides with a slicker orer a beam.

Beam'ing-ma-chinet. (Leather.) One in which hites supported on a slidling or rolling carriage are

Fig. 614.

Beaming-Machine.
operated upon by a pendulous slicking-tool which has a vibratory motion. The motion of the carriage brings different parts of the leather under the influence of the tool.

In the illustration, the leather is supported on a rotatable tablet k resting on a earriage $o o$, which runs back and forth on rails. The tablet k is vertically adjustable by means of the trealle $p b$. The beaming-tool f is brought in contact with the leather or raised therefrom by means of the eecentric-rods g and rod h, which are moved as required by means of the wheels $b e$.

Beam-knife. The two-handlell knife used by curriers to shave hides when they are stretched over the beam. See Crbiner's linife.
Beam-line. (Shipurrighting.) The line indicating the intersection of the top of the beams with the frames.
Bean-har'vest-er. (Agriculture.) A machine for cutting bean-haultn and placing the vines in windrow, cocks, or in a receptacle of the traveling macline.
There are several forms :-
A hand-puller, having a long row of teeth to catch, and a movable clamp which somes down upon the teeth to grip, the vines.
A machine with a broal, flat oblique slaare which cuts the roots beneath the surface, followed by lift-ing-bars which raise, and a rake which collects, the rines in a bunch. By oseillating the rake, the bunch is clumped upon the ground.
A plow which cuts the vines below the surface, and lifting and directing rods which conduct them to a box on the machine.
A two-wheeled machine, having a rotating wheel with claws which catch, lift, and then deposit the vines in a box on the machine, whence they are dumped in cocks.
A machine with a pair of nearly horizontal toothed wheels rotating in apposition, so as to grasp the rines at the ground surface and lift them so that they may be grasped by a traveling elevator-belt, which deposits them in the box of the machine.
A wheeled machine in which the pullers H are guided in and out of a hollow cylinder by a cam-
fride g, so as to catch the haulm, lift it, and carry it upward and over, and then, by retraction of the

Fig. 615.

puller-arms, leave the vines upon the platform E on the rear of the frume A. The pullers rest upon springs S inside the eylinder, and are projected by the same in the intervals of their retraction by the can-guide.

A form of machine which follows the row of plants, and in which the rotating puller-wheel has a continuons series of pairs of clamps, which close as they come over the row, grasp and lift the vines, and then open to deposit them in a chute which carries them to a transversely nowing apron which deposits them.

A machine (Fig. 616) having L-shaped cutters, which sever the vines below the surface of the

A mill for grinding beans to meal.
Bean-shel'ler. A machine for removing the hulls from beans. In the example, the pods are fed by an endless apron c longitudinally, and cut by the serrated wheels i; the toothed rollers $B B$ then carry off the hulls, allowing the seed to drop into the receptacle.

Bean-shot. (Mctallurgy.) Copper in grains. Prodncel by pouring the melted copper into watcr.

Bear. (Mctal-wrorking.). 1. A portable punching-machine for iron plates. A punching-bear.
2. (Nusutical.) A heavy block shod with matting, and used to serub the decks.

Beard. 1. (Carpentry.) The sharp edge of a board.
2. (Knitting.) 'The hook at the extremity of a needle inaknitting-machine, which retains the yarn.
3. The barb of an arrow or fish-hook.
4. (Agriculture.) The awn of grain, as of barley, which is removed ly hum. meling.
5. (Printing.) The part of the type between the shoulder of the shank and
 the face.
6. (Locks.) A spring-piece on the back of a lockholt of a common kind, to hold with a moderate pressure in either of its positions, and prevent its rattling in its guides.

Beard'ing. (Ship)urighting.) a. A beveling or rounding; as of the aljacent parts of the rudderand sternjost, to give the former a greater range of motion without jamming against the latter.
b. The curving of the dead-wood to suit
ground, from which they are raised by a trailing device, consisting of diverging prongs, and left upon the surface of the gromnd.

Bean-mill. (Husbecudry.) A mill for splitting beans. Used in England in preparing them for horse-feed.

Fig. 617.

Fran-Shellor.
the shape of the ship's hody.
Beard'ing-line. (Shipbuilding.) The trace of the inner surfice of the ship's skin non the keel, stem, and stem-post.
Bear'er. Anything used by way of support to another weight.

1. (Curpentry.) a. A member employed to carry other portions, as joists used in supporting lead flats or short pieces to support gitters.
b. A becring-partition is one that supports a structure above.
2. (Engincering.) Bearing-piers and becering-walls are supporting struetures.
3. (Lathe.) That part of the lathe which supports the puppets.
4. (Furnace.) A supporting bar beneath the firebars of a furnace.

- 5. (Mill.) The housings or standerds of a rollingnill, in which the gulgeons of the rollers revolve.

6. (Printing.) a. Type or furniture letter-high, to protect the face of the type in printing or stereotyping.
. The overlay or frisket sheet.
7. (1fusic.) In an organ, one of the thin pieces of hard wood fastened to the upper side of a soundboard, to form guides for the register-slides which command the openings in the top of a wind-chest leading to the pipes of the separate systems of pipes which form stops. See Stor; Orgax.
Bear'ing. 1. (Architccture.) a. The span of a bean between its points of support.
b. The bcaring at the ends or wall-support is the length of the rest on the wall or pier.
8. (Ifuchinery.) a. The portion of an axle or shaft in contact with its collar or boxing.
b. The portion of the support on which the gudgeon rests and rotates.
9. (Telicie.) One of the pieces supporting the framework of a carriage and resting on the axle.
10. (Fuitrond Enginecring.) One of the chairs supporting the framework of a railroad car or truck, and resting on the journal of the axle, outside of the wheel.
One mode of lessening the friction of journal-bear-
 ing consists of a rolling support by means of wheels a a. This is familiar in the mode of lıanging grindstones. The same idea amplified has been adopted for the axles of cars and earriages, consisting of an annular system of rollers $\mathrm{c} c$ in the box or hub d, whieh forms a rolling bearing for the axle, the individual rollers of the sys-
stratum, they may bear a load of 1,000 pounds for each square inch of head.

When standing in relatively soft ground, not over one fifth of the above.

The diameter shonld not be less than one twentieth of the length. If rocks are expected to be met with, the point shonld be shod with iron ; such shoe may be one hundredth the weight of the pilc. An iron hoon binds the head, to prevent spreading. It is diven by a Pile-driver (which see). See also Ridangengine; Mlusher-englae; Pile-saw, etc.

Bear'ing-rein. (Saddlcry.) The rein which belongs to the bridle, and which is attached to the bit and looped over the check-look in carriage-harness, and over the hames in wagon-harness.

Bear'ings. (Shipurighting.) The widest part of a ressel below the plank-shear. The line of Hotation of the loaded vessel when trimmed.

Beat'er. 1. (-igriculture.) The striking portion of a thrashing-machine or other mill which acts by percussion.
2. (Cottont, etc.) a. A scutcher.
b. A blade used in breaking flax or hemp.
3. (Heating.) The lathe or batten of a loon for driving the weft into the shod, eompacting the fabric.
4. A hatter's mallet.
5. (Kilting-maekinc.) Another name for the Jack (which see).
Beat'er-press. For baling. One in which the bale is made by beating it into smaller bulk ; or, which is more usual, in which the bale is packed by leating, and finally solidified by direct and maintained pressure.

In the example (Fig. 620), the beater is lifted by means of its togcle-links and liressure-arms $C^{\prime} C^{\prime}$, the latter drawing inward to aroid contact in raising, and the arms become sockets for the ends of the toggles $L . L$, when the beater becomes the follower of the press.
The fulernms of the toggles are formed by the ends of the pivoted rods $A A$, which gradually as. sume rerticality as the outer ends of the toggle-

- Fig. 620.
levers L ascend, when the rope I is tightened. This is tirst a beuter and then a toggle press.

In other cases the motive-power is phaced a story below the flome of the barn, from whence the hay is charged into the press-box. The dratt animal attached to the swecp rotates the capstan, which is made effective either to raise the beater or to move the toggles which raise the lower follower.

Beat'ing. The process of hammering gold or silver intoleaf. Sre (iold-meating.
Beat'ing-brack'et. (IIcaving.) The brtten or luthe of a loom. The movable bar which closes up the roof-threals.
Beat'ing-en'gine. 1. (Paper-mating.) A machine having a revolving cylinder, with chtters operating against a concave similarly armed, to cut lags into stull for paper-1"ulp.
Two or more of such engines are employed : a washer operates coarsely upon the stuff; a finisher completes the work. The first brings the material to halt-stulf, in which condition it is bleachet; hence arise the terms Stuff-evgine, Half-sttof Engine: (which see).
2. (Cotton Munufacture.) The machine in which cotton or other fiber is beaten to rid it of dust, and to loosen it so that it may make a but suitable for farther operations in course. See Fig. 601.
Beat'ing-machine'. (Cotton, elc.) A machine in which the bale-cotton is opened and loosened out so as to rill it of the dirt and trash, and deliver it in a compraratively loose but: The machine has many modifications and names: wolf, devil, opencr, witlower, scutcher, etc. See Cotton-cleaning MaCHiNE.
Bea'ver. (Fubsic.) A heary, milled woolen cloth for overcoats.
Bea'ver-teen. (Fabric.) a. A cotton twilled goods in which the warp is drawn up into loops, forming a pile. This is left uncut, which distingrishes the fabric from relvet, in which. the pile is cnt.
b. A strong cotton twilled goods for men's wear. It is a kind of smooth fustian shom after being dyed. If shorn before dyeing, it is called moleskin.
Be-casse'. (Nautical.) A large Spanish boat.
Beche. (W^{-}cll-boring.) A tool for grabbing a rod when it has broken in the bore.
Beck. A vat or vessel used in a dye-house. A dye-beck contains a clyeing solution; a soap-beck contains soap-suds. See Back.
Beck'et. (Joutical.) A bracket, pocket, loop, or rope to hoh spars, ropes, etc., in position, to prevent their swaying about or lying around loose.
Bed. 1. (Masomry.) a. The line of the direction of the natural strata of stones in the quarry.
b. The horizontal surface of an ashlar or buildingstone worked for huilding or in position ; the respective surfaces are the upper and lower beds. The stone shonld lie horizontally, as it laid in the quarry.
c. The surface of a voussoir, represented by the abrcusoir. That surface of a quoin in an arch which ahuts upon another quoin or a skew-lack.
d. A course of stones or bricks in a wall.
c. The lower surface of a brick, shingle, slate, or tile in prosition.
f. The place preprared for the erection of a wall ; the place in which a block or brick is laid.
g. A layer of hydranlie mortar on the extrados of an arch.
2. (Raturay Engineering.) The foundation of a roadway; in a railway, that part on which the ties imunediately rest, incliding the ballasting.
3. (Machincry.) a. The fommation-piece of a machine or engine, as the bect-plute of a steam-
engine, and the same of smaller structures, lathes, drills, etc.
b. The shears of a turning-lathe to which the puppets are attached.
c. The lower lie of a punching-machine.
d. The lower stone of a grindins-mill.
c. The table of a planing-machine on which the work is doggel.
4. The wooden block out of whieh are hollowed the uortars in which the materials for gunpowder are compounded.
5. (Shipurightin .) a. The cradle of a ship on the stocks.
b. The part of a bowsprit having the greatest diameter:
6. (Carpentry.) The surface in a plane-stock on which the plane-iron is supported.
7. (Printing.) The plattorm of a printing-press on which a form is laid.
8. (F^{*} capons.) u. A frame for supporting a piece of ordmance, more especially a mortar; as, a morturbed.
b. The hollowed place in a grun-stock which receives the barel.
9. (V'chicles.) The box, body, or containing receptacle of a vehicle.
10. (Ninizg.) A seam or horizontal vein of ore.
11. (Domestic.) An article of lurniture to sleep or rest on.
Goose-feather beds and pillows were introduced by the lomans dhaing the govemment of the Cosars. They were imported from Egypt. Introduced into England by the retuming Crusaders.
Besides feathers, many other substances have been and are still used for beds; as, straw, heather, rushes, hair, corn-shucks, moss, sponge, excelsior (wooden shreds, curlerl).

Anong primitive nations the skins of wild beasts have been much employed, and of these were the beds of the ancient Britons at the time of Cresar's invasion. Their Roman conquerors are said to have tanght them the use of straw; to some extent of grain also, it would seem. The down of the eiderduck of the Scoteh cliff's is the softest and most luxmious material.

The beds of the Greeks were according to taste and alility. The poor wrapped himself in a rug, and laid on straw or weeds, with a billet of wood under his head. In cold weather shcep-skins were added. The richer had blankets and fine rugs. When he umiresseci, he added a linen shect. He rolled himself $u p$ in his bed-clothes.

Bedsteads were an afterthought, and even then we find that the necupants swaddled themselves in the blankets. They did not understand, it apjrears, how to make a partnership matter of it, -bed-clothes of generous area covering a pair. See Benstead.
Air-beds werc known several centuries ago, being made of fabric rendered air-proof by paint or varnish. The anmexed cut is from the first German edition of Vegetius, A. D. 1511, and represents some soldiers reposing on one in time of war. The mode of inflation by bellows is also indicated.

We see indications of the same idea in the account given of the sports of Heliogabalus, who had collapsing cushons wherewith he tricked his guests. See Aili-ned. See also Hiorostatic Bed.
-We are indebted to Dr. Amott for the invention of the water-bed, which was contrivel by him for the purpose of supporting the hody without sensible imelpulity of messure, thus preventing bed-sores. Clark, in 1813, and MacIntosh, in 1823, improved the matter by contributing a better material. The

india-rubber cloth was long known sinuly as "Macintosh."

Bed-bot'tom. A device attached to a bedstead on which the bed immediately rests. The object to be attained is to secure snfficient strength with a certain degree of elasticity, and for this purnose many contrivances have been devised, among the best known of which is probably the old-fashioned "sacking" botton, having eyelet-holes around its margin, through which a rope was passed for securing it to pegs on the bedstead. Another common arrangement is merely a series of slats passing from side to side and resting in notches on the rails.

The framework in the accompanying cut is made from the sticks of the palm-branch; so says Wilkin-
a, the longitudinal spring-slats are curved over at the ends and attached to the cross-bars.
b, the slat-ends rest on springs whose lower coils rest on lugs with shanks which screw into the rail.
c has spring-bars B and a tension-wire A.
d has spring-pieces inserted obliquely into the slat.
c lias disks and spindles, spring supported.
f has spiral springs between upper and lower webs. g has springs supprorting an upper padded frame.
h has a system of curved springs, slats, and spiral springs.

Fig. 622.

Egyptian Mattress.
son. It, and other structures similarly made, are knorn by the general name of koffuss. The bedstead of palm-branches, called a becis, and mentioned by Porphyry, was probably of this kind. It probably formed the hody of some of the conches and attomans represented in the ancient paintings on the Egyptian tombs. The bed-bottoms made in this way are usually 7 by $3 \frac{1}{2}$ feet, and from 1 to 2 feet in hight.

In Fig. 623 are shown several rarietics, some in section and others in elevation.

The abore is a mere sample of hunareds of varieties. Woven wire fabric or rattan is the best in warin weatber.

Bed-clothes Clasp. A levice for preventing the accidental displacement of bed-clothes; as, for instance, a pair of pivoted jaws kept closed by a spiral spring and lastened to the bedstead.

Bed'ding. The seat on which a boiler or other structure rests. Sce Ben.

Bed'ding-stone. (Bricklaying.) A marble slab, accurately level, on which the rnbbed side of a brick is tested to 1 rove the truth of its face.

Bede. A niner's pickaxe.
Bed-lathe. The usual form of lathe, in which the puppets and rest are supported upon two parallel and horizontal beams or shears.

Bed-mold'ing. A collective term for all the mollings beneath the corona or principal projecting member of a cornice, which, without bed-mollings, would appear too much like a mere shelf.

Bed-pan. (Domestic.) A conrenience for the sick-room, for the use of invalids or the bedridden.

Fig. 62t.

Bed-plate. (Machinery.) The foundation-plate to which the frame of a matchine is bolterl, as of a steam-engine.

In BLinnr's portable engine, the engine and working machinery are all attachell to a continuous hollow iron bed-plate in the form of a cylinder: The feet for this bed-plate fit into seats on the boiler, so as to be removable thereftom when required. The principal ohject is to prevent the nnequal expansion of the boiler and engine from throwing the latter out of true, or from straining the joints of the lormer.

Bed'stead. A piece of turniture supporting a mattress or bed
Bedsteals were common in Egypt and among the later Greeks. They were only used, however, by the wealthier classes. Many ornate bedsteals are represented in the tombs at various parts along the river Nile.
Among the earlier notices is the iron bedstead of Og, king of Bashan; it was nine cubits long and four broad (Dent. iii. 11). This was adapted for a man twelve feet high. The Rabbinical writers have exercised their iugeninity upon Og , and their highest flight concerus a belstead, the first mention of the article in their chronicles. Rabbi Ben-someborly we merely condense - says that Og lived before the flool, and was so tall that the water did not reach his kuees, and so he wadel through. Eseaping this destruction, he afterwards turned up as Eliezer of Damascus, Ahraham's servant. Abraham was of a size equal to 74 ordinary men, lut was no match for Eliezer, except in seolding, which he could do most profomully. As he was blowing up Og one day, the latter trembled so violeutly as to jerk out a double tooth, which the patriarch converted into an ivory bedstead. It was probably carious, and so Abrahan sawed off the fangs to bring them to a length for legs, and shoveled out the hole so as to hold a few camel-louts of stran. Abraham appears to have discharged him, or Og ran away, and again appears in opposition to Moses, who killed him.
Kabbi Jochanan admits that the above is only tradition, but says that he himself chased a roe into the hollow shin-bone of the definct, and followed it three miles without tinding his roe or the end of the hole. He became tired and returned disgusted. A huge - - hone.

The leclsteads of the luxurious Greeks had four rails, legs, strapis to support the mattress, a headhoarl, and sometimes a foot-board. They were made of solid maple or boxwood : sometimes veneered with costlier wool, tortnise-shell, or ivory. They had ornamental feet, sometimes of silver.

The inattress was of linen, woolen eloth, or leather, and stuffed with straw or wool. Round and syuare
pillows were nsed. They were provided with soft and thick woolen blankets and sheets. The Greeks wore nightgowas. "The sleeping arrangements of the wealthy freeks seem to have been good, but the Asiaties said "the Greeks do not know how to make a comfortable bed."

> "But no town with Miletus vies In the bridal-beds ricb canopies." Crurns; quoted by Athenaus, A. n. 220.

The Roman berlsteads were magnificent, and the weary climbed on to them by step-ladders on the open sitle; the other was closed by a side-board. The open side was sponda, the closed pluteus; the latter for the weaker vessel.

The mattresses or beds were stuffed with wool or feathers.

We cannot spare room to deseribe the gorgeons counterpaues.

The bedsteads had canopies, but we do not reall of curtains or testers.

The bed, or rather bedstead, of Ware, mentioned by Shakespeare, is still in existence, and is to be seen at one of the inns in that village. It is twelve feet square. Many imorations have been made on the old-fashioned four-post bedsteal. That known as the four-poster was, however, provided with four high posts and i tester, forming, with the curtains. a complete canopy by which the sleeper, if so disposed, could be fully protected against fresh air, and enjoy the pleasure of breathing as vitiated an atmos. phere as he pleased.

It was formerly the general practice to make the bect-hottom of coarse canvas, having eyelet-holes along its edges, through which a cord was passed, and thence over pins in the side, top, and bottom rails, which supported the bed-bottom, the arrangement admitting of being laced up as tight as desired. Of late, varions amangements of slats have prevailed. See Bed-notrom.
Many improvements have also been made in the manner of putting the parts together, so that the bedstead cau be set up and taken down with greater facility:

Invalicl-bedsteals are made with rising sections, so as to bring the body to a reclining or sitting posture for relief ly change of position.

Wardrobe-bedsteads are modes of conceating beds in chambers to be occunied during the day, where the accommodations of the donicile are limited.

Bed'stead-fast'en-er. A derice consisting of two parts, one attached to the end of the rail, and

Fig. 025.
Fig. 626

the other to the sile of the bert-post, by which the parts are locked together or readily detaehed.

There are many varieties: some of metal; others
screws on the rails and screw-sockets in the posts, doretail tenons on the ends of the rails and slots or sockets in the posts, etc.

Bed'stead-key. See Bedstead-wi:exicif.
Bed'stead-wrench. A crank-wrench enllloyed in turniner the bolts which secure the rails to the josts of bedsteads. A nut is inserted at a lateral mortise in the rail, so as to present its aperture in the path of the serew-bolt, which is rotated by the wrench. A tenon on the end of the rail fits into a mortise in the face of the prost.

Another form combines sockets of various sizes and a screw-driver.

Bed-stone. (Milling.) The term applied to the lower or stationary mill-stone. The lower stone, however, in some mills, is the runner. In some mills, again, the stones are driven in contrary directions. The term bod-stone, in such cases, loses its significance, and it becomes the runner or the lower runner respectirely.

Bed'way. (Mining.) An appearance of stratification, or nearly horizontal line of marking in granite.

Bee. (Iautical.) One of the picces of plank bolted to the outer end of the jib-boom to reeve the foretop-mast stays through.

Bee-block. (Nautical.) One of the blocks of harl wood holted to the siles of the bowsprit-head, for reeving the foretop-mast stays througli.

Bee-feeder. (Husbaulry.) A device for feeding bees in bad weather or protracted winters. For the materials of the lood, see Langstroth or other apiarists. The mode is usually a small perforated piece of board whieh tloats on the liquid food.

Bee-fu'mi-ga-tor. (Husbandry.) A blower for driving a smudge into a hive to expel the bees, or compel them to retire to a certain part of the hive, while honey is removed, or the hive examined and cleancd. Fumigation is also used to bratially paralyze the bees while the swarm is being parted.

Bee'hive. (Husbandry.) a box, crate, hasket, or hollow \log in which bees are kept for the sake of their honey. In the old scripture and classic lands they lived, and yet live, in the clefts of the rocks. They are new-comers to this hemisphere, and with us lire in a wihl state in hollow trees. In California, it is said, they have taken to the eliffs. A sarred-aft section of a hollow log is known in the West and Sonth as a gum, possibly from the nse of a \log of the gum-trce for that purpose. Whether for a beelive or a curb for a spring it bears that name; and the gum-wood is only common in some localities, whereas the name is unirensal.

Hybla and Hymettus are classic bee-ground. Eumelus of Corinth wrote a proem on bees $741 \mathrm{~B} . \mathrm{C}$. There are enumerated 292 species of the apis genus. The honey-bee was introlnced by the English into Boston, 1070 , and is spreading over the continent. The men were lately alive who professed to recollect the time when the swarms first made their appearance on the west side of the Mississippi. They are said to keep a little in adrance of civilization. Huber wote on bees in 1790, and the bee-abatomists and physiologists are but his followers.

Samson found a swam of bees in the land that flowed with milk and hones. Honey was prolibiterl as an offering on the altar monder the Levitical law, but its first-fruits were presented for the use of the priests. (Lev. ii. 11, 12.)

Honey was a fasorite article of food in ancient Egypt, but the tombs are silent as to the treatment of the bees.

Tarro ($50 \mathrm{~B} . \mathrm{c}^{\circ}$) recommends that hives be madc of basket-work, wood, bark, hollow trees, pottery, or
reeds, and be contractible according to the size of the swarm. He recomments a jane of transparent stone (lupis specularis), so as to enable the apiarian to see the bees at work.

Sallust recommends cork; a very good suggestion. They are yet made of cork in some parts of Southern Europe; the wood being remaved, leaves the cork-bark as a cylinder. In Greece and Turkey earthenware hives are in common use. The ancient English hives were baskets of unpeeled willows.

Deehives made of lelical coils of twisted straw are in common use in Lingland, as well as those of wood. A representation of one of the former kind is shown in the illustration, the corer being renioved to show the interior glass cap. The materials of which hives are made differ in various countries, and the valiations inconstruction are almost infinite.

Pepys thus refers to glass beehires:-
" After din-
Fig. 6\%.

ner to Mr. Erelyn's; he being abroad, we walked in his garden ; and a lovely, noble groumel he hath indeed [sayes Court]. And, among other rarities, a hire of bees ; so as, being hived in glass, you may see the bees making their honey and combs mighty lleasantly." - Pepys's Dhary, Ipril, 1665.

Movable conib-hives were invented in 1792. In their present form and adaptation they are consid. ered the invention of Langstroth.

In some comntries it is usual to carry bees from place to place in their lives for clange of pasture. This practice is extensirely carried on in Egypt, where great numbers of hires are often transported on boats from place to place along the Nile, according to the succession of flowers in different districts. An analogous custom of transporting hees from one locality to anotler, for similar reatons, has long beell prevalent in Persia, Asia Minor, and Greece: and in Scotland, during the season when the heather is in lloom, many hives are annnally carried to the heaths from districts not in their immediate vicinity.
In Poland, the bees are transported in large colonies from their ninter-quarters to their summer pasiure, and hack again when the weather becomes inclement.

The olyects principally held in view in the manifold attempted improvements in beelives are the mevention of the access of moths to the hive, and the separation of the portion containing the spare honey from the breeding portion. It is also desisable that perfect ventilation and ready aceess to any part of the hire should be attained, and that there should be no difficulty in removing the surplus honey.

These, and other considerations involving cheapness, hare been the subjects of improvements almost innumerable.

Fig. 628 is a fair illustration of one lavorite form of hive. It is suspended

Sus.spended Brehive. by eleats on the sides. It has a large breedingchamber B, a glass door, and a sloping floor to catry off dirt. Above are two sliding, removable boxes a a for the abstraction of honey without disturbing the contents of the main chamber.

Fig. 629 shows the arrangement of movable combs in a box whose sides are removalle from the interior works. The upper series of combs are for removal of honey.

In Fig. 630, the hinged top and spare honey-box compartments admit of being lifted from the lower breeding. hive; the entrance to the lower hive is regulated by an invertible bee-tran with swing-bars, ly which the size of the apertures may be changed. A groove is eut in the hottom for a moth-trap, which may le opened by dropping a hinged lighting-board. Sectional frames have varying gains on their different sides, which, by connection with the entrance-slot, nay prevent the queen or drones from passing through or impeding the passage of the workers.
Bee'hives,

Swarm-in'di-

 ca-tor for. (IIusbentiry.) In arrangement for detecting the gathrring of a swarm previons to their leparture in quest of other homes and pastures new. It is usually an alight-jug-boarl, so arranged as to canse an alarn when a certain weight of ontlying bees has accumulated upon it, - this being their habit previous to flight.Many of the improvements in hives have special reference to preventing swarming, by division of the inmates into two bodies with room for expansion of each party. These attempts to anticipate or defeat the natural inclinations of these little Hymenoptcras are only partially successful.

Fig. 630.

Kiretchmer's Beehive.

Beer. A fermented infusion of malted grain, to which hops is usually alded.

The term is also applied to bererages made of infusions of ronts and herbs.
"When the vine would not grow and be fruitful, Osiris tanglat the inlabitants to make drink of barley, little inferior in strength and pleasant flawor to wine itself." - Diodonus Siculus (60 b. c.).
Hecataus, in his "Description of the World," refers to the Egyptian beer. Solhocles and Eschylus also. The latter, -

"And after this he drank his beer, and much And loudly bragged."

Atheneus says that Thracians and Pronians drank of barley-wine, or a similar drink made from millet or other grain.
"Polybins describes the palace of one of the Spanish kings as being [furnished with] hage silver and gold goblets full of the wine made of harley." Athenel's.
"Aristotle says that wine of grapes is stimulating, lont that of barley las a tendency to stupefy." Ibid.
Beer-cool'er. (Breving.) a. A large shallow vat or cistern in which the beer is exposed to the air to cool.
b. A tub or cistern in which beer is exposed to coohing inlluences mechanically exerted, as in Fig.

Fig. 631.

Beer-Cooler.
631, in which air is driven by the pump A through the worm b, which is in a cistern of ice-cold water,
 the piston descends,

Fig. 633.
the beer, which passes out at the ammular orifice around the air-opening.
Beer-float. (Distilliny.) An areometer or hydrometer designed to ascertain from the observed density of a grain-wash the possible yield of spirit therefiom. The scale of the instrmment is graduated to indicate directly at the stamdard temperature the percentage by volume of poof-spirits that the mash will yicht, proviled the fermentation proceeds to a roint where its density is equal to that of water.
Beer-foun'tain. A form of pump usel in drawing beer into a glass for immediate consumption. It generally consists of a lever mounted in an ornamental stancl, and connected to a piston in a purap Which raises the beer from the cask and ejects it at the fancet liy the lever.
Beer-hop'per. A vat or beek in which the intusion of hops is made, to be added to the wort.
and escapes in jets through the beer in vat $D . d$ is a safetyvalve.

In another form the beer-vat has a jacket in which iee-cuolell water circulates. The devices are numerons.

Fig. 632 shows a form of beer-cooler in which the kegs are kept in a refrigerator; the ice being in the upler chamber, the cooled air descends by gravity.

Beer-faucet. For draining certain descriptions of beer it is desirable to foam it, which is done, when the beer has not life enough of its own, by means of a pistou which ejects air along with the beer into the glass or pitcher. As aperture, mixing with

The hops to be treated are placed upon the false bottom, and the liquor is then introduced, and stean let into the lower compartment. Pipes are proviled for drawing off the liquid, preventing its overlow, and conducting the aroma. The stirring device is removable, to allow the false bottom to be taken out.

Beer-ma-chine'. A machine cousisting of a number (say three to eight) of lift or force rumps, which commect with as many casks of different qualities of maltliquor in a cellar, and are operated by oscillating handles in a neat case at the counter where the liguor is drawn. The favects are arranged in a row over a siuk which eatehes the drip. The affair is one of the polished appointments of a bar-room.
Beer-vat. (Browing.) One in which the infusion of the malt is mare, constituting the wort orsweet mifermented liquid, which, with the added infusion of hopis and the resulting fermentation, becomes beer.

Bee'tax. (Agriculturc.) An instrument fur paring turf.

Bee'tle. 1. A heary mallet or wooden hanmer used in driving wedges, solidifying the earth, ete. Also called a moul. The hanile is at right angles to and jasses through the heal, like a hammer; and, like the latter, receives a swinging motion, the shoulder heing the center of vibration. The rammer, on the contrary, receives propulsion in the direction of its length. as the pavior's rammer, the ramrod, etc.
The beetle was used by the Greeks to bruise olives at the press.
The pavior's rammer is sometimes made so large as to be operated by several men. Perhaps it was to a large manl that Fulstaff referred :-
" If I do, fillip me with a three-man beetle."
2. (Cotton.) 'The bectling-machine formerly used in cotton-mills consisted of a long series of vertical stampls, lifted cousecutively by studs set spirally on a horizontal rotating shaft, and coming down poon the cloth as it was wound pon a roller rotated slowly beneath. The action is similar to the ore-stamps of the mines.

Bee'tle-head. The weight or monkcy of a piledriver.
Beet-root Su'gar Ma-chin'er-y. The process consists in : -

1. Washing the roats in a rotating drom of lathes submerged in a cistern of water.
2. Firesping to a pulp by a hollow studdel eylinder, against which the roots are pressed, a jet of water keeping the drum clear of the pulp.
3. Pressing the pulp in woolen bags in a hydranlic press to remove the saccharine juice. Pecquenr sulstitutes a force-pump action and foraminates cylinders covered with wire-gauze. The cane-rolling mill has also been used.
4. The resulting juice is heated to 140°, defecatell by hydrate of lime, filtered and evaporated in a racuim-pan. See Cusderiser; Evapoliaton; Vaculumpas; Sugat-machinery ; Diffusiun Alpahatus.

Waceration and desiccation have each been tried with some degree of success. The first notice we find of the making of beet-root sugar was in 1747.

Acratid's (French) process made the manufac. ture a success in 1799.
Napoleon cneonraged it when the English crnisers destroyed the commere of France, and cut her oll from her sugar-prodncing colonies.

It is now heing tried in Illinois, U tale, and California.
Be-lay'ing-pin. (Nautical.) A stout pin in the side of a vessipl ur round the masts, used for lastening or beluying ropes.
'There are several contrivances for belaying, differing especially in size, We may cite : -

$$
\begin{array}{ll}
\text { Belaying-pin. } & \text { Cleat. } \\
\text { Belaying-cleat. } & \text { Kevel. } \\
\text { Belaying-bitt. } & \text { Riding-bitt. } \\
\text { Chess-tree. } &
\end{array}
$$

Bel'fry. 1. A warlike machine in the form of a tower, formerly used in sieges as a eover while firing on the enemy.
2. (Architecture.) a. A tower, either forming part of a building or dutacherl, in which bells are suspenderl.
b. The apmoment in a tower, etc., in which the bells are placed.

Bell. 1. a. A liollow, eup-shaped, metallic olsject suspended by a neck, and somnded by a swinging clitprer.
b. A hollow, metallic sphere sounded by a loose ball in its interior.

Bells are of verygreat antiquity, small golden bells being mentioned in lexodus xxviii. 34, as forming, alternater with ponegranates, ornaments upon the hem of the hiogl-priest's robe. Simall bells, composed of an alloy of 10 copper and 1 tin, were found by Layard at Nimmonl.

Bells (lintimuchnlum) in ancient Greece and lame were of various lorms, hemispherical, pyranidal, sometinas like the modrm Haring or the Chinese pattern. They also used llat disks, like gongs.

They were used lor lustrations; frames with bells of varying sizes and pitch ware nsed in religious observances. They were hung at the outer doors of houses, as often to notify passers that somebody was coming out as that some one awaiterl leave to enter, for the doors miformly swing outward into the street. They were used to awaken the family or call them to meals (seneca). They were used publiely in the canps and garrisons, on triumphal cars, and Plutareh alludes to their use in the fish-market; they were also carried by the night-watch. They were hung upon horses, cattle, and sheep, as with us, to trace then in case they should stray. Accorving to Pliny, the monument of Porsenna was decorated with bells. Lars l'orsenna, of Clusimm, he who halted at the Tiber, was contemporary with Daniel.

After this statement it seems futile to simply repeat the legems of the intrometuon of bells into Enrope in the fifth and sixth centuries, as if they were then a now thing.

Sheru-bells of bronze wore used in ancient italy, and are yot preservid] in the Musemm of Naples. Then, as now, the sherp made periodical migrations from their lowhad winter pastures to their monntain smamer pastures, like those sulyect to the corle of laws "La Musta" of Spain. See 11 enuno. Varo refers to his llooks wintering in Apmlia, but spending the summer on the monntains of Samnimn.

Bells are satid to have been introduced into Clhistian ehumehes ahont A. 1. 400 by Panlinus, Bishop of Nola, in Compania; into France about 550. They were mentionced by bede, and are known to laves been used in lingland prior to the year 700 . Bells were first cast in England in the reign of Edmund, A. D. 940 .

In A. D. 610, Clotaire 11., king of France, besieged Sens, when Lupus, Bishop of Orhans, ordered the bells of St. Stephen to be rung. The sound so frightened Clotaire that he gave ap the siege. So they say.

Pope John 1X. ordered bells to be rung as a defence against thunder and lightning, A. D. 900.

All the bells in Europe were rung in 1456 , by order of Pope Calixtus 111., to seare away Hulley's comet, which was supposed to be in some way identified with Mohammed II., who lad just taken Constintinople. The connet left, but Mohammed stayed.

Most of the bells of Westem Emrope appear to have been hand-bells, of which some curions exanples are still preserved. They are made of thin plates of hammered irom, bent into a foms-sided form and brazed together at the corners. One of these, said to have belonged to St. J'atrick, is preserverl in the city of Belfast. For a long period they ware made of comparatively small size. One in a church at Orleans, in the cleventh century, weighed 2,400 pounds, and was considered as remarkably large at that time.

During the thirteenth century much larger bells heram to he cast. The "Jaepueline", at l'aris, cast in 1300, weighel 15,000 pomnds ; one cast at Paris in 1452 weighed 15,000 pounds ; and the bell of Rollen, cast in 1501 , weighed over 36,000 pomnds.
"One of the pieces in my collection which 1 the most highly value is the silver bell [made hy Benvenuto Cellini] with whieh the Popes nsed to enrse the caterpillars, - a ceremony, 1 believe, now abandoned. Lahontan, in lis travels, mentions a like absurd eustom in Cinnada, the solemm excommunication by the hishop of the turtlerloves, which greatly injured the plantations. For this bell I exchanged with the Marquis of Rockingham all my Roman coins in large brass. The rilievos, representing cateryillars, buttertlies, and otlier insects, are wonderfully "xemted." - Horice W Alpole,

The bell known as the "Liberty Bell," which, on the th ol July, 1776, announced the signing of the Deelaration of Imlejemelence, was cracked while being rung in honor of the visit of Ilenry Clay to Philinlephia, and since then has been on exhibition in that city, together with other Revolutionary relies. The following inseription, taken from Leviticus xxy. 10, surronds it near the top: "Proclaim liberty throughout the land, unto all the inliabitants thereof."

The Russians have surpassed all other Luropean peoples in the size of their bells. The great bell of Moscow, cast by theorders of the Enupress Anne in 1734, was hy far the largest made by them, being 91 feet in light, and weighing 193 tons. lt remained susrended only until 1737, when

Great Bell of Moscouv. it fell in consequence of a fire, and remained parially huried in the (arth until 1837, when it was raisul, and now lorms the done of a chapel formed by excavating the earth
underneath it. It has been denied that this bell ever was susjendeil.

Says a correspondent of the "New York Observer": "In Russia the bell is au instrument of music for the worship of God as truly and really as the organ in any other country. This is the key to what would otherwise be diffienlt to explain.
"The bell is a medium of communication with the Infinitc, and the worship of a people and an empire finds expression in the majestic tones of a bell, and it ceases to be a wonder that a bell should have a tongue which reruires twenty-fom men to move, and whose musie sends a thill ol praise into every house in the city, and floats away beyond the river into the plains afar.
" Moscow is the 'holy eity' of the Greek Church. Pilgrims come hither from thousamts of miles off, and on foot, and sometimes without shoes. When they draw near the city, and on the evening air the masic of these holy bells is first borne to their ears, they fall upon their faces prostrate, and worship (rod. If they could go no firther, they would be content to die there, for they have heard the bells of Moscow, and on their majestic tones their sonls have been taken up to heaven! This is the sentiment of the superstitious peasant, and it is a beantiful sentiment, - ideal, indeed, but all the more delicate and exalted. $\|^{*} c$ use the bell simply to eall the people to the house of worship; they speak to us. Their bells praise God. They east their silver and their gold into the molten mass, and it becomes an oflering, as on an altar, to Him who is worshipped with every silvery note and golden tone of the holy bell.
"Aseending the Ivan tower, we find on three successive stories bells to the number of thirty-four. Some of these are of a size to fill one with astonishment hal he not seen the giant bulow. The largest is on the first story above the chapel, and weighs more than 127,830 pounds. It swings freely and is easily rung. I smote it with the palm of my hand, supposing that suels a blow conld not produce the slightest vibration in such a mighty mass of iron; but it rang out as elenr and startling as if a spirit within had responded to my knock without. Two bells are of solid silver, and their tones are exquisitely soft, liquid, and pure. It was exciting to go from one to another amd strike them with their tongues or with your hani, and catch the variety and richness of their several melodies.
"I had come down from the Kiremlin to my lodgings, and, wearied with the wanderings of the day, was lying on the bed and looking out on the eity. It is just before sunset, and the day has been oppressively warm. A delicious glow from the grorgeous west is bathing all the domes and roafs with splendid colors, and silence is stealing in with the setting sun upon the crowded eity. It is the eve of onc of the most holy festivals of the Greek Church. One vast church edifice is directly in view of my window, and but a short way off.
"As I lie musing, from this ehureh near at hand comes the softest, sweetest tone of an evening hell. Another tone responis. A third is heard. The I van tower on the hight of the kremlin utters his trentudous voice, like the voice of many waters. Then all the churches and towers over the whole eity, - Four hundred bells or more, - in enncert, in harmony, 'with notes almost divine,' lift np, their voices in an anthem of praise such as 1 never thought to hear with mortal ears, waves of meloly, an ocean of music, deep, rolling, heaving, changing, swelling, sinking, rising, sounding, overwhelming, exalting,"

[^5]The Chinese have likewise produced bells of colossal size, one of which, at l'ekin, weighs 130,000 pounds; but the tone of their bells is said to be discorvant and "panny," like that of their gongs.

The great bell of Burmal, at a temple in the environs of Amarapoora, is shung on a triple beam cased and hooped with metal, and resting on piers of brickwork. In the upper part are risible the chains ol iron around which the metal of that portion was run, to strengthen it at the point of suspension.
lts dinensions are as follows:-
External diameter at the $\mathrm{lip}_{\mathrm{p}}$. . 16 feet 3 inches.
External diameter 56 inches above

Weight, about
260,000 pounds.
Klaproth states that in an edilice hefore the great temple of Buddia, at Jeddo, is the largest bell in the world.
"it is 17 feet $2 \frac{1}{2}$ inches in hight, and weighs 1,700,000 pounds English. Its weight is consequently nearly four times greater than the great bell at Moscow, and 56 times larger than the great bell at Westminster, England."

The bell suspended from a tripod and hand-bells are regular aceessories in Jajanese bands, if such they may be termed.

As among the Slavonic nations, the bell is the great musical feature of Tartarian worship:-
"The Lamas exceute a kind of music little in concord with the melodious gravity of the psalmody. It is a stunning noise of bells, cymbals, tamborines, couch-shells, trimpets, whistles, etc." - Abbé Huc, Travels in Tartary.
The Chinese and Mandsbn words for bell are onomatopetic, being respectively tsiang-tsiang and tang-tang.

The weight, dimensions, and date of easting, of some of the largest bells in the world are stated to be as follows:-

Moscow (Kremlin),
Cast in 1553
Neight. Diameter.
Pounds.
Ft. Io

- 36,000

Fell in 1703.
Recast in 1733
Brokeu in 1737.
Moseow (St. lvan's) 127,830
Burmah (Amarapoora) 260,000
Pekin
Novogorod 130,000

Vienua (1711) . . 40,200
Olnutz . . . 40,000
Rouen . . . 40,000
Sens . . . 34,060 8.6
Erfurth . . . 30,800
Westminster ("Big
Ren," 1858) . 30,324
London (Houses of larliament) (Notre Dame, 1680)
$1680)$
Montreal (1847) $\quad \begin{array}{r}28,672 \\ 28,560\end{array}$
$28,560 \quad 8.6$
Cologne
New York (City IFall)
New York (Fire-alarm, 331 Street)
,
8. $6 \frac{1}{2}$ to 7

81
23,000
21,612
York ("Great Peter," 1845)

103 tons.
8.3

Bruges	Weight Pounds 23,000	Diameter. Ft. In.	Thickness Inches.
Rone (St. l'eters, 1650)	18,600		
Oxford ("Great Tom,"			
16S0)	18,000	7.1	$6 \frac{1}{3}$
Antwerp	16,000		
Exeter (1675)	$5 \frac{1}{2}$ tons.	6.3	5
Lincohn ("Great Tom,"		6.8	
London (St.Paul's, 1709)	11,470	6.7	

Fig. 636 represents a bell having a rotatable chapper. The various parts are -
B, clapper or tongne.

Bill.

C, clapper-bolt.
D, yoke.
F, canon or ear.
M, mouth.
P, soumd-bow.
S, shoulder.
T, barrel.
Cuttle and sheep bells are cast, or are made of wrought-metal by being doubled over at the anglis or cutting and brazing. Each carries its clapper.

Harness and slcigh bells are sometimes made as others, with a suspended elapper in the ustual bell-shaped article, but are generally hollow spheres with perforations, and contain globes of iron which have free play and give a shary jingle rather than a sonorous and prolonged note.

Cull bells are uscd for the table or desk to summon a serviant or messenger in the ricinity:

Chimes, or peals of bells, are of very ancient late, the first elime introduced info England having been put np at Croyland Abbey, A. D. 960 , and to this day that country is noted for the number and variety of its peals of bells, which are an institution of almost every village chureh.

The making and arrangement of a suit of bells to eonstitute a perfect chime is a matter of considerable difficulty. The tone of a bell depends conjointly on its diameter and thickncss, a small or thick betl yielding relatively a more acute sound than one which is larger or thimer, owing to the greater rapidity of the vibrations of the metal. The founder endeavors to regulate the diameter and thiekness so as to produce a certain note in each bell of a set of chimes; but as this is chilficult to be attained by the mere operation of casting, it is generally necessary to remove some of the metal afterwards to produce a perfect note, by either reducing the diameter at the lower elge wime the note is too low, or reducing the thickness of the part struck by the clapper when ton sharp. Sce Cums.

The thickest part of the bell is that strnck by the clapper, and is called the sonnd-bow. Among the German bell-founders this is taken as the unt of construction, and being considered as $=1$, the most approved proportions are: diameter at the month, $=15$; diameter at the tol, $=7 \frac{1}{2}$; light, $=12$; and
the weight of the elarper $=\frac{1}{\text { tof }}$ of the weight of the bell.
The casting of small or house bells is performed in a manner similar to that of otiser small brass or bronze castings; but with the larger bells, furnaces capable of melting large quantities of metal are regluired. For very large bells the mold is usually constructed in a pit in the vicinity of the furnace. The core is rough brick-work covered with layers of clay and horse-dung, turned to slape by a tempiet. This being dried, a "model" of earth and hair is haid on, being the exact counterpart ol the finture bell. A third and heary shell is laid over the model, and when dry is lifted from the model, some parting dust having been sprinkled over the model before applying the material of the outer shell. The model is now cut away from the core and the shell replaced, leaving a space between the shell and the core the exact form and size of the bell. The pit heing filled around the shell, the metal is run into the mold.

Fig. 637 shows a device lor molding bells. The tumplets or suceps $D D^{\prime}$ each thrn on a guide-pin d, passing through on opening in the inmet and outer cases $A B$ respectively, which have lips a b around their lower peripheries, serving as guides to the sweeps, and also relieving the loam-mole from presswre when the two cases are brought together.
The molds previously described do not afforel adequate provision for the eseape of confmed air and gases, and the casting is liable to be porons. An improved method consists in the employment of per-

Fig. 637.

Bell-Mold.

forated metallic flasks corresponding to the interior and exterior suffaces of the bell, and aceurately centered to each other by a vertical gnide. The outer flask is coated internally, and the inner one extemally, with a mixture of lom and combustible matter. The combustible matter is bume out by the heat of the molten metal, allowing this to shrink, and preventingtlue ocemrence of what is known as a fire-erack or stiain; and, the perforated flasks being above ground, free escape is permitted to the gases.

This arrangement is shown

in Fig. 638.
2. The month of a funnel or trumpet. The pavillon (Fr.).
Bell-buoy. (Nautical.) One to which a bell is so attached as to be rung ly the motion of the waves.
Bell-crank. (Machinery.) A rectangular lever having its fulcrum at the apex of the angle, by which the direction of a motion is changed 90°. Its mi -

Fig- 639. mary application was for ringing bells,
 hence the name; but it is applicable to many other purposes where a jower is to be exerted upon a weight in a direction of 90° from it.

Bell-glass. (Glass.) A bell-shaped Bell-Crank. glass vessel, open at bottom, and having a knob on top for conremience of handling. "It is used in connection with an air-punp, by which the air may be exhausted from it; also for holding crases to be experimented upon.

Bell-met'al. An alloy composed of copper and tin, either alone or with the addition of a greater or less proportion of other metals, usnally zinc and lead. It is a species of bronze, and from its hardness and somorousness is hetter adapted than any other metal for the purpose from which it derives its name. 75 parts copper to 25 tin is a usual proprortion, but its constituents vary from 50 copper, 33 zinc, and 17 tin, to 80 copper; 10 tin, 6 zinc, and 4 lead; sometimes the proportions 72 copper, 26.5 tin, and 1.5 iron have been emplosed. The proportion 75 copper to 22 tin is generally recognized in commerce.

Other approved proportions are giren below.
Copper. Tin. Iron. Zinc.
For Iudian gongs
100 20-25
Church and large bells
House and hand be! ls .
Paris clock bells
Clock bells .
Riepeating-watch bells
Overman's
Ancient Assyrian bells
"In some cases two metals were used without alloying; iron, for instance, being orerlaid partially or wholly with bronze." - Lavand.

Bel'lows. (Picumatics.) A device for forcing a strean of air, usually as a means of urging a fire.

Bellows were used in Egypt in the time of Thothmes lll., 1490 B. c., and are represented on a tomb bearing the name of that Plaraoh.

A pair of leathern bags or cylinders, attached to disks, were alternately inflated and compressed, during the latter action driving air by a pipe to the tire. The cut is from the tomb referred to, and the
hoards joined by a piece of leather, was early known to the Greeks and liomans. See l'ig. 145.

In the Spiritalia of Hero, $150 \mathrm{~B} . \mathrm{C}$, is described a steam-boiler from which a hot-air blast, or hot air mixed with steam, is blown into the live, and from which hot water Hows, or cold is introduced.

Double foot-bellows, and duplicate pipes to the iron furnace, with four tuyeres, are shown in the paintings of Konrna, Thebes. The blow-pipe and tongs in conmection with a smelting-furnace in the same place.

The mention of the burming of the bellows in Jeremall vi. 29 , seems to have been in connection with leat and silver sinelting and refining. This is a common combination of metals in ores.

Stiabo ascribes the invention of the bellows to Anacharsis the Scythian, who was coeval with Solon. The anclor and the potter's wheel are also ascribed to this man by Pliny, Seneca, and other Romans; the declaration, however, is quite inadmissible as to the potter's wheel, and equally untrue as to botlo the bellows and the anchor. Homer mentions the potter ${ }^{2}$ s wheel, and it was used in Egrpt one thonsand years before Homer. On the walls of the tombs of ancient Egypt are painted, Ptah, the Creator, and Neph, the Lirine Spirit, sitting at the potter's wheel turning clay to form men.

Among the ancient forms of bellows may be cited: Skins of animals sewed up to lorm bags, and used in a manner analogous to the bellows of the bagpipe.

Japanese Blacksmilh's Bellow's.
Two such skins used alternately would give a continmous blast: such was the ancient Roman forge-bellows.

A pair of hollow eylinders, made of hambon or hollow logs, and having pistons actnated by mannal power.

Fig. 640.

Egyptian Bellows (Thebes)
men are shomn working the bellows with the feet and lands, throwing the weight on the bags alternately, and lifting with a cord the one which is just exhansted ; the other man is holding the rod of metal in the fire. The olkest form of wind-bag was probably the skin of an animal sewed up, or else a wooden reed with a piston like that of a popgun, until tubes were bored out of wood or made of a ring of bark taken from a tree. Our common bellows, consisting of two

A pair of large calabashes connected by two reeds, and having large openings at the top, corered by tnbes of soft groatskin, which are closed doss alternately.

A cylindrical bag of soft skin closed at the ends by two wooden disks, hy which it was opened and closed like a Chinese lantern. This device in its duplicated form, to render the blast continnous, is still used in Europe and South America.

The Japanese bellows consists of a box a, with a reciprocating piston b, and two cduction-tubes $c c$, leading from the respective ends of the box to the fire. Our illustration does not indicate the valves in the tubes to prevent reflux of air, nor the air-induction openings. The artist leares them to be supposed, which is not difficult to do.

The smelting of the fermginous sand of the Nonkreem Valley, on the confines of English India, is very rudely carried on in charcoal fires blown by donble-action bellows, worked by two persons, who stand on the machine, raising the flaps with their hands and expanding them with tbeir feet, as shown in the cut. There is neither furnace nor flux used
in the reduction. The fire is kindled on one side of tain by whom they were invented. Lobsinger of an upright stone (like the head-stone of a grave), with Nuremberg (1550), and Schelhom of Schmalebuche, a small arched hole close to the ground; near this in Coburg (1630), are cited as having introduced

Nonkreem Bellous.
hole the bellows are suspended; bamboo tubes from each of its comprartments meet in a larger one, by which the draft is directed under the hole in the stone to the fire.
The ore is run into lumps as large as two fists, with a rugged surface; these lumps are afterward cleft nearly in two to show their purity.

Fig. 643 shows a bellows employed by the Fonlall blacksmiths on the west coast of Africa. It con-

Fig. 643.

Foukh Bellows. sists of two calabashes connected togethef hy two hollow bamboos or reeds inserted in to their sides and minted at an angle to another which heads to the fire. A large opening is made in the top of each calabash, and a cylindrical bag of soft goatskin stitched or otherwise secured around the cdres. The worliman seats himself on the grounl, and, placing the machine hetween his legs, gaasps the cads of the bags, and by altemately raising each with the mouth open and pushing it into the calabash when closed, the contained air is forced into the tubes and a contimuous blast maintained.
Wooden bellows were knowa in Germany in the middle of the sixteenth century, but it is not cer-
ing from the upper chamber. The lower board is held down by a weight, and a weight is also attached to the upperboard. la working the bellows the middle board is raised, drawing the air through the valve into the lower cavity, and the deseent of the board forces it into the upper cavity, the valves preventing its return, and the weight, depressing the upper boarl, fores the air out through the pipe in a continnous blast ; the ascent of she middle board fills the lower cavity, while its ilesccut fills the ulppercavity, the irregular ${ }^{\text {miff }}$ ing aetion being confined to the lower cavity of the bellows; the

Forge-Bellow's.

Fig. 645.

They are described in a work by Reyner, professor at Kiel, $\mathbf{1 6 6 9}$, as being " 1 meumatic chests," and as consisting essentially of a lid moving in a closely fitting box. lis another form we find that two boxes were used, one fitting closely within the other, and the two, being perhaps quadrantal secguents of cyliaders, were hinged together so that the movable one vibrated on the common axis.

The ordinary bellows in its simplest form consists of two flat boards, usually of triangular shape, each having a projecting handle; and between the boards are two or more hoops hent to the figure of the bellows. A piece of leather is nailed to the edges of the boards, partially infolding the hoops, and forming an inclosed chamber, which is enlarged or contracted by raising the upper hoard while the lower one remains stationary. The lower board has a metallic pipe attached and a valve in its center, opening upward, which rises when the upper board is raised, aulmitting air into the chamber, which is expelled through the pipe by depressing the upper board; this arrangement does not afford a continnous blast, the air issuing in pufts, and accordingly the smith's bellows is hurnished with a third board, of the same shape as the other two, connected to the lower board by a piece of leather, and dividing the bellows into two similar chambers conneeted by a valve opening upward; the blastpipe is connected to the middle boad, issu-

Fig. 644
blast is howerer, though contimmous, not quite regular, as, when the air is forced into the upper cavity, there is an excess of pressure over the pressne during the descentling mation of the lower board.

The smith's bellows is worked by means of a rocker with a cord, chain, or rod attached. By drawing down the handle b of the rocker the inovable board rises, forcing the air through the ralve into the upper chamber; the weight on the board c forces the air out through the pipe d to the fire on the forgehearth.
Fig. 645, from an ancient Roman lamp, is an exact counterpart of the modern domestic bellows.
Various machine-worked bellows have been inrented, but generally those which rise to the dignity of machines lose the pulsative character and have come to be called hlowers.
In Fig. 646 the V-shaped bottom is piroted in the middle, and has a rocking motion imparted by lever

Bel'lows-cam'e-ra. (Photography.) A form of expanding canera in which the front and after bodies are conmected by an expansible portion, like the sides of a bellows or accordeon.

Bel'lows-pump. (Hydrculics.) A form of atmospheric pump in which the part of the piston is played by the ulper leaf ol" the bellows. The cnt is from Vegetins; Erfiurt, 1511.
The bug-pump and diaphragm-pump are other forms.
Bell-pull. The knot and attached cord, or series of wires and bell-crank levers, by whiel a house-bell is caused to strike.
Bell-ring'er. In England each bell of a chinse is provided with a yoke and wheel, and is oscillated in the usual manner, a ringer being required for each bell.

In this country they are usually mounted stationarily, except the tenor, and rung by means of cords

Fig. 645.

Bellowes.
X, treadle I, or pulley with ffr-wheel ΩZ, either affording a continuous blast. See also Blower; Batteny-fogge, etc.
A blowing-engine in which the blast of air is supplied by a falling column of water.

attached to the clappers and led to the ringer's room below; where they are connected, in the order of the notes, with lever-handles b, so arranged that the lells may all be chimed by one person. The tenor-bell is provided with montings for swinging, in order that it may lee rung as an ordinary church-bell, and is usually placed in the center of the bell-room, the others being grouped about it in such relative positions as will most advantageously distribute the weight and allow the best arrangement of the ringing-cords.

Among the devices for the mechanical ringing of bells may be cited steam acting upon a piston to vibrate the clapper; air acting upon vanes to more a pitman connecterl to the clapper or the axis of the bell ; springs released to canse a certain number of pulsations to give a specific alarm set in operation by the touel of a trigger. See Cuime.

Bell-tel'e-graph. A form of apparatus invented by Sir Charles Bright, in which the signals are given by strokes upon two bells of different pitch, one of which represents the movements of the needle to the l.ft and the other to the right.

Bell-trap. (Pncumatics.) One form of air or stench tral, to prevent the reflux of foul air from drains. It consists of an inverted cup whose edges are submerged in the water of a basin which overflows into the drain. This permits an overflow of water, but prevents a reflux of air. See Alr-traf.

BELTING.

Bel'ly. The front or lower surface of an objeet; as -
(laturey Engincering.) The belly of a railway rail; a lescending llange between bearings.
(Micsic.) The front of a musical instrmment.
(Engraving.) The lower edge of it graver.
(IFhecluriyhting.) The wooden covering of an iron axle.
The rounded surface of an object ; as of a bottle, retort, etc.
(Mctallurgy.) The upper, rounded part of the boshes.
(Architecturc.) The batter of a wall.
(Nautical.) The swell of a sail.
(Shipurighting.) The hollow of a compass-timber; the convexity of the same is the back:
(Machinery.) A swell on the bottom surface of anything; as, a depending rilb beneath a grate-bar, iron beam, or girder, to strengthen it from downward detlection between supports.
(Suddlery.) A piece of leather attached to the back of the cantle, and forming a point of attachment in some saddles for valise-straps.
The mbunt side of a slab of cork.
(Locksmithing.) The lower edge of a tumbler against which the bit of the key plays.

Bel'ly-band. 1. (Suddlery.) The strap which goes beneath the belly and is buckled to the ends of the back-band, completing the girth.
2. (Nautical.) A strengthening strip of canvas half-way between the close-reef and the foot.
Bel/ly-brace. (Sleum-Euginc.) A cross-brace stayed to the boiler between the frames of a locomotive.

Bel'ly-rail. (Railroad Engincering.) A milroad rail with a fin or web descending between the portions which rest on the ties. $1 t$ is scen in the improved Penrhyn rail, 1805 ; also in Stephenson and Losh's Patent, 1816.

Bel'ly-roll. (Ayriculture.) A roller with a protuberant midlength, to roll the sloping sides of adjacent lands or ridges.
Belt. 1. (Machinery.) Λ strap or flexible band to conmunicate notion from one wheel, drum, or roller, to another. Belts are made of leather, gutta percha, caoutchone, wire, woven fabric, and other materials.
Two leathern belts have lately been made in Pawtucket, composed of two thicknesses of leatier limnly cemented together, without a stitch, rivet, or peg in either of them, and are half an inch thick. The larger of the two was made from 54 large ox-hides, is 136 feet long, 48 inches wide, and weighs 1,000 pounds. The other is 87 feet long, 36 inches wide, and weighs 475 pounds.

The ratio of friction to pressure for belts over wood drums is, for leathern belts, when worn, .47 ; when new, 5 ; aud when over turned cast-iron pulleys, 24 and .27.

A leathern belt will resist a strain of 350 pounels per square inch of section, and a section of . 2 of a square inch will transmit the equivalent of a horsepower at a velocity of 1,000 feet per minute over a woolen drum, and . 4 of a square inch over a turned cast-iron pulley.

A vulcanized india-mbber belt will sustain a greater stress than leather, added to which its resistance to slipping is from 50 to 85 per cent greater.
2. (1Fasonry.) A range or course of stones or bricks projecting from the rest, either plain or fluted.

Belt-clasp. (Joint.) A device for attaching the ends of belting together so as to form a contimnous band. See Belf-coupling.

Belt-coup'ling. (Machincry.) A device for
joining torrether the ends of one or more bands or belts. This is commonly effected by cutting or punching holes near the two extremities to be joined, and lacing then together by thongs of lacing-leather or calfskin. Many special devices have been contrived to dispense with lacing, for which see also Buckle.
ln the figure, A represents a coupling in which the ends of the belt b are secured by eyclets or rivets between bent metallic straps a, which lorm leaves of a hinge c. A pintle passes through the eye of each portion of the linge.
For the romad belts ol' foot and hand lathes, a figure-S hook B is used fora counling, or a couple of sockets C, into which the ends of the belt are inserted, and which have a hook and eye re-
 spectively.

For flat belts in which lacing is not deemed advisable, the ends may be joined by hooks inserted from alternate sides and hammered flat as at D.

Other modes of coupling-beltsare to he found; some involving hooks E, and others lapping-plates F. Other forms approach the buckle and varions peculiar interlacing devices, such as curved bars of metal G, slotted plate and toggle-jaws H, or rivets which pass througlt the ont-turned end of the belt, as at I.
L is a tie in which aplug with two grooves is made the means of connection ; the belt is tubular, and the respective ends are throttled by wires into the grooves of the plug.

Belt-cut'ter. a. A machine or tool for slitting tanned hides into strips for belting, In a machine for this purpose the knives are set at gaged distances apart, or the knife at a gaged distance from the governing edge, and the leather passed along below the knife, or converscly.
b. A tool for this purpose has a fence which runs along the governing edge, and a cutter adjustable to the required distance, equal to the width of the strip desired. Such tools are used by hamess-makers for cutting out lines and straps for harness. Ste Gageknife.
c. An implement for preparing belts for being laced

Fig. 650.

Eolt-Cutter.
or compled. That shown combines a cutting-blade b, puch r, awl n, and pliers $k m$.

Belt'ing. (Itachincry.) A flexible band for communicating motion. See Bela.

Belts are made of leather, india-rubber, guttabercha, hempen rope, wehbing, etc.

A belt is said to be quartered when it passes around pulleys whose axes are at right angles to each other, as at b.

Belts crossed so as to run the pulleys in opposite directions are said to be crossed or halicd (a, Fig. $651)$.

A brend is a flat belt.

$c d$ (Fig. 651) are respectively side and end eleva-

Fig. 651.

Drums and Belts. tions of a driving and driven pulley, moving in the same direction, the relative speed being proportionate to their respective radii.
a shows the belt crossed, causing the driven pulley B to move in a direction opposite to that of the driyer -4.

In $b b$ two pulleys C and D,
driven immediately from A, are cansen to rotate in reverse directions by means of a guide-pulley B, under which the band passes.
c shows a mode of driving two pulleys from a single driver by one belt.

India-rubber belting is prepared by folding rubber cloth to a sufficient thickness and desired width. The folded stuff is then placed in a flat-press, and subjeeted to a steam-heat of 230° Fahr. to vulcanize the mbber and blend all the plies into one.

Artificial-leather belting is made of leather scraps and shavings washed in alkaline water, pulpell with gelatinons and resinons substances, regetable fiber, and bullock's blood.

When properly pulped, the same may be run off on an ordinary paper-machine or between rollers, and doubled to a proper thickness, and may be used either with or without farther preparation by japauning, stitching, or water-proof applications. The belting is usnally subjected to a high temperature of heat, to set the gluten and other resinous properties.

A form of belting called angular bcling las been lately introduced, which has riveted on the working side of the continnous plies of the belt a series of rectangular truncated pyramids of leather. The sides of the pramidal frustums have an angle of ahout 60° with the belt in the example at the American Institute Fail, 187 - ; but this would probably vary with the diameter of the pulley over which these bcit-shoes were designed to be lapped.

Leather belting is ordinarily prepared in the following manner: both oak and hemlnck bark are nsed in tanning, but oak-tanned leather is decidedly superior, and commauds a higher price in the market.

Slaughter lides are limed and bated in the usual way, elosely trimmed and green shaved, after having been well washed in the washing-wheel, and when the lair has been remored they are put into the tan liquor, being tacked to laths which rest upon ledges along the sides of the vat.

After the tanning process has been completed, each hide is split into four pieces, of which the middle piece, comprising the back, is for heary belting. These pieces are now put into the barrel-washer, and, after a few revolutions, for the purpose of cleaning them, they are passed between two iron cloth-covered rollers, constiveted similarly to a clothes-wringer, by
which they are pressed dry enough to receive the stuffing, the work being doue by haml; the pieces are then hing up to ilry.

When the stuffing his had time to dry in sufficiently, each piece is thoronghly dampened and then passed through a lowerful lever-stretching machine, where it may be suhjected to a strain of sixty tons to the piece, after which it is oiled and hung up to dry. The effect of this stretching is to make it almost impossible for the belt to stretch by ordinary use after completion.
These pieces, after hecoming thoroughly dry, are passed to the belt-roon, where are machines for planing off the laps, joining the differeut parts, and straightening the edges. After the riveting, the edges are pared or rounded, and for this jurpose the belt is passed between two paring-bits, which are set one on each side of a groore the width of the belt. As the belt is dramn along the edges are rounded, the belt being wound around an arbor. If a square edge is required, the coil is simply taken from tbe arbor, scraped with a slicker, and burnished until it has a glazed appearance.

Belt-lac'ing. Leather thongs for lacing together the adjacent ends of a belt to make it continnous.

Machines for cutting narrow strips of leather for lacing operate by means of a gang of circular kuives, which split into strips the leather which passes against them. The knives are secured by collars on a mandrel, at gaged distances apart, and their edges eut against a parallel roller set over against the former at such distance as may suffice to allow the leather to pass in the interval. Another form of the machine is a gang of stationary knives which cut the side or strip, of leather which is drawn against and between them hy means of rollers.

Belt-pipe. (Stcem-Enginc.) A steam-pipe which surrounds the cylinder.
Belt-punch. A punch for forming the holes in a belt into which lacing, rivets, or clasps are inserted. The punch c acts against an auril on the other jaw,

Fig. 652.

Belt-Punch.
the latter is graduated, and has an adjustable gage G, which may be set at such a distance from the nose of the pliers that a row of holes may be readily funched at a set distance from the edge of the belt.
Belt-saw. A B.ND-sAw (which see).
Belt-shift'er. (Machinery.) A device for shifting a helt from a fast to a loose pulley, or vice rersa, or from one pulley to another, to cause a change in the motion of the belt, or to slift the power of the belt to another pulley running in the same direction. In the illustration, the piroted levers connected by jointed rods with the rocking-bar simultaneously shift the belts.
Belt-speed'er. (Machincry.) A pail of cone.
pulleys carrying a belt which, by shifting, become the medium of transmitting varying rates of motion. lt is much used in some spiming-machines to vary the rate of rotation of the spool as the cap increases in size. See Cone-pulley.
Belt-splic/ing. (Machincry.) A mode of fastening ends of belts or belt-lengths, by splitting one end so as to hold the long tapered edge of the other one, which is cemented between the lips of the former.
Belt-stretch'er. A device for drawing tagether the ends of a belt, in orler that they may be sewed or riveted to render the belt continuons.
The belt is placed around a couple of pulleys, and its ends approached to lap, upon each other for sew.
the side of a cutting, an embankment, or parapet. A berme; a banquette.
2. A support for tools and work in various mechanical oplerations, as carpentry, metal and leather working, etc.
The bench is of a thick plank, or, better still, a number of pieces of scantling glued and bolted together, - a combination which resists warping better than any mere plank, however thick or well braced. At the back part is a shallow trongh l to hold small

Fig 656.

Carpenter's Bench.
tools. $a b$ are, respectively, a toothed and a square bench-hook, which slip in vertical mortises so as to assume any required elevation, or be driven down flush with the surface of the bench. k is a holdfast, which clamps work to the bench.
a c are the screws of a bench-vise ε, by which work is held. The screw d has a garter f, which enters a notch in the cylindrical neck of the screw, keying it in the jaw, so that the latter follows the inward and outward motions of the serew. A number of stops are plased along the front of the bench, either of which may be raised to hold one end of a piece of work, while the other end is held by the stop j on the sliding-piece $\%$, which is moved by the end-serew g.

When a board is placed edgeways in the vise e, its bottom edge may rest on a pin m, which is placed in either one of the vertical series of holes in the post.

Bench-clamp. A jaw-tool attached to a workbench for holding an article to he operated ou in place.

The bench-clamp is shown on a painting in Herculaneum, where it is used to dog a timber to a bench while it is being sawed by a frame-saw.

In onc form, a, the board, when set on edge, is clamped by two wedges between the angular cheeks.

In another, the clamp b has an arm e, which is pressed downward upon the work to be held by means of the screw d, whose end rests on the base-piece of the clamp c.

Another clamp is formed of two pivoted dogs $g g$, between whose heads the hoard slips. The board is shown in dotted lines, and pressure against the tails of the dogs clamps their heads against the sides of the board.

Fig. 657.

Lench-Ciamps.

Berch-Drill.

Bench-drill. A drill adapted to be used on a machinist's or carpenter's bench. In the example shown, a post a is erected between the jaws of the bench-vise 8 , and has a vertically adjustable arm c, in which is the feed-screw d, which forms the pintle or back-ccntcr of the brace c. The work f is placed on the bench q, and the brace is rotated by the hand, which grasps the loose sleeve h.

Bench-ham' mer. (Mctalworking.) A finisher's or blacksmith's hammer. They are of varions sizes aud shapes for different kinds of work.

Bench-hook. A stop or abutment which occu-
Fig. 659.
 pies a vertical mortise in a carpenter's bench, and is adjustable to any resuired elevation, to stay the wood being planed; or may be driven flush with the surface of the bench when its services are not needed.

One of the hooks a has a notclied plate against which the wood is diren in planing; the other hook b is spuare, so as not to damage nearly finished work.

Bench-lathe. A small lathe such as may be mountel on a post which stands in a socket in a

Fig. 660.

Bench-Lathe.
bench. In the illnstration, the mandrel carries a face-plate with centering devices, and may be driven by a cord from a treadle or by a bow. The tail-strock and rest are adjustable by thomb-nuts.

Bench-mark. (Survcying.) A mark showing the starting-point in leveling along a line: also similar marks affixed at conrenient distances to substantial or permanent objects, to show the exact points upon which the leveling-staffs were placed when the varions levels were read, thus facilitating reference and correction.

Bench-plane. A joiner's plane for working a llat surface. They are naned, in the order of the ir
fineness, jack; long, trying pancl, smooth, jointer planes (which see).

It consists of a stock traversed by a slot in which is wedged a slanting knife, sharpened at its lower edge, and called the plane-bit. The opening in the solc through which the bit protrudes is called the throat. The degree of protrusion of the bit determines the rankness of the cut and the consequent thickness of the shaving. The bit is usually leelel

Fig. 661.

Bench-Plare.
by a wedge driven in from ahove, but clamping arrangements have been suggested, though they are not in much favor. In the one shown, the cap-piece is held against the bit by means of a screw I passing from the heel of the plane to the nut N in contact with the cap H aud bit C, and a second screw F, which pushes down the nut in the cap-piece.
Bench-reel. A spinning-wheel on the pirn of which the sailmaker winds the yarn.

Bench-screw. (Carpentry.) The wooden screw which operates the movable jaw of the joiner's benchvise. See Bexch.

Bench-shears. Hand-shears, the end of whose lower limb is turned at right angles and is received in a socket in the bench.

Bench-strip. (Caryentry.) A batten or strip on a carpenter's hench which may be fixed at a given distance from the edge to assist in steadying the work. It may form a lence or a guide.
Bench-vise. A vise provided with means for attachment to a wood or metal worker's bench. In the vise of the carpenter's bench the movable wooden jaw is clamped against the stationary jaw of the bench by means of a wooden screw rotated by a lever occupying a slot in the head.

In the ordinary metal-worker's rise the jaws are both of iron, and one of them has a spreading claw which is screwed fast to the bench. In parallel

Fig. 662.

rises, however, other means of fastening are adopted. (See Vise.) In the illustration, one jaw slips on the bar as the mut is rotated by the liandle; the other jaw is fixed in the required prosition on the said bar by means of a pawl.
Bend. 1. (Shipurighting.) a. One of the strong planks or ucales on a vessel's sites to which the beams, knces, and futtocks are bolted. See Wale.
. The cross-section of a building-draft. A bend represents the molling edge of a frame.
2. (Mining.) An indurated argillaceous substance.
3. (Noutical.) 1 knot by which one rope is fastened to another, or to an object such as a ring, spar, or post.

Fig. 663.

Bends.
a, a loop-bend.
d, a rolling bend.
b, a fisherman's bend. c, a earrick bend.
c, a common beud.
f, a mooring-bend, in which the rope is bent to a post or bollarel on a pier or wharf.
Bend'ing. A process applied to plates to form them into cylindrical shapes, or angular shapes for boilers, angle-iron, etc.
When the material is brought to a corrugated form it is termel Cormuating (which see).

The bending of wond for thills, bows, fellies, plowhandles, etc., is usually while steam-hot, and supported in clamps and formers.

Angle-iron for ships' frames is bent to give the proper figure to the molding edge, by means of a leveling-block or by a swage. The former is allapted to produce sharp curvatures. See Levbling-block.

The swaye consists of a fixed curved bed and a reciprocating block. One side of the bar to be bent or straightened rests against a pair of fixed blocks, with slightly rounded surfaces. Midway between those fixell blocks the opposite side of the bar is pressed against by a block having a reciprocating motion. The position of the fixed blocks and the length of the stroke of the movable block are capable of adjustment, according to the alteration to be produced in the figure of the bars.

Bending of plates for ships' sides is performed by passing them between a pair of bed-rollers and a free roller above, whose bearings are adjustable by means of screws so as to give any required curvature to the plate.
Boiler-plates are bent in the same way.
Bend'ing-strake. (Shipurrighting.) Twostrakes wrought near the coverings of the deck, worked all fore and aft a little thicker than the rest of the deck, and let down between the beams and ledges so that the upper side is even with the rest.

Bend-leath'er. A superior quality of sole-leather.
Ben-gal'. (Fabric.) a. A thin, light Bengalee stuff, made of silk and hair, for women's apparel.
b. An imitation of striped muslin. (Bengal-stripes.)

Ben-gal'~light. (Pyrotechaics.) A kind of firework, giving a vivid and sustained blue light, used as a signal; also written Brngola.
The composition for Bengal-lights is, 1 part antimony, 2 sulphur, 2 mealed powder, and 8 nitrate of sola. These are finely pnlverized and thoroughly incorporated together, und the composition is pressed into earthen bowls or similar shallow ressels. When not used immediately, the month should be covered with waxed paper to exclnde moisture.
Ben-gal'-stripes. (Fabric.) A Beugalee striped cotton cloth.

Bent. One section of the frame of a building, which is put together on the ground or fommation, and then raised by holding the feet of the posts and
elevating the upper portion. A bent consists of posts united by the heams which pass transversely across the building. When raised, it is secured by the beams of the side to the other bents.

Bent-gage. (Wood-working, ctc.) One whose blade forms an angle with the handle. Used by wood-workets and sculptors.

Bent-gouge. (IFool-ivorking.) A gonge bent towards the basil, and used for scooping or hollowing out concave surfaces. A bent-ncck gonge.
Bent-gra'ver. 1. (Jewelry.) A scorper.
2. (Engrening.) A graver with a blade so bent as to reach a surface whose plane is lower than a marginal rim. ITsed in chasing and in engraving monograms in sunken tablets.

Bent-le'ver. A lever the two arms of which form an angle at whose apex is the fulcrum ; as, a hell-crank lever.
Bent-le'ver Bal'ance. A weighing-scale in which the scale-pan W is attached to the short end 4 of a bent-lever, which is piroted on the summit of a jost B, and whose weighted enil C traverses a graduated are to a distance proportioned to the weight in the pan $I V$. As the weight C ascends, its leverage becomes greater , and it halances a correspondingly greater weiglit in the pan W. Its leverage in the position shown is indicated by the vertical dotted
 line dropped from D.
Bent-pipe Fil'ter. A tube whose bend forms a containing receptacle for a certain quantity of sand through which water passes, enteringat one leg and being discharged at the other.
Bent-rasp. One having a curved blade. Used by gunstockers and
 sculp,tors.

Ben'zole. Discovered by Fararlay in oils in 1825, and by C. B. Mansfield in coal-tar; 1849. The latter was fatally humed while experimenting with it in 1855. Aniline is produced from it, and is the source of the celelrated modern dyes, mauve, magenta, etc.
Ber'ga-mot. (Fabric.) A coarse taplestry, said to have been first made at Bergamo, ltaly. It is composed of flocks of wool, hair, silk, cotton, or hemp.
Ber'lin. (Velucic.) A species of four-wheeled carriage having a sheltered seat behind the body and separate from it. Introdneed previons to 1673 by Philip de Chiese, of Piedmont, in the service of Wil. liam, Elector of Brandenburgh

Berme. 1. (Fortification.) A narrow, level space at the foot of the exterior slope of a parapet, to keep, the crumbling of the parapet from falling into the ditch. See Abattis.
2. (Engincering.) A ledge or bench on the side
or at the foot of a bank, parapet, or cutting, to catch earth that may roll down the slope or to strengthen the bank.

In canals, it is a ledge on the opposite side to the tow-path, at tbe foot of a talus or slope, to keep earth which may roll down the bank fiom falling into the water.

Slopes in successive benches have a berme at each notch, or, when a change of slope oceurs, on reaching a different soil.

Berth. A sleeping-space of limited dimensions on board ship or on a railway-car. It consists of a box or shelf, isnally permanent on shipboard, occupying a space against the wall of a state-room or cabin.

In railway-cars berths are nsually made at two elerations; the lower one is made up by bridging the space between two adjacent seats, the upper berth by letting down a shelf from above. See Sleeping-cat..

Berth and Space. (Shipuriyhting.) The distance between the molding-edge of one bent or frame of a ship to the molding of another bent or frame. Same as room and space.

Bes'se-mer Pro'cess. A metallurgic process which serves as a sulistitute for puddling with certain descriptions of cast-iron, and for the manufacture of iron or steely-iron for many purposes.

Stcel is a compound of iron and carbon, standing in the series between wrought-iron and cast-iron, the former having less carbon, and the latter more, than steel. An oll authority gives the contents of carbon in different classes as follows :-

The old-fashioned way of manutacturing the socalled blister steel was to first produce a refined iron, and then cause the bars to re-absorb the necessary quantity of carbon in the cementation furmace, where they were treated, imbedded in charcoal for at least a fortnight. This steel broken $u \mathfrak{y}$ and remelted in crucibles forms cast-steel. The refining of iron in a puddling-furnace to the point where it assumed the character of steel was the next step in the process. See Steel.

Mr. Bessemer's process is as follows :-
The iron which is to be converted intosteel is melted in cupola furnaces, and tapped off into a large ladle standing upon scales, where the weight of the clarge may be accurately determined. When everything is ready, the charge, of about twelve thousand pounds, is rum into une of the "convertors." This is an eggshaped iron vessel, about fifteen feet ligh and nine feet dameter, hung by trunnions upon a punderous iron framework. To one trundion is attached a heary pinion, worked by a rack, driven by a waterengine, which rotates the vessel in a vertical plane. Through the other trunnion, which is hollow, passes an air-pipe, which is continued down the outside of the vessel, and opens into a chamber at the bottom of the "convertor." (See Convertor.) This chamber communicates with the main cavity of the vessel tlrough 120 holes, each three eighths of an inch in diameter. These holes are contained in ten "ylindrical fire-bricks, imbedsed in refractory materials, and the whole bottom-chamber and all - is removalle at pleasure. The main cavity is lined a foot thick with a mixture of crusled quartz, sand, and clay, and opens at the top obliquely np-
ward throngh a " nose" pointing towards the chimmey. It is evident that the blast must pass through at trunnion, becanse the ressel could not be rotated if received in any other manner. Prior to receiving the charge, the lining is heated nearly to whiteness, and the ressel is inclined to a horizontal position, or beyond, in order to keep, the air-loles above the fluid iron while charging. The blast is then turned on, the vessel righted, and the pressure of the blast kee]'s the metal from pouring through the air-holes. Immediately the reactions commence.
The cast-iron used in the convertor contains about two per cent of silicon, which has a powerful affinity for oxygen, and the combustion of which generates enormons heat. When the carbon oxilizes, which it does in the later stage of the conversion, a long body of flame issues from the conrertor of a dazzling whiteness. It is so brilliant that the eye can scarcely endure it, and with the heary roar of the blast, the rumbling from the volcanic turmoil within, and the showers of sparks blown out of the vessel in thousands of scintillating pellets, forms a scene which must be witnessed in order to be appreciated.
"The completion of the blow and the exhaustion of the impurities is denoted almost instantaneously by a change in the whiteness of the flame to a hollow, lurid, translucent glare, accompranied with smoke. The change occupies scarcely three seconds, and great care must be taken to turn down the vessel the moment the conversion is complete. The product contained in the convertor is mearly pure iron, in a state of perfect Huility. A small quantity of oxide of iron is mechanically mingled with it, which must be remored, and for this prupose five or six per cent of spiegeleisen is run into the ressel. The manganese of this metal at once decomposes the oxide of iron, takes up its oxygen, freeing the iron, and passes into the slag an oxide of manganese. The carbon of the spiegeleisen is partly oxidized and partly remains in the won, giving it its steel properties. Afterwaiting a few seconds for this reaction to complete itself, the vessel is rotated farther down, and its contents discharged through the mose into the ladle wielded by a huge hydranlic crane, and then poured through a hole in the bottom of the lalle into iron ingot-molds. The blowing occupres about twenty minutes, and the loss of metal is about thirteen per cent.
The rotation of the convertor, which, together with its charge, weighs over thirty tons, the shifting of the ingot-moks, ladles, and other parts, and the removal of the ingots, are all effected by hydranlic power. The American form of the apratus is the work of Mr. Holley, and is a total renovation of the English method and a great improvement.
Holley's convertor has a joint below the trmenions, and the lower portion of the bulb may be taken off, placed on a car, and wheeled away, so that the workmen may be able to get directly at the tuyeres, and can set them quickly and strongly ly ramming granister solidly around them, insteal of powring it around them in a semi-fluid state, as in the cases where the bottom of the convertor is reached through the mouth. By baving some supplementary bottomsections to replace at once those in which the tuyeres have become burned out or worn too short, the daily working capacity is about donbled.
The ingots are lighly crystalline, and generally contain many cavities, which, however, have not been exposell to the air, and therefore close together perfectly under hammer or in the rolls. The weight of the ingot is about 1,400 pounds, and it will make two railway bars. It camot usually he hammered until after it has been cooled and reheated. It averages a foot square, is three or three and a half
feet ligh, and has considerable taper. In order to enter a 23 -inch train of rolls, it must be "bloomed" down to about six inches, and for this purpose it is reheated to full orange redness, hammered, ant cut in two. It is reheated a second time for rolling, and each "blom" receives 17 passes, issuing from the last one aver 30 feet in length. The ragged ends are sawed ofl by two saws, placed 25 fret 5 inches apart, and when cool the bar is just $2 s$ leet loug, having contracted 5 inches, and weighs usitally 67 poinds to the yard, - more or less, of course, according to the pattern.
Best-work. (Mining.) A miner's term of the best or lichest class of ore.
Bé-ton'. Specifically, the French term for conurebe ; a concrete, the invention of M. Coignet, composed usually of sand 5 , lime 1 , hydurulic cement .25. The materials are mixed by a shovel, gromm! violently in a tempering-mill, water being added sparingly from time to time. The pug-mill has a vertical eylinder and a shaft armed with knives spirally arranged, beneath which is a cyeloilal presser which drives the plastie béton out at holes in the bottom of the mill. This is carefully and persistently rammed in molils, a stratum at a time, till the mohl is full. The top of each stratum is deeply scratched to bind its successor thereto. The molds are colfers in sith, or ordinary molds, aceording to circumstances. The reduction by ramming is very great, about 1.7 to 1. The weight becomes 140 poums to the cubie foot. The resistance to crushing is 5,000 pounds to the square inch; ten times that of a common mortar made of the sune materials and proportions.
Sewers made on this phan may have the centering removed in eight homs, and in tour or five days they may be used. Arche; with a pitch of 1 in 10 have proportions, sand 5 , lime 1 , hydran'ic ement,.5. In Paris, arches, floors, foumdations, barracks, and churches are made of this material. A dwelling of tive storyes, in Miromesnil Street, Paris, is constructed of a single mass of béton ; a stairease of the same material runs in helicoidal form from the basement to the highest floor, molded in the position where it stamls.
In making foundations of blocks of hydranlic concrete, shleet piling is first driven, and forms a wall or curb to maintain the concrete in place until sct.
This is an old Roman method, and was described by Vitruvius. It has also been used hy the French in their works in Algiers. Blocks of 324 eubic feet were floated out and dropperI from slings into their places.

Enylish recipe : -

Molded or mixed in a hox.
M. Coignet erected a test arch at St. Denis, near Paris, whose dimensions are as follows: -

Span

196 feet.
Rise of arch
Cross-spection at the crown . 4 feet by 3.25 " Cross-section at the springing 6.5 feet by 6.5 " Specifie gravity of the material 6.5 teet by 6.5 " 2.200

Weight of ateh .

260 tous
The arch was constructed in six days, being formed in thin concentric layers. After it had reacheld what was deemed a sufficient size, it was allowed to remain for five or six weeks, at the end of which time all

Fig. 666.

Eécon Bridyc.
extraneous supports were removed. This was several years ago, and it yet stands uninjured, and promises to remain an enduring monmment of the skill of its constructor. The total anoment of depression sustained hy the center of the arch after the centering had been removed was barely three eighths of an inch.

Bet'ty. (Slang.) A short crowbar; a jemmy.
Be-tweens'. A grade of needles between sharps and blunts.
Bev'el. 1. Any ingle except one of 90°.
2. An instrument for setting off any augle or bevel from a straight line or surface, much used by artificers of all descriptions for adjusting the abutting surfaces of work to the same inclination. It is composed of two jointed arms, one of which is bronglit ups square against the line or surliace from which the angle is to be set oft, and the other then adjusted to the desired bevel or inclimation. See Bevril-sudahe.
3. (Printing.) A slug cast nearly type-high and with chamfered elges. Used hy stereotypers.
4. The obliquity of the edge of a saw-tooth across the face of the blade.

Bev'el-gear'ing. (Gcar.) Cogged wheels whose axes form an ande with each other, the faces of the cogs being oblique with their shafts, the sum of the angles of the teeth with their respective shafts being erual to 90°. The illustration shows a breast-drill in which a bevel-wheel drives two bevel-pinions on the stock of the drill; one pinion is for cutting, the other for feed.
Bev'el-ing. 1. (Curpoutry.) The sloping of an arris, removing the square edge.
2. (Shipurighting.) a. The opening and closing of angle-inon frames in order to meet the plates which form the skin of the ship, so that the fuy-

Fig. 667.

Bevel-Gearing. ing surtiace of the side-arm of the angle-iron nay exactly correspond to the shape of the plating.

The heveling is performed by smiths while the iron is lying hot upon the leveling-block.
b. The angles which the sides and edges of each 1 nece of the frame make with each other.

A stamding heveling is made on the ontside; an under beveling is one on an inner surface of a frame of timber.
Bev'el-ing-board. (Shipbuilding.) A flat piece of wool on which the bevelings of the several pieces of a ship's structure are marked.

Bev'el-ing-edge. (Shipbuilding.) One edge of a ship.s fimme which is in contact with the skin, and
which is worked from the molding-edge or that which is represented in the draft.

Bev'el-ing-ma-chine'. (Booklinding.) A ma-
Fig. 668. .

chine in which the edge of a board or book-cover is beveled. The table on which the material is laid is hinged to the bed-piece, and may be supported at any desired angle by the pawl-brace and a rack, so as to present the material at any inclination to the kuife.

Bev'el Plumb-rule. (Engincering.) A surveyor'sinstrument for adjusting the slope of embankments.

Bev'el Scroll-saw. A machine for sawing ship?timber to the proper curre and bevel. The saw is mounted on a circular frame a, and reciprocated by means of a rod b and cecentric c. By inclining the saw in its frame any required level may be cut, the curve being given by moving the carriage $d d$ on its circular track a, so as to vary the presentation of the timber. The timbers rest on the roller's $f f$ of the table; but if long, are likewise supported by the rollers $k k$ of the canciages $c \varepsilon$, which run towards ancl from the saw on tracks $i i$. To change the presentation for oblique or circular cut, the carriages i imove in concert - if the timber le long enongh to bring

Fir. 659

them both into action - aronnd the track g, against whose flange the guide-rollers $h h$ bear.
Bev'el-square. One whose blade is adjustable Fir. 570.

Bevel-Square.
to any angle in the stock, and retained at any set by a clamping-screw ; a bevel. The cut shows several forms and positions.

Bev'el-tool. (Turning.) A turner's tool for -forming grooves and tajers in wood. Right-hand or left-hend bevels are used, according as the work tapers to the right or left of the workman.

Bev'el-wheel. (Gear.) The term is applicd to
Fig. 671.

Eevel-Gearing.
a tor-wheel whose working-face is oblique with the axis. Its use is usually in comection with another bevel-wheel on a shaft at right angles to that of the furmer, but not ahways so. When the wheels are of the same size and their shalts have a rectangular relation, the working-faces of the wheels are at an angle of 45° with the respective shalts, and the result is miter gears a. If this relation of the slatts he maintained, but the wheels are varied in size, b, the angles of their faces will vary. As before, however, their cogs are cut at right angles to the surface of two cones whose apexes coincile with the point where the axes of the wheels would meet.

When the shafts are arranged obliquely to each other, c, a certain oblictuity of the cogs of the wheels becomes necessary.
The lower figure in the cut shows a mode of obtaining two different speeds on the same shaft from one driving-wheel.

The term bevel-udicel applies in strictness only to a wheel the angle of whose working-face is more or less than 45°, the latter being a miter-uchecl.

Be-zan. (Fubric.) A Bengalee white or striped cotton cloth.
Bez'el. A term applied by watchmakers and jewelers to the groove and projecting flange or lip by which the crystal of a watch or the stonc of a jewel is retained in its setting. An ouch.

Bib'ble-press. A press for rolling rocket-cases.
Bibbs. (Nauticul.) Cleats bolted to the hounds of a mast to sulphort the trestle-trecs.

Bib-cock. A cock or fancet having a bent down nozzle ; a bib.

a is a bib-cock with a square for the ker.
b is a bil-coch with a union-joint on the nose for the connection of hase.
c is a bib-valec, the closure being by a reciprocating slide instrad of a rotary spigot.
Bi'chord Pi-a'no-for'te. (Jhusic.) A piano with a grand movement, hut possessing but two strings to a note. A semi-yrand piano-forte.

Bick-i'ron. A small anvil with a tang which stands in a hole of a work-bench. A bcak-iron.
Bi-cy'cle. (I'chicle.) A two-whecled velocipede. The whecls are in line; the fore-wheel is driven by the fect.

Johnson's old English patent for a holly was a bicycle. Sice Yflocipede.
Bid'der-y-ware. (Alloy.) This is made at Bider, a town abont sixty miles from Hyderabad, India. Dr. Heyne states its proportions as -

| Copper | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Lead | . | . | . | . | . | 8 |
| Tinl | . | . | . | . | . | 1 |

To 3 ounces of this alloy 16 ounces of zine are added when the alloy is melted for use. It is colored by dipping into a solution of sal-ammoniac, saltpeter, common salt, and sulphate of copper. This colurs it, and the color forms a gronnd for the silver and gold inlaying. Chisels and gravers are employed, and after the inlaying is complete, the ware is polished and stained.

Another formula gives; zine 128, copper 16, lead 4, tin 2 . See Alloy.
Bi-det'. A form of sitting-bath used for washing the hody, the administration of injections, and treatment of hemorrhoids.

Bid-hook. (Nautical.) A small boat-hook.
Bier. 1. A hand-barrow adapted to carry a corpse or coffin, or both. Its purpose is its only distin. guishing peculiarity to constitute a difference between it and a stretcher; litter, or handberrow.

The bier represented in the accompanying cut was the ordinary form for supporting the dead in

Fig. 673.

Bier. ancient Egypt.

The illustration is from the temple at Karnak.
2. (W^{*} earing.) A count of 40 threads in the warp or chain of woolen cloth. The number of warp-threads is countel by biers; the threads are termed cads. Thus, -

In ordinary broadeloth there are 3,600 threads in the warp; these are set in a slcy or recd, about $3 \frac{3}{16}$ yards wide. Sucle a watp is said to be 90 biers. in England, 5 biers or 200 threads go to the hundred. This is one of the absurd overdrafts : as, a humdredweight of 112 pounds; a dozen consisting of 13 . In some trades a hundred consists of 120 pieces or pounds.

40 warp-threads of woolen yarn on the beam: 5 biers make 100 ; that is, 100 pairs of threads, 100 above and the same number below, in the shed. Conumon hroadeloth, $1 \frac{3}{4}$ yards wide, has 18 double-hundreds, or 3,600 warp-threals. Fine broadeloth may have 6,000 warp-threads.

Bight. (Neutical.) The loop of a bent rope.
Bi-la'lo. (I essel.) A two-masted vessel of Manilla.

Bil'an-der. (r^{\prime} essel.) A small two-masted vessel used in Holland, principally on the canals.
Bil'bo. (IVeapon.) 1. A flexible-bladed cutlass from liblboa.
"To be compassed, like a good bilbo, in the circumference of a peck, hilt to point, heel to head." - Fulstaff (in the buck-basket).
2. A form of fetters for prisoners, named from Bilboa, Spain, where they were manufactured in
large puantities, and shipped on the vessels of the Su:nish Armada.

A long bar of iron was bolted and locked to the cleck; a shackle slipperl loosely on the bar, and was secured to the ankle of the prisoner.
"Methought I lay
Worse than the mutines in the bilboes."
Bilge. 1. (Shipbuilding.) The flat portion of a ship's bottom. Here water collects, and is called bilge-water. The water is derived from leakage and condensation. The bilgo-vater alarm announces any unusual depth ; the bilge-pumps remove it.
2. (Coopering.) The protuberant middle portion of a cask.
Bilge-board. (Shipbuilding.) The hoard corering the limbers where the bilge-water collects.

Bilge-keel. (Shipbuilding.) A longitudinal

Fig. 67t.

Bitge-Keels. beam or plate on the bilge of a vessel, for protection from mbbing; or, in the case of iron vessels without true keels, to prevent rolling. Used with ressels having flat bottoms and light draft.

The "Warrior" and some other British ironclarls have bilge-keels.

Bilge-piece. (Shipurighting.) An angleiron or wooden stringer placed at intervals along the bilge of an iron ship to stay and stifien the frame.

Bilge-plank. (Shipurighting.) Strengthening planks of the inner or outer skin, at the bilge.

Bilge-pump. (Sautical.) a. One for prmping the water from the bilge of a vessel. In its old form it had a rod carrying a disk (called a burr), to which is nailed a hotlow inverted cone of strong leather, the upper edge of which is equal to the diameter of the chamber. When it is thrust down it collapses, allowing the water to pass; when it is raised, the leather eap spreads by the weight of the column, and makes a tight joint with the sides of the chamber.

Formerly also known as a burr-pump.
Bilge-pumps are fitted to marine engines as a sccurity to the ship in case of extraordinary leakage, as well as to save the work of the crew in pumping the hold dry. The bilge-pipes should be made of learl, which suffer less corrosion than cupper from the acidulous hilge-water of wooden ships.
b. A punp to withdraw water when the ship is laying over so that the water cannot reach the limbers which are reached by the main pumps.

Bilge-wa-ter A-larm'. (Nauticul.) The ordinary form of these alarms is a well in the hold aml a float whose rise is matle to free an escapement and sound an ordinary clock-alarm mechanism. In many cases the stem of the float is either graduated to show the hight of the water, or has a rack which operates a spur-wheel and turns an indicator-finger on a dial. These may be read as occasion requires, but are not properly alarms unless with them is associated a derice to call attention to the condition of the apparatus.

One form of bilge-water alarm has a rertical rectangular box A permanently placed in the water whose rise is to be announced. The float B rises with the water, and its stem B^{\prime} has an obligue slot b, in which a pin moves and gives motion to a har C connected to clock-work. The latter is placed in any

Hamlet.

conrenient position, and comnected to the har by wire or rods, so as to trip the escapement of the clockalarm when the float reaches a certain hight. The figures represent, respectively, the indicator-dial, the slotted stem and moving bar, the clock-work, and a vertical section through the float and the lower part of the trunk.
In another form a tube is bent to conform to the
Fig. 676.
transverse sectional shape of the ressel, and is proviled with a whistle at each end. At the lowest milship portion the bilge-water is admitted at a gauze-corered opening. When a considerahle amount of bilge-water has collected in the pipe, the rolling of the ressel causes the water to expel the air at alternate ends of the pipe, and sounds an alarm.

Bilge-wa'ter Discharge'. (Nautical.) A device to secure automatic rischarge to the bilge-water. A tube extending from the limber through the outer skin has a rear opening throngh which a current is induced as the vessel passes through the water.

Bilge-wa'ter Gage. (Nitutical.) A device for

Fig. 67.

(Inutical.) A device for Bilge-liater Gage.
showing the deptla of bilge-water in the hold. A granduated stem extending upward from a float in the well where the bilge-water collects. As the float rises, the graluations are read by the officer of the wateh.

Bilge'way. (Shiphuildiny.) The fomblation ol the cralle supporting a ship upon the sliding-2oays during building and lannching. The slidiny-ways consist of planks 3 or 4 inches wide supported on hlocks, and the bilgeways of the cradle slip theroon. The bilgeways are abont five sixths the length of the ship, and are about 2 feet 6 inches square. The cradle is the carriage whieh bears the sbip into the water and separates from the ship by the act of toating.

Bill. 1. (Agriculture.) A look-shaped cuttingimplement, used in heary pruning, hedging, etc. A bill-hook.
2. (H'unon.) A lrook-sliaperl blade on a staft', formerly used; the halberl of the infantry soldier.

"Have a care that your bills be not stolen."

Dogberry.
The bill or bill-hook, under the name of fale or filculd, was a common werpon among the homans. A similar implement was used by the Greeks. The figures of Persens and saturn are represented thus ammed. With this weapon Jupiter wounded Typhon and llercules slew the Lernæan Hydra.
3. (Noutical.) The point on the end of the arm of an anchor beyond the tluke or palm; the pec. It is the first part to penetrate the ground, and is made slightly hooking. Sce Anchor.
4. (Shipurightiny.) The end of a compass or knee timber.
5. (Agriculluze.) A mattock.
6. The point of a hook.

Bill-board. (Shipbrilhling.) An iron-covered hoard or donble planking which projects from the side of the ship and serves to support the inner tiuke of the anchor.

Bil/let. (Sudullery.) (. A strap which enters a buckle.
b. A pocket or loop which receives the end of a buckied strap.

Billet-head. (Sauticul.) A piece of wood at the bow of a whale-hoat around which the harpoonline runs ; a loggerheat.

Bil'leted Ca'ble. (Architecturc.) Cabled molding with cinctures.

Billet-ing-roll. (Rolling-Mill.) A set oi rollers

Fig. 678.

Billeting-Rou. for retheing iron to shape, to merelantable bar. In the illustration the passes are shown with flattening and edg$\{$ ing grooves.

Bil'let - mold'ing. (Arehitcuture.) An ormament used in string courses and the archivolts ol windows and doors. It consists of eylindricabblocks with intervals, the blockslying lengthwise of the cornice. Sometimes in two rows, reakingjoint.

Billet-note.

A folded writing-paper 6 by 8 inches.
Bill-hold'er. A device by means of which bills, memorandums, or other slips of paper, ave held and
secured, so as to be readily referred to and withdrawn as required.

There are numerous forms : one consists of an upper and a lower band, whose distance apart may be regulated by means of two elastic straps fastened by hasps or fasteners, which allow the straps to be taken up or let out as reyuired.

Another form is a spring clasp: a third is a wire for impaling, either suspended or standingr on a foot.

Bill-hook. A thick, heavy knife with a hooked end, uselul for chopping off small branches of trees or cutting apart entangled vines, roots, etc.

When a slant handle only is attached, this implement is sometimes called a hund-bill.
lts lighter forms correspond in their application to the Spanish mrechete.

The bill is made of a weight and shape proportioned to the work.
The long-handled bill a is called a scimiter; the handle four feet long.

The short-handled, light-tool b is called a dresshook, and is nsed for trimming off twigs, pruning or cutting back the smaller limbs to preserve the shape of a hedge, shrub, or ormamental tree.

The other two figures, $c u$, represent varieties of bill-hooks for heavier work. The illustrations are

Fig 68

from English tools; the bill-hook is but little known among us. The axe, hedge-shears, pruning-knife, anl occasionally the corn-knife pressed into service as a machete, do the work in the United States. One of the urineipal uses of these tools in Eugland is for hedging. This is on the advance with us; but, as usual, we have contrived a machine, founded on the principle of the harrester, which is drawn by horses and trims the hedge to any required shape. See Hedge Piantehs and Clippelis.
Billiard-cue. The rod with which the billiardball is struck. It is sometimes tipped with a vulcanized rubber hlock.
Bil/liard-mark'er. A cominting apparatus for registering the points and games at billiards. There are many varieties.

Bil'liards. A game of skill, played on a smooth, level table of peculiar construction, with hard, elastic balls jropelled by a tajrering stick called the cue. It was invented either in France or Italy, probably during the sisteenth century. The invention is gencrally ascribed to Henrique Devigne, an artist in the reign of Charles 1X., 1571. The game is spoken of by Shakespeare.
In 1578, during the reign of Willian, Prince of Orange, jermission was given to some residents of Amsterdam to keep billiard-tahles.
"Up all of us and to hilliards."- Perr"s, 1665.
"After dinner to billiards, where I won an angel." - Itid.

Billiard-tables of the best quality have marble tops covered witl! cloth. The general appearance is well known. The full-size table is 6 feet by 12, lhavingsix jockets, one at each corner and two opposite each other at the midlength of the table. The cushions are the ledges rumning aromen the table, which prevent the balls from being projected over its edges; they are lined with resilient material, to cause the balls to rebound, and various materials and devices have been contriveld for this purpose, many of which have been the subjects of patents. The cue was introduced about 1670.

Carom tables, llestitute of pockets, have come into great favor. The different modes of constructing the cushions have formed the subjects of many pratents.

A Fansas billiard-table is thus describet: " First, in the middle of the floor was an enomously large box, on which was laid abont a wagon-load of sandstone, covered with about eight yards of blue jean. The pockets were nade of old boot-legs; for cues they had old hoe-handles; mock-oranges served for balls; and to count this lovely gause they used dried apples strung on a clothes-line.

Billon. (Alloy.) A German coin-alloy of copper and silver, the former medominating.

Billy. 1. (Hool-Marrufacture.) A slubbingmachine in which the partially compacted slivers of wool, in the condition of cardings or rolls, are joined end to end and receive a slight twist, - the preliminary operation in wool-spinning. See Slubbisgm.achise.
2. A policeman's mace or club.

Bil'ly-gate. (Wool-Manufacture.) The moving carriage in a stubbing-machine.

Bi'na-ry-en'gine. Usually an engine having one cylinder whuse piston is impelled by steam, which, having done its work there, is exhausted into another part of the appratus, where it is allowed to communicate its unutilized heat to some liquid volatile at a lower temperature; the vapor of this second lipuid, by its expansion in a second cylineler, yields additional usefnl force. Ether, chloroform, and bisulphide of carbon, have all been tried.

Bind'er. 1. (Carpentry.) A tie-becm. A binel-ing-joist supporting transsersely the britging-joists above and the ceiling.joists below, to shorten the bearings. See Jolst; Floon.
2. (Shipbuilding.) A principal part of a ship's frame, such as keel, transom, beam, knee, etc.
3. (Sewing-machine.) A device for folding a bind-

Fig $6 \$ 1$.

Shutle-Binder.
ing about the edge of a fabric aud sewing it thereto. See "Sewing-machine Attachments," a complete digest to 1572 , by George W. Gregory, Washington, D. C.
4. (Agricullure.) a. An attachment to a reapingmachine which binds the gavels into sheaves.
b. A wisp of straw, a cord, wire, or other band for binding a sheaf of grain.
5. (il:aring.) A lever

Fig. 682.
apllied in a shuttle-box to arrest the shuttle and prevent its relrounding.
6. (Bookbinding.) A corer for music, magazines, or papers, forming a temporary binder to keep them in order for convenient reference.

Bind'er-frame. A langer with adjustable bearings by which the angular position of the shaft-

Music-Einder. ing may be regulated to suit the plane of motion of the belting.

Fig. 683.

Binder-Frame.

Bind'ers Board. (Bookbinding.) A thick sheet of hard, smooth, calendered pasteboard, between which pinted sheets are pressed to give them a smooth surface. Also the stiff pasteboards which form the basis of the sides of hook covers.

Bind'ing. (Bookbinding.) The putting of a cover on a book. In the trade, linding is putting on the sides; following the operations of folding, grelhering, sering, rounding, and edgo-cutting, and preceding the conering, tooling, lettering, and celgo-gilding.

Varions kinds of binding are known as -

Antique,	India-rubber,
Beveled,	Levant,
Board,	Mlorocco,
Buff,	Muslin,
Calf,	Roan,
Cloth,	Pussia,
Crished,	Sheep,
Full,	Vellum,
Half,	Velvet, etc.

Bind'ing-cloth. (Fabric.) Dyed and stamped muslin for covering looks. The dyenl cloth is Inssed between engraved rollers, or is worked after being cont into patterns of the required size. The engraved
cylinders of hard steel confer the impress characteristic of the back and sides alour with embossed desigus over the surface in sharp relief. It is a cheap and grod substitute for leather, which it has nearly superseded for general use.
Bind'ing-guide. (Sewing-Machinc.) The device is adapted to receive a binding and fold it about the edge of a piece ol material to be bound. Are of two
vent the surealing of the arched roofs of the furnace and iron chamber. Sue Publing-Funinace.

Bind'ing-raft'er. (Curpentry.) A longitudinal timber in a roof, supporting the rafters at a point between the comb and eave. See Pulims.

Bind'ings. 1. (Shipluitdiay.) The timbers of a ship which hold the fromes togetleer. Such are the beams, knees, clumps, water-ways, etc.
2. (Alutical.) The

Fig. 684.

Bimbing-Guide
iron wrought aromul the dead-eyrs.

Bind'ing-screw. A set-screw which linds or clamps two parts together: The term is applied especially; in instruments of graduation and

Fig. 685.

Binding-Screw.
general classes: 1. A flattened tulie foldel gradually on itself longitudinally from near its receiving to its delivering end, but with a space left for the elge of the materiad. (See patent to Siveet, December 20, 1853.)
2. Adjustable hooks projecting throush the face of a guide and facing each other ; the binding is directed by the guide and hooks, the material to be bound rests between the hooks, and the latter are arlinstable, to lap the binding more or less on either side. (See patent to l'rice, June 19, 1860.)
Some bimlers turn in or hem the edges of a bias strip of cloth as it is applied for a binding. (See patent to bourclas, October 5, 1558.)
Bind'ing-joist. (Curpentry.) A joist whose ends rest 1 pon the wall-plates, and which support the bridging or floor joists above and the ceiling joists below. A binder. See Johst ; Floor.

The binding-joist is employed to carry common joists when the area of the floor or ceiling is so large that it is thrown into bays. With large floors the linding-joists are suppported by girders. See GIrbER.

Binding-joists should have the following dimen-sions:-

Length of Bearing. Feet.	Depth. Inches.	Width. Inches.
6	6	4
8	7	$4 \frac{1}{2}$
10	8	5
12	9	$5 \frac{1}{2}$
14	10	$6 \frac{1}{2}$
16	11	7
18	12	$7 \frac{1}{2}$
20	13	

Bind'ing-plate. One of the side-plates of a pudlling or boiling furnace, which are tied together by bolts across the furnace, and by flanges, and serve to bind the parts of the furmace together and pre-
measurement, to a screw which clamps a part in a given position of adjustment. A screw by which the wire of a galvanie battery is held in close contact with other metallic portions in the circuit.
Bind'ing-screw Clamp. (Galranism.) A device used with voltaic batteries; the lower portion is a clamp for the zine or coplure element, which is suspended in the bath; the upper has a lole for the conductor-wire, and a screw which comes forcibly down ujon it to ensure contact.

Bind'ing - strakes. (Shipbuilding.) Thick strakes, jlanking, or wales, at points where they may be bolted to knees, shelf-pieces, etc.

Bind'ing-wire. The wrapping-wire for attaching pieces which are to be sollered together, or to hold in intimate contact the parts concerned in a voltaic eircuit.
Bind-rail. (Hydraulic Enginecring.) A piece to which the heads of piles are secured by mortising or otherwise, serving to tie several of them together and as a foundation for the thooring-joists or stringers.

A cap.

Bing. (Afining.) A place for receiving ore ready for smelting. The bing-hole is the oprening through which it is thrown.
Bink. (Cotton-Maneffactare.) A stack of cotton in a bin or on the tloor, consisting of successive layers of cotton from different bales lain in altenating strata, in order to blend them. A bunker.

The supply of cotton for the machinery is taken by raking down the take so as to mix the cotton of the successive layers at each take.

Bin'na-cle. (Fr. hubittacle). (Nrautical.) A case or hox for containing the compass of a ship and a light by which it is illuminated at night.

It is placed immediately in front of the wheel or steering-aplaratus, and secured to the deck, usually, by metal stays. The after portion has glass windows, so that the compass is at all times visible to the helmsman, who stands at the wheel.

Binnacle. .

Bin'o-cle. (Optics.) A Binocu. lar Telescope (which sec).

Fig. 657.

Eye-Piece for Optical Instruments.

Bi-noc'u-lar Eye-piece. (Optics.) Owe in which the eye-piece is so constructed and applied to the ob-ject-glass as to divide the optical pencil transmitted to the latter, and form, as to each pait of the diviled pencil, a real or virtual image of the object bevond the place of division.

Bi-noc'u-lar Glass. (Optics.) An eye-glass or telescope to which both eyes may be applied.

Alhazen, the Saracen, who Hourished in Egypt and in Spain A. D. 1100, "was the first to correct the Greek misconception as to the nature of rision, sliowing that the rays of light come from the external object to the eye, and do not issue from the eye and impinge on external things, as np to his time had been supposed. His explanation does not depend npon mere hypothesis or supjosition, bnt is plainly based upon anatomical investigation as well as on geometrical discussion. He determines that the retina is the seat of rision, and that impressions made hy light upon it are conreyed along the opticnerve to the brain. With felicity he explains that we see single wlien we use both eyes, because of the formation of the visual images on symmetrical portions of the two retinas." - Draper.

The camera-obscura of Leonardo da Vinci, b. 1452, was an imitation of the mechanical structure of the eye.

Sammel Pepys, in "His Diary," records a conversation with Dr. Scarborough on board the "Charles," formerly the "Nazeby," on the voyage of Charles 11. from the Hague to Dorer, May $24,166^{\circ} 0$. Dr. Scarborough remarked that custom taught children to direct the axes of the tro eyes convergingly upon an object, and presuned that the visual image of but one eye was appreciated at a time. Dr. Srarhorough does not seem to have deduced from this that the images differed, and thus imparted the sensation of rotumfity or saliency to the object, nor the other fact that the angle of convergence of the axes gave the impression of distance. He came very uear to these great derluctions.

A good illustration of the principle of binocular vision is furnished by the stereoscope, invented by

Professor Wheatstone, and torming one result of his discoveries. When we are looking at a raised ohject with one eye, the result is just the same as if we looked at a flat surface, so far as the colors, shades, etc., are skillfilly imitated; but when we look with both eyes, the image iu the right eye is not exactly like that in the left, because we riew it from a different point of sight. It is true, that this difference depends only on the small distance between the eyes, but this suftices to produce different ocular images. Wheatstone has shown that our appreciation of raised objects depends maiuly on this circumstance; and his stercoscope, or binocular glass, is an ingenious contrivance for making two plain pictures seem to coalesce into one rilievo, or raised object.

Bi-noc'u-lar Mi'cro-scope. (uptics.) The invention of the binocular mictoscole followed that of the stereoscope by Professor Wheatstone, which led to a general appreciation of the value of binocular vision.

Professor Riddel, of New Orleans, and after him Wenham, of London, made attempts to adapt the principle to microscopes. Professor Nachet, of Paris, devised a construction in which the pencil of rays issuing from the objective is divided by an equilateral triangular prism, and, issuing from the right and left sides respectively, the divided pencils are received by similar prisms, which give thenn a direction parallel to their original course; the interval of separation being deternined by the distance between the central and lateral prisins.
Weuham's binocnlar microscope has but a single prism, which reflects one lialf of the rays passing

Fig. 659.

Wenham's Binorutar Mierosrope.
through the object-glass into the additional tube of the binocular body.
This instrument can be nsed as a monocular or linocular. In the former case the prism-box is drawn back so as to allow the whole of the rays from the object-glass to pass into the straight borly.

Bi-noc'u-lar Tel'e-scope. (Optics.) A pair of telescopes mounted in a stand, and having a parallel adjustment for the width between the eyes. The tubes have a coincident horizontal and vertical adjustment for altitude and azimuth.

Galileo invented the binocular telescope with which he experimented in the harbor of Leghorn on a vessel in rough weather in the year 1617, with a view to the more'convenient observation of Jupiter's satellites on board ship. The invention has usually been attributed to the Capuchin monk Scliyrleus de Reita, who had much experience in optical matters, and was seeking to find the means of constructing telescopes which would magnify four thousand times.
Bi'not. (Agriculture.) A kind of double-mold hoard-plow. (English.)
Bird-bolt. A thick, pointless arrow to kill birds without piercing them.
Bird-cage. A box or case of wire, small sticks, wicker, or other suitable material, forming openwork, for confining birds. Pepys states that he bought two fine cages for his "canary-birds. (Diury, January 25, 1661.) See Cage.
Bird-call. A short metallic cylinder, with a circular perforated plate at each end; used to make a trilling noise, as a decoy for birds.

Bird-house.

Fig. 689.

Bird-Hus. A box for birds, usually set on a pole planted in the ground to prevent access of cats and other vermin. May be made an architectural feature, but is usually a modest affair, put up for the pleasure of seeing the birds and the satisfaction of affording them comfort and protection.
Bird'ing-piece. A fire-arm for killing birds. A shotgun or Fowlingpiece (which see).

Bird-or'gan. A small barrel-organ, userl in teach. ing birds, esprecially the bullininch, to sing.

Bird's-mouth.
(Carpentry.) The
notch at the foot of a rafter where it rests upon and against the plate.

Bird's-nest. (Nautical.) A lookout-station at a mast-head for a seanan who watches for whales.
Bird-trap. A two-winged flap-net sprung by hand, or a box-trap supported on a figure-of-t, with a trigger to be touched by the bird or sprung by a person on watch. The netting of birds by the former method is well pictured in the ancient Egyptian paintings.

Bi'reme. (Nautical.) A two-banked galley.
Birlin. (Nautical.) Bior-linn; a galley of the Hebrides.
Bir'rus. (Fabric.) An old-time coarse woolen cloth.

Bis-cay'an Forge. A furnace in which malleable iron is obtained direct from the ore. See Cata. LAX.

Bis'cuit. 1. (Ereal.) a. A hard cake of unfer-
mented bread, suitable for sea use. Formerly it was baked a second time to expel the moisture more completely, in order that it might keep without molding. 1 cracker.
b. A small baked cake, rendered spongy by carbonicaciel gras resulting from fermentation, or adding soda and an acid. Or, a small baked cake with shortening of lard or butter.
2. Articles of pottery molded and baked in an oven, preparatory to the glazing and burning. In the biscuit form, pottery is libulous, but the glaze sinks into the pores and fuses in the kiln, forming a vitreous coating to the ware.

Biscuit, by its derivation, means, twiec bithed, and is, or was, true of the edible biscuit; but the name as applied to pottery is derived from the similarity which the ware in this stage bears to the edible biscuit. It is a favorite material for statucttes and ormaments, owing to its soft tone and creamy unglaring surface.

Bis'cuit-mak'ing Ma-chine'. Previons to the introduction of machines for kncading the materials, rolling the dough, and cutting out the biscuits, the flour and water were mixed and kneaded by hand, and then placed on a platform where, by means of a linged lever called a break-staff, the process is completed, the person sitting on the break and bouncing up and down, and at the sanue time traveling in the arc of a circle, leaving the dough in a thin sheet, very compact and comparatively diy. This was removed from the platiorm, cut into slices, molded by hand, pricked, and baked.
The biscuit-machine of the Navy Victualling Establishment, Portsmouth, England, is thus described in the United Service Journal:-
"The first operation in making the biscuits consists in mixing the meal and water. 13 gallons of water are poured into a trough, and then 250 pounds of meal. The lid is shot down, and an apparatus, consisting of two sets of knives, is made to revolve among the flour and water by machinery. The mixing lasts $2 \frac{1}{2}$ minutes, during which the stirrers make 26 revolutions.
"The lumps of dough are then thrown under the brcaking-rollers, which are cylinders of iron weighing about 1,500 pounds each, and moved by machinery upon the bench whereon the dough is laid. The dough is thus formed into masses alout 6 feet long, 3 feet broad, and several inches thick. The mass, being as yet imperfectly kneaded, is cut into sections about 12×18 inches of the thickness mentioned, and is again and again mashed out flat by the traversing roller, being doubled upon itself after each rolling.
"The dough, now perfectly kneaded, is carried by machinery to the rollers, where it is made into sheets of the required thickness. The cutting is effected by a plate, consisting of a network of 52 slarp-edged hexagonal frames, each as large as a biscuit. The frame is mored slowly up and down by machinery, and the workman, watching his opportunity, slides under it the sheet of dough, which is about the size of a leaf of a dining-table. The cutting-frame, in its descent, indents the sheet, not cutting it quite through, but leaving sufficient substance to enable the workman at the month of the oven to jerk the whole mass of biscuits undivided into the oven. A follower in each of the cutter-frames moves up and down, giving way as the cutters are pressed npon the dough, and, as the cutters rise, ejecting the dough from the frames.
"The establishment has 9 ovens, each 11×13 fect, and $17 \frac{1}{2}$ inches in hight. They are heated hy separate furnaces, so constructed that a blast of hot air and fire sweeps through them, and gives to the inte-
rior the requisite dose of heat in an incredibly short space of time. Fifteen minutes is sutticient for baking, and the biscuit are afterwards placed for three days in a drying-room heated to 80° or 90°, which completes the process.
"The producing capacity of the machinery is 1,790 pounds of biscuit per hour:"
Bi-sect'ing Di-vid'ers. Proportional dividers whose legs are permanently pivoted at one third of their length from the shorter end, so that the distance between the two points at that end, when the dividers are opened, is just one half that measured by the longer legs.
Bi-sect'ing Gage. The bar has two cheeks, one

Fig 690.

Bisesting Gage. adjustable. The ends of the toggle-bar conneet to the respective checks, and at the pivot of the toggle is a pencil or scribe-awl which marks a median line between the lacing sides of the two cheeks.

Bis'muth. Equivalent, 212 ; symbol, $B i$; specific gravity, 9.823 ; fusing-point, $497^{\circ} \mathrm{F}$. A reddishwhite, hard, brittle metal, of radiated crystalline structure.
Its principal use is as an ingredient in alloys, especially those which are designed to fuse at low temperatures, such as the solders and fusible plugs for steam-boilers.
The oxide of bismuth is a cosmetic. See Alloys, under the heads of white mstals ; soldcrs; fusible alloys.
Bis'muth Fur'nace. At Scneeberg, in the Saxon Erzegebirge, bismuth is reduced in a furnace similar to that shown in the cut. The raw mineral is in-

Fig. 691.

Bismuth Furnace.
serted into the higher ends of the iron tubes P, which are then shut. The lower ends of the tubes are closed by plates having an aperture near the lower edge, through which the inelted metal flows, and is received in clay-pats c, which are kept hot by a fire beneath. In this state it contains a proportion of sulphur and arsenic, which, however, may be removed by fusing the metal with one tenth its weight of niter.
Bisque. (Porcclain.) The baked ceramic articles which are subsequently glazed and burned to form porcelain. See Biscurr.

Bis'tou-ry. (Suergical.) From Pistori, a French town where these knives were early made.

A surgical instrument for making incisions, having a handle and a blade, which may be either fixed or

Fig. 692.

movable, and variously formed to adapt it to special purposes. Bistouries are known as straiglit, curred, sharp, probe, etc.

Bi-sul'phide of Car'bon En'gine. A compound engine in which the vapor from bisulphide of carbon is employed in the second cylinder instead of steam as a motive-power. A binary engine.
Two engines are used in the Ellis arrangement. They may be conpled together or used independently. One of these engines is run by steam in the usual way, and its exhanst taken to heat the boiler that drives the other engine; this boiler is filled with a mixed volatile liquid, consisting priacipally of the bisulphide of carbon, which boils at $110^{3} \mathrm{~F}$., and at the usual temperature of exhanst steam gives a pressure of 65 pounds to the inch. This boiler is heated ly passing the exhaust steam through its flues on its way from the cylinder to the atmosphere, and the vapor which is produced in it is used to drive the sccond engine. The exhaust vapor from this engine is condensed to liquid by cooling, and pumped into the boiler again, and used contimonsly with vers little loss.

Bit. 1. (Locksmithing.) The part of a key which enters the lock and acts upon the bolt and tumblers. See KEy.
The bit of a key consists of the wcb and the uards. The web is the portion left after the wards are notched, sawn, or filed out.

In the permutatious locks, each separate piece composing the acting part of the key is termed a bit. These fit upon the stem of the key, from which they are removable, and are interchangeable among themselves, so as to allow the key to be set up wiih various combinations agreeing with the set of the tumblers.
2. (TVod-working.) a. A boring tool used by attachment to a brace, whereby it is rotated. Au auger has many points of resemblance to a bit, but has a cross-handle whereby it is rotated, whereas a bit is stocked in the socket of a brace, and is rotated thereby.

The following are the varicties of Boring-Bits, and their adjuncts :-

Annular bit.
Auger.
Anger-bit.
Awl.
Bit-holder.
Boring-bit.
Brad-awl.

Broach.
Bung-borer.
Center-bit.
Chamfering-bit.
Coal-boring bit.
Coue-bit.
Countersink-bit.

Dowel-bit.
Drill.
Drill-bit.
Ducks-hill bit.
Expaneling-lit.
F:acet-bit.
Felloe anger.
Flute-bit.
French-bit.
German-bit.
Gimlet-bit.
Gouge-bit.
Grooved bit.
Hollow anger.
Shell-anger:
Lip-bit.

Nose-bit.
Opening-bit.
Piercel.
lod-bit.
Plng-center bit.
Pump-bit.
Quill-bit.
leaming-bit.
Shell-bit.
Spiral bit.
Spital-rib bit.
spoon-bit.
Terrier.
'Twisted bit.
Vent-bit.
Wimble.

The goarge-bit (a, Fig. 693), before the invention of the pol, spoon, and twisted bits, resembled the half of a reed split longitudinally, and had a sharp end like a gouge. This was also known as the quill-bit, or shell-bit.

It was improved by giving a quarter-round end to the semi-cylindrical shank, the sharp end working at the bottom of the hole and removing a spiral chip insteal of depenting upon the penetration of the sharp end of the tule, as in the gonge-bit. This was a great improvement, and was the pol-bit, or lip-bit.

The change to the spoon-bit (b) was merely giving a conoidal end to the tool, which enabled it to enter more accurately at a given spot. This is the dowelbit, leing nsed by coopers on barrel-heads, and by fumiture-makers on table-leaves. This is also called the duck's-bill bit.

The nusc-bit orshell-auger (c), when on a large scale, has the first example of a teble ol routing cutter, which is afterwards so prominent a feature in the

Fig. 693.

screw-augers. It has a long barrel, and the large sizes are used by the pump-makers, and called mompbits.

One form of countersink-bit has a cntting enlargemeut on the shank, which, according to its shape, may make a suitable depression for the chamfered head of a serew, its usual purpose, or may serve to sink a boit-head or nut out of sight in the material. Sce Champer.

In anotber form, attached to the shaft of a boringhit is a countersink, or cutting lip, that will enlarge the hole bored by the bit, it being adjustable on the bit, and having a gace to determine the depth of hole or countersink.
The countersink has two faces, either of which may be presented to the work. One has a tooth and router, which nakes a square-hottomed countersink;
and the other has a chamfering lip, which makes a conical countersink.

The chermfering-bit (d), for opening holes so as to admit the conical heads of the ordinary wood-screw, consists of a conical reamer with teetll. It may be employed on wood, metal, or other material which is to receive the heat of the wood-screw.

The gage is adjustable on the countersinker, and the latter on the stem of the bit, so the hole may be made of a regulated depth, and the comutersink also.

Other gages adaptable to the use of bits are shown under the head of Avari-gage (which see).

The cxpending conter-bit (e) consists of a shank and center-point, and a lancet, or chisel-shaped cutter, Whose distance from the center is regulated by slipping the bar, like that of a beam-compass, in the socket of the head, a set screw maintaining it at its adjustment. This serves for cutting out disks, or for cutting circles for inlaying.

For eutting hard wool, such as the finger and key holes of fiutes, bits are employed with a square point and two di-anetricalcutting-lips (g, Fig. 694); the smaller one apmoaches very closely the character of adrill, into which, indeecl, many of the bits sensilly glide, especially those adapted lor working in hard woods, and other materials harder than wood, such as bone and metal.
The French bit (h), for hard wool, is a drill, and as such is useel in a lathe-heal. The cen-ter-point and two sides merge into an easy curve, which is sharpened all the way round and a little leyond the largest part.

Fig. 694.

Boring-Eits.

The German pod-bit (k; Fig.
695) has a long elliptical pod and a screw-point. It makes a taper to the end of the hole unless it is driven clear through.

The center-bit consists of three parts: a center point or pin, filed triangulanly, which serves as a guide for position ; a thin cutting-point or nicker that cuts throngh the tibers and circumscribes the hole ; and a hroad chisel-edge or router, placed oblipuely, and tearing up the wood within the circle marked out by the point.

Center-bits are also made with plug centers, so as to follow in a hole previonsly made, the circular cutter ard router enlarging the hole. See Auger.

Another form of the center-hit is that of the winecoopler, which consists of a conical phug amed with a bit at its end. The hole having heen made, the phog instantly drops into the hole and prevents the loss of lipuor. Sce Auger.

An amular bit, consisting of a center-point without the rouler, but having one or more cutting teeth, is used to ent ont disks of metal, wool, horn, bone, shell, or paper for buttons. It is then called a but-con-tool. (See c, Mig. 693.) See Atcier, ANvular, where several are represented, which only ditter in size from the button-tool. This tool also apmoaches, in principle and action, the Trepmine and Chown Saws (which sec).

Twisted drills, differing in some details, are in much favor among American mechanics, but for some reason are not so popular in Europe. They are an American invention, and the subject having been treated once under Avgers (which see), it will not be well to duplicate the remarks, or perhaps necessary to add to them here.

There are four modes of forming the twist, though they are not equally jopular or common:-

A ribbon coiled.
A flat plate twisted.
A spiral rib on a straight, central stem.
A spirally grooved cylindei.
The spiral ribbon m is a bar having a half-round section. This is twisted so as to thow the fiat site to the exterion to form the outside of the cylinder; the inside is not filled up by the metal, but makes a hollow spiral, and the bottom end has a single cutting-lip.

The twisted flat bar n assumes the form of a double-threaded screw, no central vacuncy existing in the twist. The end terminates in a worm which leculs the auger into its work, as in the gimlet, and each of the two lips has a cutting tooth and a ronting entter.

Fig 695

The spiral-rib bit o is known, especially in Englani, as the American bit, and has a cylindrical shaft, around which is twisted and brazel a single fin or rib; or the bit may be swaged between dies, or twisted from a central stem with a single straight rib.

Behind the worm, as in example p, nay be a small diametric mortise for the reception of a detached entter which has the nicking-point and cutting-lip of the ordinary center-bit. The cutter is kept in its central position by a square notch which cmbraces the central slaft of the bit, against which it is forced by a wedge. Cutters of varying sizes may be used.

The grooved bit s has a cylindrical stem and spiral groove. The groove-shanked gimlet is an example of it.
The Cook and the Kasson bits, in which the cuttinglips are formed by sharpening the curved ellges of the worm, are referred to under Auger (which see). They cut admirably.
The reaming bit is a broach of hardened steel, genernlly four-sided, and used to enlarge holes in metal.

Expanding-bits are useful in two ways:-
To render a single bit applicable for boring holes of varying sizes.
To enlarge the size of a hole bencath the surface, giving it an underent or dovetail character.
One form of expanding-bit, t, has a central portion which has the point, and a hinged portion which carries the scribe and the ronter. The movable portion is set by a screw, so as to regulate the radius of the hole.
Another form, x, has three radial cutters, which are expanded by means of a taper wedge and an axial screw. The latter is operated by a screw-driver,

whose end is introduced into the socket, the threaded end of which is the means of securing it to the brace, cluck, or mandrel.
b. The cutting-inon of a plane. See Playdebit.
c. The cutting-iron inserted in the revolving head of a planing, moluing, tonguing, and grooving, or similar macinine.
d. The cutting-blade of an axc, hatchet, or similar tool, as distinguished from the pole, which forms a hammer in some tools.
3. (Harness.) The iron part of a bridle which is inserted in the mouth of a horse, and having rings by which the cheek-straps and reins are attached. See Bridle-bit.
4. (Jaw-Tools.) The jaw of a tongs, pinchers, or other similar grasping-tool, e. g. flat-bit tongs.
5. (Tinman's Tools.) The copper piece of a sol-dering-tool riveted to an iron shank. A copper-bit.
6. (Metal-TVorking.) A boring-tool for metal, many of which are called bits; as, half-round bit, rosc-bit, cylinder-bit. See Drile.
7. The metallic connecting joint for the ribs and stretchers of umbrellas.

A \cap-shaped piece of metal swaged into shape and clamped or soldered to the aib, which is secured to it by a rire pin passing through an eyp in the stretch. er and holes in each of its legs. The cross-formed blank is bent up to embrace the back of the rib and closed on to it; the legs are pierced with holes for the joining-pin ; Middle-bit ; Get.

Bite. (Printing.) An imperfect portion of an impression, owing to the irisket overlapping a portion of the form and keeping the ink from so much of the paper.

Bite-in. (Engraving.) The process of corroding an etched plate. See Etching.

Bit-key. A key adapted for the permutation
Fig. 697.

lock, the steps being formel by movalle bits, as in the Hobbs lock.

Bit-stock. The handle by which a lit is heh and rotated. It has a flat button upon which the pressure is (xerted, and is curved about midway into a D-shape, to afford comvenient grasp, to the hambl. Also called a brace. The special ilevices usually relate to means for firmly holding and reatily releasing the bit. ln Fig. 698, the end of the shank of the lit abuts against a slitling center-pinece C hacked by a spring. The shoulder of the tool is embraced by the jaws $a t$ on the end of the bit-stock; these ate ilosed or opened by a slecre D, which has an inclined slot traversed by a pin, which prescribes the longitudinal motions of the sleeve.
Bit-pinch'ers. (Locksmithing.) l'inchers having curved or recessed jaws.
Bitt. (Neutical.) Primarily, a post secured to several decks, and serving to fasten the cable as the ship rides at anchor. Rilling-bitt ; warping-bitt.
Other bitts are used for certain purposes; as -
a. The pawl-bitts, to which the pawls of the windlass are secured.
b. The currick or windless bitts, in which the barrel of the windlass is journaled.
c. Winch-bitts, similar in purpose to b.

The heel of the bowsprit is stepped between bow-sprit-bitts, and is prevented from canting up by a cross-piece bolted to the litts.
d. Belaying-bilts are smaller than riding-bitts, and consist of two upright posts and a cross-piece. They are used for belaying the larger ropes, such as the sheets and braces.
For belaying ropes in order of size, -
A riding-litt.
A belaying-cleat.
A kevel.
A belaying-pin.
A belaying-bitt.
Bit'ter-end. (NTcutical.) The part of the cable abaft the bitts. The last end of a cable in veering out. The elinching end.
Bitt-heads. (Shipbuilding.) The upright timbers bolted to several deeks, and serving as posts to which the cable is secured. They correspond to bollurds on a wharf or quay. Knight-heruls.
Bit'ting-rig'ging. (Saddlery.) A bridle, surcingle, back-strap, and compper. The bridle has a gag-rein and side-reins, the latter buckling to the surcingle. The rigging is placed on young horses to give them a gool carriage, but must be released occasionally, as the bent position of the neck and elevation of the head is unnatural, and takes time to acquire.
Bitt-stop'per. (Nautical.) A rope rove thouch a knee of the riding-bitt and used to clinch a cable.
Bi-zet'. (Diamond-Cutting.) The upper faceted portion of a brilliant-eut diamond which projects from the setting. It has one third of the whole depth of the gem, being cut in 32 facets, which occupy the zone hetween the giralle and the tablc. See Brilliant.
Black. The pigment which absoris all the light tays is nsually carbon in some form.

Charcoal is prepared by heating wool to redness in a position protected from the oxygen of the atmospliere.

Bonc-black is prepared by the distillation of bone in retorts.

Animel charcual is another name for bone-black.
Itory-bluck is a bone-black obtained from cuttings, raspings, dnst, and seraps of ivory.
Lemp-bleck is the soot obtained by collection from the buming of impure and refuse resinous matters and oils.
spanish-bluck is the carbon of cork.
Perch-bluck is obtainel from peach-stones.
Frankfort-black is the carbon obtained from the mare of grapes, wine-lees, peach-kernels, and boneshavings.

Germen-black is another name for the Frankfort.
Vine-bluch is the carbon of the grapevine.
Graphite, also called phumbeyo and blach-lecu? (misnomers), is a form of mineral carbon. See Buneblack ; (harcoal; Lami-black, etc.
Blackboard. A diagram board used in schools and lecture-rooms for the public demonstration of problems, the exhibition of examles, and the illus. tration of propositions in matural philosophy, etc. They are prepared by closely joining together wellseasoned boards planed smooth, and prainting them with several coats of black paint mixel with finely pulverized pumice-stone or similar material, so as to impart a slight roughness to the face, that the chalk employed in writing may leave distinct marks on the boarl and yet rub oft freely.
Black'en-ing. 1. (Founding.) An mpalpable nowder, usually chareoal, employed by molders to "dust " the "partings " of the mold.
2. (Leuther-Mhunufacture.) A solution of sulphate of iron applied to the grain side of the skin while wet; it mites with the gallic acid of the tan, and produces a black dye.
Black Flux. (Metellurgy.) A material used to assist in the melting of various metallie substances. It is made by mixing equal parts of niter and tartar, and deflagrating them together. The black substance which remains is a compond of charcoal and the carbonate of potassa.
Black-ground Il-lu'mi-na-tor. (Opical Instrument.) One in which an opaque surface is introduced behind the object, while illuminating rays are directed around and upon it. For forms of this see Spothens; Parabolic llluminatoh.
Black'ing. A composition for polishing leather.
Recipcs. Liquid blacking: 1. Tvory-black, 5 oz.; treacle, 4 oz .; sweet oil, $\frac{3}{ \pm}$ oz. ; triturate until the oil is thoroughly mixed in ; then stir in gradually $\frac{1}{4}$ pint each of vinegar and beer lees.
2. Ivory-black, 1 lb . ; sperm-oil, 2 oz . ; beer and vinegar each one pint, or sour heer' 1 quart.
3. Bryant and James's patent india-rubber liquid blacking: india-rubher (in small pieces), 18 oz ; hot rapeseed-oil, 9 lbs. (1 gall.); ivory-black, in fine powder, 60 lbs ; treacle, 45 lbs ; adil gum-arabic, dissolved in vinegar, 1 lb . ; triturate the mixture in a paint-mill ; place in a wooden ressel, and aild 12 lus. sulphuric acid; stir unaly $\frac{1}{2}$ hour for 14 days; then add 3 lbs. of gum-arabic, and repeat the stirring daily for 14 days, when the blacking will be ready for use.
Paste:-

Mix; stir oceasionally during 6 days. More vinegur will liquefy the compound.
The addition of sulphuric acid to ivory-black and
sugar produces sulphate of lime, and soluble acid phosphate of lime, which makes a tenacious paste.

Liebig's recipe : -

Harness-blacking: 1. Glue or gelatine, 4 oz. ; gum-arabic, 3 oz .; water, $\frac{3}{3}$ pint; dissolve by heat; add treacle, $\overline{7} \mathrm{oz}$. ; ivory-black (in rery fine powder), 5 oz . ; and gently evaporate until of a proper consistency when cold, stirring all the time. To be kept corked.
2. Mntton-suet, 2 oz . ; beeswax, 6 oz . ; melt, add sugar candy, 6 oz ; soft soap, 2 oz ; lampblack, $2 \frac{1}{2}$ oz.; indigo (in fine powder), $\frac{1}{2} \mathrm{oz}$. when thoroughly incorporated, add oil of turpentine, $\frac{1}{\frac{1}{2} \text { pint. }}$
3. Beeswax, 1 lb . ; ivory-black, $\frac{1}{4} \mathrm{lb}$. ; prussian blue, 1 oz . (ground in linsecd-oil, 2 oz .) ; oil of turpentine, 3 oz . copal varnish, 1 oz . ; mix well together, and form into cakes while wamn.
4. To the last, while still hot, add soft soap, 4 oz. ; oil of turpentine, 6 oz ; put into pots or tins while still warm.
Black'ing-brush. A brush for cleaning, blacking, or polishing boots; a stiff brush for removing dirt; a soft brush for applying the blacking, and a medium bush for polishing. A blacking and a polishing brush on the respective sides of the same brush-back is the usual arrangement.

Black'ing-

case. A case for blacking and brushes. That shomn in Fig. 699 has a receptacle in the chair-seat which contains the appliances and also a footrest. The seat b is binged, and serves as a cover to the receptacle.
Black-jack. (Mining.) native sulphuret of zinc. Also known as mocklead. See Blende.
Black-lead. A mative form of carbon sometimes containing traces of iron. The terms black-leced and plumbago are misnomers, as the article has no lead in its composition, though it gives a mark like lead when drawn over a surface. Gruphite is the preferable term, referring to its nses in writing and drawing. See Grifhite:
Black-lead'ing Ma-chine'. A machine for coating the surfaces of electrotrpe molds with plumbago. The carriage which sulports the moll is moved gradually along the bed beneath the brush, which has a quick, vibratory morement in the same direction. The graphite, being sprinkled on the mold, is caused to penetrate the recesses of the letters in the matrix by the penetrating points of the bristles.

Fig. 700.

Black-Leading Machine.

Black-plate. The sheet-iron plate before tinning.

Black'smith's Chis'el. Blacksmith's chisels, for cutting iron bars, are divided into two principal classes, for hot and for cold iron, distinguished from each other by the different angles of the cutting edge, and by the former kind haring a wooden handle inserted through an eye at right angles to the lengtl ${ }_{3}$ of the chisel.

The hardy is a chisel having a tang fitting into a hole in the anvil. (See Aryil.) When used upon hot iron, the chisel has a withe of hazel or other soft wood wound around it.

Black'smith's Tools. See the following :-

Anvil.
Barnacles.
Bar-shoe.
Battery-forge.
Beak.
Bellows.
Black-work
Bore.
Butteris.
Calking-anvil.
Calking-tonss.
Calking-tools.
Calking-rise.
Calk-sliarpener.
Calk-swage.
Cautery.
Chisel.
Clincher.
Collar-tool.
Coupler.
Creaser.
Cutting-shoe.
Die.
Drift.
Foot-rest.
Forge.
Forge, Portable
Forcing-machine.
Fuller.
Fullering-tool.
Hammer.
Ifanl-hook.
Harily.
Hoof-spreader.
Horse-holder.
Horseshoe.
Horseshoe anvil.
Horseshoe machine.

Horseshoe nail.
Horseshoe nail-machine.
Horseshoe rise.
Jam-weld.
Jumping.
Lunette.
Mandrel.
Miter-iron.
Monkey.
Oliver.
Ox-shoe.
Pliers.
Porter.
Trick-punch.
Pritchel.
Punch.
Riveting-tools.
Rounding-tool.
Searing-iron.
Slake-trough.
Sledge.
Snap-head.
Stifle-shoe.
Stock.
Stock and dies.
Stocks.
Striker.
Swage.
Swage-block.
Tap.
Tilt.
Tilt-hammer.
Tire-hender.
Tire-heater.
Tire-shrinker.
Toe-calk.
Tongs.
Top-tool.

Triblet.
Tuyere.
Upsetting-machine.
Welding-swage.
Twitch.
Black-strake. (Shipbuilding.) The strake next below the lower or gun-deck ports.

Black Tin. (Mining.) Tin ore, washed and dressed, beaten into a black powder, and ready for smelting.

Black-wall' Hitch. (Nautical.) A bend to the back of a tackle-hook or to a rope, nade by passing the bight round the object and jamming it by its own standing part. See Hitch.

Black-work. The work of the blacksmith in contradistinction to bright-work or the work of the silversmith.

Blade. In a mechanical sense this is a sharp instrument, relatively long, thin, and flat. It is applied to oljects which have the proportions of a knife or sword, such as the sharp-edged beaters in hemp or flax brakes, the cutters in some descriptions of corn-harvesters, and to other objects which have the function of kinives or cutters.

A blade, in usual parlance, is that of a knife, sword, axe, adz, saw, and is less frequently applied to the tools which are driven endwise, such as the chisel and gouge.

1. (Nauticce?.) a. The part of the anchor-arm which receives the palm, forming a ridge behind the latter.
b. The wash of an oar' ; that part which is dipped in rowing.
2. The wob of a saw.
3. (Wcapon.) a. The blade of a bayonet consists of the

Point,	Flat,
Back,	Fullers or grooves.

b. The flat metallic portion of a knife or sword which is secured in the haulle or hilt by a tazg.

The blade of a sword consists of the
Shoulder; at the junction of the tang.
Forte; half the blade nearest the guard.
Foible or fuible; half the blade nearest to the point.

Toung. Flat.	
Point.	Edge.
Back.	

4. (Agriculture.) The share of a shovel-plow, cultivator, or horse-hoe. These are of various forms.

Fig. 701.

Plow and Cultivator Blades.
5. (Shiprorightiag.) The float or vane of a pad-dle-wheel or propeller.

Blanc'ard. (Fubric.) A linen cloth of Normandy, made of half-bleached thread.

Blan'chard Lathe. A lathe for turning irregnlar forms, invented by Thomas Blanchard. It was the first successful lathe for turning gun-stocks, axelaudles, shoe-lasts, ete. The idea was partly elicited
in Brunel's block-turning machine. See BlockmakiNg Marline: Lathe.

Blanched Cop'per. (Mclullurqy.) An alloy composed of copper, 8 oz ., and $\frac{1}{2} \mathrm{oz}$. of neutral arsenical salt, fused together under a thux of calcined borax, charcoal-dust, and fine powdered ghass.

Tin or zinc is addel in the white tombac of the East Indies, - moch silver.

Blanch-im'e-ter. An instrment for measuring the bleaching power of a chloride. See ChlommETER.

Blanch'ing. (Metallurgy.) Tinning of copper.
Blank. 1. (Architceture.) Blank doors or blank windows are imitations, and used for ornamentation or to secure unifornity in the design.
2. (Metcl-urorking.) a. A ficce of metal brought to the required slape and ready for the fimishing operation, whatever it may be.
b. A planchet of metal, weighed, tested, and milled, is a blank ready for the die-press, which converts it into a coin.
c. A strip of softened steel made into the required shape is a blank, which cutting and tempering transform into a file.
r. A piece of iron with a flaring head, and otherwise properly shaped ready for nicking and threading, is a serew-blank, which with the final operations becomes a sclew.

The list might be prolonged, but the above is sufficiently indicative.

Blank-car'tridge. An inclosed charge of powder without shot. Used for firing warnings or salutes and in excreising troops.

Blank-cut'ting Ma-chine'. (Metal-working.) A machine for cutting out pieves of metal for fibmication into articles; such as keys, files, buttons, ete.
Blank'et. 1. (Fabric.) A coarse, heavy, open, woolen fabric, adapted for bed covering, and usually napped. It may be twilled or otherwise. A name applied to any coarse woolen robe used as a wrapping.

> "Antiphanes, that witty man, fays:
> 'Cooks come from Elis, pots from Argos, Corinth blankets sends in barges."

Athenees (A. D. 220).
The poncho is a blanket with a hole in the center for the liead to go throngh. It is worn by the South Americans, Mexicans, and Pueblo Indians.
2. (Printing.) A pliece of woolen, felt, or prepared nober, placed between the imer and outer tympans, to form an elastic interposit between the face of the type and the descending platen.

Blank'et-wash'er. A machine for washing printer's blankets. Ordinarily it consists of a vat

Fig. 702.

Blanket-Washer.
and rollers, the blanket being alternately soaked and squeczed. In the illustration a scraper or doctor is used to clean the roller. A similar machine is used for calicoes and other fabrics.

Blank-tire. A tire without a flange.
Blare. (Noutical.) A paste of hair and tar for calking the seams of boats.

Blast. 1. (Mctal-working.) An artificial current of air to urge a fire ; as, hot-blast ; cold-blust.
2. (Engineeriny.) The exploding of a bursting harge, for rending rocks, ete. See Blasting.
3. (Steam-Engincering.) Exhaust steam directed up a chimney to urge a fire.

Blast-en'gine. (Pncumatics.) a. A ventilating machine on shipboard to draw foul air from below and induce a current of fresh air.

A machine for urging the fire of a furnace. See Blower.
Blast-fur'nace. (Mctullurgy.) A furnace into which a current of air is artificially introduced, to assist the natural draft or to supply an increased amount of oxygen to a mineral under treatment.

Fig 703

Btast-Furnace.
Fig. 703 is a perspective view of the fumace. The hot-blast apparatus is seen at the left. In front is the sand-bed, into which the metal flows to form pigs.

The parts of a blast-furnace are named as fol-lows:-

A, shaft, fire-room, tunnel; the internal cavity.
E, belly; the widest part of the shaft.
C, lining, shirt ; the inner coat of fire-bricks.
Fig. 704.

Blast-Furnace Section.
D, sccond lining, casing; an outer casing of brick with an interval between it and the former.
E, streffing; the filling of sand or coke-dust between the lining and casing.

F, mantlc, outer-stack, building; the outer wall of masonry.
G, mouth, furnace-ton; the opening at top for the ore, coal, and linestone.
H, lundina, platform; the stage or bank at the furnace mouth.
I, wall, crourn, dome; the wall around the furnace-top.
K, boshes; the lower part of the furnace descending from the belly.
L, hearth; the pit under the hoshes, by which the melted metal descends.

M, crucible: the hearth in which the cast-iron collects. The lowest part is the sole.
$N, d a m$; a stone at the end of the fire-hearth.

Tap-hole; an opeuing cut away in the hardened loam of the dam.
o, lymp-arch, working-arch, folds, faulds; the arch of the mantle which admit to the firchearth.
P, tuycre-arch, trycr-arch; arch of the mantle which leads to the tuyercs.

Q, tuyerc, twyer, turere: the cast-iron yipe which forms the mozzle for the blast.
r, S, arches for ventilation.
T, channels in the masonry for the escape of moistแе.

A large Welch blast-fumace contains 150 tons of ignited material (iron-ore, coke, and limestone-flux), and requires 20,000 enbic feet of air per minute. The weight of the air thrown into the furnace every 24 hours is nine times the weight of the charge of luel, ore, and flux.

Blast-furnaces are now built as much as $103 \frac{1}{2}$ feet high, $27 \frac{1}{2}$ feet at the bosh, and 8 fieet at the heartl. The average make of such a furnace is 550 tons weekly. The consumption of coke is 16 cwt . per ton of iron make, and $9 \frac{1}{4} \mathrm{cwt}$. of limestone per ton of inon when forge-iron is prodiced. The blast is suplied by six tuyeres to each. A cast-iron pipe is carrien aroumd each surface, from which smaller pipes branch oll at equal distances to the tnyeres. These pipes are corered by a non-condneting composition, but wroughtiron pipes may be used in place of these, lined with fire-brick inside four inches in thickness. The furnaces are plated outside, and closed at the top, on the cup and cone principle. The blowing-engine for the two furnaces has a 67 -inch steam-eylinder, 130 . inch blowing-cylinder, $10 \frac{1}{2}$ foot stroke. The stoves used heat the blast to $1,400^{\circ}$. Four stoves are required for each furmace. Each stove has two rows of pipes; there are nine donble pipes in each row, 11 feet in length; the pipe is of the flat form, the two passages in each being 13 inches by 4 inches inside ${ }^{2}$ divided by a partition 1 inch thick, the whole of the metal being of that thiekness, which renders them much lighter than the old form of pipes.

The blast enters at one sule of a row of pipes, and must pass through nine double pipes belore it makes its exit at the other side. The figures apply to the Cleveland ore, England. See Smelting.
 an inner pot, whose hot- tom was cut off and the interior fitted with a grating. Pounded glass-pot powder was packed while wet in the interval between the two pots. The fuel is coke. The outer pot is 18 inches ligh and 13 inches external diamoter. The inner pot has $7 \frac{1}{2}$ internal diameter at top and 5 inches at bottom.

Fig. 706 shows a view, partly in section, of an
arrangement in which an annular boiler surmounts the ore chamber of the finmace, and its steam passes by a pipe to a tube, where it is associated with a hotblast from an air-
pump, and the combined Huids are driven through the tuyeves into the fumace. The air-pump $\quad C$ lecps up a uni. form blast, ant is itself driven by the steam from the boiler B. I Iot air and superlieated steanz are mingled andinjucted into the fumace at the tuyeres $E^{\prime} E^{\prime \prime}$.

Fig. 707 shows a somewhat lifferent form of

Blast-Furnace. furnace, withthe
boiler in section.
The jacket-boiler smmonnts the ore-chamber, forming the tumel-heal of the furnace. An inclined chute passes through the boiler, and is the means of surplying the ore and coal. The pipes conducting the stean are laid in cement.

Blast-hearth. (Ilctallurgy.) The Scotch orehearth for reducing lead ores.

Blast-hole. (Hydrauties.) The induction waterhole at the bottom of a pump-stock.

Blast'ing. The process of remling rocks, etc., by means of boring, tilling the hole with an explosive, and then firing it off. Inprovements appertain to the moles of drilling the holes, the composition of the explosive, and the means of igniting.

Gompowler is said to have been first used for blasting in Germany or Hungary, A. 1. 1620 ; and some German niners, brought to England by Prince Fopert, introluced the practice at the copper mine of Eckford, in Staffordshire, the same year.

The preliminary operation in llasting consists in boring or drilling holes, in which are to be placed the charges of gunpowder or other explosive materials employed to reml the rock.

The implements ordinarily used for this purpose are the jumper, or drill, the hammer, and the seraper. The jumper is a har of iron, in length proportioned to the depth of hole to be bored, and is faced with steel for a part of its length : those of $1 \frac{1}{2}$ inclies diameter and upward are worked by three men, two of whom strike alternately ou the ent of the jumper with hammers, while the thirel turns it so as to constantly present the cutting edge to a fresli surface of stone.

This is a slow and lahorions operation, experience having shown that in mratite three men working as above with a jumper of 3 inches sliameter, snch as is used for horing lioles from 9 to 15 feet deep, would not penetrate more than about 4 feet per day on an average; or with a $2 \frac{1}{2}$-inch jumurur, 5 feet per day, the last being employed for holes from 5 to 10 feet deep.

Chmon-jumpers are so called from the manmer in which they are workenl, by a vertical chuming or poumling movement, no hammer being employed; they have a steel bit at each end, are usually worked by two men, and are generally of smaller vianeter than those which are worked by a hammer; in drill-
img holes that are vertical or nearly so, and in moderately hard rock, they are foumd more advantageous than the others, two men being able to bore ahout 16 feet per lay with a churn-jumıer of $1 \frac{1}{8}$ to $1 \frac{1}{2}$ in diameter. They are sometimes used with a spring rod and line, much in the manner of the most primitive way of boring artesian wells.

Creneral Burgoyne mentions seeing the same device in use in blasting the calcareous rocks of Marseilles, at the foot of the hill on which the fort of Notre Dime de la Garle now stands.

The common way of charging the hole is, where the moisture is not excessive, to pour loose powder into it to a certain depth, depending on the judgment of the miner (one third the depth of the hole is a common allowance under ordinary circumstances); the needle, which is a wire sufficiently long to reach well down into the charge of powler, and provided with a handle to euable its easy withdrawal, is then inserted and the hole tampel, a wad of hay, straw, dry turf, or other suitable material, being first placed over the powder; the tamping is performed by ramming down ssuall fragments of broken brick or of stone which does nat contain silex to endanger striking fire, by means of an iron bar called a tamping. rod; when the hole is tamped nearly up to the level of the ground, an inch or two of noist clay is usually phazd over the tamping, and the needle withdrawn; it m y be remarked that the neadle should be frequently turned as tbe ramming proceeds, so that it may be withdrawn without disturbing the tamping. The priming is effected by pouring fine grained powder down the hole left by the needle, or, what is better, straws fillel with powder are pushed down, communicating with the blasting charge; a lit of slowmatch or touch-puper, calculatel to burn long enough to allow the workmen to retire to a place of safety, is then ignited, and placed in contact with the priming.

In the construction of the Southeastern Railway 400,000 eubic yards of compact chalk were lifted from the face of the Round Down Cliff, two miles west of Dover, England, at a single blast.

Three charges were employed, placed in chambers, 70 feet apart, the center and largest one being placen at a salient point 72 feet, and those on each side each 56 feet distant from the face of the cliff. The charges of powder were $7,500 \mathrm{lbs}$. in the main charnber, and $5,500 \mathrm{lbs}$. in each of the others. Shafts tapering from bottom to top were driven downward from a driftway previonsly cut in the rock, and from the bottoms of these shafts gralleries were cut at right angles to the driftway. These were also enlarged at their inner extremities, to secure the tamping. The chambers were cut at right angles to the galleries. After charging, a dry wall of chalk was built across the mouths of the chambers; the galleries and shafts were tamped with the same material, and the tamping was extenclel into the driftway 10 feet on each side of each shaft. Three Daniell's batteries and three sets of wires were used for firing the mines, which was done simnltaneonsly. The mass of roek removel avenged 330 feet in hight, 360 in length, and 80 in thickness. See Artestan-wfll; TuNsel; Well-bohisg; and specifie Indexes under Civil Engineering and Minisg.

See Raymond's " Mines, Mills, and Fnmaces": J. B. Ford \& Co., N. Y̌., 1si. Blake's "Miniug Machinery": New Haven, 1871, Also, "Blasting and Quarrying of Stone and Blowing up of Bridges," by Lieutentut-General Sir J. Burgorne of the English Military Engineers. No. 35 of Weale's Rudimentary Series : London.

The following table from General Sir Charles Pas-
ley's "Memoranda on Mining" will give the means of calculating the space occupied by any given ruantity of powder in round holes of different sizes, from one to six inches : -

Diameter of the hole.	Powder contained in one inch of hole.		Powder in one	contained oot of bole.	Depth of hole to contain 1 1b. of powder.
Inches.	1 l .	oz.	Ib.	oz.	1nches.
	0	0.419	0	5028	35191
$1 \stackrel{1}{2}$	0	0.942	0	11304	16.974
2	0	1696	1	4.112	9.519
$2!$	0	2.618	1	15415	6.112
3	0	3.710	2	13.240	424
31	0	5.131	3	13.5.2	3.118
4	0	6.702	5	0.424	234
$4 \frac{1}{2}$	0	8.482\%	6	5.784	18815
5	0	10.42	7	18.664	1.523
$5 \frac{1}{2}$	0	12.151	9	8.052	1.253
6	0	15.080	11	4.980	1.061

The following table shows the quantity of powder required to lift from its bed rock of usual weight (about 1_{4}^{3} tons to the perch) and orvinary consistence.

Line of least resistance.	Charres of powder.		Line of least resistance.	Charges of powder.	
Feet.	lb.		Feet.	1 l.	
1.0			4	$\stackrel{2}{2}$	
1.6		13	4.6	$\stackrel{2}{2}$	
20		4	5		
26		伃	6	${ }^{6}$	
3.0 3.6			8	10	
3.6			8	16	

The obstruction known as Blossom Rock in the harbor of San Francisco was removed by constructing a coffer-dam around a portion of the rock, a porons sandstone, and excavating its interior, learing a shell about 6 feet thick, supported by props, to resist the pressure of the water. The space excavated measured 140 by 50 feet, and raried in depth from 4 to 29 feet. 23 tons of powder were used, part of which was inclosed in water-proof casks, and the remainder in iron tanks. These were connected by insulated wires with an electric battery. When all was ready, the coffer-dan was remosen, and the water permitted to fill uf the excavation, acting as a tamping. The resnlt is represented to have been entirely successful.

Maillefert's process in removing W^{\prime} ay's R ecf in the Murl-Gate (Hell Gate) obstruction, on the East River, N. Y., consisted in depositing a quantity of powder on the surface of the rock to be remored, and then exploding it. There is no cumbrous appratus used. A sounding-jole to ascertain the depth, a boat to contain the operators, and an electric hattery, are the machinery employel. The explosion is effected by electricity, and it is the same thing whether the operators are stationed near or far, they need never be in danger.

The force of the current is such as to render it difficult to fix drilling apparatus. The process was successful on prominences and to a certain extent ; where a broad area was flat, the vilue of the process rapidly diminished.

Shelburne's appratus on the Frying-pan Rock, in the same estuary, was a heary stamping-drill, operated by a steam-engine, and acting in a tube which direeted its blows; the hole obtained receiving a charge of nitro-glycerine.

The work of removing the obstructions in the East River has now devolved upon the United States Engineers, under General Newton. They are proceeding by building cofter-lams and driving headings. It is a regular tunveling business, and when the whole
rout is blown off and the pillars broken off, the new river-bottom will be the Lottom of the elrifts, jlins what of the rock anay fall bisck into the hole. Such can be graplued and removed.

Nitro-glyecrine, dualin, dymamite, and rarions other compounds of terrific encroy, are used in these great engincering projects. It is understood that nitroglyeerine has been the prineipal agent in the Monnt C'enis tunnel, as it has been for some years past in the Hoosac.

The iclea of blasting ly a torpedo in the bottom of an oil-well, to open crevices and increase the llow of oil, seems to lave been entertained by a number of persons, including Professor Hare, but was reduced to practice by Colonel lioherts. See Tonmedo.

Blasting-fuse. The common blasting-fuse is merely a tube filled with a composition which will burn a sullicient length of time to allow the person firing it to reach a place of safety before it is burnt out.
Safety-fuse, by which the charge ean be fired by a man at a considerable elistance, is also gencrally employed. Some of these cousint of a taje of soft materval saturated with a bighly inlammable compound (fuminates are, we believe, employed in some to increase the speed of the flane), and covereci with an envelope of waterproof material. Firiner by electro-battery is much safer.

Blast'ing-mee'dle. A long taper piece of copper, or iron with a eopluer joint; used when tamping the hole for blasting, to make by its insertion an aperture for a fuse or train.
Blast'ing-pow'der. It was fommely thought that a slow-burning powder, containng a comparatively small proportion of niter, - about 62 per cent, - was more eflective for blasting purposes, allowing more time to modnce a rencling effect upon rock before being consunued than the quicker and stronger powder used in tire-anms; but the temency now is toward the use of sub)stances of far greater rapidity of ionition, and greater expmasion in the act of assuming the gaseous state, than even the strongest gunpowder.

Among more than thirty patented comprositions for blasting powder are the following ingredients. The sfecitic eombination in eacla case might be given would space permit.

1. Forms of carbon: -

Burnt eork.
Clancoal.
Lycoprodiun.
W'lite sugur. Siwdust.
Horse-dimg.
Stareh of flour.
1'etroleum products.
Cutch.
Tannin.

Gambier.
Brown coal.
Peat.
Logwood.
bark.
Carbolic acid.
Aloes.
l'ataffins.
Fatty matters.
liesins.
2. Metallic salts, ete. : -

Chll, potash.
lied sulph. arsenic.
Ferio-cyan. potassium.
Nitrate of protassa.
sulphur.
Chlonide of sorlium.
Gymuret of zinc.
biarilla.
Blasting-tools. Baron Lieblaber of Paris obtained a patent in France, 1845 , for a mode of c'ularging the lower part of a blast-liole by the "pli-

Carhonate of sorla. Nitrate of lead. Ammoniacal salts. Nitrate of sola. Carbazotate of potash. Azotate of protishli. Nitrate of iron. Nitric acio.
cation of muriatic or other acid 1 part, diluted in water 3 parts.

A tulue (k, Fig. 708) is inserted in the hole and extemally sealed aroumd the lower end with a composition which prevents the rising of the vapors of tho acil in the space between the tobe and the sides of the hole. The acid is poured into a funel and down an inner tube, the anmular space forming a duct for the eseape of the gas, the spent liquid escaping at a hent spont. The hole is then emptied by a siplion or pump, and dried to preprare it for the charge.

The principal blasting tools are -
The humbur, for striking the borer.
Borer, or jumper. Drill.
Gud; a wedge for driving into openings made. by a pick.

Pick.
Scruper ; for clearing the hole.
Nectle, or priming-vire; a thin copper rod whose
Fig. 708.

withdrawal laves a vent whereby the charge is reached.

Claying-bar, tamping-iron, or rammer : for driving down the tamping.

The fusc, or match.
a ef, serapers for elearing the blasting-hole.
$b h i$, needles for pricking the cartrilge.
c, tamping-bar.
d, drill.
g, bar for ramming in the cartridlge.
k, funnel and pipe for introlueing acid to cularge the bottom of the holl.

BIast-machine'. (Prcumulics.) I fan A inclosed within a box B, to which tha wings C are attached, so that the whole revolves

Fig. 609.

Blast-Machine.

together. It is closely fitted within a stationary exterior case D, into which it is journaled. Air is admitted at the sides around the axis, and forced out through an aperture at the periphery by the rapid rotation of the fan, which may; by belt and pulley connections, be driven at the rate of 1,800 revolutions per ninute. See Blowet.
Blast-me'ter. (Pacumatics.) An anemometer applied to the nozzle of a blowing engine.
Blast-noz'zle. The orifice in the delivery-end of a blast-pipe. A tuycre.
Blast-pipe. (Stecur-Enginc.) A pipe conveying the escape-steam from the cylinders up the smakestack of the locomotive to aid the draft. Its invention is ascribel to Gearge Stephenson.
Blaz'ing Com'et. A form of pyrotechnics.
Blaz'ing-off. (Metal-korking.) Tempering hy means of burning oil or tallow spread on the spring or blade, which is heated over a fire.
Bleach'ing. The art of renowing color from fabrics, etc. It was known in India, Efrpt, and Syria, and in ancient Gaul.

As at present practiced, the process dates back only to the beginning of the present century.

Linen was formerly sent from England to Holland to be bleached. Tihis was performed by several months exjosure to air, light, and imoisture. The linens were spread on the gronnd and sprinkled with pure water several times daily. They were called Hollands, and the name still survives.

In 1749 the system of bucking and crofting, that is, soaking in alkaline lye and spreading on the grass, was introduced into Scotland. After tive or six repetitions of these processes, the linen was dipped in sour milk and then croftcd. The processes were repeated. The cotton manufacture at this time was in its earliest infancy.
The next improvencent was the substitution of dilnte sulphuric acid for sour milk. This reduced the time one half.
Scheele, in 1774, had discovered chlorine; and Berthollet, in 1754 , ascertained that an aqueous solution of chlorine discharged regetable colors. This he communicated to Watt, and it was soon adopted in Scotland with linen. Berthollet added potash to the water to preserve the health of the workinen and the texture of the goods.
Dr. Heury, of Manchester, substituted lime for potash, the goods being passed through a cream of lime and then exposed to chlorine. This formed a chloride of lime on the cloth.
ln 179s, Tennant, of Glasgow, adopted a saturated solution of chloride of lime, and subsequently immegnated dry line with the gas, making bleaching powder.

Bleaching, of cotton goods especially, is conduct ed on a systematic large scale, and includes singeing and washing ; the former to remove the fibrous down from the surface, and the latter to remove the dirt and inpurities acquired in spinning and wearing.
The following process is employed for cotton goods:-
In singeing, the cloth is passed rapidly over a redhot roller, which remores protruding tibers.
The cloth is then placed in the dash-wheels $A A$ A (Fig. 710), which rotate on horizontal axes, and hare quadrantal compartments which hold the cloth. Water is introduced through the hollow axes, and a rapid rotation subjects the cloth to the combined effects of agitation and the dashing of the water.
The cloth is next bueked, or washed by an alkaline solution which remores the greasy and resinous matters. The goods are placed on the grated bottom of a rat, in the center of which is a stand-pipe by which
the stream of boiling alkaline solution is brought in a shower upon the cloths. A deflecting plate on

Fig. 710.

the top of the stand-pipe distributes the water upon the cloths, through which it percolates and finds its way down through the grating, to be again pumped up. See Brckivi-kier.

This slower of boiling alkaline solution is maintained for about seven hours, after which the cloth is again washed in the wheels.
The cloths are now chemicked by steeping for six hours in a dilute solution of chloride of lime, after which they are steeped in what is called a souring vat; this is a bath of very dilute sulphuric acid, which disengages the chlorine from the lime, and brings the gas into intimate contact with the fiber, whiel is thereby bleached.

The washing, boiling, bleaching, and souring are repeated as may be necessary to produce the complete effect.
The process takes from 24 to 48 hours, and the cloths are landled by machinery.
Linen is now bleached in a similar way, but the operation is more troublesome and requires a longer time, on account of the greater affinity of the material for coloring matter.

Wool is bleached by exposing it to the action of fuller's-eartl and soap in a fulling-mill, after which it is washed and dried. When it is intenced to preserve it white, it is usmally run throngh water tinged with indigo, or exposed to the fumes of burning suljhine. The last method, unless very carefully conducted, is apt to canse the goods to acquire a liarsh feeling, which is remored by washing in soap aud water, but this usually reprodnces the original yellow-ish-white tinge.

Silk is bleached by boiling in white soap and water, and then carefully rinsing it. When required to he very white, the material is usually subjected to the funes of burning sulphur. Straw is generally bleached by the fumes of sulphur, but oxalic acid or chloride of lime is preferable.

Bleach'ing Pow'der. Chloride of lime.
Bleb'by-glass. Glass with blisters and airbubbles.

Bleed'ing. (Bookbinding.) Cutting into the printed matter of a book when cutting the edges.
Blende. (Mining.) Otherwise known as bleck-
juck. A native sulphuret of zine, which is treated by roasting, and destructive distillation in combination with charcoal in a ressel from which the air is excluded.

By access of air the metal bums and passes off as the white oxide, which is collected and forms a pigment known as zinc-white.

Bleu-tur'quin. A kind of marble taken from the quaries of Genoa and elsewhere. It is of a deep blue upon a white ground, mixed with gray spots and large veins.

Blind. For apparatus to assist the blined in writing, printing, or readiug, see Embossing-type for the Bland; Phinting for the Blind; Whitingfhame.
Grenville's invention (English) for teaching the blind was in 1785.

1. (Curpentry.) A sun-screen or shade for a window.

Outsile blinls are known as Spenish, Florentinc, Fenction, or shutter.
Inside blinds are known as Fenctict, durarf, spring, common roller, wire-gouze, perforated zinc, ete.
2. (Fortification.) A bomb-proof shelter for men or provisions. Blinelage ; blinded cover.
3. (Ifturness.) Flaps on a drivingbridle to restrain the horse from looking sitleways or to the rear. A moderin form of blinder only prevents the backward view. Blimler; blinker.

Blind'age. 1. (Fortification.) α. A screen of wood faced with earth as a protection aysainst fire.
6. A mantelet. At Sebastopol the Russians ased blindages for covering theircmbrasures, composed of a grating of iron rods covered with canvas.
2. (Harness.) A hood for covering the eyes of a runaway horse, as a means of stopping him. KoEnLek's patent has one strap which pulls a hoorl over the eyes and another which closes the nostrils. Another device is a chokestrap comeeted through the gag-loop to the driv-ing-rein.
Blind A're-a. (Architecture.) A space around the bascment-wall of a house to keep it dry.
Blind Ax'le. An axle which rins, but does not commmitate notion. It may form the axis of a sleeve-axle. It nay become a live axle at intervals. A dsud axtc.

Blind-blook'ing. (Bookbinding.) The ornamentation of book-covers by pressure of an engravel or composed block with heat but without gold-leaf.

Blind Bri'dle. A bridle laving attạched flaps or blinds. See litind.
Blind Buck'ler. (Nentical.) A hawsc-hole stopper.
Blind'ers. (Harness.) Flaps over the eyes of a horse used in carriage-harmess. See Blirnd.

Blind'ing. A coating of sand and fine gravel, usually almut an iuch and a half deep, laid over a newly paved road, to fill by degrees the joints between the stones.

Blind Lev'el. (Mining.) A level or drainage gallery which has a yertical shaft at each end, and acts as an inverted siphon.

Blind Op'e-ra-tor. A device by which the hind may be openem or closed from the inside, and held in any position desired, either closed, fully open, or at any intermediate position, in all of whieh it may he securely lockel. Attacleel to the frame of the blind is a rod upon which slides a slecere pivoten? to the outar ent of an arm secured to the axis of a
worm-rear seated in a recess in the window-sill and gradually rotated by a wom, the whole covered by a metallic plate.

Fig. 711.

Blind and Shutler Fastener.
In another form, the pintle of the blind-hinge has a bevel-wheel operated by a bevel-pimion on the

Fig. 712,

Blind-Operator.

Fig. Z 13.

Fig. 714.

Blind-Slat Chisel.
shaft, which passes throngh the frame of the windowcasing, and has a knob insile the room. A bolt engages a disk on the shaft, and locks the latter, and consequently the bind, in any position.
Blind-slat. An obliquely-set slat in a shutter, serving to sled rain and yet almit some light. In some cases they are alljustable by means of a bar C, which is secured by staples to the edges of the slats. D is a spring to $p^{\text {ress }}$ against the slats and hold them to adjustment. Such shutters are known as Ienetian or Loverer.

Blind-slat Chis'el. A hollow ehisel, specially adapted for cutting the mortises in a common blindstile for the reception of the ends of the slats.

Blind-slat Cut'ter. (Carpentry.) A machine which cuts blind-slats from the plank and finishes the sides and ends.
The phank is placed within the ways and fed along till it tonehes a stop, when a transverse eut severs a section, which is removed by a feed-roller to the place where it is sawed into strips. The action of the rollor is intemuittent, and during its intervals of rest the rotary tulmar enters are successively forced in:to the opposite sides of the block and form openings. The surfaces are planed and gudgeons made on their' extremities by antomatic operations.

Bind-Stal Cutter.
Blind-slat Plan'er. (Carpentry.) A wood-planing machine with side and edge cutters adapted to act upon a narrow slat suitable for Venetian shutters and blinds. The cutter which acts upon the upper side is adjustable to adapt it for making slats of the required thickness; the elge-cutters have a shape to give the rounded edge, and one of them is adjust-
lole at a time, and is suitable for blind, sash, door stiles, wagon-work, etc. The arbor is mised or lowered by screws $c e$, and brought forward to the work ly means of the lever b. It is providel with space-rack.clamps $c e$ for holding the stulf, which will gage the holes any desired distance aprait, and which aroids the necessity of setting out. The tight and loose pulleys are $6 \frac{1}{2}$ inches in diameter, 3 inch face, and should make 625 revolutions per minute, which will give 2,500 to the bit. c is the belt which conveys motion to the arbor.

In the machine (Fig. 718) the bitarbor a is rertical, is driven by the belt e, and the stuff lies on the rest. It has a pawl and ratelet arrangement for feed, dispensing with the necessity for laying out the holes. The bit is drawn down by the treadle c.

Blind-stile Ma-chine'. (Carqers. try.) Jachines which get out the stutf are but silws

Fig. 71%

Bind-Stile Boring-Machine.
and plauers ; but, when the material is bronglt to shape, machines are allapted for boring the holes for the slats, or making the mortises by means of piercing, - that is, br a hollow chisel of the shape of theslat-section,-ormaking them by a chisel repeatedly reciprocated while the stuff is fed along, as in the ordinary mortising-machine. Some of the machines space as well as bere or mortise ; that is, feed the stuff along the distance betreen slats after each stroke.
Blind-tool'ing. (Bookbindiny.) The omamental impressions of heated tools upon leather without the interposition of crold-lat.

Blind - weav'ing Loom. (Herering.) A loom which has its warps far apart, and an antomatic device for placing within the sherl the thin wooden slijs which fom the

Fig. ils.

BLOCK.

filling or woof. As the shed is opened, a rod with a gripper on the end is passed throngh the shed, catches a slip, and draws it between the waps, leav. ing it there. This is repeated between each movement of the lamess.

Blind-wiring Ma-chine'. (Carpentry.) A machine for thee insertion of the staples which conneet the rod to the blind. The blind-frame e is herd by adjustable slides, and the roll b, with its staples or rings alrearly inserted, is laid along upon the slats

f, the rings presented sideways. The staples to be driven stradde the wire h and feed down it, being Iriven one at a time by the level e and plunger d, so that one leg of the staple jrasses through the ere on the rod b, and looth of thom cunter the slat e. The frame is ferl forward the distance between the slats after each operation.

Fig. 720 shows a somewhat similar form of nachine in which the staples feed down the incline h, and are driven into the slats e as the lever e is de-

Fig. 120.

Crosty's Blind-Wirer.
pressed. The lifting of the lever moves forward the blind-frame by means of a pawl which engages the rack m.
Blink'er. (Sadullery.) A blind.
Blis'ter-steel. Steel formed by roasting hariron in contact with carlon in a cementing furnace. It is so called from its blistered appearance. To improve the quality, it is suligertel to two subsequent processes, which convert it into shear-steel and euststeel.

Block. A grooved pulley, rotating on a pintle, and monnted in a casing called a shell, which is furnisheed with a hook, cye, or strap by which it may be attached to an olject. 1t is used for changing the direction of motion of ropes used in transmitting power, anu, by compounding two or more such sheaves, to increase the mechanical power of ropes, whose rate ol motion is decreased in an equivalent degree therely:

The parts of a block are:-

The shell, pulley-frame, or body of the block is mate of a tongh wood, or sometimes of iron; it has one or two grooves, called scorcs, cut on each end to rutain the strap which goes around it. The shell is hollow inside to receive the sheare or sheures, and has a hole through its conter to receive the sheavepin, called the pinule; this is lined with bronze or gun-metal, called a bouching or bushimg. When the shell is made of one piece, it is called a morliseblock: when more than one are employed, it is termed a made block. The side plates of the shell are chiceks.

The sheare or wheel is of lignum-vita or iron, and has a peripheral groove for the sope, called the gorge. It has a bushing, called a cock; around the pintle-hole. The space between the sheave and its block, through which the rope rums, is called the swallow or channel. It answers to the lliroat of some other machines; the pass in a rolling-mill.
The pin or pintle is the axis or axle, and is usuatly of iron, passing through the bushing of the shell and the coak of the shente.
The strap, strop, iron-binding, gromenct, or cringle, is a loop of iron or rope, encircling the block, and allords the means of fastening it in its place. The hook of iron-strapped blocks is frequently made to work in a swivel, so that the several parts of the rope forming the tackle may not become "foul" or twisted around each other.

For strapping with rope in the common way, the rope is cut $1 \frac{1}{2}$ times the ciremmerence of the block, and stretched; it is then romach, by winding-in spun-yarn or marline betwen the intervals of the strands ; preceled, which operation consists in winding a canvas strip around the ahove ; and then served or closely wound around with marline, until just sufficient is left at each end for splicing ; it is then spliced with a short splice, the fag-ends of the strands cut off, and served over the splice.

In many cases blocks are strapped with eyes or thimbles in the ends, or, instead of the loop, have a tail, as is the case with jigyer blocks; in this case they are called tail-blocks.
The purchuse-block is double-strapped, having two scores in the slell for the purpose; the rope is wormed, parceled, and served, or nay be wormed and parceled only, and spliced. It is then douhled up so as to bring the splice at the lottom of the block. The seizing is put on the usual way, exeept it is crossed both ways through the donble purts of the strap. The straps of these blocks are so large and stiff that a purchase should be employed to set them securely in the scores of the blocks, and bring them into their proper place.
llocks receive names from peculiaities of structure, from their materials, uses, arrangement in the tackle, mode of connecting them to objects, etc. See under the following heads. -

Bee-block.
Block and tackle.
Buckler.
Bull's-eye.
Cat-block.
Cheek-block.
Clew-garnet block.
D.hlock.

Deal-eye.
Differential-block.
Double-block.
Euphroe.
Fall-block.
Fiblla-block.
Fish-block.

Fly-block.
Gin-block.
11 eart-block.
II ook-block.
I ron-block.
Jack-block.
Jewel-block.
Long-tackle block.
Monkey-block.
Muftle-llock.
Ninepin-block.
Pulley-block.
Purchase-block.
Quarter-block.
lam-block.

Rouse-about block.
Running-block.
Sheave.
Shell.
shoe-block.
shoulder-block.
Single-block.
Sister-block.
Smeaton's block.
Snatch-block.
spring-block.
Standing-block.

Strap-block.
Tack-block.
Tackle-block.
Tail-block.
Thick-and-thin block.
Top-block.
Treble-block.
Tye-block.
Unow.
Viol-block.
Waist-block.
Warping-block.

The pulley-block, with two or more slreares, was well known to the Romans. A block with three sheaves was called trispastos. Tackle with two sheaves in the lower block and three in the npper one was called peitaspastos. The tackles were variously arranged, much as at the present day, and the denick spars and masts were secured by guys.

A large number of obelisks were removed from Egypt to Rome, Constantinople, and Arles, and gave employment to complex and powerful tackle.

Blocks do not appear to have been known in ancient Egypt ; the ropes were rove through rings.
2. (Carpentry.) A square piece of wood fitted in the reentering angle formed by the meeting ellges ol two pieces of board. The blocks are glued at the rear and strengthen the joint.
3. (Hat-making.) A cylinder of wood over which a hat or bonnet is shapel in the process of manufacture.
4. (Saddlcry.) A former or block on which a piece of wet leather is molded by lamnering or pressing.
5. (Ordnance, etc.) In the ordnance service the term block is applied to two different articles, which have very different functions; oue kind being short pieces of scantling, used for elevating cannon and supporting them in position a short distance from the ground, or in assisting in their transfer from higher to lower levels, and vice versa. These are designated as whole, half, and quarter blocks, and have a uniform length of 20 and width of 8 inches, their respective thickness being 8, 4, and 2 inches.

Gin-blocks are the pulleys through which the fall of a gin is rove, and are known as single, double, or treble blocks, according as they have one, tro, or three sheares; the sheave is of brass and the shell of wronght-iron.

The varieties of blocks are more fully described under the heads enumerated in the list above.

Fig 21

Head-Block to Saw-Mills.
6. (Saw-mitl.) One of the frames on which an end of a \log rests in a saw-mill. The \log is usu-
ally set over towards the saw the thickness of one board, plus the kerf, between the cuts. In the more modernand improved form the head and tail blocks are set simultaneonsly. In the circular saw-mill the knees resting on the head and tail blocks are moved, pushing the $\log H$ on the hlocks B, as in Fig. 721, where the knee C is opreated by a spur pinion D and racks b c. See also Cumellar Saw; Held-block.

Block and Tackle. A term including the block and the rope rove through it, for hoisting or obtaining a purchase. Sec Tackle.

Block-book. (Printing.) A book whose pages are impressions from engraved blocks, each of which formed a page. This was a very old Oriental invention, and did not differ especially from the calicoprinting of China, Intlia, Arabia, and Egypt, the books and placards of China, and the printed play-ing-cards commonly uscd in Europe many years before Coster, Guttenberg, and Faust.

The great invention was movaile types. See Printisg.

Block-fur'nace. (Metallurgy.) A blomary.
Block-house. (Forlification.) A structure of heary timber or logs for military defence, having its sites loopholed for masketry. When of large size, it may be provided with ports or embrasures for ar-

tillery. The plan may be square, rectangular, or polygonal. If it is desired to obtain flanking arrangements, the honse may he made in the form of a cross. When more than one story high, the upper one is sometimes made to project over the lower, so as to obtain a direct downward fire. A ditch is ding aromnd the block-house, the earth from which is thrown up around the lower part of the house; the roof may also be covered with earth.

Block-in-course Ma'son-ry. (1/asonry.) A kind which differs from asblar masonry chiefly in being built of smaller stones. The nsual depth of a course is from seven to nine inches.

Block'ing. 1. (Lecther.) The process of bending leather for boot-fronts to the required shape. See Crimping.
2. (Bookibinding.) Impressing a pattern on a
book-cover by a plate or association of tools Fig. 723.
 under pressure. It is called blind or gold blocking. In the latter case, gold-leaf is used ; in the former, the bare block.
3. (Cerpontry.) A mode of secur. ing together the vertical angles of wood-work. Blocks of woorl are glued in the inside angle.
Block'ing-course. (Architccture.) The upper course of stones or brick above a cornice or on the top of a wall.

Block'ing-down. (Shect-metal W'orking.) Sheet-metal is blocked down upon a mold or shape by laying above it a thick piece of lead, which latter is struck by the mallet or hammer. This mode is sometimes adopted to lring a plate prartially to shape before swaging it between the dies.
Block'ing-ket'tle. (Ifut-making.) A hot bath in which hats are softened in the process of manufacture, so as to be drawn over blocks.
Block'ing-press. A bookbinder's screw-press in which blocking is performed. It has less power than the embossing-press, which operates with large dies, being used for ornamentation, requiring but a comparatively small pressure.
The die is adjusted in the upper bed (or plate), and is heated by mean; of gas-jets coming down through a cavity at its back. The book-covers are introduced scrictim upon the lower bed by the operator, who by a turn of the handle brings the upper bed down with a gentle and eqnable pressure, fixing the gold-leaf, when this is employed, upon the surface, previoasly prepared for the purpose. A boy, who assists, removes the superfluons portions with a rag, which becomes thoroughly saturated with the precious metal in the course of use, and is sold to the refiners.

Block-let'ter. (Printing.) Type of large size cut out of woolen blocks.

Block-let'ter Cut'ting-ma-chine'. Block-letters, or wooten type, are generally made of cherry, cut endwise. They are made of sizes from 2 or 3 line Pica up to 150 -line Pica, more than two feet in length.

Fig. 724 illustrates a machine for cutting these types. The wood, having been carefully planed to a true surface and even thickness, is cut into blocks of suitable size, and the outlines of the letters formed as a guide in cutting. A block is placed in the chnck A, fixed in the slide D, which may be moved back and forth in a guicle, and to which a rotary motion may also be imparted by means of a gear-wheel and serew operaterl from the pulley C.

Below this is another slide D, carrying an arm E, which supports an upright bar, with a rod F attached to the chuck A. Below nll is a circular plate pivoted to the table, and capable of being turned in any desired position and secured there, for adjusting the work to the proper angle previons to cutting.
The cutter G is fixed in a spindle which is rotated by the pulleys II I, the latter on a shaft driven by either of the fast-pulleys at J, operated by a bandwheel K on the treadle-shaft. The box carrying the cutter-spindle has vertical adjustment for varying the depth of cut, and may also be moved laterally ly a serew and crank. A lever is provided for lifting the cutter clear of the work.

By means of the bar and rod E, F, and pulley C, and their connections with the slide B and chuck A, in conjunction with the slide D, the work may be

Block-Letter Cutting-Machine.
moved in any direction, cansing the cutter to produce any combination of right lines or curves.

Fig $i 25$.

Tools for Block-Letter Cutting-Machine.

Fig. 725 shows varions forms of cutters, some of which are designed for making any number of circles of uniform diameter, and others for cleariug out the wood from those parts not designed to show in printing.

Block-mak'ing Ma-chine'. The first set of machinery for making blocks for tackle was the invention of the elder Bruncl, and was constructed by Maulslay. The invention of " the ingemions American mechanic," as Alr. Tomlinson calls him, was endorsed by General Bentham, the Iuspector-General of Naval Works, and sanctionel by the Lords of the Admiralty in a remarkably short sjace of time, - one year. The work on the machinery was commenced in 1802, and was finished in 180S. The machines were set up in Portsmouth Dock-yarl, and a duplicate set was made for Chatham Dock-yard, to be used in case of aceident, but has not bepin needed. For twenty-five years the machines recpuired no essential repairs. The cost was $\$ 230,000$, and the saving per anmum over hand labor is varionsly estimated from $\$ 33,000$ to $\$ 150,000$. Brunel received $\$ 5$ per day for superintendence, $\$ 5,000$ for the working models, and a grant of $\$ \$ 3,000$ when completerl.

The machines are in three different sets, fifteen in a set, for making ditferent sizes; each set having a certain range of auljustability as to the sizes of blocks turned out.

The different blocks made by these machines are as follows: -
Thick block, with 1, 2, 3, or 4 sheaves, and from $\&$ to $2 S$ incles in length

72 sizes. Thin blocks, 6 to 26 incles
Clew-garnet anl clew-line blocks Sister-blocks
Topsail-sheet blocks
Fidlle or viol blocks
Jack-blocks
48 sizes.
48
20 "
20 "
20 "
"
214 sizes.
The first set makes blocks 4 to 7 inches in length, with woolen pins, at the rate of 700 per day:

The second set makes blocks 8 to 10 inches in length, with iron pins, at the rate of 520 per clay.

The third set makes blocks 11 to 18 inches in lengtl, at the rate of 200 per day. Total, 1,420 per day.

Two machines are employed for making dead-eyes from 5 to 9 inches, and from 10 to 19 inches in diameter.

One large boring-machine, not included in the above.

Two machines for making the iron pins.
Total, 50 machines.
These machines are driven by a steam-engine of 32 -horse power.

With these machincs 4 men do the work of 50 in making shells, and 6 men do the work of 60 in making sheaves; total, 10 men doing the work of 110 previously working by hand. The amount actually supplicel was about 135,000 blocks per annum from 1808 to 1816. 1,500 blocks are required in rigging a ship of the line, besides dead-eyes, say 160 .

Tlie sawing-machines are employed on one side of the house to cut the ehm and ash timbers into parallelopipedons of the required sizes and shapes ; and the block-making machines on the other side are employed to recluce these blocks to shape, fashioning the outside and the mortise, and to make and coak the sheares.

The machines are as follows :-

1. The reciprocating cross-cut sau, which is used on large timber to cut into lengths timber of large size.
2. A circuler cross-cut sew, for operating on timbers of smaller dianeter.
3. The reciprocating ripping-saw, for cutting the juggles, or cylimetrical blocks of timber, into parallelopipedons of the requined pronortions.
4. The circular ripminy-sum, for performing the same operation on small timber.
5. The boring-machine, for loring a hole through the shell to start the mortise, and horing the hole for the pintle. See Boning-machine.
6. The mortising-machine, which completes the hollowing out of the shell, making the full opening for the sheares. Sce Mortising-Machine.
7. The corner-saw, to bring the sliell to an approximate shape, ready for the next machine. See Cohner-stw.
8. The shaping-machine, which turns the outside of the shell to form. See Sinaping-machine.
9. The scoring-machinc, which cuts the scores on the shell for the reception of the straps by which it is slung. See Scoring-machine.
This completes the dressing of the shells of the blocks, except some smoothing where the wood is roughed up in dressing.
10. For making the sheares three kinds of saws are employed. A recimocating saw is used for making elisks of wool by cross-cutting ligmm-vite logs. A circular saw is used for cross-cutting smaller logs. A crown-saw and center-bit are used for rounding the sheaves and boring the center-hole.
11. The coctiong-machine cuts three semicircular cavities at equal distances around the hole made by the bit. This cavity is for the recention of the coak or bush of bell-metal, which forms a socket for the center-pin.
12. A drilling-machinc, for perforating the three semicircular projections of the coak for the reception of short wire pins or rivets, by which the coak is attached to the sheare.
13. A riveting-machinc; two small tilt-hammers for riveting the wires which hold the coaks in their places.
14. A broxching-cngine, which reans out the cen-ter-hole.
15. A facing-lathe tums the flat sides of the sleaves and makes the groove in the periphery.
The iron center-pins are turned in a lathe, and then polished by being fixed in a vertical revolving axle, and foreed down into a die immersed in oil. and hold three pieces of hard steel, between which the pin is pressed as it turns, and becomes completely jolished.
Block-print'ing. A mode of printing cotton cloth or paper for hangings, in which the pattern is engraved in relief upon a block, which is dabbed upon the color and impressed by hand upon the material, which lies upon a table hefore the workman. When the pattern is in several colors, different blocks of the same size are employed, the raised pattern in each being arlapted for its special portion of the design. The exact correspondence of each part, as to position, is secured by pins on the blocks, which pierce small holes in the material and indicate the ract position. This is a registering system similar to that adonted in chromatic printing, and in all forms of lithographic printing in which more than one color is used.
This mode of printing was nearly superseded by the system of Perrot, in which the calico passed hetween a square prism and three engraved blocks, which were bronght in apposition to three faces of the prism, and delivered their sejrarate impressions thereupon in succession. Each block was | inkel after each impression, and the cloth was drawn
through by a winding cylinder. The hocks were pressed against the cloth by sprines. This was a great improvement upon block-printing, being nearly twenty times as rapiul ; but the cylinder or roller printing has ontstripped them both, perfoming as much labor as 100 block-printers. See Calicoininting.
Block-teeth. (Dontal.) Two or more teeth made in a block earved by hand from ivory, whale's or walrus's teeth, ctc.

Block-tin. Tin cast into ingots.
Blom'a-ry. (Mctullurgy.) The first forge through which iron is passed. The pig-iron, having been puddled and balled, is brought to the hammer or squeezer, which makes it into a bloom. Bloomayy.
Blond-lace. A silk lace of two threals twisted and formed in hexagonal meshes.
Bloom. 1. (Mclullurgy.) A loop or ball of puddled iron deprived of its dross by shingling or scpueczing.
2. (Leather Manufacture.) A yellowish powdery coating on the surface of well-tanned leather, by which its quality is adjudged. It may arise from a deposit of surplus tannin, and thus be an indication that the process is tully accomplished. Oaklark tanning yields the best bloom, and some of the quick pr cesses none at all.
Bloom'er-pit. A tan-pit in which hides arc subjected to the action of strong ooze. So called beeanse the conclusion of the process brings a bloom on the skin. Also called a layger.
The pits containing a weaker solution are callel handlers.
Bloom-hook. (Mctallurgy.) A tool for handling the heated bloom, drawing it towards the shingler, moving it under the hammer, etc. Bloom-tongs.

Blot'ter. A device for absorbing the superthous iuk from praper after writiug. The blotter may be merely a thin book interleaved with libulous paper, or a pad or cushion covered with blotting-paper, a or b, and having a handle, being usel after the manner of a stamp. Another form consists of a roller c covered with successive layers of blot-ting-paper, and revolving on an axis, a handle being attached for

Blothers. convenient use. The layers of raper may be removed as they become soiled, and fresh paper substituted.
Blot'ting-pad. A few sheets of blotting-paper on the writing-table or desk, to form a soft bed lor the writing-paper.
Blot'ting-pa'per. A thick, bibulous, unsized paper, used as a pad on the desk or to imbibe superthous ink from undried manuscripts.

Blow'er. A machine for creating an artificial current of air by pressure. A plenum engine, as contradistinguished from a racuem engine, such as an aspirctor.

1. Blowers are nsed to increase drafts in furnaces; to furnish vital air to close and fetid places, as mines, wells, cistems, holds of ships, ctc. ; to furnish a current of warmed, cooled, moistened, or medicated air to public buildings or others which are liable to be
closely occupied ; to furnish a drying atmosphere in lumber, grain, or meal kilns, powder-mills, etc. ; to assist in craporating lluils by removing the steant from the vicinity of the boiling syrup or other solution ; to raisefluids on the principle of the Giflarl injector, as in some of the ejectorsused in deep oil-wells; to assist in the disprersion of hquils, as in atomizers, and some ice-making machines.
The fan-blower is believed to have been invented by Teral, 1729. The water-bellows by Hornblower.

Blowing-machines were erected by Smeaton at the Carron lion Works, 1700.

The hot-air blast was invented loy James Neilson, of Clasgow, mul patented in 1828.

Wooden bellows, in which one open-enden box is made to slip within another, with valves for the induction and eduction of air, were used at N nremberg, 1550. They were nsed in the next century for smelting, blacksmithing, and for organs. Such a machine is in principle the same as Fig. 106, and the converse of that show in Fig. 114.
P. Fannenselmid of Thuringia appears to have made, about 1621, a much more effective blower than was previously used by the metalhurgists of his sec: tion. This was a flat vane weciprocating in a sectorslaped hox and having an inlet valve for the air. At the hinging-point of the rane, the edge of the sector, an eduction pipe proceeds from the box. Slips of wood on the cilge of the vane were pressed against the sides of the box, to prevent the leakage of air.
Some what similar to this is the oscillating or pulsating piston (Fig. 727).
The fans $D D^{\prime}$ are oscillated in a semi-cylindrical case with an upper exit at $F^{\prime 2}$, and two valves $B B$

Fig. 727.

opening upwardly; the fans have also valves opening towards encli other. The alternate oscillating motion of the fans is produced by crank connection $I I I$ with a driven pulley G.

The earlier modern forms of machine-blowers consist of eylinders with pistons, the differences hetween them consisting principally in the means for communicating motion and for securing a uniform blast ; an arrangement for this purpose is shown in the figwre, consisting of two connected cylinders, onc of them movided with a discharge-pipe; by the descent of

BLOWER.
the piston in the first cylinder the air is forcel into the other cylinder through a valve which rises to allow its passage. At the same time the piston of the second cylinder is caused to rise, and, ou reach-

Fig. 723.

ing its highest point, commences its descending motion, closing the communicating valve and forcing the air through the discharge-pipe, while the first piston rises, filling its cylinder with air, to be similarly forced into the second cylinder, and thence expelled as before.

In other forms of blowing apparatus on this principle, the air is forced from the blowing cylinders into a reservoir, whence it issues by the force of its compression. Such is that used at Woolvich, England (shown in Fig. 729). The beams of the jistons

Fi\& Tー9.

Wooluich Biowets.
are so connected that when one is at the ton of the stroke another is midway of its cylinder and the third at its lowest point, maintaining very nearly uniform pressure in a wind-chest below with which each cylinder commmicates.

Blowers on the fan minciple are the favorite subjects of the exercise of the ingenuity of modern inventors in this line.

In these the air is admitted through an aperture at or near the axis of the rotating fan, whence it is driven toward the periphery lymeans of cmved arms, and discharged throngh an opening in the case.

In Schicle's compound bluwing-fan, two lans are combined on the stme shaft, so as to act successively on the sanse air. By the tirst the air is diven into a chamber between the fans, at a pressure of perhaps six ounces. The second receives the air at this pressure and compresses it as much more, so that it is delivered at length into the furnace at a pressure of twelve ounces jer square inch.

Lloyd's noiseless fan consists of a drum formed ar two flat hollow cones of thin metal, brought near together by their hases, and connected by a series of curved jartitions extending from the center to the circumterence. The cones are open alont the rertexes, and an axis of revolution supports the whole by being the common origin of all the curved partitions. This drum rotates within a closed box, and discharges the air received at the center through a tangential outlet. See Fas.

Other rotary hlowers are on the principle of the rotary pump or rotary engize, haring two portions whick revolve in apposition.

In Fig. 730, a represents a blowing-nachine having two similarly shapet elongated cams $A B$, the projections of each of which fit into the depressions of the other. These are arranged in a suitably shaped box C, and driven by pitmen so arranged that por.

Fig. 730.

Rotary Elowers.
tions of the periphery of each blower shall be constantly in close proximity, while the two ends or wings of each move in proximity to the curved sides of the box. The rotation of the two blowers in opposite directions draws the air through an onening in one side of the box, and forcibly discharges it through a blast-nipe at the other.

Root's blower, \bar{b}, is similar in principle to the foregoing ; the projections of the cams are, however, rounded off so as to form circular ares, while the depth of the depressions is decreased, causing a longer lap on the abutting surfaces, so as to provide against the escape of air in the wrong direction.

In c a series of bellows, provided with suitable valves, are radially arranged around a tube surromeling the axis of a wheel. A heavy block moving iu guides descends by gravity on approaching a vertical position, admitting air during the lower part
and forcing it out throngh the central tube during the upere part of the revolution.

Blowers have been made having an eccentric drum, with radial pistons or valves, which rotates within an exterior casing ; or the interior of the case may be itself eccentric and the drum central on its shatt, - the pistons, in either case, being reciprocated altermately back and forth in slots in the drun, as that portion of its periphery in which theyare situated approaches or recedes from the side of the easing.
The principle of the rotary purmp is entirely applicable to the blower, and a machine of this kind whicn causes a current of water to ascend may be made to create a blast of air.
The hydrostatic bellows is formed by a body of water falling through a pipe or pipes a a, picreed with
him machine souflunte a colonne d'cau. The water is, however, merely employed to prek the working parts and prevent friction.
$A A$ are two compressing cylinders having inner and outer walls, the space between which is filled with water up to a certain level, as $a . B B$ are cylfuders which are reciprocated within this annular

Fig. 731.

Hydrostatic Bellows.
a number of holes inclined inwardly and downwardly. The current of water draws air in at these orifices, and carries it down into the chamber b below. where it is compressed, and, separating from the water, rises into a trunk on the npper part of the chamber, whence it is conducted by a pipe to the forge. The water dashes upon a table c in the chamber, which assists in the separation of the air, and then escapes by a trap beneath the water-level. The force of the blast is proportionate to the volume and fall of the water, and is regulated by a sluice.
Thirion's hydraulic pressure-blower is termed by
Fig. 732.

Thirion's Hydraulic Pressure-Blower.

Fig. 733.

Sturtevant's Blower.
space by a driven pulley and cranked shaft I. The regulator comprises an annular outer cylinder E and an interior cylinder F. The outer cylinder is partially filled with water, and the inner has a vertieal motion therein, limited by the guide H rigidly suspended from the shaft I.
The upward novement of either cylinder B adnsits air through the values b, which is forced by the downward movement through the valves $c c$ in the enlarged portion of the pipe $C D$, into the upper cylinder F of the regulator, through the valves $c c$. The weight of the cylinder F forees the air into the central tube g, which forms the upper part of the
blast-pipe G, under an amount of pressure regulated by weights in the seale-pan f tixed on the top of the guide-rod of the eylinder.

Sturtevant's blower has spoked whecls, having conical annular disks mounted on an axis driven by two belts to prevent tendency to wabbling. The air enters between the spokes around the axis, and is driven forcibly by the curved lloats which span the space between the amular disks, being discharged into the peripheral receiving-chamber A, whence it reaches the horizontal eduction-pipe shown in the lower part of the figure. Within each of the bandpulleys is an vil-collector H, which intercepts superHnous oil and conducts it to the oil-chamber l, whence it may be drawn by a faceet. The shaft C is supported in tubular bearings at E E, sustained in brackets by means of ball-joints f, whereby the bearings are able to accommodate themselves to the shat while in revolution. The oilers y for the jourmal of the shaft C' are near the end, and have dripping wicks which feed the lubricant in regular quantity; the oil-collectors H intercepting any superflnity, as alrealy stated. The set serews $y y^{\prime}$ atlord means for aujusting the shatt C lengthwise, so as to bring the wheel to its proper position in the case.
Auother form of hlower, if the term be admissible, is a steam-jet, which induces a current by prollncing a partial vacum. It is used in providing the vacum in front of the traveling-carriage of a puenmatic tube, a jet of stean issuing from an amular nozzle concentric with that end of the tube toward which the carriage is moving. The steam or vapor carries along with it a current of air which is drawn from the tube. It is more correet to call this a substitute for the blorect:
The steam-jet for the ventilation of mines was used long ago, and then abandoned. It has since been tried very success. fully at a colliery at Oldham, England, in which the satisfictory flow of near ly 23,000 cubic feet of air per minute was obtained.
2. An iron plate temporarily placed in front of an open fire, to urge the combustion.
3. A machine for separating the hair from the fur fibers. See Blowingmachine.
Blow'er and Spread'er. (Cotton-Mronufacturc.) A machine for spreading cotton into a lap, the action of beaters and blower being conjoined for the purpose. See Cotton-cleaning Machine.
Blow-gun. Used by the Barbados Indians of Brazil and other aborigines of South America. A similar contrivance is employed by some of the Malays, by whom it is called "sumpitan." The arrows are about fifty inches long, made of a yellow reed and tipped with hard wood, which has a spike of cocourite wool poisoned. The spike is cut halt through, so as to break off in the wound, that the arrow-shaft may drop and be recovered. See Airegun.
Blow'ing-cyl'in-der. (Pnermatics.) A form of blowing-exyinc.
Smeaton introduced the blowing-eylinders at the Carron iron-works, and by the power and volume of blast made effective the eanlest and repeated attempts
of the Eng.ish to smelt iron by the use of the coke of $l^{\text {nit-eval. This wis in } 1760 \text {, aud utilized the in- }}$ vention of Abralan Darby, of Colebrookdale, in 1735.

Blow'ing-eu'gine. Properly, one applied to the duty of driving a blower ; sometimes it is intended to mean a mathine by which an artifieial draft by plenum is obtained. For such, see

Blowels.

Blow'ing-fur'nace. (Glass-muling.) A furnate in which articles of glass in process of manufacture are held to sotten, when they have lost their plasticity by cooling.
Blow'ing-pipe. (Glass-making.) The glassblower's pipe ; bunting-iron; a pontil.

Blow'ing-ma-chine'. 1. One for creating an artificial dralt by forcing air. See Blower.
2. (Hat-making.) A machine for separating the "kemps" or hairs from the fur fibers. The fibers are fed from an endless apron between rolls to a revolving picker in a closed chamber, which tosses the mass upwards against a horizontal gauze partition, throngh which the air escapes, whence they fall on to a secoml apron, which carries them to a second chamber, where this operation is repeated. The coarse and heavier hairs fall by their glavity into boxes in the bottom of the chamber. The operation twice or thrice repeated completes the separation, when the fur is ready tor the foming-machine which makes the bat for felting.

Fig. 734 represents the ordinary fur blowing-nachine.

Bloxing-Machine
The mixed fur and hair is placed on the endless apron a, and is fed into the rollers ec, which feed the rotating-picker d. This seprates it, and tosses the mass up toward the wire-gauze screen e, which allows the air to escape, and causes the mass to fall on the sccond endless apron ψ, which earries it into the second apartment. While the disintegrated mass of fur has thus been passing through the first apartment, the heaviest and coarsest hairs and the dust have by reason of their weight fallen into the boxes $h 2$.

The mass, on passing into the second apartment, is treated in a preeisely similar way, and is usually conducted from thence into a third apartment, where it is operated on in the same way, and finally delivered in a fit state for manufacture.
3. (Cutton-Manufucture.) A part of the battingmachine, or a machime in which cotton loosened by willowing and seutching, one or both, is suljeeted to
a draft of air occasioned by it fan, which removes the rlust and other light sumell refinse from the fiber. See Batring-machine.

Blow'ing-off. (Stcam-Enginc.) The process of ejecting the super-salted water from the boiler, in order to prevent the deposition of seate or salt.

Blow'ing-pot. (Pultery.) A pot of colored slip for the ornamentation of pottery white in the lathe. The pot has a tube, at which the mouth of the workman is placed, and a spont like a quill, at which the slip exudes ander the pressure of the breath. The ware is rotated in the lathe, while the hollows previonsly made in the ware to receive the slip are thas filled up. Exeess of slip is removed, after a certain amount of drying, by a spatula or kuife, known as a tournasin.
Blow'ing-through. (Sterm-Engine.) The process of clearing the engine of air by blowing steam through the eylinder, valves, and combenser before starting.
Blow'ing-tube. (Clress-mutaing.) Ponly; Pontil. An iron tube from fonr to five feet in length, and with a bore, according to the character of the work, of from one third to one inch in diameter. The metel, as the molten glass is callel, is gathered on the larger end, which is thust into the glass-pot, and the mouth is applied to the smaller end to blow解e glass, making it hollow by a borly of air; the shape of the object being determined by swinging, by rolling on the murver, by tongs, and other tools. See Glass-blowing.
Blow-off Cock. (Stum-Engine.) A fancet in a stem-boiler for allowing a quantity of water to escale, to rid the boiler of mud ; or, in marine engines, of a strong solution of salt.
Blow-off Pipe. (Stcem-Engine.) A pipe at the lower purt of a stem-boiler by which sedment is driven ont occasionally.
Blow-o'ver. (Glass.) An arrangement in blowing glass bottles or jars in molds in which the surplus glass is collected in a chamber above the lip of the vessel with but a thin connecting portion, so that the surplus is readily broken ofl without danger to the vessel itself.

Blow-pipe. A tube through which a current of air is forced, in orter to direct a flame and concentrate its heat at a particular spot.

The origin of this instrument is unknown, thongh it is undoubtedly of very great antiquity.

Among the earliest illustrations of metallurgic oprations may be cited the little furmace with cheeks to concentrate the heat upon the crucible, and the fire urged by the hlow-pipe. There seems to be a purpose to direct the flame upon the erncible in the manuer of a blow-pine; for the blast-furmace and foot-bellows were well known at that time, and are shown in the ancient praintings of Kourna, Thebes.

Blow-Pipe (Thebes).

The blow-pipe is used by gollsmiths, jewelers, and others, in soldering of metals, and by glassblowers in sealing ghass tubes.
It is made of various forms for special uses.
Fig. 735.

a. Common or simplest form of blow-pipe.
b. Two-part blow-pipe having a halb near the small end, composed of two hemispheres in whieh the moisture from the breath is condensed, and whieh may be unscrewed for convenience of carrying in the pocket.
c. Gahn's blow-pipe made in four separable parts.
d. Woilaston's blow-pipe ready for use.
c. Wollaston's blow-pipe with its lower end and beak slicl in for carrage in the pocket.
f. Dr. Black's hlow-pipe. The smaller end is the mouth-piece, and the larger condenses the moisture.

While the use of the blow-pipe dates from distant antipuity, yet its use in mineralogy, in determining the nature of the metals in ores, dates from Antony von Suab in 1738, and Cronstedt, 20 years later. The sulject may be satisfactorily pursued in " Plattner ou the Blow-pipe," and by consulting a late work, "System of lnstruction in the practical Use of the Blow-pipe."
The reducing flame is produced by blowing the flame of the lamp aside hy a weak curcht of air imfinging on the outer surfact, the flame being unchanged except in direction. Theonsmmed carhon, at a white heat, giving the yellow color to the flame, aids in the reduction of the substance.

The oxidiziag flame is formed by blowing a strong current into the interior of the flame, perfecting the combustion. Tbe objeet, being intensely heated, and exposed to the surrounding air, becomes oxidized.
ln Fig. 737 is shown an apparatus charging the air-chamber by mechanical means instead of by the breath. Such devices are now much hised by jewelers, mechanical dentists, and in certain departments of analytical chemistry.

It consists of a table having a chamber into which air is forced by a pump 2, operated by a treadle 5 , maintaining a continuons blast through the pipe 3 , to which is attached a flexible tube, enabling the flame of the lamp 4 , on the table, to be thrown in any direction.
The compound or oxyhydrogen blow-pipe, invented by Dr. Robert Hare, of Philadelphia, in the early part of the present century, surpasses, in the intensity of the heat it promees, anything that had previously been attained. The flame is formed ly mit

Table Bour-Prive.
ing the two gases, oxygen and hydrogen, from sejiarate reservoirs in a single jet, in the propiortion to form water, - namelr, 2 rolumes of hydrogen. 1 of oxygen, the compound being ignited just beyond their paint of misture. No substances are found capable of resisting the high temperature obtained by this blow-pipe. Carbonate of magnesia is very difficult to melt, hint esen this is reduced into grains of enamel of sufficient hardness to scrateln glass. llatimm inelts instantly, and gold in contact with borax is entirely volatilized. Pure lime and its compoumls emit a flame of amethystine tinge as they melt. Unartz crystal melts with a beautitul light; pieces of chima-ware are fused into crystals, and Hints produce transparent glass. The intensity of the light emitted in fusing pure lime caused this invention to be rec. ominended by Lieatenant Drummond, of the British Fngineers, as ant illumination for lighthuuses, and it is now known as the Drummond light. Dr. Hare used an instrument traminating in fifteren jet pipes of platinum. These were adjusted so as to pass throughl a vessel filled with ice or swow, to prevent the gases becoming heated, and obviate the danger of an explosion by a retrocession of the flame into a single pipe. Dr. Clarke, of Cambritge, England, inclosed in the jipe containing the two gases a great number of lavers of fine wire gauze, to prevent explosion ; though his experments were successtul in a scientific riew, the apparatus prosed too dangerous for common use. II. Gohlsworthy Gurney contrived an iustrument in which the gases were forced from their reservoirs through a tube to the botton of a chamber containing water, the gas rising through the water and passing immediately to the burner; a stiff pastebuard eafe clos ly corered the reservoir, sutficiently strong to retain the gas, which, in case of an explosion, woald be casily thrown olf, and retrocession of the flame into the gas-cbamber prevented by the colume of water. A bottle or flask half filled with mercury or oil of turpentine, connecting by leaden tubes between the reservoir and jet, like the arrangement of a Woulfs bottle, has also been used to prevent explosion. The gras rises in bubbles through the contents of the bottle or tlask, and in case of an explosion retrocession of fame is prevented, either by the mercury being driven into the pipe, forming a mechanical obstruction, or in case of an explosion on the surface of the turpentine, a nou-explosive com-
pound is formed by the excess of carbonaceous matter, rendering it inpossible for the flame to reach the reservoir.

The airo-hydrogen blow-pipe is a modilication of the oxyhydrogen blow-pipe invented by Dr. Hare, of Philaleluhia; the modification being the invention of Count de Richmont, of France.

The elastic tube h supplies hydrogen from the generator, and the jipe a supplies atmospheric air from the small pair of donble bellows b, worked by the foot of the operator and compressed by a constant weight u. The trro pipes meet at the arch and proceed ly a thirl pipe c to the small jet f, from whence proceeds the llame. All the connections are by elastic tubes. hasing the machine, the hydrogen is ignited and the size of the flame regnlated by the stop-cock h^{\prime}; the air is then admitted through a^{\prime} until the flame assumes a tine printed character, with which the work is muited after the general manner of blow-pipe soldering, excerpt that a strip of lead is used instead of solder, and generally withont any flux. See Burning.

The gas-generator is charged through the stopperhole 1 with curly shreds of sheet zinc, and the stopper replaced. The pipe of communication between

Fig. iss.

Airo-Hydrogen Btor-Pipe.
the upper and lower chambers being plugged or closell by a leaden stop-cock, the upper chamber is elarged with dilute sulphurie acid (1 acid, 6 water). As the acidulated water reaches the zinc, hydrogen gas is evolved by the deconnposition of the water, and prasses off ly cocks 4 and k^{\prime}. When the outflow ceases by the closure of cocks 4 and h^{\prime}, gas generated fills the chamber, and, pressing on the surface of the liyuid in chamber 1, drires it into the upper chamber, so that the evolution of gas is stopped. When gas is withdrawn, the liquid returns and the production of gas is resumed. The generator chambers are of lead, to peserve them from the action of the acid.

In the oxyhylrogen blow-pipe, oxygen 1 volume and hydrogen 2 volumes are united in proportions to constitute water. In the airo-hydrogen blowpipe the same gases are in the same poportions, but the oxygen is, so to speak, dilnted by four times its bulk of nitrogen.

Blow-through Valve. (Stcam-Engine.) A valve commanding the opening through which boilersteam is admitted to a condensing steam-engine to blour through and expel air and condensed water, which depart through the way of the snifting-valre.

This is the first operation in starting an engine of this character, the condenser being then brought into operation to condense the vaprous contents of the cylimler and make the first stroke.

Blow-tube. 1. The hollow iron rod used by glass-makers to gather metal (melted glinss) liom the pots, to blow and form it into the desired shape. A ponty. (Fr. pontil.)
2. A tube through which arrows are driven by the breath. See Blow-gun; Ait-GUN.

Blow-up Pan. (Sugur-Muchincry.) A pan used in dissolving raw sugar preparatory to the process of refining. Steam is introduced by means of pipes coiled round within the vess ls to dissolve the sugar, which thence becomes a dark, thick, viscous liquid; a small portion of lime-water is admitted to the sugar, and constant stirring with long slender rods assists the protess of liquelaction. The blowup pans are generally rectangulir, 6 or 7 feet long, 3 or 4 feet wide, and 3 feet deep, with perforated copper pipes near the battom, though the holes of which stean is blown into the sugar.

Blow-valve. (Steru-Eirgine.) The valve by which the air expelled from the cylinder escapes from the condenser on the downward stroke of the piston when a steam-engine is lirst set in motion. The suifting-value.
Blub'ber-guy. (Vuuticul.) A rope stretcheil between the mainmost and foremast heads, and serving for the suspension of the spech-purchase ustl in flensing whales noder the orders of the specktioner.

Blub'ber-spade. (Vuntical.) A keen-edged, spala-like knift, attached to a pale, ased by whalemen in removing the layer of fat or blubber which encases the boly of a whale.
Thecarcass, stripped of the blubber, is called liruny.
Blue-light. A signal light burning with a stcaly blue calor.

Blae-lights are mude of a composition of 9 lus. 10 oz. saltpeter, 2 lbs . $6 \frac{1}{2}$ oz. salphur, 11 oz . red orpiment. The interials are well palverized and thoroughily incorporated, and a sufficient quantity for a charge is pressed into a hemispherical cup of seasoned wood, having a handle about ten inches lons. These cups are coverel with cartritge-paper pasted over the month, and are primed with quickmatch. When lighted, they are held by the handle mutil the commosition burns out.
Blue-mat'al. (Motelluryy.) One condition of copper in course of refining. The names coursc-metal, fiuc or blue mathel, course chper, and rosc-copmer occur in that order. Ste Cormer.

Blu'ing. 1. (Metal-working.) The process of henting steel until it assumes a blue color. See Tempering.
2. (Dycing.) Coloring goods by a solution of indiro.

Blun'der-bus. A short gun with a large bore, for carrying a large charge of bails and slugs, to be userl at close puarters. In former times, the same body of troaps seem to have been armed part with carbines and part with blunderbusses (Dutch, doncerbus, thumilrgen). It is now disused, and we sellom hear of it excent in accomnts of old honses ant 1 musions where it is provided against burghars. This is a mere reminiscence, and has no practical bearing upon the molern armorer's art.

Bluaz'ing. (Pottcry.) The frocess of mixing clays tor the manfacture of porcelain. The proper proportions of the clays and the needful quantity of water are placed over night in a trongh about $\frac{1}{2}$ feet deep. The ingredients are intimately mixed by the blunger (corrupted trom plunger), which is a
long blale shaped like a spatuia, but larger than a shovel, and having a cross-handle ly which it is wielded. The material is mixed till it becones a smooth and plastic mass, a pint of which weighs from 24 to 26 onnces, atcording to the ingredients.

The work is sometimes doue in a pug-mill, which saves very liand mamual labor.

Blunk. (Falric.) A heavy cotton Scotch cloth.
Blunt-file. A file which has but slight taper. It is a grale between the regular taper and the deadparallel files.

Blunt-hook. (Surgery.) An obstetric hook for withlrawing the fietus without piercing or teaping.

Blunts. Λ grade of sewing-needles whose pointed ends are less finely attenuated than the sharps. Betweens are a middle grade in this respect.

Board. 1. (IFood-working.) a. A sawed piece of wood, relatively broad, long, and thin, excerding $4 \frac{1}{3}$ inches in width and less than 2.5 inches in thickness. The term purnh is properly applied to a grade thicker than bourds, though the two tems are often used indiscriminately. What in shipwrighting, etc., are called plank, would in house-carpentry usually come under the denomination of scanling.

According to the British system, fir-boards under nine inches in breadth are called deals, and boards of greater width plunks.
b. A rived slab of wood; as, a claploard.

The following terms obtain : -
Feuther-cdyed; one elge thinner than the other.
Listed; the sap-wood removed.
Eilyc-shot; the edge planed.
Wrought ; planed on the side.
Matchert ; tongued and groovent.
Jointel; lined and edge-planted so as to come together correctly.
2. A flat piece of plank or a surface composed of several prieces, used in many trades; as, -

Modeling-bourd; a teuplet having the profile of the gun or cylinder lormed by the lom-molding [rocess.

Follow-board; a supporting-board on which a pattern lies in molding.

Molding-board; flesk-board on which the box is placed in sand-molding.

Deud-head bourd, cascalcl-bourd, back-borrorl, molding-oul board, are also used in loam-molding operations.
3. (P^{\prime} (p)er.) A thick paper, composed of several layers pasted together; prastelourd. There are varions terms cmployed to express different varieties.
a. Curdborvel is made of thicknesses of more common paprer pasted together, and having a fme yuality for surfaces.
b. Bristol-board has fine paper throughout its substance.
c. Mill-bord is made of coarse material, with a glossy surface produce by heavy rolling.
d. Enamcled-bourd has a conting of white lead or other pigment.
c. Gluzed bourd has a smooth glazed surface.
f. Ter-bourd is made of junk and rope.
g. Strrev-board is a yet poorer quality, made of straw-paper:
h. Pressing-boards; very lard and smootio calendered boarls, between which pinted sheets are pressed.
4. (Bookliuding.) a. A flat slab of wood used by bookbinders. They are known by names indicating their prrpose; as, backing, buruishing, cutting, gilding bourds, etc.
b. l'asteloard sides for books.
5. A level table or platfurm on which a game is

BOAT.
played ; as, chess, checker, backgammon, cribbage boards.
Board-cut'ting Knife. (Bookbinuling.) A hinged kuife a with a counter-weight c, and a treadle b to assist in making the cnt. The board or pile of
motion, adjustable in extent, upon the lower roll S. The upper and lower roll respectively are moved a certain distance at each rotation of the drive-wheel by the ratchets I and R respectively. The reciprocation of the upper roll is by means of the lever G, adjustable pivot-box H, and pitman I.
In Fig. 7 ± 1 is a simpler torm of hoarding and

Fig. 711.

Boarding-Machine.
boards is laid upon the table and pushed up against the gage, which is set for the width of the pieces to be cat.

Board'ing. (Leather.) The process of rubbing leather with a board to raise the grain after it has been shaved, daubed, and dried.

Board'ing-gage. (Curpentiy.) A graduated scribing-tool used as a measurer of width and distance in weather-boarding sides of houses.

Board'ing-joists. (Carpeutry.) Joists in naked flooring to which the boards are fixed.

Board'ing-ma-chine'. In Fig. 740 is shown a machine in which the leather is carried between

Fig. 110

Boarding Machine.
two endless aprons $T S$, which revolve intermittingly so as to feed in the leather oceasionally, while at the same time the upper apron T has a reciprocating
graining machine, in which a spring-pad is reciprocated over a spring-hed.

Board'ing-net'ting. (Fautical.) Strong nettings of cords, to prevent boarding of a ship in battle.
Board'ing-pike. (Nartical.) A pike used on shipboard to repel boarders.
Ship-spears or hoarding-pikes are represented in the sea-figlat at Medinet flhon, in Esyyt.

Board-rack. (Printing.) Sile boards with cleats to hold shelves for standing matter.

Boast'er. (Masonry.) A stone-mason's chisel, lhaving an edge two inches wide. used in dressing down the surface of stone. It is intermediate in width between the inch-tool and the broad tool, which are respectively 1 inch and $3 \frac{1}{2}$ inches wide.
Boast'ing. 1. (Mcesonry.) Dressing off the snrface of stone with a broad chisel and mallet.
2. (Sculpture and Carring.) The roughing out of an ornament, giving the general contour prerious to the commencement of the raffles and other details.

Boast'ing-chis'el.

 A steel chisel with fine broad edge, used by marble-workers for dressing stone to a nearly smooth surface preliminary to the use of the bromet-tool.

Boasting-Chisels. Forms adaptecl to varions kinds of work are shown in Fig. 722.

Boat. A small water-craft.

Boats were one of the earliest derices of nature to enable some of the denizens of the ancient deep to maintain themselves with ease upon the surface of the waters, which their physieal structure rendercd them ill qualified to do without an extraneous support.

Such were the numerous cephalopod mollusks, as the ammonites, the orthoceratites, and other varieties having chambered shells, which Hourished in the waters of the ancient worli, and at a later epoch the nantili, species of which still inhabit our warmer seas. Nor are enntrivances of this kind confined alone to existences designed to permanently iuhabit the waters : a similar provision is made for the temporary support of some insects whose larvæ attain their development in water, as the gnat tribe, iucluding that peculiarly social and familiar insect, the
mosquito, whose tumler regard for the hmman race is so tomehinerly manilested anil lomaly proclanmed. "A buast faniliar to min and signifying - love".
The boat formed by the kemale gnat emosists of from 250 to 350 egges, aml though eatel is leavy enongh of itsitt to sink in water, the whole structure is prerfectly buoyant. 'lhough hollow, it never fills with water, as the sufface has it certain repellent action. This little chaft has been likened to a river wherry, being sharp, hirh fore ind aft, convex below, concare above, and always loating keel down.

The canor wat probably the first form of boat which succeuled the simple ralt, which had supplanted the humble log upon which mun tirst entmsted himself upon the waters. It wat moh easier to partially burn out a large log, and then linish the work with a printerl stone, thim to construct in any other way, with similar tools, a ressel combining efual convenience and speed, and aceorlinsly we find the canoe thus constructed anong most primitive nations.

The canoe was the omlinary form of boat in the New World when discovered by Colnmbus. During his fonth voyage he lanlad on one of the Guanmit Islancls, anll was visite | by a lugge trading-canoe remarkible for its size and lieirht. It was eight feet wide, but formed of a single tree. An awning inclosed a cabin ocenpied by the wives amd children of the caciutue, ame it was propelled by twenty-five rowers. It was supposed to have come from Fineatan, forty miles listant. The voyagers were elothed with cotton inumtles; their breal was made of Indian corn, and they lad a beter on botrd made of the sanse grain. They had also copper bells, plates, and hatehets as freight.

The endurance and sea-going qualities of some boats of this description aw almost incredible ; those of the south seal lshanders and of the inhabitants of the northwest edrst of America often make royages of houlrels of miles, the latter in an inclement and tempestuons ocean ; instances are knowo of the South Sea Islim.l eanoes, aceidentally blown off hom their own island, keeping afloat for months and dritting humdreds of heagres.

A farther alvance consisted in the employment of some pliable substanew, as lites or birch-bark, sewn together, where the proper inaterials could be procured.

Ulysses, the hero, made his own boat.
"The boats which eome down the river [Euphrates] to Babylon are cirnuar, and maxle of skins. Tho frames, which are of willow, are cut in the country of the Armenians, alrove Assyria, and on these, which serve for halls, icovering of skins is stretched ontside, and thus the boats ale mone without either stem or stern, quite round like a shild." - Herodote's, 1. 193.

The molern boats of the Luphrates are of elosely wosen willow payel with litumen.

For capability of living in it heavy sea or landing in a heavy surf, no buat constructed can compare witli the catamaran (which see), a simple iaft formed of three or more logs of light woud, comnected together by woolen cross-ties, annl having a slightly clevated platform for its oceupatsts to sit on ; these are in common use on the consts of Himostan and South America, espuretially for lamliner goods amb passungers throush a hemy surf, which they do in saterty, when a cummon ship's boat would be almost instantly daslual to pieves.

Boits built ot boards or planks being, in civilized countries, of rasier and cheaper eonstruction thanany others, and combining great strength with lightness and facility of repair, atre genemally employed tor
 comugated sheet-metal have come into use to il con-
siderable extent. These eombine duraluility, sitecty, strengtls, and lightnuss in the lighest possible degree, and lor iife-buits or for use in Tharbors, whire establishmonts at which they can be repaired ate asily accessible, they stem to unite every desirable requisite ; but the impossibility of their repar byanor-
 dimary canpenter, or with the means usually at hand on board ship or in most foreign ports, remaers them oljectionable in that respect, though when properly made they are little liable to accilent. See Lifesboat.

Paper boats are made by fitting sheets the length of the boat over a model of the exact form ; successive sluets, breaking joint, are laid on with i coat of varnish between each. Model and paper envelope are removed to a drying-room, and then payed with boiled oil and turpentine, and then with shellac valnish. The shell is then fitted with an inner fiame, thwarts, ame the nsmal aprembiges.

Ship's hoats are named according to their sizes or the nature of their dinty. They are known as -

Boats are also known by their purpose or duty ; is, 一
Alvice-boat,
Cimal-boat,
Cimal-boat,
Disprat lel-boat,
Ferry-hoat,
lee-boat,
lile-buat,
lacket-buat,
Passagre-boat,
Snag-boat,

Pilot-boat,
Also by specific names of varions imports; as, -

Bateau,
Coracle,
Buggy-boat,
Bunter-boat,
Caique,
Dory,
Flat-hoat,
Folling-boat,
Gomdola,
most of which are described under their respective heads.

Boat-bridge. A boat-bridge consists of a track laid on a number of boats anchored parallel in the stream, or moored to ropes or chains which pass from bank to bank.

The bridge thrown across the Hellespont by Xerxes when he invaded Greece, $t 50 \mathrm{~B}$. C., had a length of 500 paces, and was supported on shipis used as pontors. Suspension cables of flax and biblos nnited the ships, transrerse beams were laid on the cables : the beams supported plank and earth, and the army marched across, bag and baggage.
Many years after, there appears to have bren a more permanent construction of this nature in the same vicinity.
"At Abydos is the Zeugma [or Junction], a bridge of boats which could be untixed at pleasure lor the passage of ressels." - Strabio.
Cyrus, according to Xenophon, crossed the Meander un a bridge supported by seven boats.

Bridges of boats were in general use in the Middle Ages, and are still used on the Continent of Europe. One at Strasbourg is 1,300 feet long, and there is another at Cologne. One across the Scine at Roten was constructed by Nicolas in 1700.
Boat-bridges, in a military point of riew, are classed as ponton-bridges, the pontons or bateaux and the road-bed being transported ou wagons with
the army, and thrown across streams as necessity may ocenr. The hateaux are moored to ropes seenred to trees or other safe objects on the respective sides of the river. See Pustux-mindee.
Boat-car. A car adapted for transporting boats up and down inclined planes.

The Dlorris and Essex C'anal in the State of New Jersey leads from Jersey C'ity, on the Hudson, to Easton, on the Delaware, and connects these two rivers. The breadth at the water-line is 32 , and at the bottom 16 feet, and the depth is 4 feet. It is 101 miles in length, and is said to have cost $\$ 3,000,000$. It is peculiar as being the only canal in America in which the boats are nored from different levels by means of inclined planes instead of locks. The whole risp and fall on the Morris Canal is 1,557 feet, of which 223 feet are overcome by locks, and the remaining 1,334 feet by means of 23 inclined planes, having an average lift of 58 feet each. The boats which navigate this canal are $\frac{1}{2}$ feet in breadth of bean, from 60 to 50 feet in length, and from 25 to 30 tons burden. The greatest weight ever drawn up the planes is about 50 tons. The boat-car nsell on this canal is shown in elevation and plan, the boat being shown in dotted lines. It consists of a strongly made wooden crib or cradle a, on which the hoat rests, supported on two iron wagons running on four wheels, upon plate-rails laid on the

Fig. 74

Boat-Car.
inclined planes, and raised and lowered by means of machinery driven by water-wheels. The railway on which the car runs extends along the bottom of the camal for a short distance from the lower extremity of the plane: when a boat is to be raisel, the car is lowered into the water, and the boat, being iloated over it, is made fast to the part of the framework which projects above the gunwale, as shown in the drawing at d. The machinery is then put in motion, and the car, bearing the boat, is drawn by a chain to the rop of the inclized plane, at which there is a lork for its reception. The lock is furnished with grates at both extremities; after the car has entered it, the gates next the top of the inclined plane are ciosed, and, those next the canal being opmed, the water flows in and floats the hoat off the car, when she proceeds on her way: Her place is supplien by a boat traveling in the opposite direction, which enters the lock, and, the gates next the canal being closed and the water ruin off, she grounds on the car. The gates next the plane are then oprened, the cirl is gently lowered to the hottom. when it enters the water, and the hoat is again floated.

Boat-de-tach'ing Hook. (Noutical.) One adapted to be suddenly cast loose when a boat lowered from the darits tonches the water. It is important that the hooks which engrage the eye-bolts, stem and stern, shonhd be instantly and simultaneously disengaged when the boat touches water. This is done by upsetting the hooks, the opening of sister-hooks, or the tripping of a trigger.

In Fig. 745 the boat is attaehed to the darit-hlocks by the hooks of piroted levers counected together so as to ennure simultaneons release. The pivot-supports of the hook-levers have projections preventing release before the hooks are turned up.

BOB.
In Fig. 746 the incurred lower ends of the levers loose. Of this character is the device shown in Fig. form jaws, which are operated by a toggle at the 748 , in which the eyes of the tlavit-fall blocks are engaged by piroted hooks at the stem and stern re-

Fig. 746.

Davit-Block Hooli.
spectively of the boat. The hooks are detained by
Fig. 748.

Boat-Detaching Tachle.
upper ends of the levers. Each half of the hook forms a mousing for the other.
ln Fig. 747 the hook or link at the end of each davit-fall passes unter one branch of a pivoted arm, the other branch of which has a projection held by a pivoted catch, turning on a shaft ruming lengthwise of the hoat. ley turning a handle attached to this shalt, the two catches retaining the arms simul-
liuks, which are simultaneously withdrawn by lever connection with a rotating shatt amidships.

There are various moditications of this form of the device.

In Fig. 749 the davits are hinged in such manner as to swing fieely in vertical planes toward and from the watel, and to vibrate above and below a horizontal plane intersecting their axis of motion.

Fig. 747.

Boat-Detaching Hook.
taneonsly release them, allowing them to slip off the hooks or links of the davit-fa'ls.

Boat-hook. A pole whose end is furnished with an iron having a point and a liook. It is used for holding on to a boat or other object, and is a part of the boat's appurtenances.

Alsa known as a gaff; sctler; sctling-pule; polehook; hitcher.
The contus noutarium of the ancients.
Boat Low'er-ing and De-tach'ing Ap-para'tus. The ordinary boat lowering and hoisting apparatus consists merely of two falls passing through donble blocks and snspended from the davits. The lower blocks hook into rings at each end of the boat, ami are muhooked ly hand after the boat is lowered. In lowering a boat in a heary sea, this arrangement is thoublesome and inconvonient, as a failure to tletach hoth hooks simultaneously may lead to the swamping of the hoat. 'T'o remedy this, ame to enaWhe both ents of the boat to be cast off at one operattion, a number of contrivances have been devised. These devices generally take the form of menns for casting loose the hooks fore and aft with absolute certainty and simmitaneously. Sometimes it is a rod whieh is withdrawn so as to let the hooks fly

Fig. 743.

Boat-Lowering Davits.

Curved sections are applied to the upper ends of the davits, which are hinged at their lower ends, so that said sections can be turned aromed independently of the standards to which they are attached.
The davits are counterpoised by a foree sufficient to raise them without the bout, but easily overcome by the weight of the boat..
Bob. 1. (Metul-working.) A small luff-wheel used in polishing the insides of spoons. It is a clisk of leather nearly an inch thick, known as sea-cou or bull-nect: It is perforaterl, monnted on a spindle, and turned into a nearly spherical form.
2. (Hornlogy.) The weight of a pendulum.
3. The suspended hall of a plamb-line.
4. The shifting weight on the graduated arm of a steclyard.
5. (Mining.) A rocking-post framed into a pivoted bar and driven by the crank of the water-wheel or engine-shaft. To one end of the heam is susproded the pump-rol, and the other is counterweighted to balance the said rod.
6. (Sleam-Engine.) 1 working-beam.

Fig. 150.

Engine-Eob.
Bob'bin. (Sewing-Machize.) A small spool adapted to receive thiread and to be applied within a shittle.
(Spinning.) A spool with a head at one or both ends to hold yarn. It has one head when it serves as a cop in spinning, as a thread-holder in shuttles of loons, and as cop in warping-machines. In spinning or warping it is slippeld on a spindle and revolves therewith, being held thereon by a spring or by the tightness of its fit.
It has two heads when used as a spool for sewingthreal, as a bobbin for sewing-machine shattles, and sometimes as a warp-holder in loons where each warp is independent.
The Wheeler and Wilson sewing-machine has a circular bobbin of lenticular shape, which holds the lower threal, and is dropped through the loup of the upper thread, distended for that purpose by the sotating hook.

Braiding-machine bobhins have tiro heads, the upper one notched as a ratehet, to receive the stop-ping-arm attached to the let-oll meeknaism. Greeshalgh's Patent, April 13, 1869. The bobbin rotates freely on its shaft; its thread passes through an eye in a standard and one in a tension-weight sliding thereon. The stopping-arm is attached to a sleeve on the standard, and is supported in the ratchet-openings of the bobbin-heal until the ten-sion-weight is raised by the threal to trip it and release the bobbin, which then rotates freely and pays of the threal until the slack allows the ten-sion-weight to fall and release the stopping-arm, which again engages with the heal of the bobbin.
Bobbins are variously coustructed, and of divers materials.
Materials, - clay, woold, ivory, hard rubber, porcelain, glass, papier-maché, corrugated metal, malleable cast-iron.
Having metallic barrels and disks of the same for heals; of wool turned; of cylinders with one head each, and slppping one into the other telescopically ; with praper bolies; polygonal prisms with buttons on the ends; laving a number of diflerent-sized circumferential grooves.
Bob'bin and Fly Frame. The ordimary rov-ing-muschinc of the cotton manufacture. Its duty is to draw and twist the sliver, and wind the roving on a boblin.
The bobbins containing the slivers are mounted in several rows on a crecl which has skewers for their reception. Each sliver passes between a pair of guides, which give it a horizontal traversing notion, so that it shall not bear upon a constant part of the surfaces of the drawing-rollers between which it next passes. These drawing-rollers are arranged in pairs (see Drawnoframbe , and have a relatively increasing rate of speed, the second revolving faster than the fisst and the thind faster than the secome. This proportion may be, say, first rollers 1 inch in dianeter and 60 thrms per minute; delivering rollers, $1 \frac{1}{4}$ inches in diameter and 180 turns per minute. By this proportion the first roller would deliver 188.4 inches per minute, while the front or delivery pair
passes 705.5 inches per minute, the roving becoming elongated $3 \frac{3}{4}$ turns hy the operation.

After leaving the rollers the sliver is received by the spindles, which are arranged in two rows for economy of room. The vertical spindles are driven by bevel-wheels from bevel-pinions, or horizontal shafts "xtending the whole length of the machine. Supported upon each spindle is a flycr, which has a hollow axis and a hollow arm, through both of which the roving passes in order to reach the bobbin, whieh is placed upon the spindle, and revolves loosely thereon by its own positive motion, derived from bevel-gearing, shown beneath it in the figure. The lower bevel-gearing is for the rotation of the spindle and flycr, and gives the twist. The upper bev-el-gearing is for the rotation of the bobbin, and winds the roving thereon. The tlyer has one tubular arm to lead the roving, and one solid arm which acts as a counterbalance to the former to prevent agitation during the rutation at ligh speed, say 1,300 revolutions per minute.

The boblin has two motions, - one around the spindle on which it is sleeved, and one np and down on the spindle. The former is for the winding on of the joving, and the latter to distribute the roving in coils alougside each other along the lengtl of the bobbin.

There are three inequalities to the motion of the hobhin,- one in the rate of its revolution, annther in the length of its vertical traverse, and a thind in the rate of its thaverse. The inequality of rotation is for the purpose of winding equal roving in equal time, notwithstanding the increasing diameter of the cop. The rate of winding on is of necessity equal to the rate of delivery from the fromt pair of drawingrollers, and it follows that the rate of winding most be uniform. As layer after layer of coils accumulates upon the bobbin, the latter receives a decrease of spred exactly equivalent to its increase of diameter. This is accomplished hy cone-pulleys by which the driving-band is shifted to a part of the driven-pulley having a larger diameter, the band having a constant rate. See Cose-pulieys.
The vertical motion of the bobbins is by means of raising and lowering the copping-rail on which the whole row or the two rows of hobbins rest, sliding the lobbins up and down on the spindles. The inequality of $7 \mathrm{cmg} / \mathrm{h}$ of vertical motion is for the purjose of giving a gradually decreasing length to each successive layer of coils, giving a conical end to the compluted cop, so that each layer contains an equal length of roving, its diminution in length counterbalancing its increase in diameter. The inequality of rute of vertical motion is to emable the yarns to lie compactly side by side in the coils, not withstanding the ehanges in the rate of revolution due to changes in the diameter of the cop.
While the fuist depends upon the rotation of the spindle and Hyer, the degree of twist depuls ulon the ratio between the delivery at the frout pair of draxing-rollers and the revolutions of the spindle. "The winding on of the twisted roving upon the bobbin is effected ly giving to the bolbin such a relocity that the difference between the motion of the surface of the bohbin and the motion of the delivering end at the amo of the Hyer, shall equal the sur-liace-motion of the roller or the sulply of the sliver. The spindle and bohbin being driven by diflerent movements and at diflerent rates, the winding is effectel either by making the bohbin revolve a little faster than the spindle, or the spindle faster than the bobhin. If, for example, the bobbin revolves 50 times while the spindle only revolves 40,40 turns of
the bobbin will have nothing to do witis the winding; but there are 10 thrns of the bohbin above those of the Alyer, which will perform the winding. Hence the 40 turns of the spindle produce twist, white the 50 turns of the bobbin produce 10 coils of the roving upon its harel." - Tombisson.

Bobbin and Hy frames are of two kinds, coarse and finc, or first and second.

The coarse, or first, bobbin and fly frame acts upon slivers from cans filled at the drewing-freme and phaced at the back of the machine.

The fine, or seconl, bubbin and fly frame aets upon rovinys, or slubbinys as they are often called, from bobbins tilled at the first frame and placed on the shewers of the crecl placed belind the roller-bcum.

The object ol the repetition is to obtain a greater degrers of drawiny and twist than conld be sufely inparted at the first operation, when the sliver or curd coel had loat little colarence.

In the course bobhin and fly frame it is usual to make the spindle revolve quicker than the hobbin, and in the fine frame to make it go slower. The relation of the speed ant proportions are well explaned by Dr. Ure with an elaborateness impossible within our limits.

In the coarse roving-frames the spindles make on an average 750 revolutions per mimute, turning off for each spintle too inches per minnte or 6663 yards
per hour. In the fine frame there is more twisting power, and this produces about 533 yards per hour. In the coarse frame the sliver is elongated from four to six times, one quarter of the draft loing hetween the first and second pairs of rollers, ind the remaining three plarters between the second and the delivery 1 mirs of rollers.
As the drawing-rollers and the spindles are driven by prositive though determinate motions from the same shatt, the number of twists to an inch of the sliver delived from the front pair of drawing-rollers is miform after the work is startel, irrespective of the rate of winding on the bobbin or the actual speed of the machine. The relation is atjustable luelore starting by clangeable gearing intervening hetween the main shaft turd the spur-wheels of the drawingrollers. If the drawing-rollers pay out 706 inches of sliver and the thyers make 1,300 revolutions, the amount of twist will be nearly $1 \frac{3}{4}$ to an inch. This is but slight, but is usual in the first roving-machine, a draw and twist being afterwards given in the second roving-machine; the processes being repated either in the throstle or the mule, in one of which the yarn is finished.

For the aljustment of different degrees of twist in diflerent yarns a diflerential gearing is used. See Equational Box.
B, main shaft, driven by a band from the engine.

Fig. 751

Bohbin and Fly Frame.
$2,3,5,7,8, C, D$, train for driving drawingrollers.
$F F$, long horizontal shaft below the beam f, driven by gearing from the main shaft, and driving the sjumilles G.
h, copping-beam on which the bobbins rest, and which is fittell with slides to the end frames Z.

9 , Hyer pressed on to the top of the spindle.
I. pulley for the chain of the wright which counterbalances the weight of the copping-rail.
H, horizontal shaft carrying the bevel gears by which are rotated the diske in the copping-rail h, th which the hobbins are fixer to rotate as they traverse up and down on the spimilles t.
$C, K, L, 21, M 1,22,25$, shafting and train driving the pinion and rack 36 , by which the copping-rail
is vertically actuaterl; right and left bevel-wheels 22 (and anotlier not shown), sliding on shaft M, to engage alternately with jinion 21 , to give the motions of the copping-rail.
$32,3: 3,34$, train connectel with the cone-pmlley for' variahle specel, and driving-shatt $I I$, whiche revolves the hobbins by the intervention of herelgrars. The wheels are connected by ellow-links, so as to mesh, irrespective of the vertical position of the comping-mil h amd its adjuncts.

Bob-bin-et'. (Fibric.) A machine-made rotton wnt, origimally imitated from the lace made by bobbins ulgh a pillow:

It consists of a series of parallel threals which may le considured as recorp-threads, and two systems of oblique threads which proceed from the right to

Eobbinet.
the left, and from the left to the right respectively. Each weft thread has a single tum around each cross. ing of a warp, and the contrarystrain of the respective weft threads gives a serpentine course to the warpis.
The thread that makes the bobbinet issupplied partly from bobbins and partly from a warp. The bob. bins are small brass pirms, and swing with a pendulons motion between the warp-tbreads so as to wrap the weft round the warp.

The bobbinet-machine was o:iginally derived from the stocking-frame, invented by the unfortunate Willian Lee, M. A., of Cambridge, 1559.

Lee was successively patronized by Elizaheth and by Henry 15. of France. The former liked the stockings well enough, but refused Lee a pratent, as the invention was so valuable that it would command the market. The assassination of Hemy deprived Lee of a more generous patron, and he fell into porerty, olscurity, and an untimely grave.

Hanmond (about 1768) modified a stocking-frame to make a coarse imitation of Prussels ground ; this was the pin-machine.
lut 1784, the warp-frame was invented, for making waip-luce.
ln the next decade, the bobbin-frame.
In 1809, Heatheote invented the bobbinct machine.
This is a complicated machine, used in but few localities. The parts are very numerous, the motions intricate, and the machine cannot be realily explained within the limits admissible in this work.

Bob/bin-lace. (Fubric.) Lace made upon a pillow with bobbins. The pillow is a hard cushion covered with parchment on which the pattern of the meshes is drawn. Pins are inserted into the lines of the pattern and determine the meshes. Thicker thread, called gimp, is interlaced with the meshes, according to the pattern on the parchment. The thread is womd upon bobbins, and is twisted, crossed, and secured by pins. See Pilcow-lace.

Bobbin-stand. A frame for holding the bobbins for warps of a loom, threals

Bublin-Stend. of a warping-machine, and yarns of a spinuing-machine.

The bobbin or reel rotates on a spindle fixed in a base-plate. It is corered with a metallic disk, supported a little above the top of the spool on a shoulder of the spindle, and held down by a screw-nut. An improved form provides flanges or annular lips projecting from the base and cap to inclose the spool-heads, and prevent the twine from catching under the heads. It is surmonnted with a twine-cutter.
Bob/bin-wind'er. 1. (Weating.) The thread or yarn is directed to the eye of the guide, which is at the end of a shaft automatically raised and lowered, to lay the thread spirally and conically on the

Bobbin- Winter ifor Looms)
bobbin by a lever a luearing against a cam b, so shaped that as the layers of thread are built up, the length of thow increases; the bobbin c is supported on a fixed shaft d rotated continuously.
2. (Sereing-D/uchine.) A device adapted to receive a shuttle-bolstin and rotate it so that it may be wound with thread. The winders are usnally operated by being turned in contact with the driv-ing-wheel, balance-wheel, or band. Some winders are supplied with an antomatic thread-distributor,
to lay the thread evenly.

Winders for the shutilebobbins of sewing-machines have artangements for laying the thread regularly. A traverse guide is automatically reciprocated to lay the thread evenly and compartly, or the bobbin is reciprocated to receive it. When filled, the winding ceases by a stop-motion or through an alarm.
In the illustration, the arbor on which the boblin is placed is rotated by the temporary contact of a friction-wheel against the fly-wheel of the machine.

The vibrating presser D is T-shapled, and is pivoted by its lower end to a horizontal bar E, and acted on by a spring s. The upler portion or T-

Bobbin-IVinder (for ShartheEobbins of Sezing-Machenes). boblin C. but that portion somewhat longer than the boblin C. but that jortion which implinges against the thread on the bobbin is
of such width as to be received between the heads of the bobbin. S represents the vertical rod on which the spool T is applied. B represents a rod which is provided with fixed thread-gnides $t^{1} t^{2}$ and a horizontal vibrating thread-guile 1.
The winder for lenticular spools of sewing-machines las a spindle on which the bobbin is held while being rotated by the power of the sewing-machine.

The thead from the spoot L, instead of being held by the fincrers as the bobbin revolves, is]assen] around the tension D, and thence to the bobbin A. On operating the sewing machine the thread will be wound $n p$ on the bobbin A, by the rotation of the

Fig. 756.

Sobbin-Winder.
slaft $I I$, compactly and uniformly by the action of the tension B. This will continue unti] the bobbin A is filled, when the thread will override and slip over the edge of the bobbin, down upon the knife C, and be instantly cut off.

Bob-sled. A compound sled composed of two
Fig. $75 \overline{ }$.
 inks
Bob'stay. (A'mutical.) One of the chains or ropes which tie the bowsprit end to the stem, to chable it to stand the mpard strain of the furestays.
Bob'stay-piece. (Shipbuilding.) A piece of timber stepled into the main piece of the head, and to whieh the bohstay is secured. See Stem.
Bo'cal. (Giluss.) 1 glass jar with a short, wide neck.

Boc'a-sine. (Febric.) A kind of calamanco or woolen stutl.
Boc'ca. (Gluss.) The round hole in a glassfurnace thom which the glass is taken out on the end of the pontil.
Boc'ca-rel'la. (Glass.) A small bocca or mouth of a gliss-furnace. A nose-hole.
Boc'ci-us-light. A form of gas-bmmer invented by l3occius, and consisting of two concentric metallic cylinders phaced over the flame and within the usual lamp glass, so as to modify the combustion and increase the brilliancy of the Jight.
Bock'ing. (F'abric.) A coarse woolen fabric, originally made at Bocking, England.
Bod'kin. Anciently, a dagger. (Welsh, bidugyn, a dagger; diminutive of bidug, a sworl.)
"Might his quietus make with a bare bodkin."

1. (Printing.) A printer's awl, for picking letters out of a colum or page in correcting.
2. (Bookbinding.) A pointed steel instrment for piercing holes, used by bookbinders and others.
3. A large-cyed and blunt-pointed threading instrument for leading a taje or cord tbrough a hem.
Bod'y. The principal portion of an object ; such
Botly of a carriage or wagon; the part to contain the load.

Of a type; the slank.
Of a hoiler, barrel, or hell; the main portion as listinguished from

Bob-Sleds.
short sleds, one in front and another behind, connected together longitudinally by a reach.

Bob-sleigh. A sleigh made up of two short (bob) sleighs comnected by a reach or compling. In the illustration, the reach is curved upward to allow the fore bob to pass beneath the reach in turning.

Fig. 758

Bob Sheigh.
 Of a spoke; the
part between the hub and felly tenons.

Of a still ; the chamber containing the wash; the cucurbit.

Of an implement ; the part stocked, as of a plow.

1. (Printing.) The shank of a type, indicating size, as agate face on nonpareil the appendages.

Of a column; the straight portion between the capital and the base.

Of a pump; the barrel.

Of a spoke; the

Plow. Iroug.
body; larger than the usual body of agate, and therefore having the effeet of spacing or putting the letters more widely apart.
2. (Music.) The upper and resonant portion of an organ-pipe above the recd or the mouth, by which vibration is imparted to the air.
3. (Vehicle.) The bed, box, or receptacle for the load.
4. (Agricultural Implements.) The portion of an implement engaged in the active work ; as, " rarious bodies of plows may be attached to a plow-stock, according to the work in hand."
$\begin{array}{ll}a \text {, subsoil body. } \quad e \text {, ridging body. } \\ b \text {, potato hody. } & d \text {, digging body. }\end{array}$
Bod'y-hoop. (Nrautical.) The bauds of a built mast.
Bod'y-loop. (Vehicles.) An iron bracket or strap by which the body is supported upon the spring bar.

Bod'y of a Place. (Fortification.) a. The works next to and surrounding a town, in the form of a polygon, regular or irregular. - Griffiths.
b. The space inclosed within the interior works of a fortilication.
Bod'y-plan. (Shipbuilding.) An end elevation, showing the water-lines, buttock and bow lines, diagonal lines, etc.

Bod'y-post. (Shipbuilding.) The post at the forward end of the opening in the dead-wood in which the serew rotates.

Bog-cut'ting Plow. An implement for cutting and turning up boggy or peaty soil for fuel or chemical uses. In the example, the pronged sole-plate D has

Fig. 760.

Bog-Cutting Plow.
cutters attached beneath, and is followed by a mold. board E attached to the standard. A colter may be placed on the left prong of the sole-plate.
Bo'gie. (Stcam-Enginc.) A four-wheeled truck supporting the fore-part of a locomotive, and turning beneath it to some extent, if neeessary.
Bo'gie-en'gine. (Sterm-Engine.) A locomotiveengine employed at a railroad station in moving ears and making up trains. The driving-wheels and cylinders are on a truck which is free to turn on a center-pin.
Bo'gie-frame. (Railroad Engintering.) A fourwheeled truek, turning on a pivoted center, for supporting the front part of a locomotive-engine.

Bo-he'mi-an Glass. (Glass.) A clear crown glass, a silicate of potash and lime, a little of the silicate of alumina being substituted for the oxide of lead. The silica for this glass is obtained by pounding white quartz.
Boil'er. A ressel in which liquid is boiled.

1. Household-bailers are kettles, saucepans, and clothes-boilers.
2. The boiler for raising steam may be fairly called a steam-generator. Sce Steam-boller.
3. The dyer's boiler is called a copper.
4. That of the sugar-worker is a pan.
5. That of the distiller, a still.
6. The chemist's boiler may be a retort, alembic, etc.
7. Lard and tallow rendering is performed in a digester, or tank.

The list below includes many of the different kinds of boilers - nut the varieties of the kinds - and their parts. Mlast of them are described under their respective heads.

Agricultural boiler.
Air-heating boiler.
Bath-heater.
Blow-olf pipe.
Boiler-alarm.
Boiler-feeder.
Boiler-float.
Boiler-prover.
Boiler-tube.
Brine-pump.
Brine-valve.
Caravan-boiler.
Cast-iron-boiler. Coffee-boiler. Cold-water boiler. Cold-water pump.
Cornish boiler.
Culinary boiler.
Cylinder-boiler.
Detector, Low-water Domestic boiler. Egg-boiler.
Feeder, Boiler.
Feed-head.
Feed-pipe.
Feed-pump.
Feed-water apparatus.
Float.
Flue.
Flue-brush.
Flue-cleaner.
Flue-surface.
Foam-collector.
Fusible plug.
Gage-cock.
Gage-glass.
Generator, Steam
Giflard injector.
Heating surface.
High-pressure alarm.
Hot-water heating-apparatus.
Hot-water pump.
Hot-well.
lycrustation in boilers,
Remoring
Instantaneous generator. Jacket.
Lagging.
Lard-boiler.
Lard-renderer.
Lock-up safety-valve.
Lor-water alaım.
Low-water detector.
Lowr-water indicator.

Man-hole.
Muil-collector.
Mud-plug.
Mud-valve.
MultiHue-boiler.
Multitubular boiler.
Portable boiler and furnace.
Pressure-gage.
Priming-valve.
Safety-plug.
Safety-tube.
Safety-valve.
Salinometer.
Scale-borer.
Sectional steam-boiler.
Sediment-collector.
Shimmer:
Soap-boiler.
Steam-boiler.
Steam-hoiler alarm.
Steam-cock.
Steam-coil.
Steamer.
Steam-gage.
Steam-generator.
Steam-heating apparatus.
Steam-jacket.
Steam-pressure gage.
Teakettle.
Tube.
Tube-brush.
Tube-cleaner.
Tube-cutter.
Tube-door.
Tube-expander.
Tule-fastener.
Tube-ferrule.
Tube-flue.
Tube-plate.
Tube-plate stay.
Tube-plug.
Tube-scaler.
Tube-sheet.
Tube-stapper.
Tubular boiler.
Wagon-boiler.
Wash-boiler.
Water-back.
Water-bridge.
Water-gage.
Water-heater.
Water-indieator.
Water-injector.
Water-leg.

Boil'er-a-larm'. An apparatus or device for indicating a low stage of water in steam-boilers. See Stean-boller Alarm; Low-water Alabm.

Boil'er-feed'er. An arrangement, usually automatic and self-regulating, for supplying a boiler with water. The simple force-pump or injector, as worked by the engine or boiler, may or may not have selfregulating devices by which a nearly constant waterlevel is maintained, but there are other devices by which the variation in the water-level is made to bring into or withdraw the operative parts. See Feed-water Apparatuts.

One automatic arrangement is shown in Fig. 761. When steam is admitted through the short leg of
the siphon into the chamher above, the weight ceases to balance the flont, and the latter, sinking, opens the water-sin]ply, which cuise's as the water rises in the

Fig. 761.

Boiler-Feeder.
boiler above the opening of the said leg of the siphon. The water-level in the boiler at which steam shatl be so admitted is regulated by adjusting the said ley.

Boil'er-float. (Stcam-Engine.) A float which rises and falls with the changing hight of water in a steam-boiler, and so turns off or on the feedwater.

Boil'er-fur'nace. (Steam-Enginc.) One specifically adapted for the heating of a stem-generator. The shapes vary with those of the boilcrs themselves,

the latter heing cylimitrical, waron-shaped, vertical, etc. The illustration is an example of a downward draft-furnace, in which $a . b$ are the futl-loors, S the draft-llamper, B the furnace, E the fire-box, $I I$ the stean-space.

Boil'er-i'ron. Rolled iron of $\frac{1}{2}$ to $\frac{1}{2}$ incl thick-
ness, used for making steam-boilers, tanks, the skin of shins, ete.
Boil'er-pro-tect'or. A non-comlucting covering to prevint the escape of heat. Among the deviees for this purfose may he citenl, -

Fell, treated in various ways. Asbestos.
Laqging.
Alifiel to the above in position, if not in cluty, are water-jackets to utilize the heat, air-flues and shichls to protect surrounding bodies against the rardiaterl heat.
Boil'er-prov'er. (Hydraulics.) A force-pump' with pressure-in. dicator, used to try the power of a boiler to resist rupture under ${ }^{2}$ given stress of hydraulic pressure.
Boil'er-stay. (Sterm-Engine.) A tie-bar by which the flat plates on the oplosite sides of boilers are comnected, in order to cmable them to resist internal messure. The stays cross an intervening water or steam space.

Boil'er-tube.

(Stcom-Engine.) The tubes by which heat from the furnace is diffused through the mass of water in locomotive and other hoiler's of the smaller elass. They are usually arranged longitudinally of the hoiler, and are litted by stean and water-tight connections to its heads. A tube earries water; a the carries tlame and the volatile products of comhustion.

Boil'er-y. A salt-house or plate where brine is evaporaterl.

Boil'ing-fur'nace. (Mctallurgy.) A reverberatory furnace employed in the decarbonization of east-iron to reduce it to the condition for mechamical treatment by hammer, squeezer, and rolls, by which it is brought into bar or plate iron. The tem boiziny relers to the bubbling which takes place thring the process of conversion, and the worl is somewhat local. This modification of the purdling-fumace was invented by Hall, and consists mainly in some diflerences in the proportion of the parts, the use of cinder, and of a greater leat.
The furnace is heated to an intense heat by a fire urget with a blast. The cast-iron sides are double, anid a constant circulation of water is kept passing through the chamber thus made, in order to preserve the strncture from fusion by the heat. The inside is lined with fire-hrick coveret with metallic ore and slag over the hotton and siles, and then, the oven being charged with the pigs of iron, the heat is let on. The pigs melt, and the oven is filled with molten iron. The pudder constantly stirs this mass with a bar let through a hole in the floor, until the iron looils up or "furments," as it is called. This ebullition is eansed by the combustion of a pertion of the carbon in the iron, and as soon as the excess of this is consumet, the cinders and slag separate from the semilluil mass, which the puddler stirs and forms into balls of such a size as he can convenimently handle, which are taken out and carried on hall-trolleys to the sineezer.
Bois-dur'ci. A compound of stwedust from hard
wood, such as rosewool or ebony, mixed with hood / machine. The perforated part and other cententing material, and used to obtain medallions or other object. by prensure in molds.
Bolas. A form of missile used by the Paramay Indians, the Patagonians, and the lis pinanx. The bolus of the Patagonians has several varieties. That used in war consists of a siugle ball of hardened elay or mounded stone, weighing about a pound, and fastened to a stont rope of sinew or skin. This they sometimes throw at their adversary, rope and all, but generally they prefer to strike his head with it, like a slung-shot.
For huntiug. they use two similar stones, fastened together by a rope, which is gencrally three or four varls long. One of the stones the hinter takes in his hand, and then, whirling the othrr round his head, throws both at the object he wishes to entangle. Sometimes several balls are used, but two is the nsual number. They do not try to strike the object with the balls, but with the rope, and then, of course, the balls swing round in different directions, and the thongs are wraplu'd around the objeit. It is said that the natives can use the bolas effectually at eighty yarls.

The boles of the Espumanx consists of a number of walrus teeth atta hed to the enls of strings whose other ends are united into a kmot.

Bo-lec'tion. (Joincry.)

Fig. 764.

Bulection Molding Moldings surroumling the panels of a door, gate, etc. and which project beyond the genemal face of the same.

Bol'lard. (Nrutical.) a. A large post or bitt on a wharl', dock, or on shipboard, for the attachment of a hawser or warp, in towing. docking, or warping.
b. A rundle in the bow of a whale-boat aroutid Which the line runs in veering ; called also logjerherel.

Bol'lard-tim'ber. (Shinurighting.) A timber, one on earh sile of the bowsprit near the heel, to secure it laterally. A knighthead.

Bo-log'na-vi'al. (Glass.) A small unamnealed vessel of glasi, open at the upper end and rounded at the bottom ent, which is thick. It will withstand a moderate blow on the bottom, but is cracked by dropping into it a small, angular piece of flint.

It is an example of the inherent strain and unstable static condition incident to unannealed glass. See Ax̃ealing.

Bol'ster. 1. (Vchiclc.) The transverse bar orer the axle of a wagou, which supports the bed, and into whieh are framed the staudards which secure the bed laterally.

In the illnstration, rubber springs are interposed between the axle and the balster. Pistons bencath

Fig. 765.

Wagon-Bolstrr.
the bed pass through the holster and rest unon the springs, so as to give an elasticity to the hed up and down between the standards.
2. (Machinery.) a. A bed-tool a in a punching21
on which a mate rests when the punch b drives out the bur or plenchet. It has an opening of the same size and shape as tlae punch itself.
b. A perforated block of wood on which sheet-metal is hilid for punching.
3. (Music.) The raised villge
 which holds the tuning-pins of a Folster and Punch. piano.
4. (Natical.) a, A piece of timber adjoining the hawse-hole, to prevent the chafing of the hawser against the cheeks of a shipis how.
8. A cushion within the collar of a stay, to keep it from chafing on the mast.
c. A piece of wool or roll of canvas, upon which a ropir rests, to keep it from chafing something or to give it a proper bearing.
5. (Carpentry.) a. A horizontal eap-piece laid npon the top of a post or pillar, to shorten the bearing of the beam of a string-piece above.
b. One of the transverse pieces of an arch centering, running from rib to rib and sulporting the roussoirs.
6. (Saddlery.) A padiled ridge ma sardde.
7. (Orduance.) A block of wool fixed on the stock of a siege-gun carriage, on which the breech of the piece rests when it is shifted backward for transpiortation.
8. (Railroad Enginering.) The principal crossbeann of a railrond truck or car holy:
9. (Ciorl Enginctring.) The resting-place of a truss-bridge on its firi or abutment.
10. (C'utlcry.) a. The shouller of such instruments and tools as knives, clisels, cte., at the junetion of the tang with the blade or the shank, as the case may be.
b. A metallic plate on the eml of a pocket-kuife handle.
11. (Spinming-1Fachiner?.) The spiwhle-bearing in the rail of a spimning-liame. It forms a sleevebeang for the vertical spindle some distance above the lowe learing, which is called the step.

Bol'ster-plate. (I'chicles.) An iron plate on the umher side of the bolster, to diminish the wear cansed by its friction on the axle.

Bolt. 1. (Muchinery.) A stont metallic pin, enployed for holding olijeets together : fretpuently screw-threaded at one eml to receive a mut.

Bolts may be divided into two prineipal classes, namely, those which are intended for fastening objeets together permanently; amil movable lolts, such as lock, sash, door, and gate holts. Lockbolts are usually onerated by means of a kiy, while the last-mentioned are motruded aud retracted by hand.

Bolts of the first elass, - that is, for permanently fastening ohjects (and not mere slinling catches), may bedistinguished, first, by their construction or mode of application : seconully, by their application.

As to construction, the difference may regard the shape of the head; as, round, squurc, hemgon, octagon, sauccred, countrrsunk-headid, clineh, collarcd, chamfored, diamond, conver, ete.
some structural peculiarity of the head; as, el!c, double-hcaded, hook, ring, T-heculed, etc.

The mode of securing : as, screu, fox, forelock, clinch, rivel, ray, bay, barb, jag, ley.

As to the nature and purpose of their applieation they may be, - assembling, tish, forndution, bring-ing-to, curriuge, drice, fonder, fomis, set, shackle, wagon-shcin, tire, king, scurf, through, etc.

The following list of bolts is approximately complete; it includes other than huidny-bolts.

Assembling-bolt.
Barhed bolt.
Bay-bolt.
Bringingr to bolt.
Carriage-bolt.
Clinch-bolt.

Holding-llown bolt.
llook-bolt.
lagred holt.
liey-bolt.
Lewis-holt.
l'ointed bolt.
Countersmik-headed bolt. Ras-bolt.
Diamond-headed bolt. ling-bolt.
Door-holt.
Drive-holt.
Sye-bolt.
Fender-holt.
Fish-bolt.
Flour-bolt.
Flush-holt.
Forelock-holt.
Foundation-bolt.
Fox-holt.
Halr-turning bolt.
Wagon-skein bolt.
Asscmbling-bolt. one by which the senarate portions of an object, made in detachahle parts, are secured together ; as the assembling-bolt of a guncarriage.

A berbod or jaygel bolt has prongs projecting exteriorly and back wardly.

A bay-bolt is barbed to prevent retraction.
A bringing-to bolt has an eye at one end, and a nut and screw at the other. It is used in keying up.

Fig. 767.

Eolts. Curring-bolts are of varions kimes for different parts of the work. a, carrings-bolt, b, tire-holt. c, zergon-ske in bolt.
A clinch-holt is one whose point is turned over by hammering.

A countersunk-headed bolt is one with a conical head to fill a countersink (3, Fig. 768; b, Fig. 767).

A diumond-headed bolt is one whose head is shaped like a rhomb, or lozenge.
A double-cnded bolt (5 , Fig. 768) is nsed for holding together three ohjects inclependently of each other. It has a threald and nut on each end.

A drive-bolt is a tool used by shipwrights and other wool-workers for setting bolts, ete., home; that is, fixing them, or giving them the last drive.

One used to expel another. A drijt
An cyle-bolt or cye-hiculed bolt (6, Fig. 768) is used for securing a gland to a stuffing-box, or for other purposes, such as to reccive a ring, lever, or rope.

A fender-bolt is one whose head projects so as to protect or fend off oljects from the exposed surface which it unites to another.
A fish-bolt is one by which a fish-bar is fastened to a rail, as at the meeting-point of two railway rails.

A flush-bolt is one whose head is let down even with the surface (3, Fig. 768).

A forelock bolt is one having a slot in its end for receiving a key or cotter to prevent retraction.
A funendation-bolt is a long bolt holding a bedplate down to the masomy or heavy franing substructure.
A fox-bolt is one with a split end into which a wedge is driven.

A half-turning bolt is one having a half-screw
thead on one side and engaging in a simitarly threaded socket. On phshing the bolt in and givingry it a half-turn it becomes locked, and is unlocked by a corresponding reverse movement.

A holeling-doon bolt is similar to a fonndationbolt.

A hook-bolt is one with a hook-hral.
A juyged bolt has barl's to the shank.
A key-bolt is secured by a cotter or wedge passing through a slot in the shank. Such an one is used in shipurilding lor securing the false keel. A forelock holt.

A lewis bolt (7, Fig. 768) is usenl for fixing on to a Hock of stone ; for this purpose in hole is cut in the stone large enough at the top to almit the thiek end of the wedgreslapeel holt, which is barbed at the angles innd run with fead.

The printed holt is a round bolt with an end that may be clinehed.

A rug-holt is one having a jagged end to prevent its being drawn out from timber, etc.

A ring-holt is oue which has an eye for receiving a ring.

A riveted bolt is one whose point end is battered and uiset.

A rose-headed bolt is one whose head forms part of a sphere. The resemblance to the rose is very remote (4 , Jig. 768).

A romad-hcoded bolt has a head cylindrical or formed as a segment of a spliere.

A seurf-bolt is a shipwnitler's bolt used for securing the false keel.
A serec-holt is one having a screw-thread on the whole or a considerable portion of its length.

Bolts of bronze were used in ancient Egypt, but lad no thread. One in 1r. Abbott's collection has the square head for turning.
There are many kinds.
1 is a sercu-holt having a square head a, a short round shank b, washer c, and nut d; by this screwbolt the pieces $e f$ are fastened together.

Fig. 768.

Screve-Boles.
2 shows a screvo-bolt in which the latter is tapped with the object f, and the portion c tightly lastened down thereon by the nut d."

3 has a countcrsund-head which sinks into the barly of f so as to become Hush with the surfice of the latter.

4 is a round-headed bolt which has a lip to prevent turning when the nut is screwed on or oft.

5 is a double-hended bolt which has a mut on each end, and by which two pieces $c e$ are secured to the portion f, whose recess holds the collar g of the bolt.

6 shows two views of an cye-bolt, represented as fastening a gland to a stutfing-box.

7 is it lereis-bolt whose barbel shank i is surrounded by lead k poured into the under-cut mortise in the block f.

8 shows two views of a T-hearled bolt, to fasten a plate accessible only from one side.

A sct-balt is one used by shipwrights in closing up the planks.

A shracklc-bolt is one having an eye for the insertion of a clevis, which is held by a pin and key.

The squexre-hcaded bolt has a quadrilateral head ad.ıpted to be grasped by a wrench.

The T-headed bolt is used to dasten against a plate which is only accessible from one side. In this case a slotted hole is made in the plate, of the size of the T hearl of the bolt, which is then passed through and turned round at right angles to the hole.

A through-bolt is one which gaes through the pieces which are to be lastened together. Such are clineh-bolts, and holts secured ly nut and washer.

A tirc-bolt is an ordinary nut and washer bolt, used for securing tires to the fellies of wheels. The mut and washer are appliel on the interior of the fells, and the head countersunk into the tire. See b, Fig. 767.

A wergon-skein bolt is a peculiarly shaped bolt without a nut, and is usell for fastening the skeins to the spindles of wagon-axles. (See c, Fig. 767.)

Rule for the computation of the weight of bolts :-
IVrought-iran: square the radius of the bolt, and multiply it by 10 , the product will give the weight in pounds per foot.

C'st-iron: subtract from the above result $i^{2} \frac{2}{7}$, or $.07+$ of the result. - Horatio Alles.
The following standard for screw-threads, boltIn sads, and nuts has been adopted by the United American Railway Master Car-Builders' Association : -

Diameter of Bolt.	$\begin{aligned} & \text { Number of } \\ & \text { Threads ppr } \\ & \text { Iach. } \end{aligned}$	Diameter of	$\begin{aligned} & \text { Number of } \\ & \text { Threads per } \\ & \text { Inch. } \end{aligned}$
4	20	2	$4 \frac{1}{2}$
${ }^{\frac{5}{16}}$	18	$2 \frac{1}{4}$	4 $\frac{1}{2}$
$\frac{3}{8}$	16	$2 \frac{1}{2}$	-
$7^{7}{ }^{7}$	14	$2{ }^{\text {a }}$	4
$\frac{1}{2}$	13	3	$3 \frac{1}{2}$
$\frac{4}{76}$	12	31	$3 \frac{1}{3}$
$\stackrel{5}{6}^{\circ}$	11	$3 \frac{1}{2}$	3
$\frac{3}{4}$	10	$3 \frac{3}{4}$	3
$\frac{7}{8}$	9	4	3
1	8	41	27
18	7	$4 \frac{1}{1}$	23
11	7	$4{ }^{3}$	$2{ }^{2}$
$1{ }^{3}$	6	5	21
$1 \frac{1}{3}$	6	5	21
$1{ }^{\frac{2}{8}}$	$5 \frac{1}{2}$	$5 \frac{1}{2}$	$2{ }^{2}$
$1 \frac{3}{4}$	5	$5{ }_{\text {离 }}$	23
17	5	6	2

The distance between the parallel sides of a bolthead and a nut for a rough bolt shall be equal to one and a half diameters of the bolt plus one eighth of an inch.

The thickness of the heads for rough bolts shall be effual to one half the distance between their parallel sides.

The thickness of the nut shall be equal to the diameter of the bolt. The thickness of the heal for a finished bolt shall be equal to the thickness of the nut.
The distance between the parallel sides of a bolthead ant nut, and the thickness of the nut, shall be one sixteenth of an inch less for finishei work than lor rough.
2. (Locksmithing.) That portion of a lock which is protruded beyond or retracted within the case or boxing by the action of the key, and which engages with the keeper or jamb to form a fastening.

The thick protruding portion is the ball-head, and the flat part within the lock is the bolt-plate.
3. (Household Harduare.) A movalle bar protruded or retracted by hand to fasten or release a luor, gate, window-sash, etc. It is usually affixed to the movable object, and is reccived into a staple, bow, or perforated plate attached to the post, jamb, or style, as the case may be.

Rolts are distinguished by
Shape; as, square, round (e), flat (a), berrel (c), etc. Pupose; as, shuttcr, sash, etc.
Construction ; as, chein (e), spring mortisc (b), necked (d), dormant, catch, flesh, drop, etc.

Or by mere trade-names; as, cottage, touccr, etc. Some of the names are synonyms.

Fig 769.

4. (Milling.) A sieve of very tine stuff, for senarating the bran and coarser particles from flour. See Fiove-bolt.
5. (IVood-uorking.) a. A rough block from which articles are to be made; as, a boll tor riving into shingles, spokes, etc.
u. A number of boards adhering together by the stub-shot.
6. (Fabric.) A piece or roll of elnth.

A bolt of canvas is about 40 yards long, and the stuff is from 22 to 30 inches wide.
7. (Noutical.) The iron rod beneath a yard, to which a square sail is attached.
8. (Ordnance.) An elongatesl solid projectile for rilled cannon, as the Whitworth and Amstrong guns.
9. (Bookbinding.) The fold in the fore-edge and heall of a folded sheet.
Bolt-au'ger. An anger used by shipwrights in sinking holes for bolts.
Bolt-chis'el. (Ifrchincry.) A cold chisel for cutting off the extra length of a bolt. A cross-cut chisel. A deep chisel with a narrow edge.
Bolt-cut'ter. (Machincry.) (A. A fool for cutting oft bolts. It usually consists of a sleeve with a radial cutter setting inwardly and rotated around the
holt to be cut ly means of a handle. In the exam- \mid made with two shanks like tongs, others with a ple, the circular entter-holder or hub is supported stationary and a slicling jaw like a wrench.

Bolt-ex-tract'or. A tool or implement for extracting bolts by a lifting force. In the example, the hylraulie jack has a foot which has wedge-shaured jaws sliding in inelined slots within a cavity, whereky a great lorce may be apliced in an alvantageons manter, the line of draft being directly in the line of the axis of the bolt. The jaws have barhs to in(crease their grip) on the bolt.

Bolt-feed'er. (Milling.) A device for regulating the mate of passage of the meal to the llow-holt. In the example, the meal is sulijected in the cylimhtical case to the action of the radial arms II of the lutating thaft. This slaft hears the saner-shaped disk F, which stops the lower end of the eylinder. The lower section of the cylinder slides ont the upper, and regnlates the size of the annular exit-opening leading to the
 ventilating ease coutaining the fan. From this case it passes to the chute $1 /$.

Fig. 73.

Bolt-head. (Cluss.) A long glass matrass or recuiver with a straight neck.

Bolt-head'er. (Machincry.) A machine for swaging down the end of a bolt-blank to form a head; the form of this derinds uron that of the die. In the example, the swinging holders L. L cause the cutter to produce a drawing cut, and are made to move simultaneonsly with the die toward the har, when the frout end of the blank is eut off. The seprated hank is then held by the holders, and its rear end is lutween the stationary die G and the reciprocating die E, when the punch I moves furward and heads the same. The holders and dies are then simultaneunsly drawn apart, and the finished bolt is releaser. The die E, in the holder D, is reciprocated by the cam or shaft C, and the recoil spring F; the puich is actuated by the cam d on the shaft B.

Fig 7.1.

Thecringles for bend-ing-outhe sail, and for the attachment of the jeef-tackle are worked in and around the boltrupes. sce sall.

Bolt-rope Nee'dle. (Alutticul.) A strons uerdle for sewing a sitil to its boltrope.
Bolt-saw'ing Machine'. (H'vod-arorkiing.) For sawing suprothons wood, suchas corners, from stuff to be turred. It has an iron cannage with centers lietween which the work is chucked while beinge fed to the circular siw. (Fig. 7\%6.)

Bolt-Hcading Machine.

Bolt'ing-cloth. (Milliag.) Cloth of hair or other substance with meshes of varions sizes for sieves.

Bolt'ing-chest. (Milling.) The inclosure or case of a flonrimes-bolt.

Bolt'ing-hutch (Ifilling.) A tub or box into which tlome or meal is boltet.

Bolt'ing-mill. (Jilling.) A machine in whieh llour is separated from the offal of varions grades.
 Themealfrom the stomes is passed throush eylindrieal sipyes hasirs meshes of variner decrees of fineness, at different parts of its length orthrough various sieves. In the illustration the several stones of the mill are slown; the meal from the stones passingt down to the well of the elevator, which mises it to the upser bolt, from which it passes downward to others in suceestion.
Bolt-mak'ing Ma-chine? (.Mechincry.) One in which bolts are threaded and headerl, thongh this is nsually done in seprate machitues, as the threating is done by cutters on the cold iron; leading by swaging'upois the end of the hut blank. See BoLThearber ; Bolt-threader.

Bolt-rope. (Naticul.) A rope around the margin of a sail to strengthen it. It is

A leceli-rope, up the sides.
A head-rope, along the top.
A foot-rope, at the bottom.

Fig. 7.6

Bolt-Trimming Machine.

Bolt-screw'ing Ma-chine'. A machine for cutting screw-theads on bolts, ly fixing the bolthearl to a revolving chuck, and causing the end which it is required to serew to conter a set of dies, which adrance as the lrolt revolves. A luththrculer.

Bolt-sprit. (Neuticrl.) Another, now disnsed, name for liowsprile (which sect).

Bolt-strake. (Shipurilding.) That strake or wale thengh which the beam-fistenings pass.

Bolt-thread'er. (Jochincry.) A machine for cntting serew-threals on lolts. In that shown in Fig. 77 , the head E, containing the entter's C, sur-

Fig. 7-7

rounds the hollow mandrel B, and is reciprocated by means of the lever l, moving along the graduated are 1/. As the head E is advanced, the fixed bolt enters the bore of the mandrel, and is threaded by the cutters C : The cutter-heal may be rotated by hand or otherwise.
In Fig. 778, the bolt-hend enters a rectangular recess in the longitulinally sliding stock. The dies are secured to jaws $C^{C} C^{\prime}$ piroted to the tubular spindle E of the head-stock. The forward ends of the jaws are brought together by toggle-levers at their rear ends. The toggle-levers $D / 1$ are pivoted to a circunferentially grooved collar E, turning with the mandrel A, but slid thereon by a hand-lever G.

Fig. 778.

Bolt-Threader.
Bomb. (Ordnance.) A spherical hollow shot, fired from a morter or hovitecr, and filled with explosive material which is lighted by a time or percussion fuse.

Bombs were used at the siege of Naples in 1434. Mortars for hombs were cast at Buckstead, England, 1543. Ser Silelid.

Bom'bard. (Ordnouce.) An ancient mortar of large bore, nsised to throw stone shot.

Bom'bar-do. (1/usic.) A wind-instrument like a bassonn, and used as a hase for the oboe.

Bom'ba-zine. (Fubric.) A mixetl silk and woolen twilled stuff. The warp is silk and the weft worstecl.

Bomb-chest. A box filled with explosive projectiles or materials, and buried in the earth, in military mining.

Bomb-ketch. (V essels.) A small, strongly built vessel, ketch-riggeet, on which one or more mortars are monnted for naval hombardments.

Mortar-vessels are said to have been invented by Reynean, and to have been tirst used at the siege of Algiers in 168?
Bomb-lance. Aharpoon which carries a charge of explosive material in its head. In the example, the head is charged with puwler, ane when the har-

Bom'bo-lo. (Glass.) A spheroidal retort in which camphor is sublimet. It is made of thin flint-glass, weighs about one. pumm, and is 12 inches in diameter. It is heated in a sand-bath to 250° Faht., which is gralually inereased to 400°. For the thetails of the operation, see Uhe ; Campior.
Bomb-proof. (Fortification.) A structure in a tortification whieh is so covered with parth as to be secure from the penetration of cannon-balls by the ordinary or plunging fire. It may be a structure of stone, brick, or woor, but must have strength to bear a heavy load of earth, which converts it into

Fig. 782.

Eomb-Proof.
a mound in which shot are buried withont penetrating to the interior.
Bomb-shell. A spherical or cylindrical case of iron loaded with jowiler, and hurst by its charge on concussion or after an interval of time. seceshill.

Bo-ma-ven'ture-miz'zen. An additional or second mizzen-mast, formerly used in some large ships.

Bond. That part or those parts of a built structure which tie the other portions together.

1. (Masoury.) A stone or brick which is laid with its length across a wall, or extends through the facing consse into that lehinel, so as to bind the facing to the backing. Also known as binelcrs; bond-stoncs ; bind-ing-stones; through-stones; perpred-stones, hecader.

Perpend signifies that a lieading-stone passes
Bizuler, that it extends a part of the distance
Heart-bond, in stone-walling. In this there are 1 no perpend-stones, but two headers meet in the middle of the wall, and the joint between them is

Chuin-bond is the building into the masonry of
. Fig. 779.

Bomb-Lance.
poon penetrates the fish, the lar which is pivoted obliquely in the head sorves to trease the spingactnated hammer, which explodes the cap and bursts the charge-chamber.
A form of homb-lanee which has heen very successful is shown in lig. 780. It is a cast-inon tuhe ahout 12 inches lone and 1 inch diannter, carrying in a charge-chanber 100 grains of gunpowder. It is fired from a gun, and the matel is lighted in the act of firing. Prongs tly out from the tabe to prevent retraction of the missile. throngh the whole thickness of a wall. across. covered by another header. an iron chain or bar, or heavy scantling.

Cross-bond. A block-hond in which the joints of the second stretcher-course come in the middle of the first; a course of healer and stretcher intervening. See c, Fig. 783.
Block and cross bond. The extrados of the wall is put up in cross-bond; the intrados in tlock-buncl.
2. (Bricklaying.) A particular mode of disposing bricks in a wall so as to tie and break joint.

The English bond (a) has courses of healers alternating with courses of stretchers.
In the Flemish bond (b) each course has stretchers and healers alternately.
A, leculer.
B, stretcher.
C. bond of hoop-iron.
D, timber-bond.
Wall-Bonds.

Bone-black. Produced by calcining the bones or iror of animals in close vessels. This process leaves the animal charcoal, consisting of the earthy and saline portions of the bone, combined with carbon, while the rolatile matters are distilled orer. Among these products is a peculiar oil, which is burnerl in lamps in cluse chambers; the soot which accumulates on the sides is collectet, and forms the pignent known as bone-black or ivory-black, according to quality.

Bone-black Clean'ing-appa-ra'tus. A device for purifying, sereening, and cooling bome-black alter treatment in the revivifying retort. In Hanford's apparatus the hot bone-black from the furnace

Fig. 78.

Hanford's Bone-Black Clfaner.
is received in a hopper E, driven by force of air from the pmop A throngh the $p^{1} p^{4} I$, is received in a closell chest I, having an inverted conical perforated deflector L, which divects the larger masses downward, where they are discharged loy the slanting Hoor and opening K. The smaller paiticles and dust are earried by the blast of air throngh the openings in the conical screen L, the second screen O, and the pipe P, to the next chamber Q. A jet of steam is injectell into the pipe P, so as to damp the dust in passing and assist in its deposition.

Bone-black Cool'er. In apparatus for cooling animal chareoal after its remoral from the furnace.

The hot, rebumt coal is poured into hoppers, passed throngh an anmular opening, and then through pipes into a car. The plates agaiust which it passes

Fig. 75.

Bonp-Brack Cooter.
are kept cool hy a curvent of cold air through a surrombling chanmel. The tops of the phates may he arranged so as to form a railroad-ear track, over which trucks containing the lint coal may travel.

Bone-black Fur'nace. No material ermal to bone-blate has yet been diseovered for decolorizing and pmifying saccharine solutions. Alter a certain quantity ol sirup has been filtered through it, it is neeessary to revive it by removing the gnm, sugar, and other vegetable extraet that has filled its pores and deprived it of its uschul quatities. some of these matters, such as glutem, are not soluble in water until after fermentation, or an "ruivalent chemical treatment. The practice has heen to sulfer the bone-black to ferment in a heap, to decompose the organie matter, alter which it is washet, driod, and recaleined, acyuiring again its full decolorizing powers, but having loat a portion, due to the crumbling in the varions processes throngh which it is passed. This is calenlated by Fleischman to be from 12 to 15 per cent pur anum ; by an English anthor, to be 6 per cent on each turning ; and by a writer in Harber, who has studind the economy of the Cuban systems, at 10 per cent for each use, which is probably an extreme calculation. Much depends upon the system adopited in its revivification. This is done in sermal ways:-

1. Calcination in iron pots.
2. Calcination in retorts ; horizontal or vertical.
3. Purging ly highly heated steam.
4. Ruasting in opeu revolving-eylinders.
5. Washing in dihute hydrochloric acid.
6. Washing in a dhate lye of potash or soda.

Fig. 756 shows one form of thrmare for revivifying bone-black, in which the hone-black D, charged with impurities, is deposited in the hopler $(-$, where the withdrawal of shile's E pernits it to fall into the tubes $A . \mathcal{L}$, which are exposel to the heat from the furnace-

Fig. 186

Bone- Black Furnace.
grate H until the impurities are discharged, when, ly withdrawing the slides $F F$ on the bottom-phates $\dot{B} B$, it passes into the tubos a a $b b$, and is received into the ressels c c. $K K$ are flum for comalneting ofl the products of combnation and partially drying the lhack hefore it is admittel to the tubes A. A.

Bone-black Kiln. A chanher or retort mometed in a furnare tor re-huming bone-black to remove inpuritieswith which it has beeome saturated or impreg. nated during its use as a defecator and filtering-material. Eastwick's bone-black kiln has a returt in three
lengths, each supported separately, so as to prevint the weight of the whole column from bending the lowersection when heated to redness. The npper section is the receiving; the middle section has the greatest heat; the lower section is- not immediately allected by the fire, and forms the cooler: At the lont of the latter is a drawdamper for discharge.

Bone - el'-e-va'tor. (Suryicul.) A lever lor raising a denressed portion of bone, as a part of the cranium, for instance.
The boys' "sucker," a wet disk of leatherapplied to the partand then raisel by a string in the center, has been suggrested for raising depressed portions of fractured skulls. Ewbank humoronsly suggersts that it might be used to cimse a de-

Bone-Black Kiln. velopment of the finer organs of the brain ly application over those phrenological regions deserving of encouragement. In this, however, Nicodenns Easy was considerahly ahead of Mr. Fwbank, for the old gentleman had a eomplex machine where suction and pressure had each its part to play in raising the finer smoments and depressing the baser organs. See llamyat's "Milshijman Easy."
Bone-mill. A machine for grinding bones for fertilizer or for making hone-black.

Bone-grinding is effected by passing the bones through a series of toothed rollers anmaged in paits, the rollers being toothed or serrated in different diggrees of fineness, and ridilles are provided for sifting the bones into sizes, and they are then solel as inch, threc-l uarters, half-inch, and dust.
The mill shown in Fig. 788 is mate of iron, and is boited to is foundation. lones plaved in the hopper fiall throught the chinte, anid are broken by a crusher at its bottom. They thence pass be-

Fig. iss.

Bone-Mill.
tween a sta-
tionary grinding-plate and a revolving grinding-
plate $B C$, thamed by the axis and pulley E, faced | with lollowing diamond-shaped lrojections arranged in lines radiating from the center. While these are dulled at one edge by constantly tuming the mill in one direction, they are sharpened at the other; amd the motion of the mill is reversed, bringing the latter into action. The plate $B C$ is adjusted to grind to any degree of fineness, by means ol the screwwhecl and hand-lever shown at -1 .

An English bone-mill has a pair of rollers with circular, spuare-edged grooves, like those ol a rollingmill, the salient faces of the teeth being serrated and meshing with those of the oppositeroll. The plumberblock of one roll is auljustable, so as to vary the distance betwech the rolls for large or small bones.

The machine is driven by two horses attached to the sweeps, and the bones are liassed through several

Fig. 759.

clapping of hamds, the twanging of the stringed aml whisthing of the wind instruments. Castancts, meces, souncttes, cymbels, are chiflerent forms of striking instruments. See Chatinets; Drc.
Bon-grace. (Itcuticul.) A bow-grace or junkfenter.

Bon'ing. (Surreying.) The operation of leveling by means of the eye.

Bon'ing-stick. (Building.) A stick with a head like the letter T , to indicate a level for work or construction. A number of such sticks over a site indicate a certain level for the tons of base pieces or fomulation-blocks.

Boning, in carpentry or masonry, is performed by placing two straight edges on an object and sighting on their upler edges to see if they mange. If they do not, the surfice is said to he in wiml.

Bon'net. 1. ($\|^{\prime \prime}$ cir.) 1 lady's lead-gear, having a crown aud a curved brim displayed nuward and forward.
2. (Fort.) A portion of a parapet elesated to a traverse to intereept entilade lire.
3. (Muchincry.) (u. A cast-iron plate covering the openings in the valre-chamber of a prmp, and removable for the examination and repair of the valve and seat.
b. A netallic canopy or projection, as of a fireplace or chinmey. A cowl or wind-caj. A hood lor ventilation, or the smoke-pipe on a railway-car roof,
c. The dome-shaped wire spark-arresting cover ol a locomotire chinmey.
4. A sliding lid for a hole in an iron pipe.
5. (Nauticul.) An additional piece of sail aulded ly laciners to the foot of a jib, or a schooner's foresail. It is used duringe light winds.

Bon'net de Pretre. (Fortification.) Called also priest's cap or swallow-tail. A doublc reden. see lienas.

Bon'net-shap'ing Ma-chine'. A machine in which a jartially shaped bonmet is pressed down upon a forming-lulock, to give it a set shape. One die has the exterior, the other the interior shape; one is usually heated so as to dry the bonnet and make it rigid in its acynired form. The process and machine are similar to the liat-forming machine, the ditlerence buing prineipally in the shape of the article. See Hat-Ful:mint Míachaxe.

Bon'net-press'ing Ma-chine'. A machine hy which honnets while on the forming-bloek are pre sented to the flat or presser. In the example, the bonnet is placed erown 1 pward umon the fomer H^{r}, which hats a rocking aljustment by the ratchet is upon a frame l, whose prelestal is planted on the slike B, which has a trawersing motion to bring the fomes anl the bonnet beneath the presser λ° on the end of the horizontal amm. If. This has a pressure, by meths of springs, on the stem, while the former is rotated beneath the pressing-iron by means of the hand-crank and bevel-g aring

Bon'ney. (Mining.) An isolated bed of ore.
Bon'ten. (F,bric.) A marrow woolen stuil.
Boo'by-latch. (Nutical.) The covering of the scuttle-waty or small hatchway which lends to the forecastle or forc-peak of small sailing-vessels.

Boo'by-hut. (IChicle.) A sleigh with a hooded cover.
Boo'by-hutch. (I'hicle.) A roughly built covered carriag, used in some parts of Enghand.
Book. 1. A mumber of sheets of prper bonnd together on elge, known as the binding-e tg?

Anciently, books consisted of a contimuons roll formed by pusting or gheing sheets of parchment or papyrus together. They were usually furnisheri with eases into which they were placed for preservation when not in use. See l'aper.

B fore the discovery of phpyrus - which, however, wats at a very distant period-inscriptions were made on boarts, inner bark of trees, afterwards on skins. Books with a back and leaves of vellum were mule by Attains, King of Pergamus, about 198 B. c. See Parohmext.

The manscript rolls in Terculaneum consist of papyrus, which is chared ant matted together by the fire. The rolls are nine inches long, and vary in diameter ; each fomm a seprate treatise. The first printed books wera printed on one side only, and the pares pastel torether at the backs.

Pliny says that the larthians write upon cloths. Livy spoaks of books of linen inscribed with the names of myistrates and the history of the Roman Comonwalth, and preserved in the temple of the Gohless Minsta.
Aristotle is said to have been the first to collect a libary with a gemeral assortmst of books. (Stianbo.) Pisistratus of Athens and Polycrates of Samos hat libraries, supposed to have been principally poetical works.
The public library of Pisistratns was removed to Persia ly Nerxes.

The liburtry of Alexander was kent in two precincts of the city, the Brucheion and the Serapenn. It contained fro:n 400,000 to 700,000 books. Anthorities (Gellins, Josephus, and Seneca) differ. Ptolemies Soter, Philaletphas, and Eurgetes were its patrons. Phildelphas added the famous library of Aristotle to the collection. It was much injured by fire in the sicre of Julins Ciesar. Antony anded to it the library of Pergimas, collected by Eumenes. It was afterward iajurel by Theodosius, and destroyed by the Atalss, A. D. 640.

The first pablic library of Rome was foumed by Asinius Pollio, on Mt. A pentine. This was followed by the libraries of Augustus, Octavia, and Tiberins. The Ulpana libary of Trajan was attached by Diocletian to his therme.

A furnish ed libary was discovered in thereulancun. Roand the wall it had numbered cases containing the rolls.

It is recorded that Plato bonght three works of Philolaus, the Pythagorean, for ten thousamh hemarii, nearly $\$ 1500$. Aristothe bonght a few hooks of spen-
cippus for three Attic talents, nearly 82500 . Jeronre, A. 13. 420 , states that he ruined himself by buying a eopy of the works of Origen. Alfred the freat gave an estate for one on cosmograply, A, 1. 872.

The book of st. Chthbert, the earliest ornamental book, is supposel to have heen bumal about A. D. 650. A Latin l'salter in oak boards was bound in the ninth century.

In mure mulern times, Machlin's Bible, ornamented by Tomkins, was valued at $£ 5$ 2. A superb copy of the Bible was printed and collected ly Mr. Parker, of Golden sipuare, London, in about 54 large folio volumes, with 7,000 illustratims in the text and momted, and contaning original drawings by Loutherbourg and others, was insurel in a London olfice for £ 3000 . It was rattled ofl at $£ 5000 ; 100$ subseribers at $£ 50$ cach. Two wagoll-loads of a hook at $\$ 25,000$.

A standard dictionary of the Chinese language, containing 40,000 characters, was male by Pa-ont. she about 1100 B. C. (Monsisos.) The Onomastikon, a Greck dictionary of Julius I'ollox, was written abont $120 \mathrm{~B} . \mathrm{c}$.

Sze-ma-tsecn, the Chinese Herorlotus, wrote in the second century b. c. The dictionary Si-wne was compled ahout 148 B. C.

The Sjanish saracens compiled dictionaries, lexicons, encyclopectias, and phatmacoureins. The Histonical Dictionary of Sciences of Mohammed lla Abdallah, of Granada, is a notable instance. Avicenna also wrote a large number of works, among them an Enesclopeclia of Human Knowledge, in twenty volrumes.

A manuscript copy of the Evangelists, the book on which the English kings, from Henry 1. to Edwarl Vl., took their coronation oath, was bound in oak boarts, nearly an inch thick, in 1100.

Velvet was the covering in the fourteenth century. Silk soon after. Vellum in the fiftecenth. It was stamped and omamented about 1510 . Leather came in use about the latter date. Cloth linding superseded the common praper-covered mill-l uarts alout 1831. Caout hone backs to account and other havy books were introlnced in 1841. The tolling machine of William Burr (England) was sulistituted for the brating-hammer alont 1830 . Sce Buokbindisg.
2. (Gilding.) A package of gold-leaf, consisting of 25 leaves, each $3 \frac{1}{8} \times 3$ inclses symare ; they are inserted between leaves of soft paper rubbed with red chalk, to prevent adhercuce.

Book-back Round'er. 1. (Bookbinding.) A machine which aets as a sulstitute for the hammer in rounting the back of the look alter cutting the edge and muls. It is usually perfomed upon the bouk liefore the cover is put on.

In one form of machine, the hook is rum hetween rollers, being pressed forward by a romuled strip which rests against the front clge and determincs the form thereof.

In another form, the book is clamped and a roller passed over the back under great pressure.

Another form of machine is for molling the backcovers of books to a given embature, by pressing between a heated cylimider of a givern ralius and a betl-plate whose eurvature corresponds to the presser.

Book-bind'er. A comtrivance of the natme of a temporary cover, for holling together a bunch of mewspatners, patuplets, or similar articles. There are many torms of the device.
Book-bind'er's Tools, etc. Sce under the following hads: -

Allum.
All-along.

Arming-press.
Backing-board.

Back-tools.

Band.
Band-driver.
Bead.
Beveling-machine.
Binding.
Bleeding.
Blind-blocking.
Plind-tooling.
Blorking.
Blocking-press.
Board.
Book (gold-leaf).
Book-back rounder.
Bookbinder.
Book-clamp.
Book-tolding machine.
Book-sewing machine.
Boss.
Case.
Case-work.
Corner.
Covering.
Creaser.
Cropped.
Cutting-press.
Dentelle.
Edge-bolt.
Elge-cutting.
Elging.
Embossing.
Fillet.
Finishing-press.
Flexible binding.
Folding.
Folling-machine.
Fore-edge.
Forel.
Forwarding.
Foumlation-platc.
Full-bound.
Gather.
Gilding-tool.
Glaire.
Glueing-machine.
Glueing-press.
Gouge.
Grater.
Guards.
Half-binding.
Hand-letter.
Head.

Head-band.
In-boarls.
linside-tin.
Interleare.
Joint.
Kettle-stitch.
Knocking.
lacing.
Law-binding.
Laying-on tool.
Lettering-box.
Lettering-tool.
Marble-edge.
Marbling.
nill-board.
Mitered.
Orercasting.
Pallet.
Panel.
Pawl-press.
plow.
Pocket-book.
Point.
Polishing-iron.
Polishing-tin.
Porte-monnaie.
Portiolio.
Press-keys.
Roll.
Rolling.
Rolling-press.
Romening.
Run-up.
Scratcher-up.
Screw-press.
Sewing.
Sewing-table.
Shaving-tub.
Simature.
Slip.
Siquare.
stabbing narline.
Stamp.
Steamboating.
Stitching.
Stove, Book binaler's
Tip.
Tualing.
Tools.
Turuing-up.
Whipping.

Book-bind'ing. The art of attaching together and covering the sheets composing a book.

The earliest known forms of bookbinding, if the term be held to include all moles of attaching sheets together, is perhaps the Egyptian, which consistel in pasting or glueing the sheets together and rolling them upon small cylinders. The shects were mo rolled from one cylinder, and, after reading, rollecl upon the other. The cony of the Pentatench, in the possession of the small band of Samaritans yet livin! at Nablons, the ancient Gerizim, is thus jueservel. It is claimed by its possessons to have been writen by a grandson of Aaron. The book of the law in all synagognes is thus inounted.

Another ancient mode, the precursor of the more modern system, is found in the mode of stringing leaves together by several conds passing through holes near one edge. This is practiced in India with pieces of leaves neatly cut to a size. Sue Paper; Pex.

The present plan of fastening the leares to a back and sides is believed to have bern iuveuted hy At-
talus, of Pergamus, or his son Enmenes, about 200 B. c. This king, or sometrody for him, inverted parchment, hence called pergemena, from Perganus. It was devised as a substitute for papyrus, on which an embargo had been laid by Ptolemy of Egyt, who thus sought to embanass the rival library in Asia Minor.
The ollest bound book known is the volume of St. C'uthbert, circa 650.
lvory was used for book covers in the eighth century; oak in the ninth. The "Book of Erangelists," on which the English kings took their coronation oath, was bound in oak boards, A. D. 1100.

Hog-skin and leather were used in the fifteenth century:

Calf in 1550.
Silk and velvet as early as the fifteenth century.
The Countess of Wilton, in her "Art of Necedjework," says the earliest srecimen of meedleworkbinding remaining in the British Museum is Fichetus (Guil.) Phetoricum, libritres (1 mpr in 1 ll embranis), to, Daris ad Sorbonæ, 1471. It is covered with crimson satin, on which is wrought with the neeulle a coat of arms, a lion rampant in gold tluread in a buse field, with a transterse badge in scarlet silk; the minor omaments are all wrought in tine gold thread.

The next in date in the same collsetion is a description of the Holy Land, in French, written in Henry VII.'s time. It is bound in rich maroon velret, with the royal arms, the garter, and rootto em broidered in blue, the grome crimson, and the fleurs-de-lis, leopards, and letters of the motto in gold thread. A coronet of gold thread is inwronght with pearls; the roses at the corners are in red silk and gold. In the Bolleian Library is a volume of the Epistles of St. Paul (black letter), the binding of which is embroidered by Queen Elizaluth; around the Lorders are Latin sentences, etc. Areh. Lishop' Parker's "De Antiruitate Britannice Ecclesire" (15:2), in the British Inseum, is bound ingreen velvet, embroidered with animalsand flowers, in gieen, crimson, lilac, and yellow:silk, and gold thread.

A folio Bible which belonged to Chatles 1., date 1527, is now 1 neserved in the church of Broomfield, Essex, England. It is lound in purple velvet, the anns of England enibroidered in raised work on both sides.

A will of 1427 derises several psalters in velvet bindings.

Cloth linding superseded the faper known in England as "boards" in 1523.
lndia-rubber hacks were iutroduced in 18 ± 1.
Tortoise-shell sides in 1856.
Three fine sprecimens of old bookbinding are in the collection of James \&. Grimmell, of Washington, D. C., and desetve notice as being representative of different styles.

1. A mannscript breviary of the fourteenth century, elahorately illuminated on parchment, has a brown calfskin cover over sideboards of beech, the bands being of calfskin prassed through holes in the boards and wedged. The cover is elaborately blindtooled, that is, not gilded, but worked by pressure and heat. The designs are in stuare panels of geonetric fignres.

The book is bound in foldel signatures of five double sheets, making twenty pages to a signature, and the first letter on each of these parcels is witten at the bottom of the previons parcel for the direction of the binter.

The hook had brass clasps, anll contains the "dirine office" for the year. It is in remarkable preservation.
2. "Catalozus factorum et gestorum corum et
diversis valuminihus collectus," edited by "the most reverend father in Christ, Petro de Natalibus." Printed in 1514.
Bound in white vellum, elaborately embosserl with salient figures representing Faith, IIone, and Charity, kit-cat length in pamels of the cover, surrounded by scrolls and leafage. The hinding has the date of 1595 , and the vellum was evidently cmbossed by being stamped while wet with dies engraved in intugtio. The panel horders were made by hand-tool fillets, not rolls. The figures are repeated in a manner which shows that the impressions are repetitions of the same stamp. The vellum was probably laid upon a material which would yield somewhat to pressure and then retain its form. The vellum was then dried in position.
3. A copy of John Minsheu's folio dictionary " Duetor in Linguas," publisherd in 1617, and dedicated to Tames 1 . It was formerly in the library of Chates 1., is boum in buff leather, and has the arms ant crown on both sides of the cover.
The binding of boaks varies, and the following nantes oceur: -

Fiell-bmend; back and sides leather.
IIubj-bouml; back leathere, sides praper or cloth.
Cluth; back and sides covered with a colored labrie, usually cmbossed.

Muslin; same as alove.
Bourls; an English term. The' covers were of mill-hourl. They were afterwarls covered with 1a- $^{\text {ra }}$ per.
Other moles are known by the kind of leather with which they or their backs are full or half bound ; as, lussia, morocco, roan, calf, sheep, vellum, ete.
lu one form of caontchouc binding, the sheets are fokled in donble leaves, clamped, treated on the back with several coats of caontchone in solution.
The processes of bookbinding are about as follows :
Folding the sherts.
Gutheriny the consecntive signatures.
linlling the packs of folded sheets.
Seminu, aftur saw-cutting the backs for the cords.
linending the backs and glneing them.
Edlye-culting.
Finding: sicuring the book to the sides.
Conering the sides and back with leather, muslin, or paper, at the cast may be.

Tooliny and lettcring.
Elgo-yilding.
The British Mussum Catalogue is a library of folios in itself. Every volume is stontly homal in solid blue calf, with its lower ellges faced with zine, to save wear and tear from the violent shoving in of the rolumes to their places.
The museum at Cassel, in Germany, has a collection illustrating European and other trees. It is in the form of a library, in which the back of each volume is furnished hy the bank of some particular tree, the sides are mate of perfect wool, the top of young wood, and the bottom of ohd. Whirn opened, the book is fount to be a box, containing either wax monlels or actual specimens of the flower, fruits, and leaves of the tree.
At a sale of rave hooks and manuscripts in Paris wecently, there was disposid of a fourteenth century, illuminaterl, Gothe edition of the Bible, with gold clasjes, set with turpuoises and homal in hmman skin. A coper of the "Innitation of Christ," now in the Carmelite librury at Paris, is similarly covered. Thu human skin is said to preserve its brilliant whiteness forever, while all other parchmonts will turn yellow. It possessers, besides, the advantage of being easily embossed, the Bible in question being beautifully
ornamentel with flours de lys, scepters, etc. On the other hame, it absorbs ink so freely that it is impossible to write mpon it. The character ol the skin is teterminel by the microscople. The human skin and its hair are readily distilı. guislied from those of other animals.

Book-clamp. (Bookbinding.) a. A vise for holding a book while being worked. Adjustment is made by the muts for the thickuess of the book, and the pressure is given by the lever and eccentric.
b. A holder for school-books while carrying then. The cords phass through the
 down to the lower bar; they are tightened by the rotation of the liandle.

Fig. 792.

Srhool-biook Clamp.
Book-edge Lock. A lock whereby the closed siles of the lwok-cover are locked shut.

Book-fold'ing Ma-chine'. At machine for folling sheets for gathering, sewing, and binding.

C'lumbers's book-folding machines are made of various sizes, adapited to fold shects to varions dimensions from folio downward.
They are also alapted for folding two semarate sherts together, pasting the sejrate pages at the hack; or for cutting sheets into a number of pieces and folding them sipatately. lusets also may be cut off and set in as by hand.
Fig. 793 will give an idea of the folding process on a simple machine.

The operator transfers a sheet to the table A, which has a transverse slit across its midule. The revolntion of the pullers opreates a rock-shalt B, carrying a curved arm with a Soble C'at its extremity, which presses the sheet down throngh the slit in the tahle, where it passes between rollers, which double it and deliver it into a receptacle D, at the end of the machine.
To fold an octavo, the onee folded sheect is again presented to a folding edge, when it is carried to a second set of rollers, which siqueeze it Hat, and it is thence led to a trough, where the folded shects are collected.

Book-hold'er. A reading-desk ton, or equivalent device, for holding an open book in reading position.
Book'ing. (Agriculture.) The armagement of tobacco-leaves in symmetrical piles, the stems in one direction, leaf upon lerff, forming a book:
Book-sew'ing Ma-chinet. The fieder is composed of two plates $C^{\prime \prime} C^{\prime \prime}$, inclined each toward the other, and almost touching at their outer ends. When the feeder is in the position shown in the figure, a folded "signature" is placed over it, the feeder is brought to a horizontal position, and then a horizontal plate mores forward between the plates of the feeder, and carries the signature to the points of the hooked needles $N^{\top} V^{\prime \prime}$, which are then driven through the saw-kerfsin the back of the signature, and in this position a thread-carrier lays its thread in the hooks of the needles, and when the needles are carried back, they draw a loop of such thread through the back of the signature. When the needles pass into another signature, they draw the thread then laid within their hooks through the loops last formed

Book-Sewing Machine. Reissel-wolth. foot it stretcbes. spars are stowed. of a fort.
horizontal position ; in the former recciring the siguature which straddles it, and in the latter forming guides for the horizontal plate which pushes the signature of the feeder up to the place where it is sewn.

Book-mus'lin. (Fabric.) A fine, transparent goods, like a Swiss muslin. It comes tolled in book form. See Bure-mitslin.
Book-per-fect'ing Fress. (Irinting.) One which prints both sides of a sheet without intermediate manipulation. Some act upou the respective sides in immediate succession, others have automatic feed between impressions. Such are the Ford, Bullock, II aller, and other printing-presses of the highest character and efficiency.
Bool-work. See Buhl-work. See also
Boom. 1. (Nautical.) a. A spar for extending the foot of a fore-and-aft sail.

The boom on which a fore-and-aft sail is stretched is commonly provided with jaws which partially encircle the mast, and are held to it by a half-grommet strung with balls of hard wood to avoid friction.
b. A spar rigged ont from a yard to extend the foot of a studding-sail. The fore and moin lower yards, and the fore and micin topscril yards lave stud-ding-sail booms. Each is secured by bocm-inons. on its rard, and is named from the studding-sail whose

The heads of the studding-sails are hent to stud-ding-sail yards which are slumg from the studdingsail booms and the fore and main top-gallant yardarms. The stays of these booms are called guy/s.

The ring-tail boom is rigged out like a studdingsail boom at the end of the spanker-boom.
c. The booms; the space on the spar-leck between the fore and main masts, where the boats and spare
2. (Marinc Fortification.) A chain or line of connected spars stretched across a river or chamel to obstruct navigation, or detain a ressel under the fire
3. (Lumbering.) A spar or line of floating timbers stretched across a river, or inclosing an area of water, to keep saw-logs from Hloating down the stream.

Bocm'e-rang. A missile formed of a bent stick with a rounded and a flat sile, and used by the Australian natives.

Among the varions throwingsticks of savage nations, this weapon of the Australians has caused most curiosity, from the apparently erratic character of its tlight. It is a curved stick, rond on one side and flat on the other, about 3 feet long, 2 inches wide, and $\frac{3}{4}$ incla thick. It is grasped at one end and thrown sickle-wise, either upward into the air, or downward so as to strike the ground at some distance from the thrower. In the first case it flies with a rotatory motion, as its shal!e would indicate, and after ascending to a great hight in the air, it suddenly returns in an elliptical orbit to a spot near its startingand yet on their shanks, and so enchain the thread I point. On throwing it downward to the gromm!, it along the backs of and sccure the signatures together. rebounds in a straight line, pursuing a ricochet moThe feeder vibrates alternately from a vertical to a tion until it strikes the object at which it is thrown.

BOOT.
The most singnlar curve described by it is when it is purojecterl upwardat an ande abont 45°, when its Hight is always bukwnd, and the native who throws it stands with his back to the object le intends to hit.

Theancient Eqyptians used curved throwing-stieks; but their shape was not like the one above described, nor their flight anything very peenliar.

The Esqumatux and somi Brazitian tribes use throwing-stiaks. The Purnpurus have the palheto, a missile of a similar kind.

The trombush is a throwing-stick used ly some of the interior tribes of Afriea.

Another form of missile is the bolas of the Patagoniams. See Bulats.

The boomerang of the Moqui Indians, of Sonora, is a flat pointed stick, with a small ornament like an acorn at the handle ent.

Boom-i'ron. (Nuulicrl.) A flat iron ring on

Fig. 795.
 the yard, through which the studding-stil boom travels when being rigged ont or in.

One boom-iron, called the yarel-urm iron (b h), is fixed at the end of the yard, and another iron, called the quar-ter-iron (u), is placed at $\frac{3}{1}$ of the length of the yard from the onter end.

The yuarter - iron has a clasp $r \pi n$, whiel embruces the yard, and a elaspl $s p$, which holds the heel of the studding - sail boom. d is the stop of the yard, and to it is secured the chech-block ϵ fire thu sluects.

Boom-jig'ger. (Nautical.) A tackle for rigging ont or ruming in a topmast stuhling-wail boom.
Boom'kin. (Naulical.) A projecting spar at the bow of a ship, for hanling out the weather-tack in sailing near the wind. Bumkin.

A fore-boom, or bentick-boom, is sometimes used for sprealing the foot of the fore-sail.

Booms. (Veuchical.) A space amidships on the spar-deck, between the fore and main masts, where the lameh or other large boat and spats are stowed.

Boon. The internal woody portion or pith of llax, which is disorganized by reting, the binding mueilage being softened by fementation. The boon is partially removed in grissing, and torether with the shices is completely eliminated from the hare or fiber in the subsequent oprrations of bruking and scutching.

Boot. 1. (Leather.) A covering for the foot and lower part of the leg, made ordinarily of leather.

The varions parts are designated in the illnstration.
In the elevation A (Fig g. 796),
a is the fromi.
b the side-seam.
c the buect.
d the strap.
e the instcp.
of the vamp or front.
If the quarter or comenter.
h the rand.
i the heel ; the front is
the breast, the bottom the face.
j the lifts of the heel.
k the shank.
l the welt.
m the solc.
n the toe.
o the ball of the sole.
In B, (same figure), -
a is the umper.
c the outsolc.
b the insolc.
d the uecth.
e the stitching of the sole to the welt.
f the stitcling of the upper to the welt.

I the channcling, or the depression for the bights of the stitches.

Hesiorl (1000 B. C.) mentions ox-hide boots and woolen socks as purt ol the winter equipment of a plowaman, but reeommends that the plowman go naked in summer. The modern Syrian boots are of leather, and have an extra thickness sewed on below to answer for a sole ; but they do not aj). pear to have a Hat, strong sole like our own, and we shoukl consider them very slovenly and uncomfortable.

The boot was worn as armor at a very early

Boot.
leather with plates or greaves of metal to guard the front.

Moses says of Asher, "Thy shoes shall be iron and brass." $1451 \mathrm{~B} . \mathrm{C}$.

IIomer, in his "1liad," speaks of the brazen-booted Greeks.

In the Abbott Collection, New York, may be seen ancient Egyptian boots and shoes, of prople and red leather, and of white kid. Sandals were the common wear, and were made of leather, raw-hide, dateleares, and payrus. In the same collection is the mummied foot of a larly with the white kid graiter boot yet remaining upon it. The foot is small and finely arehed, resembling the true Arabian type. The boot is so fragile that it will not bear hamiling. The upper appears to be sewed to a sole, but does not show any heel. It is from Sakkatah.

The Median and Roman boots were laeed up in front. See Colhurnas, in Smith's "Dictionary of Greck and Roman Antiquities."

The boot was ealled ocrea by the Romans. The calceus was a shoc, and the solca a sandal. The shoes of the Roman semators came up to the midlle of the lecg, and were generally black. On ceremonial occasions the Ronan magistrates wore red shoes. Red and [uiple were regal, and red is yet a cardinal color.

The Etruscan augurs wore jack-boots.
The Jamas of T'artary wear red hoots and yellow cloaks. They leave their boots in the vestibules of the temples. So do the Turks. The latter brought the practice from Central Asia.
"There bought a pair of boots ; cost me 30 s ."

- Perys, 1662 .
The hoot and shoe making business, more particularly since the introduction of pegs, which are saisl to have been invented by Joseph Walker, of Hopkinton, Mass., about the year 1818, has become a very extensive and important brauch of manufacture, machinery being employed in nearly all the oprial tions connected with the business. The first application of machinery in shoemaking is due to the celebrated Brunel, who derised a series of machines, which were operated by invalid soldiers belonging to Chelsea Hospital. The shoe passed through a number of hands before being tinished; the operation which each man had to perform was so simple that it is sail that the manipulation coutel be learned in half an hour: The sole was secured to the upper by nails. These machines, being employed solely for the manufacture of army shoes, appear to have fallen into disuse at the close of the war, and were never introduced into private establishments, the style of work probably not being suited to the demands of the pubiic.

A long-legged boot made in Worcester, Mass., for the Penusrtvania coal-mines, is the most durable piece of furniture eser constrneted of leather and iron. The soles are about three quarters of an inch thick, projecting like the guards of a Mississippi steamer. The heel also projects nearly a quarter of an inch, forming quite a shell near the counter, and flared at the bottom. Nails with a flat top, a size smaller than a three-cent piece, are driven as closely as they can be set all over the sule, shank, and heel, forming as it were a solid iron bottom. The boots weigh $6 \frac{1}{2}$ pounds, the nails contributing $1 \frac{1}{2}$ pounds to the weight. Long nails of Swedish iron are driven through the heel and shank, clinching on the inner sole; three to the heel and six to the shank. The sides are elosell br hand with a six-stranded thread that will hold 100 pounds weight.
2. (Carriagc.) The receptacle for baggage, etc., at either end of a coach.
3. (Mcnage.) Protection for the feet of horses, enveloping the foot and a part of the leg. A conrenient substitute for swadlling or bandaging. Patented in England by Rotch, 1810.

They are used on the fert of horses while standing in a stable, to keep the feet moist and rrevent crack: ing or contraction of the loofs. They may be lined with sponge, which is kept darap. The hoot has an upper and sole, and is shaped to the foot nearly. The upper part has a draw-string.

They are also used for rarious affections of the legs and feet, such as raricose reins, splint, speedycut, strain. In such cases they are made to fit more closely.

Boot-calk. A spur for the boot-sole to prevent

Fig. 797.

Boot-Calk. the wearer from slipping on ice.
Boot-chan'neling Ma-chine'. One for making the slit in a sole to sink the sewing-thread below the surface. It consists of a jack on which the boot is held, an inclined knife gaged to depth, and a guide which causes the knife to make its incision at an equal distance from the sole-eldge all round.

Boot-clamp. A device for holding a boot while
being sewed. It consists of a pair of jaws, between whose edge the leather is guipped, and which are locked together by a cam, or by a cord which leads to a treatle.

Boot-crimp. (Bont-maktiny.) A tool or a machine for giving the shape to the pieces of leather designed for boot uphers. Furmilly the leather made a series of folds or crimps oser the instep, and hence may have originatel the nane. The leather for upprers is now crimped by softrning, straining over a former, and mbling down the parts where the leather is thickened by the operation; that is, the parts which would be crimped or rugged, were the material not compacted at that point.

In the illustration, the elges of the leather are tacked over the pipees $C B$, whith are then extended outrardly from the block A by neans of the set screws, which are theaded into sockets in the movable blocks, and bear by their inner ends in pockets on the edge of the block A.

Boot-crimp'ing Machine'. (Boot-making.) A machine in which the crimping is performed in succession upon a number of leather pieces cut to
 a pattern.
The boot-trees C are attached to a central shaft, which carries them around in contact with the ad-

Fig 799.

Boot-Crimping Machme.
justable ribs D, which are so bent as to crimp the leather upon the trees.
Boot-edge Trim'mer. A machine which acts in connection with a guide to pare smoothly the edges of boot-soles. It is a machine-substitute for the edge-plane.

In the machine (Fig. 800), rertical, endwise, and rotary movements are imparted to the jack in which the shoe s is clamped. The gage y mons between the sole and upper leather of the shoe, and prevents the jaring-knife from cutting into the upper leather. The cutter-head N rests upon the pe-

Boot-F:Ige Trimming Machine.
riphery of the pattern x, which governs the deptli of cut.
Boot'ee. (Fubric.) A white, spotted Daccammslin.
Boot-groov'ing Ma-chine'. One for making the gioove in a shoc-sole to sink the sewing-threads below the surfice. A chanucling-machine.

Boot-heel Cut'ter. A machine for cutting the lifts for making boot-heels. In the example the cutters are various in sizer, and are lininged to the frame, so that they can be let down over each other. The heellifts are eut to graduated size, and merely requirebereling after attachment. The leather is placed on the cutters, and forced down by blows of a wooden mallet.

Boot-hold'er. A jack for holling a boot either in the process of manufacture or for cleaning. The

But-Holder.

base-piece is attached to a beneh, and has a stationary prong. The movable prong, containiag the footpiece, is attacheel to the other, and is leeld at its adjustment hy a curved rack and pawl.
Boot-hook. A device for drawing on hoots and shoes, consisting essentially of a stont wire bentiuto a hooked form and provided with a handle.

Boot-jack. A board with a crotch to retiin the heel of a boot while it is being pulleal off.

Boot-jircks are made jointed, so as to foll into compact form. Recesses are made in them to loled a small brushe and a minute box of hlacking. Cases are marle to contain all theee, being nattily arranged to suit the fastidious.

A boot-rack is merely a frame to holl boots, and would not he here cited but that sereral patents lave licen granted for special contrivances in that line.

Boot-mak'ing Ma-chine'. Screws have lnem comployed in France since 1544 for secuting soles to shaes.

Machines formaking boots are adipted for specitic prits of the operation; such as hel-machines, which include cutters, romling, hecl-culling, lecel-trimming, and hecl-burnishing machines.

Upper-machines; which include crimping, turning, scam-rolling, and trimming machines.

Sole-machines; which include cutting, chanucting, burnishiag, and pegginy maehines.

Lasting-machines: tor drawing the upler portion of the boort limuly on to the last.

Pegging-machines; pegging-jucks for holding boots while being pegged.

Crimping-machines; for stretching and pressing into slape leather for upuers.

Besides these there are numerous hand-tools, such as bumishars, celye-p)lanes, and shares, pegying-awls, etc. See list under Leamazi.

In one arrangement of serew-wire boot-making marhinery is the following series :-

The leather is cut into shape ly means of tools tesembling lunches. The thicknesses which are to form the soles are mited with glue, and compressed previously to being eut. They rereive then the necessary concarity by powerfnl hydraulic pressurp, and their surfaces are smoothed and hardened in still another machine. Sewing-machines form all the necessary seams, binding, and, if necessary, ornamental stitching of the upper leathers; and then the separate parts are bronght together in the machine which is to complete the shae by uniting the upper leather and the sole.
First there is placed upon the form or last in this maehine the inner sole. The upper leather is then stretched over this hy means of small nippers attached to the machine, which are capable of stretchins it with considerable force. It is secured in place by a row of small mails. The outer sole is then carefully applied over the whole. As this has been entirely finishod and polishem on the edges in the previons process of prepration, it is important that it be truly arljustcd, since it canmot he afterwarls trimmed. The machine then applies to the two soles, with the upper leather included between them, a force of pressure of not less than 700 pounds, increased, if desired, to one ton. Screws are then inserted all round the margin of the sole, an operation completed in less than three minutes for a single shoe, or in hive minutes for a pair. The salient extremities of the screws are cut by a chisel, and the bur left by the chisel is ground away on an emery-wheel. The last on which the shoe is constructed, being marle of iron, prevents the interior extremities from passing the surface of the iumer sole.

The machines not only apply, but make the serew. The matrial is hrass, which is drawn ofr fom a beobbin in the machine as it is required. The extremity
passes horizontally through a guide, and, in orider to cut the thread of the screw, the whole bobbin revolves. In land-machines a crank serves to give the revolution; but the driving power may be taken from a motor. When the resistance shows that the serew has struck the iron last, a cutter is brought into action by the foot of theoperator pressing upon a pedal, and the wire is cut as near as possible to the leather.
Boot-pat'tern. A templet made up of phates

Fig. 803.

Boot-Pattern. which have :un arfjustment on one anotlier, so as to be expmededorcontracted to any given dimensions within the usual limits of boot sizes. Used in marking out shapes and sizes on leather ready for the cutter.
Boot-seam Rub'ber. A hurnishingtool for flattening down the seam where the thicknesses of leather are sewenl together. This is usually a hand-tool, but sometimes is a machine in which a bootleg, for instance, is held an a jack while the rubber, either a roller or a burnisher, is reciprocated upon the sram.
Boot-shank Ma-chine'. A tool for drawing the leather of the upper or boot-leg over the last into the hollow of the shank. In the example, the leather, being placed over the last, is inserted between the jaws which are pivoted to the plate. The screw connecting with the jaws by arms is then turned, and causes the jaws to be brought together, thus stretching the leather.

Fig. 804.
Fig Sis.

Boot-Shank Machine.
Boot-stretch'er. (Leather.) A levise for stretching the uppers of boots and shoes. The common form is a tro-part last, dividesi horizontally and having a wedge or a wedge and screw to expand them after insertion in the boot.
In the example the last is rliviled into an upper and noler section which are connected by a lever. The fore end of the upper section is pivoted to the fore end of the lever, and the mildap end of the levar is fulcrumed at the mid-length of the lower section. The screws operate to raise the rear end of the upper section immediately, and its fore end through the medium of the lever. The npper surface of the last has changeable kirobs to stretch the leather in particular places.
There are many kinds for special uses.

Boot-top'ping. (Nerelical.) The operation of scraping off grass, barnackes, etc., from a vessel's bottom, and coating it with a mixture of tallow, sulphar, and rosin.
Boot-tree. An instrument composed of two wooren blocks, constituting a front asul a rear portion, which together form the shape of the leg and foot, and which are driven apart by a wedge introduced

Boot-Tree.

between them to stretch the boot. The foot-piece is sometimes detachable. In the illustration the tree is shown mounted on a trestle, the center wedge bcing driven by the motion of a treaulle.
Boot-ven'ti-la'tor. A device in a boot or shoe for allowing air to pass outwardly from the boot so as to air the foot. It usually consists of a perforated interior thickness, a space betwern this and the outer portion, and a discharge for the air, throngh some part of the said outer portion above the water-line.
Bo'quin. (Fabric.) A coarse Spanish baize.
Bord. (Mining.) A lateral passage where a shaft intersects a seam of coal.

Bor'der. 1. (Milling.) The hoop, rim, or curb around a bedstone or heilplate, to keep the meal from falling off except at the prescribed gaj): Used in gunpowder mills and some forms of grain-grinding mills.
2. (Printing.) a. A typue with an ornamental face, suitable for forming a jart of a fancy border.
b. Onmantal work surrounding the text of a page.
3. (Locksmithing.) The rim of a lock.
4. (Fabric.) That part of cloth containing the selvage.

Bor'der-pile. (Hydrentic Engineering.) Anexterior pile of a coffer-dam, etc.

Bor'der-plane. A joiner's edging-plane.
Bor'ders. (F'ubric.) A class of narrow textile fahrics designed for edgings and bindings; such as galloons and laces.
Bor'der-stone. The curbstone of a well or pavement.

Bore. 1. (1etal-working.) A tool bored to fit the shank of a forged nail, and adapted to hold it while the head is brought to shape by the hammer. The depression in the face of the bore is adapted to the shane required of the chamfered under part of the head.
2. The cavity of a steam-engine cylinder, pumpbarrel, pipe, cannon, barrel of a fire-arm, etc. In mechanics it is expressed in inches of dianeter ; in cannou in the weight in pounds of solid romad shot adapited thereto, as 8 dr., 12 dr., or in inches of diameter, as, 8 -inch gun, 12 -inch gun ; in small-arms, in hundredths of an inch decimally, thus, $.44, .55$, in this case it is termed mbiber; in sporting rifles by the number of balls to the pound; in smooth-hore fowling-pieces by a trade number, as No. $9,10,11$, ete.
2. The ealiber of a wind-instrument ; as, the borc of a flute.
3. The capacity of a boring-tool; as, the bore of an auger.

Bor'el. (Fabric.) a. Formerly, a coarse woolen clotl.
b. A light stuff with a silken warp and woolen woof.

Bor'er. (Coopering.) A semi-conical tool used to enlarge bung-holes and give them a flare.
Bo-ril'la. (Metallurgy.) A rich copper ore in dust.
Bor'ing and Ten'on-ing Ma-chine'. (Hhecluriyhting.) One adapted to hore the holes in the fellies and to cut the tenons on the ends of the spokes. lu the example, the wheel is mounted on sliding-bed

Boring and Tenoning Machine.
D, and pressure on the treadle h draws the spoke to the hollow auger, whose stock is turned by hand till arrested by the stop π. For boring fellies a detachable bed is fitted on the sliding carriage. A screwclamp in the bed holds the felly, which is moved up to the anger, turned by hand as in the former case, and arrested by a gage-stop. The brace c is mounted between the back-plate b and a socket in the standard B.

Bor'ing-bar. (Metal-working.) A bar supported axially in the bore of a piece of ordnance or cylinder, and carrying the cutting-tool, which has a traversing motion, and turns off the inside as the gun or cylinder rotates.

Also, a entter-stock used in other boring-machines, suel h_{1} as those for boring the hrasses of pillowblocks.
Bor'ing-bench. (Wood-working.) A bench fitted for the use of boring machiuery or appliances. Beven-ball.
Bor'ing-bit. A tool adapted to be used in a brace. It has rarious forms, enumerated under the head of Bit (which set).

Bor'ing-block. (.Mctal-working.) A slotted blork on which work to be bored is placed.

Bor'ing-col'lar. A back-plate proviled with a number of tapering holes, either of which may be brought in line with a piece to he bored and which is chucked to the lathe-mandrel. The end of the piece is exposed at the hole to a boring-tool which is held against it.

Bor'ing-faucet. One which has a bit on its end by which it may cut its own way through the heard of a cask. In casks whose holes are already plugged with rork the inner elge of the stem of the tap is matle hollow to receive the cylinder of cork, and with an ammular rutting-edge. A stop is placed in

the stem to prevent the cork eylinder from reaching and closing the holes in the stem.

Bor'ing-gage. A clamp to be attached to an auger or a bit-shank at a given distance from the point, to limit the penetration of the tool when it has reached the determinate depth.

Bor'ing-lathe. A lathe used for boring wheels or short cylinders. The wheel or cylinder is

Fig. 509.

Boring-Gage.

fixed on a large cluck screwed to the mandrel of a lathe.

Bor'ing-ma-chine'. The term may be held to have a somewhat general application to all machines by which holes are made by the revolution of the tool or of the object aromed the tool, but not including the simple tool itself. Thus an anger, gimlet, awl, or any bit adapted for boring, independently of the machinery for driving it, would not be a bor-ing-machine. A brace is on the dividing line, if such there be, but is not included under the term loringmachines.

Borers for metal, however, are usually classed as drills, and in the present classification the bits and tools for metal will be classell as drills, the means for driving them as drilling-machines, excepting the largest class, which bore out large cylinders, ordnance, etc. We get back again to the term boring at this point, despite our attempts to preserve the unity of classification. These machues have usually a boring-bar or cutter-bar, which occupies the axis of the object which is being bored, and as three parts are involved and two motions required, several pos. sible transpositions might be anticipated and varions trinary combinations actually exist.

1. The parallel shaft of the boring-har slides acculately in a groove exactly parallel with the bore ; the cutting-hlate is a small piece of steel affixed to the end of the half-round block, and the cut is advanced by a rack and pinion movement, actuated either by the descent of a constant weight or by an automatio motion derived from the prime mover. This is used in boring ordnance.
2. The cutter-bar sevolves without longitudinal motion on fixed centers, like a spindle in a lathe; the work is traversed longitudinally past the rotating cutter, being supported on a slide-rest. This mode requires that the cutter should measure between the supports twice the length of the work to be bored, and the cutter to be at the midlength of the bar.
3. The cutter-bar revolves and also slides with an endwise motion, the work being at jest : the bearings of the lar are frequently attached to some temporary support in the work to be hored, as, for instance, a cast-iron cross at each end of the cylinder. The crosses are bored exactly to fit the boring-ha, on of them carries the driving-gear, and the bar is thrust endwise by means of a screw moved by a latchet-wheel.

In another arrangement the boring- bar is mounted in head-stocks, much the same as a traversing mandrel ; the work is fixed to the bearers carrying the head-stocks, and the cutter is advanced by a screw. The screw is then moved by a ratchet-wheel, or by the hand of the workman, one tooth in each revolution ; or else by a system of differential wlieels, in which the external serew has a wheel, say, of 50 teeth, the internal screw a wheel of 51 teeth, and a pair of equal pinions dives these two screws continually, so that an adrance of $\frac{1}{50}$ of a tum of their screw, or their difference, is equally divided over one revolution of the cutter-lar, as in the feed-motion of the land-drilling machine with the differential feed. This method only requires the fixed bearings of the cutter-bar to be as much longer than the work as the length of the cutter-block, but the bar itself must be more than twice the length of the work, anl slides throigh the supports.
4. The boring-bar revolyes upon fixed bearings withont traveming, and it is ouly neelfal that the boring-bar should exceed the length of the work by the thickness of the cutter-block, of which it has commonly several of different diameters. The cutterhock, now sometimes 10 feet in diameter, traverses as a slide on a spline down a huge boring-bar B, whose diameter is about 30 inches. The motion of the cutter-hlock is caused by a side-screw, upon the end of which is a large wheel that engages in a small piniun fixed to the stationary center or predestal of the machine. With every revolution of the cutterbar, the great wheel is carried around the fixed pinion, and, supposing these to be as 10 to 1, the great wheel is mored $\frac{1}{10}$ of a turn, and imparts an equiva-
cutter-head revolving with and sliding on a mandrel a, which is in the axis of the cylinder. The cylinder L is secured to the bed A of the machine in exact confomity to the axial position of the mandrel a. The mandrel is a hollow iron tube with two opposite longitudinal slots, through which the action of the adrancing apparatus is communicated to the cutter-head f, which is sleeved upon the uandrel α. The cutter-head consists of two parts: a

Fig. 812.

sleeve K, which fits upon the mandrel, and a head f, which is secured upon the sleeve by werlges, and has cutters inserted into notches in its leriphery. The sleeve K^{-}slips longitudinally on the mandrel a, but is restrained from revolving on it by two transverse bars, which act as a spline, and also conuect the sleere with a rack-bar insile, by which its longitudinal motion is effected. The rack-bar rests upon a roller R, and is mored by a pinion 1 , to which is connected a lever-arm having a weight P on its end. The cutters haring been proved to revolve truly, the cutter-head is advanced, and is kept

Fig. 813

Cylinder Boret.
lent motion to the feed-screw that moves the cutterblock.

This machine was invented by George Wright when in the cmployment of Boulton and Watt, Birminghann, England.

A machine substantially the same, but with a different feed arrangement, is shown in the accompanying illustration.
The boring-machine (Figs. 811 and 812) has a
Fig. 811.

Cylinder Boring-Machine.

Sellers's Boring-Milu.

pressed against its work by the weight of the lever, which exerts a constant strain upon the rack. As soon as the lever has deseended, it is again raised by hand, and this is the only attention necessary.
5. The work is dogged to a rotating-table, and the cutter is advanced as in Sellers's boring-mill (Fig. 812). This is a heavy boring-machine for car-wheels and general work, fitted with universal chuck for all sizes up to 36 inches diameter, and capable of boring driving-wheels 6 feet in diameter; the cross-head for holding the boring-bar is connterbalanced and arranged with power-feed and quich hand-traverse in either direction; the sliding surfaces are kept clear of chips which fall through the face-plate as in mills where the bar is supported ahove, as in Fig. $\$ 14$.
A vertical boring-machine, expressly adapted for boring car-wheels, yet also available for many linds of miscellaneous boring. It is so made as to lie rearlily acljusted for tapue or parallel holes, has rack and pinion feed with counterbalanced har. For holding wheels or other work, a chuck is fitted to the bed, which retains the work in place while

Boring-Machine .
being operated upon by means of jaws of the proper shape, and moving independently of each other. These jaws are mate of wrought-iron case-hardened. The swing of the machine is lour feet.

Fig. 815 shows a boring-machine of medium size,

Fig. 815.

Boring-Machine. having a horizontal face-plate c on which the work is dogged. $a b$ are the nests of pulleys by which graduated speed is given to the boring-shaft d. The latter is ad. vanced to its work or retracted by means of the land-wheel g, or the automatic feed-arrangement h may be thrown into gear. k is the hantle acting upona pinion and rack, to raise or lower the table c. m is the beltshifter.

Another form of boring - machine, by which the turret of a " Monitor" may be bored within and turned off without, is described under Latie. Its hed is a face-plate on a vertical axis. The tools are hehl in a cross-slide, which is fitted to two uprights, resting on cheek-pieces bolted to the main casting or foundation-picce.
b. The borer is portable, and is dogged to the work.

The pmotable boring-machine (Fig. 816) is alapted to set vertically upon the work in cases where it is easier to holt the machine to the work than to dog the work in the machine. The base-plate A of the drill is bolted to the face of the wheel in the example given, and is rotated by bevel-gearing from the axle of the band-wheel H. The box D lolds the wheel on the drill-stack B, and the pinion which

Portable Boring-Machine.
drives it, and is supported by legs C on the bedplate. The feed is by means of an eccentric E and rod connected by an arm F^{F} to bevel-gearing which rotates the feed-screw, whose nut is swiveled in the top of the drill-stock. A elick G engages the ratchetwheel so as to hold the latter during the return motion of the arm F. The machine is slung by the tackle above when shifting its position.
7. (Wood-workiny.) A general difference in the style of the tools between those employed for wool and those for metal gives opportunity for distinguishing between the two classes of machines, although it must be admitted that the modes of propulsion in some machines of the respective classes are very similar, and that the boring bits for hard wood are mnch like the drills for metal.

The one are described as augers and bits; the other as drills.

- Fig. 817 represents a horizontal boring-machine

Fig. 817.

Horizontal Boring-Machine.
for carpenter's and machine shops, for pattern-makers, carriage, piano-l'orte, and all cabinet work, etc. The boring-shaft runs in stationary boxes; the table a, with stnff, slides up to the bit, and is raised and lowered by a screw and hand-wheel b, as desired. The boring and counter-shafts have cone-pulleys for a change of speed. These machines are arranged for augers with round or sipuare shanks.
The machine Fig. 818 is rery generally used for car work, and does a variety of boring without the
tion of bevel-gearing. The auger feeds it into the wood, but pressure can be brought thereon if necessary. The auger is raised vertically from the hole by throwing the rack at the side in gear with a whecl on the crank-shaft, and rotating the latter. The rack is thrown in and out by an eccentric; an arrangement patented by Stanley and Johnson, September 12, 1865.

Boring-machines of various kinds are in use in bedstead, furniture, and other manufactories. In some cases the bits or augers are arranged in gangs in a gate or slide, which is slipped forward towards the work, making a whole row of holes of a giveu depth. This is the plan in making the holes in the round bedstead-rails for the reception of the pegs which hold the ropes.
The boring-machine for block-making consists of an iron frame a, in which the juggle b is clamped by a screw, which confines it while the borers $c d$ act upon it. These borers are center-bits, and act at right angles to each other, $-c$ to form the
trouble of setting out for the work. The carriage a is 12 feet long by 1 foot wide, is raised and lowered by a crank-shaft b, and serews $c c$, to bring the work to the right position with the bit d, and is held in place on the rear side of the frame. The bit is drawn up to the work by a bowed handle g on the front end of a boring shaft-slide. The timber laid upon the carriage is moved horizontally on iron rolls e, to finish the work. The counter-shaft has tight and loose pulleys.
8. The carpenter's boring-machine simplifies the business of making mortises by boring a hole perpendicularly ior at any required angle. The anger is rotated by the doulle-crank shaft and the interven-

Fig. 819.

[^6]hole for the sheave-pin, and d to form a commencement for the mortise to contain the sheave. Each bit is lixed in a lathe-head e c, and driven by a band. The head slides upon ways, so as to leed up to the work, being advanced by a lever. The ways have a certain lateral and vertical adjustability so as to work at the required angle and hight.

Fig. 820.

Boring-Machine.
Bor'ing-ta'ble. The platform of a boring-ma. chine on which the work is laid.

Bor'ing-tool. (Metal-working.) A cutting-tool placed in a cutter-head to dress round holes.

Bort. (Diamond-cutting.) Small fragments of diamond, split from diamonds in ronghly redncing them to shape, and of a size too small for jewelry. Bort is reduced to dust in a mortar, and used for grinding and polishing.

Bo'shah. (Fubric.) A Turkish-made silk handkerehief.

Bosh'es. (Mctollurgy.) The sloping sides of the lower part of a bast-furnace, whieh gralually contract from the belly, of widest part of the furmace, to the hearth.

In a furnace 55 feet high and 38 feet wide at the base of the structure, the boshes will be 8 feet in per-
 pendicular hight, 12 feet wide at top (M), and $2 \frac{1}{2}$ feet at the bottom (L), where they join the heartl. The boshes are built of a coarse-gritted freestone, abounding insmall nodules ol" quartz.

The eut represents the hearth $I I$ and boshes B in a rertical side-section. a is the tymp-store and b the tymp-plate for confining the molten metal in the hearth. This plate, in comnection witl the protecting stone α, forms the front of the hearth, and is firmly wedged into the side-walls thereof. c is the damstone which oceupies the whole breadth at the bottom of the hearth, excepting about six inches, whieh space, when the furnatee is at work, is filled before every cast with a strong binding sand. This stone is faced outsicle by a strong east-iron plate d, called a dam-plati. Thie space under the tymp-plate is rammed full, for every cast, with stiong, loamy earth or fine clay, - a process called tymp-stopping.

A number of newly inventer puddlling and boiling furnaces have iron Hoors and boshes. A current of water is cansed to cirenlate in them to prevent destruction of the iron under the extreme heat.

BAKER's pudlling-furnace has a hollow cast-iron bed-plate and bosh, tlrough which water is conducted.

W'illiams's furnace las hollow bridges with airchambers and water-boshes.

Ifall's furutec has tire-brick mound the iron bed against which jets of water are injected from tubes.

SNruen's furuce has a wrought-iron benl-plate witl brick boshes.

Whipree's furnace lias a cloulble bottom of iron. The lower plate is comugated. Water conducted into the hollow bed and boshes is converted into steam and conducted away.

In Fig. 822 the bosh is cast upon wronght-iron bipes which will afford circulation for water to cool and preserve the bosh. The water-chamber bencatl

Fig. 822.

Puddling- Furnace
has the same rffect. The front plate is attached by toncores and grooves to the bosh, and the fore-plate similarly attacher in the front plates.

The material which is banked up against the
boshes to protect them from the heat is called fuciny. It consists of serapand ore, and receives a preliminary uelting. One composition for fixing furnaces consists of tinely pulverized ore and German clay wute into a paste ; and another for the same jurpose is a paste mate by grinding the ore and remdering it plastic by muistening and working. Bull-doy (Fr. trochi) is a decomposed protosilicate of iron used in England and France for this purpose.

Ghout's cupola and bast-ficrnace, instead of lirebrick lining to the hearth, has hollow east-iron boshes united by flanges, forming chambers g, so arranged that a current of cold water nuay flow

Fig. 823.

Blast-Furnace Iron Boshes.
through them, clispensing with an internal lining of fire-hrick or other refractory substance.
These chambers are so arranged that they may be removed without disturbing the superior brickwork.
Bo'som. (Milling.) A recess or slelving depression romad tho aye of it mill-stone.
Bo'som-fold'er. A plaiting machine or device for laying a fabric in flat folds, snitable for a shirtbosom.
Boss. 1. (Nachincry.) a. An elevated or thickenel pertion, usually around an aperture.
6. A swage or stump used in shaping slieet-metal.
2. (Architecture.) In Gothic architecture, the protulserance in a vanlted ceiling formed by the junction of the ends of several ribs, and serving to bind them together; usually elaborately earved and ornamented.
3. (Nasonry.) ". A mortar-bucket slung by a hook from the round of a laider.
b. A short trough for holling mortar. Hung from the laths and used in tiling a roof.
4. (Surlllery.) The enlagement at the junction of the brench of a brille-bit with the monthpiece.
5. (Orduence.) A phate of cast-iron secured to the back of the hearth of a traveling-forge.
6. (Booklinding.) A metallic ornament on a book side to receive the wear.

Bos'sage. (.Irchitcture.) Projecting stones, such as quoins, corbels, roughed out before insertion, to be timished in situ.
Bos'sing. (Iorcelain.) fround-laying the surface of preelain in an unfinished state, to form a basis of alherence for the color, which is deposited by the pencil, by cotton-ecool, or by stencil, according to the mole. The lossing is a coat of boiled oil, to hohit the color. The oil is expelled by the heat of the enamel-kihn, and the color vitrified.

The bussiny is laid on with a hair-pencil, and leveled with a loss of soft leather.

Bott'ger-ware. The white porcelain of Dresden. Made originally by Bottger, of Saxony, in imitation of the Chinese. It is nor made in the old castle, once the residence of the saxon puinces, at M -issen on the Elbe, 15 miles below Dresden.

Bott-ham'mer. (F/ux.) A wooden mallet with a fluted face, used in hreaking. Hax upon the floor to remove the boon.
Bot'ting. (Metullurgy.) Restopping the tap-ping-hole of a furnace after a part of its charge has bern allowed to thow therefrom. The ping is a conical muss of clay on the end of a wooden bar.
Bot'tle. A ressel with a relatively small neck, and adapted to hohl liquids. In ancient times they were made of leather. The Psalmist declares he has "hecome like a bottle in the smoke," that is, shriveled and wrinkled. It is also advised by the Savior, -a metaphysieal meaning being couched in the words, - not to put new wine into old bottles, as they could not withstand the action of fermentation.

The skin-bottles of the Eastare made of goat-skins; when the animal is butchered, its head and feet are cut ofi, and the skia drawn off without ripping. In Arabia it is tanned with acacia bark, the hair being left on the outside. The several openings are sewn up, and the neck, which serves as a spout, is tied. Such hottles were used by the Greeks, Esyptians, and Romans, being mentioned by Homer, Herolotus, and Virgil. They are also used to the present day in spain and Sicily, and other Mediterranean countries; they are called borruches in Spain, and the peculiar Havor of marsala and some other wines is attributed to the skins in which they were originally brought to market.

Bottles of earthenware are nsually made with handles, and are ealled flasks. Cast-iron botthes, elosed by a screw-plug, are used for holding quicksilver. Glass is, however, the material almost universally employed in the bottle manufacture. it is generally of the coarsest anl commonest kind, made from inferior materials; in fact, the use of any otliers for the purpuse was prolnibited in England until a comparatively recent period. Six persons are employed in the necessary manipulations; one of whom

Fig 824.

Skin-Sottles.
dips the red-hot end of an iron tube into the pot of molten glass, turns the rod around so as to suround it with glass, lifts it out to cool a little, then dips and turns it around again, and so on until he has collected a ball of sufficient size to form the required bottle. He then hands it to the blower, who rolls the plastic lump of glass on a smooth stone or castiron plate until le luings it to the very end of the
tube, forming a pear-shaped lump, when he introduces it into an open brass or cast-iron mold, which he shuts togetber by pressing a pedal with his foot, and, holding the tibe vertically, blows throngh it, expanding the glass so as to fill the concavity of the mold. Lion removing his foot from the pedal the two halves of the mold open, turning upon a hinge at the bottom. The bottle is then removed and handed to the finisher, who, by tonching the tubular neck of glass by which the bottle adheres to the pipe, cracks it ofl smoothly at the mouth; the finished bottles are then placed in the annealing - furnace and allowed to cool slowly for twenty: four hours or more.
Thiskind of mold produces a seam down each side of the bottle, causing a ratber unsightly appearance. See

Peruvian Bottle. Glass.
Glass bottles were known to the Fomans of the Empire, and are found in Pompeii.

A glass bottle with a capacity of 112 gallons was blown at Leith, in Scotland, about 1747 .

Fig. 825 shows an earthen bottle from Pern, with

Earthenware Bottles.
two faces. Tbe sectional niew shows the shape of the neek and handle.
Fig. 826shóws Fig. 827. a number of ancient battles.
$a b c$ are from

Thebes.

d is Etruscan.
e is from Clina.
fromancient Egyt.
Bot'tle-boot. A
leather case to hold a bottle while corking.

Bot'tle-brush'ing Ma-chine'. A device for cleansing the interior of battles. The brushes, fixed on a rotating shaft, are inserted into the bottles, and rotation imparted by means of the treadle \dot{b}. The operator may take a bottle in each hand, cleansing two at once.

Bottte-Brushing Machine.

Bot'tle-case Loom. A machine in which the wieker cover is phater upon demijohns and carboys. This is, howevel, almost contirely done by hand, and is the work of a basket-maker.

Bot'tle-charg'er. An apparatus for charging bottles with a lipuid under pressure, as, for instance, with air containing carbonie acid, and with a graduated amount of syrup. $\&$ is the vessel containing the aerated water ; b the syrup-cup; c a pipe equalizing the pressure in the vessels a and b. The size of the onening leading from the cap b to the common nozzle d is aljustable, and e is the handle of the faucet by which the liquid is discharged.

Bot'tle-fau'cet. A faucet adapted to the usees of a bottle, as in the illustration, where it has a threaded hollow Botte-Frucet. sten to transtix the cork.
Bot'tle-fill'er. See Bottling-appalatus.
Bot'tle-glass. Bottle-glass is composed of cheap sand and alkali, and the manufacture has nothing special about it. Bottles were formerly male by blowing ame rolling, but since the introduction of presses, blowing and molding have been combined. The mass of molten glass at the ene of the tube (ponfil) is iuserted in an iron mold, which gives the external form, white the hollowness is produced by blowing through the tube.
The alkalie's used are wool ashes and common salt. Common samd, fas lime, clay, and the refuse lime and alkali after the manufacture of soap, enter into the composition of frit for bottle-glass.

Beer and wine bottles are blown in a mold. Carboys are blown by the aill of steam, which is prolnced by spirting a mouthful of water through the blowingtube, the end of the fulse being covered by the thumb.

Bot'tle-hold'er. An aljustable tool for grasp-
Fig. 830.

Botle-Molder. ing the bottle by its base while finishing the top.

The Jisk b is attachable to the purty-rod, and slotted radially to receive the clamis c c, which are adjusted to varinus sizes of bottles; the inner faces of the clamps may be either flat or curved, to suit them to hold bottles of rarying shapes and sizes.

Sce cut under Glass.
Bot'tle-jack. 1. (Culinary.) A rousting-jack of a botthe shater, suspended in front of a fire, and giving a reciprocating rotation to the meat whiel depends therefrom. It is operated by clock-work mechanism.
2. A form of lifting-jack, so called from its resembling a bottle in shape.

Bot'tle-mold'ing. (Glass.) A process adopted with most kinls of merchantable bottles of staple kinds. The lulb of glass on the end of the bowtube is partially exparded, and then placed between the parts of an iron moll which is open to receive it. The parts are closed and locked, and the bulb then expanded by the breath to completely fill the mold.
In 1822, lickets, of Bristol, England, obtained a pratent for a bottle-mollingapraratus, comprising a frume for holding and operating a bottle-mold. The nokl consisted of a die for forming the body of the bottle, a two-part die for forming its top, and a plunger for slaping its bottom ; these are reciprocated by means of treathes and levcrs. The frame is adapted to be used with dies of varions sizes and shanes. The molten glass is blown out, so as to fill the mold in the ordinary way.

Bot'tle-pump. A device for withdrawing the fluid contents of a vessel without pouring. That illustrated comprises an elastic bulb A, having air induction and eduction apertures E B, provided witl valves and a curved pipe I, whose longer branch is inserted into the neck of the bottle, the orifice of which is closed by the plug B. Compressing the elastic bulb drives
 air into the bottle, and expels the liquid through the pipe and nozzle.

Bot'tle-rack. The rests are so arranged that by inserting the bottles altemately neck and butt, a greater number may be stored within a given space. The hinged frame is for the purpose of securing the bottles in place during transportation.

Fig. 832.

Bottle-Iach.

Bot'tle-screw. A rorkscrew.

Bot'tle, Si'phon. A bottle having a tube which disclarges the contents by a pipe which reaches nearly to the bottom, so as to eject liquil, as long as any remains, ummixed with the air. See Figs. 46, 48, рр. 18, 19.

Bot'tle-stop'per. A device for clasing the inoutlis of bottles. It usually consists of a cork and a nutins of holding it in place against the pressure of the bottle's contents.

In some cases a composition is substituted for the cork.

the cork, and does not tend materially to expel it. The cork may be ejected by a push, without a corkscrew.
e is a hollow rubher ball, driven by the pressure of gas against the inside of the neck. Remaved by pressure of a rod, and Hoats on the liquid.
f is a method of tying champagne corks.
g is a bottle haring a neek molded with an interior annular recess, filled by a pracking-ing against which a glass ball is sustained by pressure of the gas.
h is a screw-fancet which lias a packing against the lower end, which is depressed against a seat.
i is a simple bottle-fancet or one-way cock. It is opened by a key.
k is a glass rod which carries a ${ }^{\text {racking }}$ around its enlarged hearl ; one of its tapering ends guides it into its prosition in the neck of the bottle.
l is a hinged wire bail beut into U-form, so as to be swung up on to the cork while the latter is leek by the plunger of the bottling-nachine.
m is a rubber stopper, hinged on one side, and held on the other by a catch.
n is a glass ball, seated on the lip by gravity, and restrained by a cage when the battle is tilted to discharge the liguid.
o is a stopper of rubber compressed betweell two disks brought together by a screw, and thus expranded against the inside of the neck.
p is a bail linged ly a collar around the bottle-neck, and haring a screw which compresses the rubberfaced cap.

Fig. 834.

Bot'tle-wash'er. A device for cleansing the interior of bottles. The example consists of a table having apertures B for the insertion of the necks of the bottles, into which water is forced by means of pipes provided with nozzles D.
In another form of the machine the bottles are placed in a horizontal position between base-phates coated with india-rubber and stoppers of the same material. Being previously abont one third filled with shot, eight bottles are arranged in a circle around a horizontal spindle, and eight more in a second group, around the sanue spindle. A rapid reciprocating motion is then given to the spindle, which also turns on its axis, so as to bring all parts of the

Setling-Machine.

bottle successively into the lowest position. Thus 16 bottles are washed at once, and at the rate of 45 gross per day. An marged form of the machine is used for kegs and barrels.

Bot'tling-ma-chine'. A machine for filling bottles and corking them. The example (Fig. S34) is constructed to till with soda-water or wiţi sodiawater and syruj combinei. It first injeets a gradnated amome of syrup into the bottle, and then the water.

In Fig. 836 is shown a bottling-machine in which the bottle stants in in metalic cap, and the lip is

centered by the pressure upon it of an inverted funnel, depressed by a spring. The liquil is introluced at the fancet, anl the cork is driven in through the vertical tube.

Bot'tling-pli'ers. Pliers specifically adapterl for fastening wires over the corks and necks of hotties and for eutting off the surplus.

Bot'tom. 1. (Fort.) A circular disk with holes to holl the rolls in the formation of a gabion.
2. (Shipuribltimy.) The planks forming the floor of a ship's hold.
3. (Ordnance.) One of the plates by which grape or canister is built up into a cylimer suitable for loading into the gma. Cast-iron tops and bottoms for grape; wrought-iron for canister.
4. (Machinery.) Cogs are said to bottom when their tops impinge upon the periphery of the coacting wheel.

A piston which strikes or touches the end of its cylinder is said to bottom.

Bot'tom-dis'charge Water-wheel. A turhine from which the water is dischargend at the hottom instead of at the siles. In that illustrated, the strean is admitted horizontally at the sides into the vertical huekets C, through which it passes, and then acts while descembing upon inclined buekets F. The lower flow descends over the inclined buckets E at the periphery of the wheel. The halanced gates li, for aimittance of water, are opened by segmental raeks on their shatts, which engage with similar racks on an upper wheel.
Bot'tom-heat. Artificial temperature heneath the surface of the suil in a foreing-house.

Bot'tom-ing. 1. (Ciril Enyineering.) The foundation wh a road-bed.
2. (Ruihrod Engincring.) Ballasting beneath and aromed ties.

Bot'tom-ing-hole. (Gluss-making.) The open mouth of a furnace at whieh a globe of croun gless is exposed during the progress of its manulacture, in order to soften it and allow it to assume an ohlate form.

Bot'tom-lift. (Nining.) The deepest lift of a mining-pump, or the lowest pump.

Bot'tom-plate. (Printing.) A plate of iron belongng to the moll of a printing-press, on which the carriage is fixed.

Bot'toms. 1. (Mining.) The deepest workings.
2. (Netullurgy.) Heary and impure metallic products of refining, found at the bottom of the furnace in some of the stages of the copper-sinelting processes.

Bot'tom-tool. (Food-furning.) A turningtool having a bent-over end, for cutting out the bottoms of cylindrical hollow work.

Bouche. A cylinder of copper in which the rent of a piece of orinance is chilled. It has an exterior serew-threal cut on it, so that it may be removed when the vent becomes worn, or a new bouche substituted.
Bouch/ing. The gun-metai husling of a blocksheave aromid the jin-hole.
Bouge; Bowge. (Nantical.) A rople fastened to the middle of a sail to make it stand closer to the wind.

Bou-gie'. (Surgical.) A smootl, tlexibie, elastic, slender cylinder, designeal to be introduced into the uretha, rectum, or esophagus, in order to open or dilate it in cases of stricture or other diseases.

Fig. 838.

The slenderer forms of bougies are aulapted for the urethra, the larger for the rectum, varina, and esonhagus. They are said to have been invented by Aldereto, a Portugnese physician, and were first deseribed by Amatus, one of his pupils, in 1554 . They are mate cither solid or hollow, and are sometimes medieated. l'ickel, a Frencla medical professor, gives the following recipe for their manufacture: 3 parts of hoiled linsect-oil, 1 of amber, and 1 of oil of turpentime, are to be melterl and well mixed together, and spread at three successive intervals upon a silk cond or weh. The pieces thus coated are then to be placed in a stove heatel to $150^{\circ} \mathrm{F}$., and allowed to remain for 12 hours, 15 or 16 fresla layers of the composition being
added in succession until the bougies are bought to the required size. They are next polished wich pumice-stone, and afterwards smoothed with tripoli and oil. In Paris, which is the chief seat of the manufacture of these articles, one seventh of its weight of caontehone is dissolved in the oil, to render the compound more solid. For this purpose the caontchonc is cut into slender filaments and added to the hot oil. Each successive layer is first dried in a stove, and then in the opeln air, before another is applied. For the best, or clustic bongies, the process requires two months for its completion; these should bear twisting around the finger without cracking or scaling, and le capahle of stretching withont giving way, but retract on being let go.

For hullow bougies an iron wire is introduced into the axis of the silk tissue, and withdrawn when the boughe is finished. Some are mate with a hollow axis of tin foil rolled into a hollow tube. They are also made entirely of caoutchoue, dissolved in snlphuric ether.

An armed bougic is one with a piece of caustic fixell in its extremity.

Huvrer's bougie is a ralled piece of saft linen dipped, previous to rolling, in a composition of

Tellow wax
2
hed lead.
3
Olive-oil
6
Finish off on a polished slab.
Cantchone hougies are made by applying a solution of india-rubber to the silk cord.

Gutta-pereha bougies must be made of the best material, as their breaking in situ may prove fatal. It is better to use a silk cord, covered with the desired composition.

Orns's bougie ib boule (c) has a rounded and elongated head fixed on the stem, which slides through a handle and is held fast by a set screw.
$"$ is an ordinary bougie.
b a bulhous bougie.
Boul'der-head. (Hydrautic Engineering.) A work of womlen stakes to resist the encroachment of the sea.

Boul'der-ing-stone. (Mctal-working.) A smooth Hint stonc, used by cutlers to smooth down the faces of gluzers and emery-wheels.

Boul'der-pav'ing. Paving with round waterworn boulders, set on a graded bottom of gravel.

Boul'der-wall. (Musonry.) One made of boutlers or Hints set in mortar.

Boul'tine. (Architecture.) A convex molding, whose periphery is a quarter of a circle, next below the plinth in the Doric and Tuscan orders.

Bound. The path of a shot comprised between two gruzes. See Ricochet-fiming.
Boun'da-ry-line. (shipbuilding.) The trace of the outer surface of the skin of a ship on the stem, keel, and stern-post. It corresponds with the outer edge of the rable:t in those parts of the structure.

Bour'don Ba-rom'e-ter. The metallic barometer invented by Bourdon, of Paris, 1849, consists of an elastic flattened tube of moctal bent to a cireular form and exhausted of air, so that the ends of the tubes separate as the atmospheric pressure is diminished, and approach as it increases.

In Fig. S39, A is a front view, showing the hant or indicator a and the scale; b and c represent ordinary mercurial thermometers attached to the face. B is a back view, showing l, the tube, securel at its midulle c, and having its ends connected by hinks $f f$ to two short levers $g g$, on the same axis as the hand a, and operating, by means of the link-connections, to multiply its motion as the ends of the tulues

Fig. 839.

approach or recede. h is an open plate which may be sprung apart, so as to allow the adjustment of the levers ant hand to any particutar range.
C is a transverse vertical section.
D represtants sections of varions tubes which may be employed.

The more approved forms of steam and vacuum gages are now constructed on this principle.

The Bourdon is commonly known as the metallic barometer, although the ancroid is also metallic, and both henlusteric.

Bour-geois'. (Printing.) A size of type between Brevier and Long Priner.

Brevier, 112 ems to the foot.
Bourgeois, 102 ams to the foot.
Long Primer, 90 ems to the foot.
Bou-tant'. (Architcclure.) An are-boutant is an arch or buttress serving to sustain a vault, and which is itself sustained by some strong wall or nuassive pile. A flyiug-buttress.

Bow. 1. (Archery.) An instrument for projecting an arrow. It consists of a strip of wood or other material, the euds connectell by a string. The bow is bent by retaraction of the string, and the recoil imparted to the latter projerts the arrow. In its simple state, and when large enough to be used for military purposes or for ilestroying large animals, it is known as the long-bow; when mountell transversely in a stock, it is a cross-bow. The former is exclusively adapted for shooting arrows ; while holts, or even round projectiles, may le thrown by the latter.

The long-bow, owing to its greater portability and capability of rapid discharge, was a much more effective weapon than the cross-bow, anl continued in use for a long time after the intronnction of fire-arms. The English archers, like the Egyptians in the time of Rameses the Great, were tanglit to draw the arrow to the ear, instead of to the shoulder, as was the practice elsewhere, and hence constituted a most effective species of force ahmost nuknown in the other arnies of Europe. 220 yards from the hatt or target
was the smallest distance allowed for practice by a full-grown man, according to the English archerystatutes. Tha cross-bow, as used by the Genoese, whose arehers were in high repute in the Middle Ages, was a cumbrons and leavy weapon bent by a small windlass, and incapable of rapid loading and discharge.

For illustrations see "I conographic Encyclopedia," "Frost's Pictorial History"; and lor descriptions see "Gibbon's History" and other works treating of ancient and mediæval military tactics and weapons.

The use of the bow is of great antiquity. Plato eredits $A \ldots 1 l o$ with the invention. 1shmael became an archer (Gen. xxi. 20). The Philistine archers overcame Saul (1 Sam. xxxi. 3). David commanded it to be tanght (? Sam. i, 18). Aster of Amphipolis shot Philip of Macedon, and was hanged therefor. An ancient Egyptian bow is preserved in the Abbott Museum, New York, together with the leather case that contained it and fastened it to the war-chariot. Four arrows, male of reed and tipped with flint-stone, are suspended with it.

The Scythian bow was remarkable for its great curvature, being nearly semicircular.

The Lycian bow was made ol the cornel-tree; those of the Ethiopians of the palm-tree. The horn of the antelope was used in the East for bows, at least as far back as the siege of Troy, and is still employed for the purpose. The English Jong-bow was made of yew or aslo.

The Indian contingent of the army of Xerxes lad hows of cane and arrows of cane with iron points. They wore cotton dresses. (Herodotus vii. 65.)

The arrow-heads of the Ethiopians were of agate and other siliceous ston+s. "Pieces of stone of the kind used in engraving seals."- Ibid.

The bows of the Ethiopians were of the stem of the palm-leaf.

Pliny says: "It is lyy the aid of the reed that the nations of the East decide their wars. Fully one half of mankind live under a dominion imposed by the agency of tle arrow." The Eastern reed, so ealled, was a banboo.

Harold, William Rufns, and Richard I. were killed by amows. Crecy, Poictiers, and Agincont were wou by arehers. The long-how of that time measured six feet, the arrow three feet. The range was 300 to 500 yards.

In the Southw'st of England bows and arrows did not fimally disappear from the muster-roll till 1599. The muskets were such miserable affairs that in the middle of the tifteenth century it took fifteen minutes to charge and fire one.
2. (Insbundry.) The bent piece which embraves the neek of an ox, the ends coming up through the yoke, ahove which they are fistened by a key.
3. (.Mechinery.) An elastic rod and string for giving reciprocating rotation to a drill. See BowDRELL.
4. (Drawing.) An elastic slip for describing curves. An arcogruph.
5. (Het-making.) A piece of elastic wood, six feet long, and having a catgut string stretched between its extremities. The vibrating string operates npon the felting-liair on a gid called a hurdle, lightens up the fibers, assembles them into a bat, and drives out the dust. See Bowist.
6. (Nresonry.) A projecting portion of a buikding of circulat or multangnlar plan.

The bow-windows of English domestic architecture are known as orichs.
7. (Vrhiches.) A bunt slat to shlport the hood,
canopy, cover, or tilt of a velicle ; otherwise called a slat.
8. (Music.) A number of long horse-hairs stretehed upon an elastic roul, and used to vibrate the strings of instruments of the viol class.
9. (Lock.) The loop of a key which receives the fingers.
10. (Weapon.) The arelied guard of a sword-hilt or of the trigger of a fire-arm.
11. (Siuldlery.) The arehed forward part of a saddle-tree which stratddes the horse's back.
12. (Ninuticul.) An old nantical instrmment for taking angles. It had one large graduated are of 90°, three vanes, and a shank or staff. - Abminint. SMソти.

Bow. The fore ent of a ship or boat.
Bow-com'pass. (I/uthematical Instrmment.) For drawing curves of large radius. It consists of a pliahle strip which is bent by sorews to any curve. An cercogrenh .

Bow-drill. A drill operated by means of a bow, the cord of which is given one or more turns around the handle of the drill, and alternate revolution in opposite directions imparted to it by alternately reciprocating the bow backward and forward.

The most ancient drill of which we lave any authentic representation is the bow-drill. The annexed cut is from a painting in a tomb at Thebes, where one drill is shown in its detachable socket, and another one discommected. Su much pains did the artist

take to make all phain to the comprehension of the spectator of future agges. It was for such they were painted, as the tombs themselves were occupied by the mortal remains which they expected to be again tenanted ly the same mind and soul.
The various tools employed in chair-making are shown in the hands of the workmen or hanging on the wall. The saw and the adze were the principal shaping-tools. The parts of the elair were sccured together by tenon and mortise, fastened by wooden pins. See the chairs in Dr. Abbott's collection, New

Fig. 841.

Bore- Drills

York Historical Society's Museum, The same collection has drill-bows and cords from Nakkarah and Hsewhere.
The modern bow-drill is shown in Figs. 841, 842. a in each figure is designed to have a back-center in one of the holes in the end of the vise-clieek, in which case the work is held in the left hand and the bow

Fig. 842.

Bow- Drills.
in the right ; or the drill-stock may have a handle b which is grasped in the left hand, jressing the drill upon the work, which is on the bench or in the vise, while the bow is operated by the right hand.

Freemax's drill, instead

Bou-Drill. of a bow, has a flat strip of wood with a facing of indiarubber, which has sufticient frictional adhesion to the wooden pulley on the drillstock to rotate it by pressure, when the flat strip is reciproeated like a violin bov.
Fig. 843 shows a pair of pulleys driven by a catgut cord as the bow is reciprocated. The bow - string is wound around one of the pulleys, and the axis of the other is a stock which holds the drill a, and enables it to be presented at right angles to the length of the stock.

Bow'er. (Nautical.) The usual working-anchors at the bow, known as best and small; not from any difference in size, but according to position. The sturborerd is the best; the port, the small. Admiral Smyth.

Bow-fast. (Nautical.) A hawser at the bow, whereby a ship is secured alongside a wharf or other object.

Bow-file. A curved file. A Riffer.
Bow-grace. (Noutical.) Or Bon-grace. A fenler made of junk and ropes, lapping around the bow as a protection agamst floating ice.

Bow'ie-knife. A weapon used in the South and Southwest, and named after the inventor, who had a taste in that direction, and strongly insisted upon its superionity to the ordinary stiletto.

Bow'ing. (Hat-nuzking.) A mode of separating the filaments of felting-fur, and distributing them lightly in an openwork frane, called a brasket. The oval sheet of fur thus obtained is worked by pressure, and a rubbing jerking motion, which canses the fibers to interlace (felt), so that the sheet of napping can be handled and shaped by the succeeding provesses.

In bowing, the amount of fur is weighed out, placed in a wad on the bench, and, the bow being held over it, the string is twanged by a woorlen pin in the hand of the workman, so as to pick upa quantity of the filaments at each vibration, and throw them on to the buskel, or wire screen.

Bow-in'stru-ments. (Music.) A term inchding that class of stringed instruments which are played hy means of a bow. The violin, violoncello, donble bass, etc.

Another class of stringed instruments is played by the fingers or plectrum ; as the gnitar, harp, harpsichord, etc.

Another class is represented by the piano-forte and dulcimer, the strings being vibrated by a hammer.

Another by the air ; as the æölian.
Bow-i'ron. (Vchicle.) The staple on the side
Fig. 845.

Bow-Iron.
of a wagon-bed which receives the bows of the tilt or cover, as in Fig. 845.

Bowk'ing. The process of boiling in an alkaline lye in a kier. Bucking.

Bowl. (Knitting-machine.) A roller or antifriction wheel, on which the carriage traverses. A truck, in Nottingham parlance.

1. An open vessel of semmental or frusto-conical form, for containing liquids; larger and proportionately less deep than a cup.
"The Thibetans have no porcelain, but their potteries are, nevertheless, of greatexcellence. The wooden bowls, which every one carries, are made of the root of certain trees which grow on the mountains of Thibet. They are of a simple but elegant form, and have no other lecoration than a slight coating of
rarnish, which dom not hide pither the natural contor or the veius of the wood. Some of these bowls may be purchased for a few prence, and others are valued at one hundred ounces of silver. To us they seemed all alike. They say that some have the power of neutralizing poisons." (Abbé Hnc's "Travels in Tartary," ete.) Each Tartar carries his bowl in the bosom of his robe.
2. The hollow open part of anything, as of a spoon, a tobacco-pipe, etc.
3. A ball ; more particularly, a large wooden ball used in the sport of bowling.
Bow/line. (Jautical.) A rope connected by brid'es to the middle of the lecel of a sepuare sail, and passing forward, so as to keep the weather-edge of the sail well forward when sailing cluse-hualed, and enable the ship to come nearer to the wind. On a bourline: sailing close or close-hereled.
Bow'line-bri'dle. (Atuuticul.) The span which connects the howline to several cringles on the leech of a square sail.
Bow'line-knot. (Nrutical.) A peculiar knot by whieh howline-bridles are fastened to the cringles. Sre Kivir.
Bow-lines. (Shipbuilding.) Curres representing vertical sections of the bow-end of a ship.

Bowl-ma-chine'. A machine for making wooden bowls.

The soliel cylindrical blank is clutched by the rear end in the lathe, and its forward end turus in the

Fig. 846.

Boul-Machine.
cylindrical rest E, which is arljustable longitudinally, and gives fulcrum-bearing to the lover F carrying the curved cutting-tool G. The blank is rotated and the bowl ent by sweeping the lever around a curve of 90°. The necessarily increased thickness of the bottomgivesopportunity to remove a planoconvex disk to form a flattened bottom.

Bow-net. (Nautieal.) A lobster-trap made of two round wickerbaskets, one thrust within the other, and having a lip to oppose the re. turn of the fish.

Bow-pen. (Muthematien) Instrument.) A form of com-
passes for the finer and more minute parts of mechanical and arehitectural drawing. The legs are opened ly the elasticity of the bow, as the nut $/$ is receded on the screw b, and are approached by the contrary motion of the nut. It is a small pair of compasses, and may be of similar construction to the larger; that is, the legs may be united by a rivet, dispensing with the bow. Some of them have shifting legr, so as to substitute pen, pencil, the ordinary point, or the needle-point. They then lack all the specialties of the bow-jen except size.
C (Fig. 847) shows a revolving bow pen and pencil, so called, although the bow is absent. The pen c and pencil d are at the respective ends of a leg which rotates on an axis c to bring either into position.
A is a spring bow-pen.
B a spring bor-peneil.
Bow-pen'cil. A form of compasses of the smaller kind which are capable of delicate adjustment for describing minute circles and ares of small radius. The mode of adjustment is similar to the bow-pen. It is also tolerably evident from the tigure. A black lead-pencil pared down to a small size, or the lead from a pencil, is clamped in the socket, and is advanced as it wears or is shaved away in sharpening. See Bow-ren, B.

Bow-pin. (Husbandry.) A cotter or key for holding in place the bow of an ox-yoke.

Bow-saw. A saw having a thin blade, kept taut by a straining frame in the mamer of a bow and string. A suecp-sule or turning-saw. See Framesaw.
Bow'sprit. (N'untical.) A spar projecting forward from the bow's of a vessel. It supports the jibboom and flying jib-boom, and to it and these spars the fore-stay, fore topmast-stay, etc., are secured. It is tied down by the bobstays and by the gammoning. It is stayed laterally by the bousprit-shrouds. It rests upon the stem and the ctpron.
The part which rests on the stem is the bed ; the inner part from that point is the housing; the inner end is the lucel; the outer end the hcad or bees-seating.

The gammoning is the lasbing by which the bowsprit is secured to the knee of the head.

The murtingale is a spar depending from the bow-sprit-end, and is used for reeving the stays.

The heel-ehain is for holding out the jib-boom, and the crupper-chuin for lashing it down to the bowsprit. The bowsprit has -

Heel.	Bobstays.
Head.	Shrouls.
Fiddle or bees.	Arartingale.
Choch.	Dolphin-striker.
Ganmoniug.	

anmoning.
Bowsprits are standing, that is, permanent, as in large vessels or sloops ; or running-in bowsprits, as in entters.

Bow-string Bridge. One in which the horizontal thrust of the arch or trussed beam is resisted by means of a horizontal tie attached as nearly as possible to the chord-line of the arch.

Girders and beams have also been constrncted in the same way. The arched-beam roof of the New York and Harlem Railway Depot, New York, illustrated opposite to page 139, is of this character.
The roadway forms a chord, and is supported by tension-rods from the arches which span the space between abutments.

The Howslett bridge, erected by Mr. Leather, has a span of 152 feet; versed sine, 33 feet; hight above water, 43 feet; width, 33 feet ; cost, $£ 4,200$.

Fig. 84 S.

Bow-String Bridge at Howslett, England.

Bow-string Gird'er. A bnw-string girder consists of an arched beam resisting thrust; a horizontal tie resisting tension and holding together the ends of the arched rib; a series of vertical suspend-ing-bars by which the platform is hung from the arched rib; ant a series of diagonal braces between the suspending bars. See previous article.

Bow'tel. (Architcture.) The shaft of a clustered pillar, or a shaft attached to the jambs of a door or window.
Bow'tell. (Architccturc.) A plain eircular molding.

Box. A receptacle in which something else is held or contained, frequently deriving its specific name from the article it is intended to contain; sometimes from its mechanical purpose or association, or its material.

Axle-box.

Ballot-box.
Cartridge-box.
Fare-box.
Fruit-box.
Hat-box.
Jourual-box.
Letter-box.
Match-bos.
Paper-box.

Pepper-box.

Plant-box.
Post-office hox.
Railway-car axle-box.
Resistance-box.
Signal-box.
Stuffing-box.
Thread-box.
Ticket-box.
Wheel-hub box.

The more important of these will be considered under their alphabetical heads.
The boxes of ancient Egypt were made with great neatness, the lids being hinged in varions ways and well fitted. In the Abbott Museum, New York City, and in other collections, are many-specimens. For example :-
Carved mummy-cases built up of parts doweled together, or of single blocks, forming the case and lid respectively, hollowed out by the adze and scorper.
Boxes carred in the shape of cats, and hollowed out to receive mummies of those animals. The cases are painted and have glass eyes.
Boxes carved like scarabrei, and used to contain unguents. Others bored like reeds, to hold the kohl used to blacken the eyclids, as in the days of Jezebel.

The boxes have sliding or hinged lids in great variety, and some of them in excellent taste. They are made of wood, stoue, hone, marble, porcelain, hippopotamus tooth, etc., and are inlaid, carred, painted, and decorated with ormaments.
2. (Machinery.) ". A journal-bearing. It usually consists of two brasses with semi-cylindrical grooves ; one piece reits upon the journal, which lies in the other piece. See Pillow-block; Axle-box; Car-axle.
b. A chamber in which a valve works.
c. See Sttffisg-box.
3. (Hydraulics.) a. A pump-bucket. A hollow plunger with a lifting-ralve.
b. The upper part of a pump-stock.
4. (Lochsmithing.) The socket on a door-jamb which receives the bolt.
5. A drain with a rectangular section.
6. A square notch eut into a sugar-tree to start and catch the sugar-uater (in the West) or the sap (in the Eastern States). It is considered more wasteful of the timber than tapping with the gouge or the auger.
7. (Weaving.) a. The pulley-case of a draw-loom on which rest the small rollers for conducting the tail-cords.
b. The receptacle for the shuttle at the end of the slicel.
8. (Printing.) A compartment in a case appropriated to a certain letter.
9. (Founding.) A flask or frame for sand-molding.
10. (Tehicle.) a. The iron bushing of a nave or hub. See Axle-box.
b. The driving-seat of a coach or close carriage.
11. (I ise.) The hollow serew-socket of a benchvise.

Box and Tap. (Machinery.) A device for cutting wood screws for carpenters' benches, clamps, bedstead-rails.

Box-beam. (Metal-working.) A beam of irou plates secured by angle-iron, and having a double web forming a cell. See Grider.
Box-car. (Railroad Enginecring.) A closed car intended for freight.
Box-drain. (Hydraulic Engineering.) An underground drain built of brick and stone, and of a rectangular section.
Box-frame. (Carpentry.) A easing behind the window-jamb for counterbalance-weights.

Box-gird'er. (Building.) An iron beam made of boiler-plate, the four sides riveted to angle-iron.

Boxing. 1. (Joinery.) The casing of a windowframe into which inside shutters fold.
2. (Shipwrighting.) The scarf-joint uniting the stem with the keel.
3. (Π ood-working.) The fitting of the shoulder of a tenon in the surface of the timber, which is mortised for the reception of the tenon.
4. A mode of cutting a deep and hollow notch into sugar or pine trees to catch the flow. The notch differs in the respective cases, but in each a piece is boxed out, and the process thus differs from the boring or tapping of the maple and from the haching of the pine.

Box-i'ron. A hollow smoothing-iron, heated by a hot iron within.

Box-key. An upright key, used for turning the nuts of large bolts, or where the common spanner cannot be applied.

Box-lock. (Lockswithing.) A rim-lock fastcued to the side of a door withont mortising.

Box-mak'ing Machine'. Oue in which the bottom, side, and end pieces are set in place and their nails driven by advancing punches, which sink them into place.

Box-met'al. For bearings: copper, $32 ; \operatorname{tin}, 5$. in opposite directions, forming box-plaits on one Strubing's: zinc, 75 ; tin, 18 ; lead, 4.5 ; antimony, 2.5. See Alloy

Box-o'pen-er. (Carpentry.) A tool with a forked claw and a hammer-head, for tearing open hoxes by lifting their lids, drawing nails, etc. Some combination tools have also a pincher and serewdriver.

Box-plait'ing. A device to foll cloth alternately side. Twn plaiters Q U, one located directly above the other, reciprocate alternately in the direction of the feed-movement, and a third plaiter S, with a trough-like month, and containiag the eloth to be laid in box-plaits, reciprocates also in the direction of the feed, and has also a rising and falling movement, so as to bend the cloth carried by it first over one plaiter and then under the other. Each time a

Fig. 849.

fold is so formed, it is caught and secured by the needle-threail, and the material is moved aloug by the feed for a new plait.

Box-scrap'er. (Carpentry.) A tool for erasing names from boxes. It is a mere scraper with an

Fis. 850

Box-Scraper.
edge presented obliquely, or, as in the example, works after the mamer of a spoke-shave.

Box-set'ter. (IWheelurighting.) A device for

Fig. 851.

Box-Scter. setting axle-boxes in hubs so as to be perfectly true. In the example the wheel is poised on its axis, and clamped by jaws above and below the hub. Its rim is held by grippers on radial bars which hold the wheel against stationary bearings in a plane perpendicular to the axis of the boring-spindle. The latter is mounted in the sockets, and carries cutters, which are fastened in a mortise in the spindle by means of a sleeve, screwnut, and screw.
Box-Sex'tant. A small sextant inclosed in a circular trame. Used principally for triangulating in military reconnoisance, ete. It is on the principle of the orlinary sextant, haviug minoms for bringing the re-
flectal and direct images of an object into coincidence as a means of measuring their angular distance. See Sextant.

Box-slip. (Plane.) slip of box inlaid in the beechwood of a tongueing, grooving, or molding plane, in order that the elge or the quirk may possess greater dmrability. The edges and quirks are rabbets or projections, which act as fences or gages for depth or distance.

Box-sta'ple. (Carpentry.) The box or keeper on a door-post, into which is shot the bolt of a lock.

Box-strap. (Muchinery.) A flat bar, bent at the middle, to confine a square bolt or similar objeet.

Box-turn'ing Ma-chine'. (Turning.) A lathe suecitically arlapted for turning wooden boxes and licls, for inatches, spices, or other matters. Such lathes have convenient chucks, rests for the sideturning and for the bottoming tool which gives the flat bottom.

Boy'au. (Fort.) A trench ol zigzag form, to avoid an enfilading fire, leading from one parallel of attack to another, or to a magazine or other point.

Brace. 1. (Carpentry.) A diagonal stay or scantling, connecting the horizontal and vertical members of a truss or frame, to maintain them at a prescribed angular relation.
2. (Printing.) a. A printer's sign ; a crooked line connecting several words or lines; vide, \sim.

Fig. 853.

Carriage Brace.
b. The stays of a printing-press, which serve to keep it steady in its position.
3. (Vehicle.) a. An iron strap passing from the head-block, behind and below the axle, and forward to another portion of the running-gear.
b. A jointed bar by which the bows of a carriage-top are kept asumder, to distend the carriage-top cover.
c. A thick stmp by which a carriage-body is suspended from Csprings.
4. (Boring-Tools.) a. (IV ood-zcorking.) A revolving tool-holder, one end of which is a swireled head or shield, which rests in the hand or against the chest of the operator; at the other end is a socket to hold the tool. Called also a stock, more particularly in metal-working.

The rarieties of the instrument principally hinge upon the mode of attaching the bit.

Varieties depending upon other differences are:-Augle-brace; a corner drill.
Crunk-brace; the usual form.
Hand-brace; with a swiveled breast-plate.
Lever-bracc; worked with an oscillating lever, usually having a ratchet motion. Sce Ratchet-drill. b. (Machinery.) The anglc-brace isulsed in places,

Fig. $55 \overline{5}$.

Angle-Brace. such as angles, where there is not room to revolve the handle of the ordinary brace. The drill-stock a is rotated by means of bevel-pinions $c c$, driven by a crank d. Speed may be regulated hy changeable gearing, valying the relative sizes of the two

This is sometimes called the French brace, and when made of metal with a back-center and feel-screw, it is called a corncr-drill, heing driven by crank and bevel-gearing as before, and having a capacity for reaching places where the ordinary brace-handle conld not be revolved.

The hand-brace (Fig. S56), otherwise the craith-bruce, has a socket for the bit, a crank for revolving it, and a swiveled head for the pressure of the hand or the breast
of the workman.
The machinist's brace depeuds npon a rigid bearing for the back-center a and a feed-screw b for keeping it to its work, the requirements being far beyond the pressure that can be given to a swiveled head by the breast of the workman. A sleeve c upon the handle rotates on the stock as the tool revolves.

An extension-shank is used as a temporary addition to the length of the tool, to enable the latter to reach deep-seated parts. The tang d fits into the socket ε of the brace, and the tang of the drill into the socket g of the extension-piece.
5. (Nautical.) A rope passing from the end of the yarl to another mast, and serving to trim the yards fore and aft.
6. (Shipurighting.) One of the eye-bolts on which

Hand-Brace.

Fig. 857.

Machinist's Brace.
the hooks of the rudder are secured. The gudigcons or googings.
7. (Mrsic.) One of the cords of a drum by which the heads are stretched.
8. (Mining.) The mouth of a shaft.
9. A stay for a trunk-lid or similar duty.

Brace-drill. (Mctal-working.) A boring-toul shapeal like a brace, llaving a tool rotated by the revolution of the handle. In the example, the motion may be continnous or reciprocating rotary, the swinging portion being connected to the cutter-stock by a pawl on the former and ratchet on the latter.

The ratchet-head of the brace is attachable to a lever to form a swing-blace or a rotary brace-frame.

Brace-pen'dant. (Nouticul.) A short pendant from the yard-arms, to lookl the brace-block.

Brac'ing-chain. (Vchiclc.) The chain which ties together the sides of a wagon, to prevent the load from breaking them apart. Used especially in wood and freight wagons.

Brack'et. A lateral projection from a wall, post, or standard, to strengthen or support another object; to

Brace-Drill. strengthen an angle; to snpport a heavy cornice or an entablature.

Of the parts of a bracket, -
a is the solc.
b the wall-platc.
c the rib.
d a surg or flangc. See Fig. S59.
This description of support is also adapted for shelres, cores, soffits, and seats.

1. (Muchincry.) The shafting-bracket (Fig. 859) is a hanger whicl contains the journal for shafting. e is the pedestal. supported by the extended arms $f \dot{f}$, which are bolted to the joists of the ceiling. $g g$ are the parts of the boxing which are in inımediate coutact with the shaft.

Prackets for shafting are known by different names, according to stmeture and position.

Fig. 859.

Pendent brackets or hangers, when the shalting is suspendel from the ceiling.
Wall-brackets, when fixed against a perpendicular wall.

Weall-boxcs, when the shaft passes through a wall or partition furnished with a bearing.
Pedestal-brackets, when the supiort rises from a foundation or bed-plate.
2. (Arehitceturc.) a. An or-

Fig. 860.
 nameut in the shape of a console, standing isolated upon the face of a wall.
b. Roof-hrackets are placed beneath the eave or the projection at the gable, and lave shapes conforming to the style of the architecture or the necessities of their position. In some cases the bracket is so prominent a featnre in the ornamsentation as to confer the name on the style ; thus we read of the brackicted stylc. See works on architeeture.
3. A projecting device for supporting a lamp, ete.
4. A gas-fixture projecting from the face
of a wall.
5. (Ordnance.) The

Fig 861.

Ramp-Bracket.
cheek of a mortar-bed, or the carriage of a ship's or casemate gun.
6. (Shiphuilding.) A timher-knee in a ship's frame, supporting the gratings.
7. (Sterm-Engize.) a. The pieces by which the boiler of a locomotive is maintained in position.
b. The pieces which hold and guide the slide-bars.

8. (Printing.) Signs ("[]") used to inclose a word or sentence, to isolate it from the other matter. The brackelcal portion may be a note, protest, explanation, anthority; reference, comment, rectification, interpolation, query, emplasis, etc.

Brack'et-crab. A hoisting apparatus, desigued for attaclument to a post, wall, etc.
In the drawing the chaindrum is shown journaled in a frame a, attached by bolts to the jost b, and is turned by the handle c. The tackle is shown as a single whip, the chain being rove tlurough tlise sing le -sheave block d.
Brack'eting. A skeletou support for moldings. This plan is com-

Bracket-Crab. monly adopted in making the arches, domes, sunk panels, coves, pendentive work, etc., at the upher parts of a partments. The brackets are got
out, of the repuired contour, nailed into position, and form a bisis for the reception of the lath and plastering.
lıl domed work, spliericel bracketing is the forming of bunckets to support lath and plaster work, so that the surface of the plaster shall

Fig. 863.
 form the surface of a sphere.

Spheroutal brackoting is the bracketing prepared for a plaster ceiling whose surface is to form that of a spheroid.
Brack'et-shelf. A form of console for supporting a pier-glass or other object.

Fig. 864.

Bracket Shelf and Drawer.

Brad. A thin, square-boried nail, whose head | has a lip on one side only. See Nall.

Brad'awl. (Joinery.) A small boring-tool with a chisel-edge. Used for opening holes for the insertion of nails.
Brad-set'ter. (Joincry.) A tool which grasp/s
Fig. 865.

Brad-Setter.
a brad by the head, and by which it is driven into its appointed place.
Braid. (Fubric.) A narrow woolen woven goods, used lor binding.

Among the materials used for bonnet-braid may be mentioned, -

Bass or linden bark.	Worsted thread.
Cotton thread.	Linen thread.
Flax thread.	Straw.
Hemp.	Chip.
Horse-lair.	Paper strips.
Parm-laf.	Wood splints.
Wool thread.	Majuaja.

Braid'er. A sewing-machine attachment prorided with all opening to gnide and lay a braid on the cloth under the action of the needle. The braidguiding opening may be in the presser and in advance of the needle-hole, or in the cloth-plate, or in a separate attachment secured to the cloth-plate.

Eig. 866.

Braider.
See "Serring-Machine Attachments," G.W.Grecrory, Washington, D. C. In the example, the guide is attachable to the presser-foot of a sewing-machine; the olject is the increased facility for suliding the luraid, especially in laying it in curved directions on the cloth; also the concave form of the groove, in connection with the pressure of the spring on the braid, tending to keep the braid within the groove, and prevent its passing to one side thereof.
Braid'ing-ma-chine'. A machine in which a fabric is made by the laying up of three or more threads

by a plaiting process. Mechanism guides the thread-holding bobbins in a ser. pentine course, to interlace the threads. Threads, from three tothirty, are twistedone around another by revolving wheels, spindles, etc., making braid, star, and shoe laces, upholsterer's cord, and coach-lace. It is atso employed for covering whips, threads of caout. chouc, the wires of crinoline, etc.

Braiding - machines are made of all sizes, from machines braiding seren strands to those braiding eighty-five, this being the limit at present of tlat braids manufactured in the United States; though round braiders, or macbines for covering tubes, are
built capable of braiding ninety-six strands. The sizes of romed braiders most largely in use, however, are those braiding sixteen and twenty strands, which are the sizes used in the manufacture of shoe-stringe and covering hoop-skirt wires. The sizes of that braiders most in use are those braiding fifty three and sixty-five strands worsted yarn, which procluce the common dress braids now so commonly worn. The production of American machines is about a million yards daily of dress braids.

The braid is passed through fire to relieve it of its floss, and prepare it for the dyer.

The views (Fig. 865) are respectively elevaticu and plan of a hraiding-machine. The elevation shows the mode in which the spindles and bobhins are arranged relatively to the shirt-wire, around which the strands are being plaited. The lower figure shows a view of the carriers, and of the race-cireles, in which the spindles are caused to move, so that they more in and out, crossing each other"s paths, and thus interlace the strands. When the braid is to be laid up tubular, as in covering upholsterers cord, whips, and skirt-wire, the set of race-cir-
 cles form a contimuons series around, and the spindles make the complete circuit, again and again repeating the serpentine course in the sane direction. The upper fignre represents a machine of this kind. When the braid is to be laid up
 flat, as in the Braining-มachine Carriers and Race-Circles. drag and other common brails, each racer, as the spincle-holders are called, makes a single course, turnsround the last racecircle of the series, and then returns, intersecting its own former path as it follows the circles shown in the lower part of the figure. The upper part shows the carriers which impel the racers, tach one delivering the racer to the next carrier in series, which it inpels along its allotted path in the circle. The two figures represent the carriers and race-circles of a macline for laying up flat braid. By a still farther refinement of the process, the machine is adapted for making two or more distinct braids commeted at their edges; thus admitting of different-colored stripes. Each racer for this purpose goes only throngh its own course of race-circles, one of which circles is common to the two carriers.

Braid Siz'ing and Pol'ish-ing. The braid is passed from a reel E through a sizing-trough F, to pressure-rollers $F^{\prime} F^{2}$, and then over guide and tension rollers $j c d!g h^{\prime} g^{\prime} d^{\prime} c^{\prime} j^{\prime \prime}$, which hold it obliquely against the brusles on drums $C D$. It is then drawn off by a reel E^{\prime}, which receives intermittent motion

Braid Sizing and Polishing Machine.
anticipated danger, a car jumps the track and becomes disconnected, the couplings will separate, the valves resume their seats, and the brakes be held "on" or "down" till the car conues to a full stop.

The air-pipe p, under each car, makes connection by a branch with one end of a cast-metal brake-cylinder 17 , which is fitted with an ordinary piston. The stem u ol this ${ }^{\text {isiston }}$ is comnected directly (or indirectly by rods $x^{\prime} x^{\prime}$, and " 1 rogressive lever" X) with the ordinary brake-levers in such a way that, with a forward thrust or throw of the piston, the brake-shoes will be applied to the car-wheels, and by a reverse movement they will be released or "let off:" A three-way cock M in the air-pipe, just outside the reservoir I, is within reach of the locomotive engineer. In ordinary running all commoni-
from a toothed wheel actuated by projections on the end of the lower brush-shaft engaging with the teeth.

Brails. (Neuticul.) Ropes used to gather up the foot and leeches of a sail, preparatory to furling.
The bruils of a guff-suil are for hauling the afterleech of the sail forward and upward, previous to furling: towards the head (perk-brails); neck (throatbrails): and luff (foot-brails). The lee-brails are lanled ulon in furling.

Brake. 1. (Railroal Engincering.) A contrivance for stoplying the motion of a car-wheel by friction applied thereto.

Car-brakes, until the advent of the atmospheric brake, were actuatel by a winding drum, comecting chains and levers, the power of the brakeman being applied to a hand-wheel on the car platform. The prineipal modes of application of the hand-operated brake are explained under Car-brake (which see). In the same article are detailed a number of devices for the use of air, steam, the colliding of the cars, friction, feet on the track, etc., for arresting the motion of the cars.

The Westinghouse Atmospheric Brake, illustrated by the folding plate opposite, was patented in 1869, and has been adopted on many railway lines in the United States and in Europe. Its chief features are, first, the use of compressed atmospheric air as a means of applying the brakes; and, second, putting the whole braking-apparatus noder the direct control of the locomotive engineer, so that he can apply the brakes at pleasure, instantaneonsly, or gradually, and with any desired power, limited only by the power of the air-compressing apparatus and the strength of the air-vessels. The construction of the aplaratus is shown by elevation and section. A small but powerful hirect-aeting steam-engine A is secured to the frame of the locomotive above and between the driving-wheels. This engine operates the ail-pump, D, and thereby the air is compressed to any desised density into a receiver or reservoir Y, which is arranged under the cab. Each car is provided with a line of air-pipes $p p$, which are united between the cars by flexible hose $r \quad r$, and suitable couplings. Each half-coupling contains a valve so constructed that, when the hose are coupled up, the valves are antomatically unseated, so as to make an open contimous air-pipe throngh the train, and, when uncoupled, each valve will automatically resume its seat. Ilence, the valve of the rear conling of the rear car of a train will always be closed, and if, after the brakes are alphied in view of actual or
cation between the reservoir Y and the air-pipes p is closed. The engincer, at pleasure, turns the cock $1 I$, so as to opren this communication, and permit the compressed air to flow back into the brake-cylinders W^{r} either partially if he merely wishes to cheek the speed of his train on a down grade, or more completely for an ordinary stop, or instantaneously and fully in anticipation of immediate danger. By another adjustment of the cock, lie closes the commmication again, and opens a port for the escape of the compressed air from the brake-crlinders. The brakes are then "otr," and the wheels free.

The construction is such as not to interfere with the ordinary operation of the brakes by hand. For ordinary passenger-trains, an air-pressure is commonly required of trom 30 to 60 pounds per square inch. The caprability of this brake is best shown by the following report of tests made.
At a test on the liansas Pacific Railway, May 12, 1871, a train going at the rate of 45 miles an hour was stopled within a distance of 250 feet.

On Scyitember 18, 1869, a test was made on the Pemsylvania Railroad, at the famous "Horseshoe Bend." The train of six cars, rumning down a grade of 96 feet to the mile, at the rate of 30 miles an hour, was brought to a stand-still in 420 leet, - seven cal'lengths.
The steam-ejector has also been employed by Nir. Westinghouse, under a patent granted to him in 1871, for exhausting the air from the brake-cylinders in front of the pistons, and thus applying the brakes by a "vacunm" or atmospheric plessure. See Giffatid lijectol.
2. (Mechincry.) A friction strap or band applied on the periplery of the drom of a hoisting-machine, crane, or crab.

Or' it may consist of a pivoted lever, having a shoe at one end, and a rope attached to the other, by pulling which the shoe is pressed against the nim of the wheel.
Of this class is the rim of wood surrounding the inclined wheel attached to the sail-shaft of a windmill, and pressed down thereon by a lever to stop the mill.
3. (1chicle.) a. A vehicle for breaking horses, consisting of the running-gears, and a driver's seat, withut any carriage-body.
b. A mbier pressed against the wheel of a vehicle, to imperte its revolution, and so arrest the descent of the relicle when going down hill.
The ohd Herodes Atticus, the rhetorician, refers to

INSERT FOLDOUT HERE
the felter to the ueheels, used when his chariot was descending a liill. It appears to have been only a stick put through the wheels.

The example shows it as applied to a rehicle.
The fore-axle is so connected to the compound brake-levers that backward pressure in descending a

Fig. 870.

Wagon-Brake.
hill will put the brakes into action. This movement of the axle is prevented, when backing the wagon, by the pendent part of an oscillating lever upon the

Fig. 8 피.

STed-Brake

box, which is brought in contact with the axle. See Whgon-brake.
c. The part of a carriage by which it is enabled to be turnerl. The fore-carriage.

Brakes for sleds and sleighs consist of spurs bronght

Fig. 872

Pump-Brake. into action by scrapins on the gramed. la the example, the brake-logs are pivated in a wedgeshaped mortise in one arm of a bell-crank, to whose other arm is conneeted a bar sliding beneath the tongue and operating by holding back on the tongue.
4. (Husbandry.) \&. A machine for separating the bark and pith from the fiber of hemp or flax ; to loosen the boon and shives from the hare. See Flax-blife; Hemp-brake.
b. An English term for a lieary harrow.
5. (Farrici\%) a. A frame for confining refractory animals while being shod or undergoing operations.
b. A sharp and heavy snaffle for breaking or subduing untrained or vicious horses.
6. A name for the Ballista (which see).
7. (Hydraulics.) The extended handle of a fireengine or similar pump, by which the power is applied. Said especially of an extended handle at which a row of men can work together.
8. (Bushet-inaking.) An iron croteh with a slarpedged reêntering angle, adapted to peel the bask from osiers drawn therethrougl.
9. The baker's kneading-machine: consisting, in sone cases, of a pivoted lever operating on a bench; the name now including other machinery for effecting the same purpose.

Brake-beam. (J'chicle.) The transverse beam connecting the shoes of opposite wheels. A brakicbar.

Brake-block. (Railroad Engineering.) The block attached to the hrake-beam and lolding the shoo or rubber.

Brake-shoe. That part of a brake which is bronght in cantact with the olyject whose motion is to be restrainel.

Brake-sieve. (Mining.) A rectangular sieve operateil by a forkedleverorbrake, from which it is suspended in a cistern of water for the agitation of comminuted ore. The meshes are of strong iron wire, $\frac{3}{8}$ of an inch square. The brake is supported by a rolling axis. See JigGER. The poorest light pieces are cuttings. Pieces of poor, sparry, heavy ore are chets.

Brake-wheel. 1. (Rait-
Fig. 873. road Engincering.) The wheel on the platform or top of a car by which the brakes are operated.
2. (Mfachincry.) A wheel having cams or wipers to raise the tail of a hammer-helve.

Brak'ing. (Flax-manufacturc.) An opuration by which the straw of thax or hemp, previonsly stecpect and grassed, is broken, so as to detach the shire., or woody portion from the hare or useful filer. See Flax-Brake.

Brak'ing-ma-chine'. A machise for braking flax or hemp after rotting, to remove the wooly portion and nith from the fiber. See FlaNbfake.

Bra'mah-lock. A lock patented by Bramalh, in England (17S4 and 1798), having a number of slides which are aujusted in the manner of tumblers, by means of a stepped key, so that the slides of unequal length shall be brought into a position where their notches lie in the same plane, that of the lockingplate. See Lock.
Bra'mah-press. The Hydiostatic Piess (which see).
Branch. 1. (Fortification.) a. The wing, or long side of a horn or crown work.
b. One of the parts of a zigzag approach.
2. (Blacksmithing.) One of the quarters or sitles of a horseshoe.
3. (Harmess.) One of the levers attached to the ends of the stiff hit of a curb-bit, and having rings or loops for the curb-chain, the cheek-straps, and the reins. Sue Cterb-bit.
4. (Mining.) A small vein which separates from the lode, sometimes reuniting. A leculer, striny, or rib of ore running in a lode.
5. (IIydrautics.) The metallic piece on the end of a liose to which the nozzle is screwed.
6. (Gus-fixfures.) A gas-burner bracket.

Branch-chuck. (Tuming.) A chuck luviug
four branches, each of which has a set serew whose end may be nate to impinge upon the object.

Brand. Paintings in the Theban tombs repreresent the branding of cattle on the shoukders with a hot iron, probably engraved with the owner's name.

Fig. 8\%.

Branding Cattle in Ancient Egyph (Thebes).
The cattle are represented lying on the ground with the feet tied. One person lieats the iron in a portable funace, and the other applies it to the shonlder of the animal.

Branding-tools for marking stock or boxes are of three kinds. One is adapted for being heated to burn away the hair or the wood, as the case may be. Another is used as a stencil, consisting of a plate with openings representing letters or device. The other consists of type in some form, generaliy set up in a small galley with a handle, so as to be conveniently manipulated. Novel tevices are more generally in the latter tine, and ingennity is exercised in the modus of adjusting and securing the type in the holder. The faces of the tyjes are made elastic in Masos's patent. Skeleton-lciters, secured by tangs to handles, are also used for this purpose, and may be reatily dipped in a pigment, and applied to slreep or other stock.

Brand'rith. A fence or rail round the opening of well.
Bran-dust'er. (Milling.) A machine in which the bran, as turned ont of an ordinary bolt, is rubbed

Fig. 875.

Bran-Duster. and fammed to remore as much as pussible of the Haur which yet allueres to it. In the example the hram passers between the radially ridged surFice of thedonble frustum F aml an enveloping jacket of similay form and sinface. It then passess between the jinammet heat H of the eylineler and the head-alisk I of a revolving frame, whiclı carries inclined serrated prates which work the bran against the wire sereen $\quad 1 /$. Cams of the spmewheel aboves opremate to agitate the screen to keep, the meshes clear. The hran is finally discharged through one spout, and the other products throngh anotlier.

Bran'ning. (Dycing.) Preparing cloth for dyeing ly streping in a vat of sour bran-water.

Bra'sier. An open pan for burning wood or coal.
The brazier (foculus) of the Romans was an clegant bronze tripod, supported by satyrs and sphimxes, with a round dish above for the fire and a small vase below to hold perfnmes. it ocenjied the atrium, and represented the abode of hospitality and sanctuary, even aftercookinghad

Fig 8.6.

Elruscan Brazier

been banished to other apartments. A kind of close stove was also used ; but, in either case, the smoke was so considcrable that, as luxury advanced, the winter rooms were differently furnished from those appropriated to summer use. In order to prevent the wood from smoking, the bark was preelod off, and the wood kept long in water, and then dried and amointed with oil.
The Greeks and other mations commonly used it, and sought to correct the deletcrious nature of the fumes ly burming costly odorous gums, iplices, and woods.

The Japanese warming-apparatus is a chafing-dish with a hamelful of charroal let into the floor, like the Spanish brasero. This is very inelfective in mitigating the rigur of the season in the more northerly part of the main island, and the people depend principally on clothes, heaping gown upon gown.

Brass. 1. (Alloy.) An alloy of cupler and zine. It is fabled to lave been first accidentally formed at the bmrning of Corinth by Lucius 1 lummins. 146 B. C. ; but articles of hrass have been discoverel in the Egypitian tombs, which prove it to have had a much glwater antiguity.

Brass was known to the ancients as a more valnable kind of copper. The yellow color was considered a natural quality, and was not supposed to indicate an alloy.

Certain mines were much ralued, as they yielled this gold-colored copper, but after a time it was foumd that by nulting copller with a certain earth (calamine), the copper was changed in color. The mature of the rhange was still unsuspected.

Tubal Cain's operations in iron and hass may be beld to be iron and copper (fien. iv. 22). The translation of terms referring to metals is not perhaps very accurate. Job is nate to refer to brass several times, - collurer most likely.

Hiram is said to have made articles of "brans" for the Temple of solomon, 1004 n. C. This was probably lironze, which is male by the union of copper and tin, while brass consists of copper and zinc. Lliman ${ }^{\text {nocured }}$ his tin in Cornwall, England. Herolotus called Britain the Cassiterides, or Tin Islanuls, $4: 00$ n. C. Calamine was known in ealy times, and the Temple ntensils may have been really brass.

The "brazen" hull was cast by Perillus of Athens, for Phalaris of Agrigentum, $500^{\circ} \mathrm{E} . \mathrm{C}$. It was mate ho:low, to receive victims to lie roasterl to death. The throat was contrived to make their groans simmate the bellowing of the animal. The artist was made to firnish the first rietim, and the king eventually tried the experiment in perison, 549 R . C .
The belmet of Pammitichus the l'owerful was of brass, and hom it le poured the libation in the Tem-
ple of Vulcan, which condemned him to temporary isolation in the marshes of the Delta, but ended in his making the acyuantance of some Ionian and Carian freebooters, who assisted in placing him on the throne of Egypt, 650 в. c.

Prass was known to the Greeks as orichalcum or mountain-bronze. Afterwards cormpted by the Romans into aurichaturun, from a supposition, derived from its color, that it had gold in its composition.

Brasses (Composition of).

The proportions are varied, and tin and antimony are added in some of the formulx.

See also brasses and bronzes, with the addition of iron, 「. 61, azte.
2. (Machizery.) In a mechanical sense a brass is a pillore, bearing, collur, bor, or bush, supporting a gudgeon; so called trom its being composed of either copper and tin or copper and zinc.

Brass-foil. Very thin heaten sheet-brass, thinner than latten. Dutch-gold.

Brass-fur'nace. Brass, or its component metals, is melted in crucibles; in the latter case, the copper being first melted, and the zinc then added piecemeal, as it is raporized by an excess of heat.

The molding-trough b is on one side of the pouring or spill-trough c, and the finnace a is on the other. d is a core-oven, heated by the furnace, and serving to dry the cores for the fancets or other hollow articles which are cast.

The brass-lurnace is nsually built within a castiron cylinder, 20 to 24 inches in cliameter, and 30 to 40 inches high, which is erected over an ash-pit, which is supplied with air through a diving-the, which commences at a grating even with the floor of the fondry. The month of the furnace stands about S or 10 inches above the floor, and the upper aperture is closed with a plate, which is yet called the tile, thongh it is now usnally of iron. A tile origimally performed the duty. The inside of the furnace is contracted to about 10 inches by fire-bricks set in refractory clay, except a small aperture at the back, 4 or 5 inches square, which leads to the chimney.
A number of such furnaces usually stand in a row, and each commminicates ly its own flue with the tall stack, which carries off the rolatile results of combustion, and the fumes of the zinc. Each furnace has a damper.

As a furnace burns out, so as to leave an excess of space between the cmible and the wall, the inside is renewed by plastering on a coating of road-dritt and water, applied like mortar. This makes a surface, which is glazed by the fire-heat.

The workman is shown handling the crucibletongs, the reins of which are closed by the conviler, while he pours the metal in at the guicic of the flusk, which rests in an inclined position against the spill. trough.

For large quantities of metal, for statues, bells, large guns, etc., the brass or bronze is melted in reverberatory furnaces.

Brass'ing. (Metallurgy.) Giving a brass coat to copper. It may be dune by -

Exposing the copper in a henated state to the fumes given off by zinc at a high temperature ;

Filling a copper ressel with water soured by hy-
 drochloricacill, and addingan amalgan of zinc and cream of tartar, and boiling the whole fur a short time.

Brass - pow'der. (licdColorcd.) Grind copper filings or precipitated powder of (opper with red ochie.
(Gold-Colored.) Gold-colored brass or Dutch leaf reduced to powder.

Mixed with pale varuish, or applied by dusting over a surface previonsly covered with varuish.
Brass-rule. (Printing.) Brass strips, type-high, used by printers for cutting into lengths to separate adrertisements and columns; also for page-rules and table-work (technically knowu as rule and figure work).

BREAD.

They may have a single sharp edge or may be grooved to produce patallel lines.

Brat'tice. (Mining.) A planking on the inside of a mine slaft or gallery.

Nutally, a plank-work partition in a shaft, dividing it into two portions.
Bray. (Fortification.) A tower or blockhouse in the outworks before the port.

Bray'er. (Printing.) A wooden muller used on the ink-table to temprer the ink.
"Though thon bray a loul in a mortin."
Bray'ing. (Wvolen-manufuture.) The process of pounding and washing woven cloth in scouringstocks, to remove the oil applied preparatory to carding ; and also soil acpuired in the course of manufacture.

Braz'ing. Soldering together the surfaces of iron, copple', brass, ete., with an alloy composed of brass and zine, sometimes with the adluition of a little tin or silver. The surfaces to be united rumst be remdered perfectly elean and bright. The alloy, in granular form, is usually wettel with ground borax and water, dried, the pieces placed in contact and exprosed to the heat of a clear forge-fire, causing the soller to How between then. This may be assisted by the use of a soldering-iron.

Bread. A mixture of flour and water, baked to the extent of suppressing its clamminess.

In the Old Testament we lind that bread-making was a duty performed by the mistress of the family, - Samal ; by one of the daughters, - the muchabused Tamar ; by servants, - as those eaptives referred to by sumuel, who are prospectively made to serve as "coufectionaries, cooks, and bakers"; by an olficer of the household, - Iharaoh's servant, the chief baker ; by tradesmen, - as the bakers referred to by Hosea.

The Isratites ate leavened bread except on peenliar occasions. The liedouin of the present day, as his ancestors did, cooks his unleavened bread in the embers, generally between layers of dung. We are not destitute of the same fuel on the Western plains, but delicately termit bois de vuche, or, more squarely, bufficlo-chips. When the Arab bakes a pasty bread on a pan or griddle, he ealls it a fitcu. Withont intending to talk Arabie, we do the same sometimes.

The Egyptian like the London bakers kneaded bread with the feet. The practiee is probably more general than we know, or like to believe.

In a little model of a house found by Mr. Salt in Egypt, and now in the British Muscum, a doll-woman

stands in the court-yard in the act of rolling dongh. The mixing-trough is attached at the ems of the tatble, and the quiet little doll, which may have mused
the children of the time of Moses, has maintaned the position of action for near forty centuries, and is now viewed by the juveniles of a country which was alternate forest and morass for two thousand years after the little figmre was started at her protracted employment.

Ching-Noung, the successor of Fohi, is reputer to have first taught the art of making bread from wheat and wine from rice, 1998 B. C. This was the cra of Terah, the father of Abraham, of the shepherd kings of Egypt, and of the fabulons wars of the Titans in Greece. A few years subsequently, 1913 в. с., Melchisedek bronght ont wine and breal to Abram and blessed him (Gen. xiv. 18). Fifteen years atterward we find Ahrahan giving three strangers a morsel of bread to stay their stomachs, while his wili prepared hot cakes made ont of fine meal, kneandet, and no doubt cooked in the ashes, as they had not then scen the Egyptian plan of cooking in orens. This was served up with lutter, - prombly bomyclabler or eurds, - milk, and veal.
The Hebrew bread was a flat cake, baked on the hearth or on a metallic plate. It was broken, not cut, and may have had indentations to form lines of easy fracture. Thus may have arisen Panl's remark, -"We, being many, are one breal" (1 cor. x. 17).

In the time of Pliny we find that, though breal was made from a varicty of grains, yet that wheat was held in the lighest estimation : the wheat of Italy ranking first for weight and whiteness, while that of Sicily, one of the seanaries of Rome, stood third, Boentian wheat being prefervel to it.

He states that the weiglit of all commissary bread exceeded that of the flour from which it was made by one thind, and this is still held to be the proper percentage of gais in well-made bread front goonl flour. The German proportion, stated by Köhler in his Ficchenmeister, is 150 jomuds of longh, and 153 pounds $11 \frac{1}{2}$ ounces of bread from 100 founds of ilour.
The Romans appear to have leavened their breal with preparations similar to that known in some places as "salt rising," insteud of yeast. Pliny sitys that in Canl and Spain, where they make a drink (beer) by steeping grain in water, they employ the foam which thickens on the surface (yeast) as a leaven, and that consequently the bread in those countries is lighter than that made elsewhere. He must mean in proportion to its buik, and not that a eertain quantity of llomr would proluce a less weight of bread.
The Roman leaven is deseribed as being made from millet mixed with grape-juice, which it is said wonll keep a whole year. Fine wheat bram was also rnnployed ; this was mixed with white must (or grapejuice) three days old, then dried in the smand made into small cakes. For making tread, these cake's were first soaked in water hoiled with the finest spelt-flom, and then mixed with the dongh.

These kinils of leaven rould only be made during the vintage, but there was another lind, made from barley and water, which could ie prepared at any time; this was made up in cakes of two pounds' weiglat, which were baked until they became of a reddish-brown color, when they were put in close vessels and allowed to turn sour; when wanted lor leaven, they were steeped in water.

Leaven, for immediate use, was also preprared by kneading some of the flour, withont salt, boiling it to the consistency of porvilge, and keeping it till it began to turn sour ; or the bread was leavened by mems of some of the dongla left over purposely from the day before, as amom the ancient llebrews.

In the maritime districts the flour was mixed with
sea-water, to economize salt; and in the preparation of some kinls of flour, according to Fliny, the bran was first taken off the berry by trituration in mortars containing brickbats and sand. His translators have rather absurdly made him say that bricks and sand were ground up with the grain. In one species of bread, called alica, which be mentions as being peculiarly wholesome and palatable, a species of chalk fomm in the hill Leucorgenm, between Naples and Puteoli, was employed for imparting whiteuess and crispness.
Their bread was probably too moist for our taste, rather a pasty mass, somewhat better than the common puls, which resembled our paste or gruel, a sort of hasty-pudding, and which formed the staple of the farinaceous diet of the Romans.

There were no professional bakers in Rome till after the war with King Persens, more than 580 years after the building of the city. The occupation formerly belonged to the women. They ate their bread moist ; it was sometimes kneaded with the must of the grape, with raisin-juice, or with butter for shortening, or with eggs and milk, and often soaked in milk and honey before eating. Vinegar, to soak the breaul, was a regular ration with the Roman soldiery. It is much older than that, however: Boaz said unto Ruth, "Eat of thy bread, and dip thy morsel in the vinegar."

After the conguest of Macedon, 14S в. c., Greek bakers came to Rome and monopolized the business. Loares of breau, or their psendomorphs, are found in the excarations of Pompeii, partially huried A. D. 79.

Bread was made witlı yeast by the English bakers in 1634. Was made by machinery in England in 1855. Was artificially inflated with carbonic-acic] gas, with which the water of mixing was impregnated, by Dr. Dauglish, in 1859. Aërated bread was made in the L'nited states prior to 1854 .

Bread-knife. A knife pivoted at one end to a post on a table, and used by a vertical motion to cut loares into slices. In the example the hinged cut-

Bread-Kinife.

ter plars in a slotted arched frame; an adjnstable guide is adapted to the size of the loaf, and a gage determines the thickness of the slice to be cut.

Bread-mak'ing Ma-chine'. A machine in which flour and water are mixed and kneaded. In some machines of this character the dongh is rolled flat and cut into loaves, which are laid aside to rise before baking. See Bread.

The process of making lread without leaven or teast, generally known as aërated bread, is beliered to have been first practiced with any considerable degree of success in the Cuited States some twenty rears ago. In England it appears to have been of later introduction, the process of Dr. Danglish having first been male public in 1859 . It consists in generating carbonic-acid gas in a separate vessel and mechanically forcing it into the water with which the flour is mixed.

His apparatns for making aërated bread is shown in the illustration.

The water-chamber A and miser B are cast in one piece, and commnnicate by an eguilibrinm pipe and

valved aperture ; the water-chamber also commmieates with a water-tank and with the gas-generating chamber E throngh pipes whose discharge is controlled by cocks operated ly hand-wheels. The fiour and salt are placed in the mixing-chamber B, and water is admitted to the water-chamber from the tank. When the gis in its ehamher has attained a suffieient degree of pressure, say 100 pounds to the square inch, the cock leading to the water-chamber is turnerl, and the gas passes through the water, which thus becomes thoroughly charged under that high pressure, and is then admitted to the mixing-chamber, where it is mingled with the flom and salt by means of revolving mixers on a shaft rotated by geaning driven by hand-crank or a steam-engine. The deceiver is secared to the mixing-chamber B by a bolted flange, and commonicates with it through an apertme prorided with a slide-valve, which is cajable of a rotary as well as a reciprocating motion, hy means of which any dough can be pressed ont fron hetween it and its seat. The two ressels are also comnected by an equilibrium-pipe, that the pressure of gas may be equal in each, allowing the dough to fall into the mixing-chamber by its own gravity. From the receiver the dough is passed to the baking-pan, by means which allow of its being surrounded ly air or gas under pressure, thus lessening the escape of the gas inclosed in the dough.

The baking requires to be conducted in a peculiar manner. Cold water being msed in mixing, the exlansion of the dough on rising canses a great reduction of temperature, as much as 40° below that of fermented bread when placed in the aven ; this, with its slow springing until it reaches the temperature of the boiling-point, renders it essential that the top cmist should not be formed until the very close of the process. The furnaces, aceorlingly, are so arranged that the heat is applied throngh the bottom;
and, at the last moment, when the bread is nearly haked thromgh, the upper heat is applied and the top crust formed.
The principhes of bread making and baking have bern carefully explained by Professor Horsford, of Cambidge, Mass.
Bread-rasp. A rasp usel by bakers in removing the bumed crust of loaves and rolls, especially of French rolls.

Bread-slic'er. See Bread-knife.
Breadth. (Shipurighting.) The thwart measure of a ship at any designated place. The berm is the exticm: broullh; that is, at the widest part.
Breadth-line. (Shipurighting.) A line of the ship lengthwise, following the curve indicated by the ends of the timbers.
Break. `1. A wooden bench on which dough is kieaded by means of a lever called a break-staff. The weight of the person, often in a sitting posture, is thrown nyon the statf, which moves in a semicircular orlit around the bench, keeping up a saltatory motion by its flexibility and the dancing action of the operator. By this means the dough is worked up very dry, ami makes the best kind of crackers.
This luty is now performed by rollets, which receive their name from their duty, being called brati-ing-rollers.
2. (Fortificalion.) A change from the general direction of the curtuin near its extremity in the construction with orillons and retired flanks. Brisurc.
3. (Printiny.) The piece of metal contiguous to the shank of a type, so called because it is broken ofl' in tinishing.
4. (Arehitecture.) A projection or recess from the surface or wall of a buidding.
5. A sudden change of level, as of a deck. The break of a poop-eleck is where it ends forward.
6. (Telegraphy.) A commutator or appratus to interrupt or change the direction of electric currents.

See Bhake, for devices for applying power, for restraining motion, ete.

Break'er. 1. (Neutical.) A small cask for ship's use. Employed for bringing water aboard in boats, or for containing the water required for a boat's crew absent from the ressel on duty.

The g ong-cask is kept on deck, and contains the drinking-water for the ship's company, being replenishel from day to day from the tanks.
2. (Fluci-mumufucturc.) The first carding-machine which oprates upon the parcels of tow from a creep-ing-sheet. The finisher is the final carding-machine, and operates upon a lap formed of slivers of linc.

Break-ground. (Fortification.) To open the trenches or begin the works of the siege.

Break'ing. (H'onten-manufacture.) A process in the worsted or long-wool manufacture. The combed slivers are liid upon a traveling-apron and joined endwise, to make continuons lengths.

Break'ing-down Roll'ers. (Metal-working.) Rollers uscal to consolitate metal by rolling it while hot.

Break'ing-en'gine. Tlue first of a series of cart-ing-nachines, to receive and act on the lap from the lapper; it has usually coarser clothing than the finishing-carls. See Calining-machine.
Break'ing-frame. (Worsted-manufacturc.) A machiue in which stiers of long-stapled wool are plankel or spliced tosether and then drawn out to, say, eight times their original length. The sliwers are made by hand-comis, and taper towards each end. Each is laid lipming half its length upon the proveding sliver, and the passage betwern rollers of gradually incruasing speed attenuates the sliver.
Break'ing-ma-chine. (Flix-munuffacture.) A machine for shortening Ilax-staple, to adapt it to be
worked by a certain kind of mathinery. Long-flax or long-line becomes cut-flux or cul-line. The machine is also known as a cutting-mechine or flexbrectier.

Break-i'ron. (Carycntry.) The iron screwed on top of a plane-bit to bend mpward and break the shaving. Its edge is from $\frac{1}{16}$ to $\frac{1}{50}$ of an inch from the edge of the cutting-hit.

Break-joint. A brcck-joint structure is one in which the joints of the parts or courses are made to

alternate with mbroken surfaces, as in the continuous railroad rail, in bricklaying, shingling, and numerous other meehanic arts.
a, break-joint of a conipound rail.
b, break-joint of bricks in courses.
c, break-joint of slates in courses on a roof.
Break'wa-ter. A structure or contrisame, as a mound, mole, wall, or sumken hulk, interposed to break the force of the waves and to protect an anchorage, harbor, or any object exposed to the waves.

Breakwaters for the purpose of protecting harbors are of very ancient origin.

The harbor of Alexandria was protected by a stone mole callet the Heptastadium, which joined the island of Pharos and the main-laml. It hal two passages through it, which were spanmell ly bridges.

Nebuchadnezzar built quays and lireak waters along the shores of the Persian Guif. - 11 eronotits.

The lharbor of Rbodes and the Pireus of Athens were protected by moles, as were also those of Civita Vecchia, Ostia, Autium Misenus, and others anong the Liomans.

We are informed hy Josephus, that Herod, desiring to form a port on the coast of Syria, between Joppa and Dora, culused great stones, most of them 50 feet long by 10 wide and 9 deep, and some cen larger, to be cast into the sea in 20 fathoms of water, with a view of forming a foundation for a mole or breakwater.

The Romans constructed the moles or hreakwaters of many of their harbors upon a double row of arches, so arranged that the openings of one set were opposite the piers of the other, by which means the force of the waves was thoroughly broken, while still permitting the passage of the current, thus greatly reducing the accumblation of drposits around the base of the structure, and conserpernt tembency towards filling up the larhor. The piers of the new river-frontage of New York are to be constructed on pillars which allow free course to the water, being mtended for wharfage, not wave-hreakers.

The breakwater of Cherlourg was commenced in 1784 . Its total length is 4,120 yarts, consisting of two arns, respectively 2,411 and 1,699 yards long, forming an obtuse angle of 169° towards the sea. The arerage depth of water inclosell is 62 feet at high spring-tides, and the area sheltered is abont

1,927 acres, about one third of which has a depth exceeding 27 feet at low-water spring-tides.

Cessart's plan for breakwaters at the latter part of the last century consisted of large truncated cones of timber floated by means of air-barrels lashed thereto, and towed to the spot. These were 150 feet in diameter at the bottom, 64 at the top, and

Fig. $8 \subseteq 2$.

Cessart's Breakicater.

70 feet high. Ninetr such cones were to be placed consecutively, to form a breakwater when sunk and filled in with stone. The project was only partially carried out. The timbers were dislocated and the stones scattered. The work was renewed by additions of stone till it reached the level of low-water spring-tides; upon these was laid a bed of hydraulic concrete five feet thick, and upon this was erected a solid wall of coursed ashlar masonry faced with granite. The top of the sea-slope is covered with large loose blocks, and at the extremities of the wings it is farther protected by immense artificial blocks, weighing about 40 tons each, formed of rubble set in hrdraulic cement. Fig. $883(a)$ shows a section of this work.
b is a section of the breakwater off Plymonth, England, to protect the harbor, which is only open to the south. It is situated upon the inner of three natural reefs of rock, which lay outside the harbor, and closes what was once a central passage, leaving open passages to the east and west. The main boly is placed perpendicularly to the S.S.E., and is 1,000 yards long. Wings at each end form angles of 135°, and are each 350 yards in length. A surface of 1,120 acres is protected. It is 133 yards wide at bottom, 15 at top: a set-olf 29 yards wile forms a foreshore on the sea side. The upper portion is revetted with masonry laid in Roman cement on both faces and crown. The hight of the latter is 2 feet abore ligh-water spring-tides. $4,105,920$ tons of stone were used in the construction. Cost, $\S 7,500$, 000.

Delaware Breakwater is situated just inside of Cape Henlopen, the southwestern point of land at the entrance of Delaware Bay, and was intended to form a harbor of refuge during storms for ressels passing along the coast. The work was commenced in 1829. It consists of two parts, the breakwater proper and the ice-breaker. The former is 1,203 yards long, extending in an E.S.E. and W.N.N. direction. The ice-breaker is designed to protect the harbor from floating ice brought down by the Delaware River, is 500 yards long, and lies in an E. by N. and W. by S. direction, having a passage of 350 yards hetween it and the breakwater, the prolongation of which would pass near the center of the ice-breaker. The work protects from the more dangerous minds an area of about 420 acres, having a depth of 3 to 6 fathoms, learing a passage of about 1,0no yards in length between the shore and its landward extremity:

The width of the structure is 175 feet at base and 30 feet at top, and it is composed of rough blocks of stone. A transverse section is shown at c, Fig. $\$ 82$. The inner slope has an angle of 45°, the onter slope has an inclination of 3 base to 1 of hight to a depth of about 19 feet below the highest spring-tides, and from thence to the bottom of 45°.

Breakwaters have also been constmeted by the United States government at several lake-jorts, particularly at Butfalo and Cleveland on Lake Erie, and Chicago on Lake Mlichigan.
The covering pier or breakwater of Buffalo Harbor (d, Fig. $\$ 53$) is built of stone, and cost about $\$ 200,-$ 000. The illustration shows a cross-section. It measures 1,452 feet in length. The top of the pier on which the roadwar is formed measures eighteen feet in breadth, and is elevated abont fire feet above the level of the water in the harbor. On the side of the roanway which is exposed to the lake, a parapetwall, five feet in hight, extends along the whole length of the pier, from the top of which a talus wall, battering at the rate of one perpendicular to three horizontal, slopes towards the lake. This sloping wall is formed of coursed pitching. 1ts foundations are secured by a double row of strong sheetingpiles driven into the bed of the lake, anil a mass of rubble pierres perdues, resting on the toe of the slope. The quay or imner side of the pier is perpendicular, and is sheathed with a row of sheeting piles, driven at intervals of about five feet apart from center to center, to prevent the wall from being damaged by vessels coning alongside of it.

The harbor of the city of Pernambuco, in Brazil, is defended by a natural breakwater, - a reef of hard coral just level with the swa, and extending for miles along the coast, parallel with the main-land and but a very short distance from it, leaving a narrow channel of sufficient depth to tloat ressels of cousiderable size between them.

Here ships may ride in perfect safety, the water being as smouth as a mill-pond, while the sea is breaking furiously upon the reef, even at times casting its spray on the decks of ressels moored inside.
Break'wa-ter-gla'cis. (Hydraulic Enginceriny.) A storm perement. The sloping stone paving next the sea in piers or breakwaters.
Bream'ing. (N'outicul.) Cleansing the ooze, shells, seaweed, etc., from the bottom of a ship by a Hashing fire and scraping.
Breast. 1. (Agriculturc.) The forward part of a plow's mold-boart.
2. (Crapentry.) The lawer side of a hand-rail, a rafter, the rib of a dome or of a beam.
3. (Jininy.) The face of a coal-working.
4. (Architicture.) a. That portion of a wall between the window and the floor.
b. That portion of a chimey between the flues and the apartment.
5. (Machinery.) A bush connected with a small shal't or spindle.
*. (Hytruutics.) The curved wall up to which the floats of a water-wheel work, and which prerents, as far as possible, the waste of water.
7. (Shect-iron I'uri.) As applied to milk-cans, coffee and tea pots, and similar articles, this word denotes the bulging or rounded top which intervenes between the lid or cover and the cylindrical portion which forms the body of the vessel.
8. (IChicle.) The middle, swell, or bulge of a nave or hub.
9. The front of a furnace.
10. The part of an object against which the breast pushes in sume machines, such as the brcast-drill, brerast-plow, etc.

Breast-band. (Saddlery.). A band passing across the breast of the draft animal, and to which the traces or tugs are attachect. It is a substitute for a collar.

Breast-beam. 1. (Shipurighting.) A beam at the break of a quarter-deek or forecastle.
2. (${ }^{-}$- (ating.) The eloth-beam of a loom.
3. (Railroal Engincering.) The forward transverse buam of a locomotive.

Breast-board. (Rope-making.) A loaded sled to which are attached the end yarns at the foot of the walk. As the yarns are twisted into a strand they become shorter and draw the sled towards the heal of the walk, the load on the sled maintaining the necessary tension. The yarns are usually shortened one third by the twisting, and lose about thirty per cent in so loing. The twist is, however, necessary, to give the repuisite rigidity, to prevent the fibers sliding on each other, and to partially exclude wet. The addition of tar increases the power of excluding water.

Rope not twisterl, but bound tightly together, is stronger than twisted rope, but is soft and not durable, the yarns readily admitting water, which rots the rope.

Breast-chain. (Suldlery.) A chain reaching between the hame-rings, its loop passing through the ring of the neek-yoke, to support the tongue.

In carriage harness, the hame is destitute of the rings, and the strap is passed around the lower part of the collar. See Neck-roke.

Breast-col'lar. (Hurness.) A pulling strap which passes aromed the breast of the horse; a substitute for a collar, which encircles the neck and rests against the shoulders. ha the example the hreaststrap is parlled, and the two pieces are connected by a suap. A plate upou it holds the breast-rings and tug-bnckle pieces.

Breast-drill. (Metal-working.) A dill-stock operated by a crank a, and bevel gearing b, and hav-

ing a piece c against which the workman bears his breast when engaged in drilling.

Breast-fast. (Noutiect.) A mooring liawser to confue the ship's broadside to a quay or wharf. Bow or houl fost and stem-fust indicate ropes of different positions hut similar duty.

Breast-har'ness. (Suldllery.) A horse-gear arranged to pull byaband in front of the breast, insteal of a collar.
Breast-hight. (Fortificution.) The interior slope of a parapet.

Breast-hook.

 (Shiphutilding.) One of the curved horizontal timbers placed inside the bow as struts to support and tics to conneet the sides. Also called brenst-kince.Fig. 886.

Breast'ing.

1. (Mill.) The curved masonry against which the shuttle side of a breast-wheel works, and which prevents the water from slipping past the wher].
The scoop-wheel has also a breasting which confines the water raised thereby. See Scoop-wheel.
2. (Paper-motiuy.) The concave bed against whicl the wheel of a rag-engine works; between the two is the throat. See R.ig-exgine.

Breast-line. The rope connecting the pontons of a military bridge in a straight direction.

Breast-mold'ings. (Carpentry.) Window-sill moldings. Panel moldings beneath a window.

Breast-plate. 1. A plate which receives the hinder end of a drill, and by which pressure is applied. Formerly held against the breast, it still retains its name, even when otherwise supported. A conscionce or palette. See Breast-drill.
2. Armor for the breast. The forward portion of a cuirass.

Breast-plow. (Husbandry.) A shovel whose handle has a cross-piece applied to the breast, and used for paring turf or sods.

Breast-pump. (Surgical.) Also known as antlia lactea or antlia mammaria.

A pump having a cup adapted to fit over the nipple, in orler to withdraw milk from the mamma when this cannot be effected in a natural way.

In one example the receiver has an opening which in use is covered by the thumb and serves as an exit for the milk. The air is drawn off through an up-

Fig. 857.

turned tube, which prevents the access of liquid to the valves. The ralves consist of two cylindrical flanged caps, whose ends are perforated and inclose between them a valve-disk of rubber.
In the other example the suction-nipple is of rigid material, and has side discharge into the flexible pipe

Breast-Pump.
communicating with the elastic bulb. The latter has induction and eduction valves.

Breast-rail. (Shipurighting.) The upper rail of a balcony or of a breastwork on the quarter-deck.

Breast-strap. (Sadulery.) A strap passing from the hame-rinys or from the gullet of the collar, to support the tougue or pole of the vehicle.
Breast-strap Har'ness. (Seddlery.) That which has a strap around the breast instead of a collar. In the example the breast-collar is supported as usual from tongue. harness.
the withers, and at its rear ends receives the tugstraps. Other forward attachments are made to the breaststraps, which are connected to the neck-yoke or

Breast-strap

Slide. (Harness.) An iron loop which slips on the breast. strap, and takes from the latter the wear of the ring on the end of theneck-yoke.

Greast-Sirap Harness.

The ends of the hreast-strap are passed through the rings on the

A detachable tongue or pin, made with a double point and a Hange at the center, engages with the

Fig. 890.

Breast-Strap STide.
breast-strap when the slide is to be held fixedly on the strap, and is removed when it is desired that the slide should yield or play on the breast-strap.

Breast-sum'mer. (C'arpentry.) A beam inserted flush with the honse front which it supports, and resting at its ends upon the walls and at intermediate points upon pillars or columns. Common in store fronts. Written also (incorrectly) bres-simemer, brest-suemmer.

Breast-wall. (Masonry.) a. One built breast-
b. A wall erected to maintain a bank of earth in position, as in a railroad cutting, a sunk fence, etc.

Fig. 891.

Breast- Wralls.
The thickness and batter of the breast-wall depend upon the character and inclination of the strata. It is held to be a safe rule to make the base of the wall not less than one fourth, and the battor not less than one sixth, of the vertical hight of the wall.

Where the stratin are horizontal, a mere easing may be sufficient, lut its strength must be considerably increased when the strata incline towards the wall. The thickness required will also depend upon considerations of the cohesion of the earth, dryness, or tendency to moisture, drainage, and the peculiur superposition and dip of strata indicating land-stijs.

Breast-wheel. A wheel to which the water is adhitted about on a level with the axle, and maintained in contact with it by a breasting (b), or cas-

ing, which incloses from 60 to 90° of the periphery of the wheel. The wheel may have radial or hollow buckets.

The peripheral inclosure is sometimes called brecusting, or solcing, and the casing at the ends of the wheel is called shrouding.

Breast-wheel Steam-en'gine. A form of rotery sterem-cugine in which a jet of steam is made to impinge upon the Hoats of a wheel rotating in an airtight case.

The frist steam-engine of this class was one of the earliest on recorl. Brancas, A. D. 1520, had a copper boiler and eduction-pipe, the stean issuing from which rotated the vanes of a shaft, which (on dit) worked pestles for grinding materials, raising water by huckets, sawing timber, etc.

Comer axd Lucke's breast-whecl engine is one form of the rotary steam-engine, having neither piston nor valves. It consists of a wheel rotating in an air-tight case, receiving a jet of steam introduced in a tangential direction, the case having free communication with a condenser. The action upon the wheel is analogous to that of water upon a breast-whee!, the steam impinging with a force detenmined by its pressure ant with an ef-
Corder and Locke's Rotary Stenm-Engine, fect proportionate to the size of
the float or bucket upon which it acts.

The action of the condenser is auxiliary; making a partial vacunm in the case, increasing the absolute pressure of the stean, which passes in to fill the yoil. The shaft of the wheel passes through stuff-ing-boxes at the center of the circular case, and is supported externally by bearings.
a is the engine-shaft.
b, the revolving wheel.
c, the air-tight steam-case.
cl, the steam-pipe.
c, the throttle-valve.
f, the eduction-pipe.
g, the condenser.
h, the injection-cock.
i, the cold-water cistern.
The condensing apparatus has the usual pumps, not shown in the cut.
Breast'work. 1. (Fortificution.) A hastily construeted pruapet made of material at hand, such as carth, logs, rails, timber, and designed to protect troops from the fire of an enemy.
2. (Shipbuilding.) A railing or halustrate standathwartships across a leck, as on the forward end of the yuarter-deck or round-house.

The beam supporting it is a breast-bcem.
3. The paraput of a building.

Brec'cia. (Musonry.) A kind of marble composel of a mass of angular fragments, clusely cemented together in sucla a manmer that when broken they form breches or motehes.
Breech. 1. (Firc-arms and Ordnance.) The rear portion of a gun ; the portion belinel the chamber.
2. (Shipbuilding.) The outer angle of a kneetimber; the inner angle is the throut.
Breech-block. A movalle piere at the breech of a breech-loaling gum, which is withimwn for the insertion of it cartridge and closed before firing, to receive the impact of the recoil. This is the great problem in the breech-loading gunt. Under Fueanm the subject is treatel, the invention heing divided into 2 genera, 91 species, aul 21 varieties, according to the mode of moving the block relatively to the barrel or the barrel to the block. The probslem is to open the rear of the barrel and close it again. See Fire-arm.

Breech'ing. 1. (Ordnance.) A rop" secured by a thimble to the breeching-loop' of a ship's gun, and attached by its ends to ring-holts on each side of thie port-hole, serving to limit the recoil of the grom when lirel.

The brecching-loop ocenpies the place of the ordinary caseubel.
2. (Harness.) The portion which comes behind the buttocks of a horse, and emables him to hold back the vehicle in descending a lill.
3. A lifureated smoke-pipe of a furmace or heater.

Breech'ing-hook. (IChicle.) A loop or hook on the shaft of a carriage for the attachment of the strap of the breeching, by which the horse bears backwardly against the loal in descending a hill.

Breech'ing-loop. The loop of the cascabel in ships' guns, through which the breeching goes to prevent the recoil.

Breech-load'er. A fire-arm in which the loal is introduced at the rear instead of at the mizzle. The use of breech-loaders goes back to the sixteenth century; indeed, it is promble that that form of arm is about as old as the nuzzle-loader. See Fube-ana; Revolver; Magazive-gun; CanNon. Sce also list under Wrapons.

Breech-pin. (Firc-arms.) A plug screwed into the rear end of a barrel, forming the bottom of the charge-chamber. Otherwise called a brecch-plug or breceh-screw.

Breech-screw. (Fire-arms.) The phing which closes the rear end of the bore of a firearm barel. Theparts are known as a, plug. e, face. b, tenon. c, tang. d, tang-screw hole. Breech-sight. (Fire-arms.) The hinder sight of a gun. In conjunction with the front siofht it serves to aim the gun at an object. It is graduated to degrees and fractions, their length on the scale being equal to the tangents of an are laving a radius equal to the distance between the front and rear sights. The front sight is merely a short piece of metal screwed into the gun, usually at the muzzle, but sometimes betreen the trunuions, or on one of the rimbases, with its npperedge parallel to the bore of the ginu. The rear sight may be detached, haring a circular base fitting the base of the gun, or may slide through a slotted ling, and be retained at any given hight by a set screw:

The breceh-sight, the tangent scale, and the pendiulum are mercly different forms of this derice, the latter having a bulb at its bottom which keeps it in a rertical position when the two wheels of the carriage are not at the same level. It is suspended iu a seat which is screwed into the brecch ol the gun. The tangent scale has steps, correspondiug in hight to the graduations on the breech sight for guns of the same caliber and pattern ; and is only applied to the gun at the moment of sighting. Sce BackSIGIIT.
Breech-wrench. A wrench used in turning ont the breech-pin of a fire-arm.

Breeze. (Brich-making.) Refuse cinders used for burning bricks in the clamp.
Breeze-ov'en. A furnace adapted for burning coal-lust or brece.
Bre-Iuche'. (Fabric.) A French floor-cloth of linen and worsted.
Bre-quet'-chain. A chain for securing the watch in the vest procket to a button or buttou-hole of the vest.

Bres'-sum-mer. (Carpentry.) A girder in an extemal wall, supported by piers or pillins, and carrying a superincumbent weight. Sometimes written brest-summer; properly, brast-summer.
Brett. (I'chicle.) A four-wheeled carriage having a calash top and seats for four besides the driver's seat. A short term for britzska.

Bret'tice. (Mining.) a. A vertical wall of separation in a mining-shaft which permits ascending and descending currents to traverse the respective compartments, or permits one to be an upcast or downcast shaft, and the other a hoisting shaft; otherwise rritten brattice.
b. A boarding in a mine, supporting a wall or roof.
Breve. (Prinfing.) A curved mark (" - " ") indicating the short quantity of a vowel ; as, - Ep'i-gram.
(Music.) A note in music (" ${ }^{*}$ ") of the ralue of four minims.

Bre-vier'. (Printing.) A size of type between bourgeois and minion.

Bourgeois, 102 ems to the foot.
Brevier, 112 ems to the foot.
Minion, 125 ems to the foot.
Brew'ing. The art of preparing fermented liquors from grain. Herodotus, who wrote about 450 B. c., says that the Egyptians made their "wine"
fro:n harley, and ascribes the invention to lsis, wife of Osinis. The Greeks used a malt liquor noder the name of barley wine, having learned the art of making it from the Egyptians. It is mentioned by Xenophon, 401 B . C. Accorting to Tacitus, beer was a common drink among the Germans, and Pliny says that in lis time all the nations of the West of Enrope made an intoxicating lifuor from grain and water. The description given by lsidorus and Orosius of the manner of its preparation in Britain and other ancient Celtic comntries, applies preciscly at the present day, so far as the infusion of malt is concerned, but no mention is made of the use of hops. These do not appear to have been used by the Greeks, Romans, or early Gernaans, though the plant grows wild in Europe. It is first mentioned in a letter of Pepin (A. D. 752), who speaks of humulonarias (hopgardens). It is again referred to by Atelard, Archbishop of Larby, s22.

Hops, pressed into masses like bricks, have been placed by the Chinese in their beer from time immemorial. The same custom is, or was, practiced in Bohemia. They were introduced into England by a native of Artois about the beginning of the fifteenth century, but their use was opposed by physicians from the supposition that they made the beer unwholesome. The cultiration was forbilden hy acts of Henry Vl, and Henry Vllh., but eventually survived this injurious legistatio .

The manufacture of beer must have been carried on to a considerable extent among the Anglo-Saxons, as ale is mentioned in the laws of lna, king of Wes. sex, and at after periods.

Malting is the tirst step in the process of making fermented liqnors from grain, and for this any of the cereals, such as wheat, oats, buckwheat, rice, or \ln dian corn, may be employed, hut the preference has been miversally given to barley.

The barley is steepred, to saturate and swell the grain, laid in piles to germinate, being spreal and turned to allow access of air: when the stem or acrospire has nearly reached the rnd of the kernel, the germination is stopped by heating the malt in a kiln. The roots fall off in the thying and screening.

The malt is coarsely ground and mashed ; water, at a heat of 160° or 170°, dissolring the sugar developed by the malting, and allowing the diastase to act ulon any remaining starch which has continued unchanged. Water at 194° is adled to complete the infusion, and the uort is drawn off. Successire amounts of water remore remaining soluble matter. A saccharometer is used to test the strength of the infusion, which is then boiled with hops in a copper boiler. It is then strained, cooled, yeast added, allowed to ferment, transferred to storage-vats, or drawn off at once into barrels.

Brew-ket'tle. (Browing.) The ressel in which the wort and hops are boiled.

Bri'ar-tooth. Properly Brier-tooth (which see).

Brick. A molded and burned block of tempmed clay. The word is also applied to the hlock in its previous conditions, as a molded plastic mass, and as a dricd block in which the water, hegrometrically combined with the clay, is driven oft. When this condition is accepted as a finality, the block so driet] is an adobe. The buming of the previously dried brick drives off the chemically comhined water, and forever changes the character of the mass. An adobe mily become re-saturated with water, and resume its plasticity; a brick may become rotten and disintegrated, but not plastic.

Travelers on the Euphrates give extraordinary accounts of the mounds of bricks at Birs Nimod,
the supposed site of Babylon, and the remains of other cities of the stoneless plains of the Euphrates and Tigris. The men on the plains of Shinar who said, "Go to, let us make brick, and burn them thoroughty " (Gen. xi. 3 ; 2.247 в. с.), and who laid them up with slime (bitumen), made a very thorough job of it, if the true site has been fomd. Rawlinson, Layard, Mignan, Rennel, and many others, have found at various places sun-dried and kiln-burned brick of large size and in incalculable quantity. The buried palace of Nebuchadnezzar has for a long series of years, indeed, provided bricks for all the buildings in the neighborhood; there is scarcely a house

Fig. 895.

Babylonish Brick.
in Hillah which is not almost entirely built with them.
"It was the custom of Nebuchadnezzar to have his name stamped on every brick that was used during his reign in erecting his colossal palaces. Those palaces fell to ruins, but from the ruins the ancient materials werecarmel away for building new eities; and in examining the bricks in the walls of the modern city of Baghlarl, on the bovers of the Tigris, Sir Henry Kawlinson discorered on each the clrar traces of that royal signature." - Müllelr, "Srience of Language." See also "Researches of Dellia Valli," 1616 ; and Rich, 1815.
These bricks are red or pale yellow, and are sometimes disposed in mosaic. Their sizes vary $12 \times 12 \times$ 3 inches to $19 \frac{1}{2}$ inches square and $3 \frac{1}{2}$ thick. Nome are rounded at the corners for quoins ur special work. The bricks are almost universally stamped out of a mold, and impressed with cuneiform inscriptions in a sumken rectangular panel. The inscription on the brick (Fig. 895) is, -

> "Neburhailnezzar
> the King of Babylon,
> founler of Beth-Digla, or Saggalu, and of Beth-Tzia, son of Nepolalazar."

From their peculiar form, the pressed cakes of tea
which form so important a part of the Turcoman and Calnutk cuisine are known as brich tece.

Herodotus ($450 \mathrm{~B} . \mathrm{c}$.), who had heard of this species of fuod, supposed it to be a kind of fruit, dried and pressed. He sars: "The juice which runs oft" is black and thick, and is called by the natives [Scythians] aschy. They lap this up with their tongues, and also mix it with milk for a drink; while they make the lues, which are solid, into cakes, and eat then instead of meat." - Heromotus, N. 23.

Their descemdants do the same to this day.
The bricks of Thothmes 1II. are impressel with his cartouche. The Roman brickmakers had their special marks. The Twenty-second Lugion has been traced through Germany by the bricks which bear its name. Roman bricks are found at Caer-leon, in England, inscribed LEG. II. AUG. 13ricks at lork, England, attest the presence there of the Sixth and and Ninth Legions.
Of the Egyptian bricks, the following proportions are given by Wilkinson:

		One of	One from the
	A brick of	Amounopt III. (in	Pyramid of
Lenath		British Suseum). 11.3 in.	17 l \% inara.
Width	9	5.8	8.8
Thickness	Ss 6 ?	3.9	3.8
Weight	$37+\frac{9}{6} \mathrm{lbs}$.	13 lbs .	48 豆1 1 lbs .

Enameled bricks, brightly colored, are alundant in the mound of the Mujellibeh, in Mesopotamia. The principal colors are a brilliant blue, red, a deep yellow, white, and black.

The bricks in the Pyramids of Dashour are arlohe, 16 inches long, 8 wide, and $4 \frac{1}{2}$ thick; some made with straw and some without.

The mud of the Nile is the only material in Egypt for brickmaking, and the motern process is the same as the aucient, as may be seen by the drawings

 on the tombs. The annexed cut is from a painting on a tomb in Thebes.
Some of the men ($11 b c d$) are represented digging and mixing clay and mud ; others are carrying chay (c), and dipping water from the river (g), and carrying it in jars: while others are molding bricks ($h i$ i), and laying them out on the ground to dry. $j k$ are carrying bricks; l returning with his yoke empty ;
"n n are taskmasters. Thrmorlern plan is the same ; a bed is made into which mod and water are thrown, together with large quantities of cut straw. This is tramped into a mortar, taken out in lumps, and shaped in molds, or by the hands. It is sm-dried, not burned. The lricks of Egypt, ancient and motern, are adobes.

The business of brick-making is believed to have her'n a royal monopoly in Egypt, and Wilkinson states that more bricks are found in Egypt with the stimp of Thothmes III, than of any other monarell. He is believed to be the prince who reigned at the dime of the Exodis of the Hebrews.

I lyramid of brick was erected by Asychis, who, arcording to Herodotus, preceded the king who was dispossessed by Sabaco the Ethiopian, and who was restored and eventually succeeded by Sethos, a contemporary of Sennacherib and Tirhakah, about 700 B. C. Four pyramids of this material, according to Wilkinson, still remain in Lower Egypt, independent of several smaller ones at The hes. Two are close to Memphis and the modern town of Dishoor ; the others stand at the entrance to the Fyoom. They are huilt of adobes, and their chambers have arched brick reilings; but the areh was long lupviously used in 'Thehes, and was invented and used in Upper Egypt many centmies before Asychis.

Fo trace of a burned brick has been foumd of the ancient age represented by the tumuli-builders of North America.

Strabo speaks of bricks mate of an eartl at Pitane, in the Troad, so light that they swan in water. Poseidonins speaks of bricks made inS $\mathrm{S}_{\text {ain " " of an argil }}$ laceous earth wherewith silver vessels are cleansed [rottenstone], and so light as to float in water."

The Roman bricks, in the time of Pliny, were of three sizes, the largest a foot and a half in length by a foot in breadth, and called the Lydian. The names of the others were deriverl from their being respectively four and five palms in length. He cites the great use of them by the freeks, and declares them unfit for use in Roman dwellings, where no pirty walls were allowed to exceed a foot and a latf in thickness, and that thiekness, he declares, "would not support more than a single story." The buildings in Rome were limited by Augnstus to a higlit of seventy feet. If Pliny conld see some of our mod$t \rightarrow 11$ walls of six-story hight, he would tremble for the occupants. The inference is that wood was the jrineipral material for buidling in Rome, and this view is confinmed by the extent aml destrmetiveness of their fires. He farthor cites that the walls of Babylon were of brick cemented with bitmmen, and that the latter was imported from thence into Rome as a medicimal agent, and a material for vamishing heads of nails and varions other artieles of iron.

The Romans used large, thin bricks or wall-tiles as a bond in their rubble constructions, aud such continued to he used in England until regular masonny was introdueed shortly before the Norman Compuest, 1066 . After the great fire of London, 1666 , brick was substituted for wool in the erection ol buildings in London.

The ancient nations excelled in the quality of their bricks, which was lrobably owing to the abundance of labor, good sunshine, and patience. The thorough working and tempering of the clay, to develop its plastic quality, followed by good drying, lengthened geasouing, and careful burning, will account for the quality. in China, the potters work up the clay povided by their fathers, and lay n1 a store to ripen for their clijdren. Brickmaking in Gremer was Hlared moder legal supervisors.

The walls of the rity of \boldsymbol{A} thens, we learn from

Pliny; were mate of brick on the side towards Mt. Hymettus. Many of their other public buildings were of brick, as were also those of the Romans. An attempted ennmeration would become tedious. The palaces of Cresus, king of Lydia ($548 \mathrm{~B} . \mathrm{C}$) , of Mausolus, of Halicarnassus ($352 \mathrm{~B}, ~(1$.$) , the Path of$ Titus (A. D. 70), the Pillar of Trajan (A. D. 98), and the Bath of Caracalla (A. D. 212), were of brick. The latter yet bears witness to the 'fuality.

Among many of the Asiatic nations the bricks are of excellent quality. Those of China are faced with porcelain, and in Nepanl they are ornamented by the encaustic process and in relief.

The conquerors of Pern found the art of hriekmaking in a flourishing contition in the Empure of the Incas, and looth there and among the more northerly comutries of Yucatan and Mexico, we learn from the Spaniards, and from Humholit, and also from our own historians and travelers, Prescott, Stephens, and Squier, that the architectural remains of former races are still extant in brick as well as in porphyry and granite.

Bricks were made in England by the Romans A. D. 44. Nade under the direction of Alfred the Great, A. D. 886. The manufacture flourished remarkably under Hemy VIII, and Elizabeth. Tlie size was legulated by Charles I., 1625.

The operations of brickmaking may be said to consist in -
Preparing the brick-earth. Drying. Tempering. Burning. Molding.

The qualities of bricks may be thus enumerated:-
Somndress; that is, freedom from cracks and flaws.
Hardness ; to enable them to withstand pressure and strain.

Regularity of shape and size ; to enable them to oceupy their proper place in the course.
Intusibility ; in those intended for furnace-work.
Fire-bricks are made trom a compound of silica and alumina, and the clay owes its refractory quality to the absence of lime, magnesia, potash, and metallic oxides, which act as Huxes.

Hollow bricks are made for purnoses of wamming, ventilating, and removing moisture from the will. In some cases the hollows form Hues, or shafts for ventilation, or discharge of clust liom the upper stories. In other cases the hollows have no mechanical function other than to form air-chambers for warmth, as it is well known that an imprisoned body of air is a very poor conductor of lieat. Prince Albert's tentments at Knightsbridge were built of hollow bricks, and wre held to be a success in this respeet.
a (Fig. S97) represents a 9 -inch wall tinished with a common brick at the angle.
\hat{b} shows a 14 -inch wall, a half-ventilating brit:k beimg

used altemately in the courses.
c shows the relation to each other of the ventilat－ ing spaces，so as to make the openings continuous．

Hollow brieks were nsed by the Romans in large vanltings，and are suil to be eommon in＇Tunis，Af－ rica．They are made by machines smilar to the tile－ machiues or by hand．Tlicy are matle of various shapes，to suit ordinary wall－work，angles，reveals， jambs，chimmeys，floors，arches，copings，ute．

α is a hollow brick for ceilings，having lips which rest on the lower flanges of the girders．The bricks indicated by letters b to k are of various forms，and their uses are indicated by the section of parapet wall shown at l and by Fig．899．They are external and internal，yuoin，jamb，and splay bricks．

Fig． 899 is a section
 illustrative of the con－ struction adopited in Prince Albert＇s model houses．The span of the arches is increased over the living－rooms to 10 feet 4 inches with a proportionate addition to their rise．The ex－ ternal springers are of cast－iron，connected by wrought－iron tie－ rods．

It is stated that there is an advantage of 29 per cent in favor of the hollow bricks over the ordinary bricks，in ad－ dition to a considerable diminution in the cost of carriage or transport，and 25 per cent on the mor－ tar and the labor．

Bricks are glazel or remdered waterproof ly a com－ position which gives them a vitreons surface．This＇ is performed by treating the surface with a flux which melts the silex of the brick，or it may be ap－ plied to the surface in solution，the liquid leeing af－ terwards expelled by heat．Resinous componnds have also been used to render the surface non－absorb－ ent．They have also been treated with soluhle sili－ cate of socla，which has been decomposed，leaving the insolub＇e silex in the pores of the brick．lig－ ments added to the glazing compounds give an orna－ montal aprearance．See hmok－machine．

Varinties of bricks are known hy manes indicative of material，＇fuality，shapre，and priphose．

Air－brick is a grating the size of a brick，let into a wall to allow the passage of air．
Arch－brick usually means the hard－burned，par－ tially vitrified brick from the arches of the brick－ clamp in which the fire is made and maintained．
A brick made voussoir－slaped is known as a com－ pass－brick．
A capping－brick is one for the upper course of a wall．

Clinker ；a brick from an arch of the clamp，so named from the sharp glassy sound when struck．

A compuss－brick ；one voussoir－shaped for arches．
A coping brick；one for a coping course on a wall．

Frather－edged brick，of prismatic form，for arehes， vaults，niches，etc．
Firc－hrick made of intractable material，so as to resist fnsion in furnaces and kilns．

Hollow－brick，with openings for ventilation．
Stocks；a name given loeally to peculiar varieties， as gray－stocks，red－stocks，etc．
Peckiny，place，sandal，simel brick，are local terms applieel to imperfectly burned or refuse brick．
Bricks vitritied by excessive heat are termed burr－ brick．
The specific gravity（average）is 1.841 ；the weight of a cubic foot， 115 pounds，which absorbs $\frac{1}{1 /}$ of its weight of water；the colhesive force of a square inch is 275 pounds（Tredgold）；it is crushed by a force of 562 nounds on a square inch（Rennie）．
Weight of a cubic foot of newly built hick－work is 117 pounds；the weight of a rod of new brick－work is 16 tons．

Brick－axe．（Brichlaying．）An axe with two ends，which are presented like chisels．It is used in choppinig off the soffits of bricks to the saw－kerfs， which lave been previously made in the brick to the required depth，in order to prevent the brick from spalling．

It is used generally in dressing bricks to a shape for arehes，niehes，domes，etc．

Brick－clamp．A stack of bricks in order for burning．

Bricks are burned in clamps and kilns．The former is commonly adopted in the neighborhood of London，where the brecsc is mixed with the clay and forms the fuel by which the briek is burned．A clamp is also the name given to a pile of bricks which are luilt into the proper form for firing．Many va－ riations in the modes of building clamps will be foumd in different places，but one successful method may be described in general terms as consisting of a number of walls or＂necks，＂ 3 bricks thick，about 60 lnicks long，and 24 to 30 bricks wide，in an in－ clined prosition on each side of an upright or double battering－wall in the center of the clamp，the up－

Fig. 901.

Brick-Drying House.

right being of the same hicht as the necks, but diminishing from 6 bricks thick at battom to 3 bricks thick at top. The sides and top of the clamp are cased with burned brick, and are sometimes danbed with clay. "Live" holes or flues are made thonghout the length of the clamp for the reception of the kindling when the bricks are burned with layers of breeze. In cases where they are burned by regular firing, the bricks are so clamped that openings are left for the fire in every direction. The outer layers are "close bolted," as it is called, which means that they are laid as close as possible; when they are stacked sor as to allow intervals or spaces, they are said to be "scintled."

For details and particulars see "Dobson on Brick naking."
Brick-dry'er. An oven in which green bricks are dried, so as to fit them for huiliting $u p$ in clamp or kihns for burning.

A series of drying-chamhers are separated from oach other by iron folding-doors, through which chambers a railroad track is laid. Under one end of the structure is a furnace, anul hot air, of increasing degrees of temperature, is introduced successively into the separate chambers.
Brick-el'e-va'tor. An apparatus for raising

Fig. 902.

- Brick and Mortar Elevator. materinls used in construction. In that shown, the endless chains $A B$ are carried over wheels C D above and below, and the material is carried up on boxes supported by frames attached to the chains.

Brick-fur'nace. Hoffman's annular brick-furnace has a central chimney d and removable divisions for separating the annulus into different chambers a a. These are filled and emptied through loors b, and $c c$ are valved passages leading to the drum e around the chimney d. $h h$ are openings to introduce powdered coal into the chambers a on top of the bricks. The chambers a a being charged with brick, heat is applieel to one chamber, and the rolatile results are led through the next one, so as to heat and dry the bricks in the next in series. The bricks in chamber one being burned, the fire is applied to number two, and the heated air led therefrom through chamber three to the outlet c and chimmey
d. The air to feed the fire in chamber tro is led tlirough clamber one to cool the bricks.

Brick-Furnace
Brick'ing. The imitation of brick-work on a plastered or stuccoed surface.

Brick-kiln. A chamber in which green bricks are loosely stacked, with spaces hetween them for the passage of the heat, and in which they are burned by fires placed either in arched furnaces under the floor of the kiln, or in fire-holes placed in the side walls.
One form consists of four upright walls inclosing a rectangular chamber. The floor is sunk ahont four feet below the general surface of the ground, and is not paved. The doorways for setting and drawing the kilu are merely narrow openings at the side of the kiln raised a step above the ground, and about
five fept from the floor: The fire-holess are arehed openings oposite to each ather on the sides of the kiln, lined with fire-bricks, which regnire to be renewed from tine to time, grencrally every season. The width of these looles is rednecd to the reguired space by tempormy piers of brick-work, so as to leave narrow operings about eight inches wide and three feet high.

On each side of the kiln a pit is sumk to the level of the floor, and covered with a lean-to roof, which

Fig. 904.

Brick-Kiln.

protects the fnel and the fireman from the weather, and prevents the wind from setting against the hies. The walls of the kilns are about three feet thick, and are built of old bricks, rubble-stone, and the refuse of the yard. No mortar is used, as the use of lime would lestroy the brick-work, and the bricks are set in foam or fire-clay.
The views (lig. 904) represent respectively, -
A section through the sides.
A section throngl the ends.
An end clevation.
A side clevation.
The cirenlar kiln or cupola (Fig. 905) is domed orer at the top, whence its name is derived. The fire-holes ire nomely openings left in the thickness of the wall, and are protected irom the wind by a wall built round the kiln at a suffieient distance to allow the lireman room to attent the fires. These cupolas are cinployed in Staffordshire, England, and vicinity, and the heat attained in them is very great.

In the illustration the figmes are re. spectively, -

A spetion on line $C D$.
An clevation.

c

Fig. 905 shows a progressive burning and cooling kiln, in which furnaces are arrarged on each side of a chamber, in which latter are rails for carriages loaded with brick. Doors are provided at each end of the kiln, so that, when the brick on one carriage is burned, the doors are raised and a earriage of unburned brick is pushed against the others in the kiln, thus forcing out the carriage at the other end.

Air or stean have been introduced under pressure
Fig. 906.

Brick-Kiln.
into burning lnick-kilns for the jupose of distributing the heat from the hotter portions to parts wher the heat is lesser. Other devices are for drawing air throngh a sectional kiln when the haking is completed, in order that a part of the accumulated heat may be employed in other sections of the compound kiln.

Bricklay-er's Ham'mer. (Bricklaying.) A tool having a hammer-head and a sharpened peen, forming an axe for dressiug bricks to shaple.

Fig. 907.

Bricklayer's Hoist.

Hoist. A winch and tackle for lifting bricks and mortar in building.

Brick'lay-ing. The inplements of the Mricklayer are a troucel, for spreading mortar and breaking bricks when a piece smaller than a whole brick is required ; a hemunere, fur making openings in the lrick-work and for driving or dividing bricks, for which purposes one end is formed like a corumon hammer; and the other is broal and flattened, sumtewhat after the manner of an axe; the plumb-rrule, made genemally of wool, having a longitudinalopening down its middleand a β mmmet suspended from its upper end, for carrying walls up perpendicularly; the lerel, consisting of a long horizontal am, having a perpendicular branch carrying a vertical arm from which a plummet is suspended; a large squere, for laying out the sides of a buildiug at right angles; a rod, usually five or ten feet lons, for measming lengths; compasses, for traversing arclees and vanlts; a line and linc-pins, for herpiug the courses straight aml level as the work progresses ; and a hol, for carrring bricks and mortar to the workman.

Bricksare laid in courses so as to break joints, and their arrangement with regard to each other constitutes what is called the lumel. There are two kinds of bond made use of in England and America, - English or old English, and Flcmish,-theformar, how: ever, being much more commonly employed than the latter. Siee Busu.

Brick'lay-er's
See Masun's and Bricklayer's Tumls, ete.
Brick-ma-chine'. Bricks have beell made by machinery for many years. Some of the early U'nited States patents, of which the record was unfortunately burned in 1836 , are dated $1792,1793,1500,1502$, 1806, 1807 , and a tolerably constant strean has followed them. About 122 patents were granted in the United States previous to June, 1836, for brick and tile machines, and more than 500 patents have since that time been granted for brick-machines. The number is rajudly increasing. In England, probably over half that number are on record for making bick.

It will be inpossible in the space which can be levoted to that subject to do more than present a few examples of the different forms which have heen brought forward. This will show the direction of invention in this line, and will suggest to the reader the various modes of forming a rectitigular block of plastic elay. These are the terms of the problem. As usual, where intportant iuterests are at stake, the resolution has called a rliversity of machines into existence.

Brick-machines are of several classes.
Class 1. Those in which a slab of clay exudes from the pug-mill, and is cut up into lencths which form bricks. The cutter is a wire or knife, and either travels with the slah while cutting, or moves in an olulique prath, so as to make a st prare transverse cut across the moving slab.

Cuamberlaisis English marline is in principle as follows: -

The claty is fed into a pug-mill placed horizontally, which works and mixes it, and them forces it through a month-piere of die of abont 65 symare inches, or about halt an inch deeper and halt an incll longer than is required for the brick, of a form similar to a brick on elge, hut with corners well rounded off, each corner forming a puarter of a 3-ind circle; for clay will pass snoothly through an aperture thus formed, lut not past a shar" angle. Alter the clay has escaped from the mill, it is seized by four rollers covered with a porous fabric (molcskin), driven at a like surface-speed from connection with the pug-mill.

These rollers are two horizoutal ind two vertical ones, having a space of 45 inches between thenu. They take this larger strean of ronglı clay, and press or roll it into a squared block of the exact size and shape of a brick edgeways, with sharp edges, - for the clay has no friction, - being draw throngh by

Fig. 903.

the rollers, insteal of forcing itseli throgh, and is delivered in one unbroken stream. The rollers in this machine perform the functions of the die in one class of machinery, and of the mold in the otlew. They are, in lict, a die with rotating surluces. By Janging a series of mandrels or cores between these rollers, or by merely changing the mouth-piece, hollow and perforated bricks may be made without any alteration in the machinery. The slab is eut up into bricks by transversely-moving knives or wires.

In the brick-machine Fig. 909 the temperingchamber, impelling-serew, and forming-die are in the same horizontal line, and of a conical shape, the form-
ing-die buing at the apex; the clay is receivel at the hoprex on the cylindrical portion, worked by the beaters, and delivered to the serew which works at the end of the same shaft, and with a gradually inereasing depth of thread terminates before it realhes the die, so as to make the clay leave in a solid mass; the wallss of the serew-chanber are roughened to prevent the revolution of the clay.
The chay is delivered upon an cudless apron, by which it is carried to a knife working by attachment to a fly-wheel, which, weing controlled by the same power, makes its cuts at regular distances in the traversing mass of elay; the latter is suplouted at

the point of impact of the knife by a movable frame the clay passes from the pug-mill into molds, in underneath, which moves with the knife, and the which it is pressel, and from which the molded brick is discharged.

Fig. 910.

Brick-Machine.
brick as it is cut off rests upon another apron, which, traversing faster than the former, soon makes an interval between the bricks.

In Fig. 910 the clily is forced from the reservoir B by the piston, which is driven by a screw and bevel-gearing. It issues through a throat or dic, whose opening admits a wide slab of clay b, to be subsequently eat up by two series of knives, which divide it longitndimally and transversely. I is one of the knives, of which there are several on the same shaft ; they are distant apart the length of a brick, and divide the slal into ribbous longitudinally. $J J$ are a series of knives which are placed on a mandrel whose bearings are in a carriage, and the latter moves in ways across the path of the slab of clay and cuts the ribbonsinto bricks, the knives J being distant ajurt the width of a brick. The bed is made in sections $E E$, which are passed in suecession through the machine by means of the racks and pinion.
Class 11. Those in which

This class has six varieties : -
Var. 1: Those in which the mohls are on the upper surface of a moll-wheel revolving in a horizontal plane, the molds being brought successively below the pugmill, ly which they are chargeal. The pressing and discharging deviees vary in ditlerent machines.

Fig. 911 shows an English machine of this variety. It consists of a vertical pug-mill a, into the upper part of which the clay is fed. In this part of the aploratus the clay is tempered and mixpl, and is thence forcibly pressed into the molds b, which are arranged in a circular revolving table, is this table revolves,

the pistons of the molds aseend an inclined plane, and gradually lift the bricks c out of the molds b, whence they are taken from the machine by a boy and placed on an endless band d, which carries the bricks direct to the hacker.

The speed of the several parts of the nachine is so arranged that the oprrations of pugging, molding, and delivering proceed simultaneously in due order, the whole being clriven by a stean-engine of about 6 -horse power, which, at the ordinary rate of working, will make 12,000 bricks per day, or, with 8 -horse power, from 15,000 to 18,000 .

Fig, 912 is an American form of brick-machine, of the same class and variety as the last.

The pug-mill shaft has a series of oblique arms, and at the foot has a pressing spiral which forces the tempered clay into the molds of the horizontally ro-

Fig. 912.

tating table beneath. As the wheel rotates, the rollers beneath the followers which form the mold-bottoms rise upon inclines, which lift the followers and discharge the brick from the mold.

Var. 2: Those in which the molds are on the periphery of a wheel, and receive their charge from a pug-mill or hoplper :ahove. The clay in the mold

Fig. 913

Brick-Machine. is pressed by the application of exterior or interior force, or both, and the molded bricks are discharged by piston-followers; in most cases operated by cams or toggles.

In the example (Fig. 913) the pulverized clay passes from the hopper E into the molls in the periphery of the wheel below. The clay is pressed in the molds by the perforated pressing surfaces of the opposite wheel D. As each of these pressing surfaces comes in contact with the clay, it is also brought in contact with the trunk n and pipe o, which lead to an air-pump. The air is thus exhansted from the clay while the latter is under pressure.

Fig. 914.
a wheel 7 ，having its periphery prerorated with rectangular open－ ines which form the brick－moles， rach mold heing providerl with a piston or plunger．ln the lower prat of the hox，and just in the rear of the wheel，is fitted trans－ versely a box which selves as a scraper to take the superlhous clay from the periphery of the wheel，and to smooth and com－ pact the clay at the surfaces of the molds．As the latter come to their lowest position，the fol－ lowers are moved and eject the

Endless Succession Brick－Machine． bricks．

Var． 3 ：Those in which two wheels are provided with peripheral mokds which are charged with clay trom a hopper alove，and in which the pressure is deriven in whole or in part from the contact of the peripheries of the wheels with each other．Of this va－ riety and class is Fig．915．The corrugated feed－roll－

Fig 915.

Double－Cylinder Brick－Machine．
ers $J J^{\prime}$ in the hopper drive down the clay，which enters the molds in the peripheries of the contacting cylinders．On the faces of the said cylindersare alternate molds and spaces，the latter forming pressure－surfaces for the clay in the molds of the opposite cylin－ der．The cylinders are coun－ terparts of each other and are rooperative，lieing geared to－ gether so ns to 1 min in exaet correspondence．Each moll has its piston or follower，which is moved radially by contact with a cam on the main－shaft of its cylinter．As soon as the mold passes the ellge of the dividing block，the can commences to thrust out the follower and re－ duce the brick to a smaller com－ pass，pressing it against the face of a roller．This gives the onter face of the brick a concave form，but it is presently brought against one of the facets of the hexagonal roller M ，which is so geared as to present its force the brick ont of the mold at the propre time． sufface to the openings of the mold in a given cylin－a is the prg－mill，and b the chamber from which thin der in succession．When the mold reaches the low－clay is ejoctell by the oblique arms e，being rememb
est position in its revolution，the follower is farther advanced and discharges the molded brick on to thr off－bearing apron $N^{\prime \prime}$ ．This description of the action in one mold is true of each mold in each of the cyl－ inders．By way of giving farther compression，spring－ plungers are advanced，after passing the divider L ， and make a perforation in the brick which is retained， as the plunger is not retracted until after the brick has passed the hast point of pressure．

Var． 4 ：Machines in which a series of molds are linked together to form an endless series，or are placed on an endless belt or track，and are passed beneath the charger，from whence they pass to the presser．

Fig． 916 is an illnstration of this variety．The clay passes from the hopper a into the molds $b b$ ， and is pressed thereinto as they run beneath the pressure－roller c ．The follower at the bottom of each mold is raised by the contact of its carringe with the roller d heneath the track．The effect is to par－ tially remove the brick from its mold and expose it to the pressure of a second roller e ．It then passes under a smoothing－block g ，after which the follower－ carriage climbs an inclined plane h ，which elevates the briek from the mohl．The moids are contained in a sliding frame which rums beneath the pug－mill， and，after discharging the lricks，returns empty to commence a new stroke．
In Fig． 917 the molds，in an endless chain，hinged together and running over two sprocket－wheels，are proviled with movable bottoms，which are acted upon to press the contents of the mohl，and also to

Fig． 91 －

Endless Belt Brick－Machine．
into molds in the boxes 11 as they pass in turn be－ neath the throat in the bottom of chamber b ．As the mold passes this point，it receives 1 wessure from the intermittingly operating plunger attached to the toggle I ，and shortly after the mold－bottom d is lited by a spoke of the discharging－wheel L ，which ejects the brick．

Var．5：Machines in which the clay is molded by the force of a reciprocating piston or pistons．

The operation of the machine（Fig．915）is as fol－ low：：The clay passes from the hopper U into box
lates the rate of passage of the clay：The heaters $c c$ drive the clay into the molls beneath，which are intermittingly advanced by a sliding－block，which is reciprocated by a pitman and crank detiving thẹir motion from the shaft helow．

In Fig． 920 the casing－cylinder of the prg－mill is removed，to expose the blades $m m$ to view．

Motion being given to the shaft c ，the cranks and pitmans h and h^{\prime} operate the shoving－boards c and f ， on which the molds are placed；the molds are thas moved on the two tables A and B in an opposite di－

Piston Erick－Press．
S ；the latter is then moved by the cam K and the intermediate arm I^{\prime} ，shifting the charge of clay over the mold M ，into which it drops．The hox is then retires，and the plunger O descends，being driven ly toggle B ，and compresses the clay in mold M ．The cam F ，which regulates the motion of the said plunger，then causes the plunger O to rise，and can L raises the plunger N ，which removes the brick from the molk，to be swept from the table by the next forward movement of the box S ．

Var．6：Machines in which the molds are recip－ rocated beneath the pigg－mill．

In Fig． 919 the clay is mixed and forced out of the hopper by the revolving spiked wheels a ，and passes between the plates $f f$ ，whose distance regu－

Fig． 919.

Brick－nlachine．

Fig 920．

Brick－Marhine．
rection，and at cach revolution of the shaft c one row of molds on one table is filled with clay from the hopper，while on the other table an empty mold can be replacel hehind the shoving－boards e and f ；thus an operator，standing at the end of the taliles A and B ，can replace the empty molds on one table and withdraw the filled molds from the other table at the same time．

The blates on the shaft in the pug－mill mix and lepress the elay，which passes through holes in the floor corresponding to the position of the molds， which are passel below by the intermittent motion described．The wheel E has hlades which scrape the clay from the pug－mill floor．The suplementary scrapers $K^{\sigma} K$ ，and curred guard o ，remore the sn－ perflinous clay from the molds．The latter are re－ moved by the off－hearers，and the contents dumped upon the floor of the drying－gromind．

Class 111．Those in which clay in a nearly dry state is compressed hy a plunger into a mold，from which it is discharged after receiving a pressure， which causes the remaining moisture to form a bond of cohesion between the particles．

The functions of these machines refer to means for extreme pressure and the extraction of the air which accompanies the crumbly material into the mold． In other respects the marlimes of this class are some．
what like the piston-machines of Class II., Var. 5. For this $j^{\text {nurpose an adiputation of the hydranhe press }}$ is especially applicable and is in use. Bricks are also made of Itried and pulverized clay, mixed with a due proportion of sand and perthas lime, and molded under hydraulic pressure.
Brick-mold. A box in which clay for bricks is molded into shape. The adobes of the Orient, ancient and motern, and of the Western plains, are made by filling with clay a four-sided box, pressing it down compactly, and cutting off the superilhous clay evenly with the edge of the box. The hox is usually destitute of top and bottom, lies upon a board while being filled, and, when fifted, leaves the brick in frosition to dry.

Brick-molds may be lined with iron or brass from which the mohded brick slips more readily than it does fron wood. The sumd in the clay wears away the surface very fast, especially when lined with brass. It is sometimes made of sheet-iron in four pieces, riveted together at the angles, and strengthened with wood at the sides only. The bottom of the mold is detached, and forms what is called the stockbourd b. The latter is a piece of wood plated with

Brick-Mrolfs.
iron round the outer edge, and made to fit the mold accurately but easily. At each corner an iron pin a is driven into the molding-table, and on these pins the bottom of the mold rests, the thickness of the brick being regulated by the distance to which the pins are driven bełow the top of the stock-board.
In England, the surface of the hrick which is to form the bed, that is, the hottom, has a depression to hold a mass of mortar. To make this is the purpose of the priece c, which projects above the general surface of the stock-board b.
$A B$ are the corresponding parts of an ordinary mold, the upper four-sided portion A resting upon the lower portion B while being tilled. E is a frame containing a number of division hoards intended to be slipped into hox D, to mold five bricks at once. The frame and box, leing lifted, leave the bricks
upon the ground to dry. F is a mold of wood lined with glass f.
G represents part of a chain of molds as found in some kinds of brick-machines.
H is a mold which has an advancing piston with three punches designed to make openings into the brick for the more ready exit of the air. Used in re-pressing brick-machines, which gave a great pressure at a second operation, or act with a gleat pressure upon prepared clay, which is apparently dry.

Brick-nog'ging. (Building.) Called also brick and stud work.

A brick-uogging wall or partition is one in which
Fig. 922.

Brick-Nogging.
the spaces between the timbers or scantling are filled up with brick laid in mortar. In a brick-nogging partition the wooden portionsare called nogging-picecs.

Brick-press. See Brick-machine.
Brick-trim'mer. (Building.) A brick arclı abutting upon the wooden trinmer under the slab of a fireplace, to guard against the communication of fire.

Brick-truck. One with wide tires to travel over
Fig. 923

Brick-Truck.
the flat surface of the brick-yard in moring brick from the hack to the kiln.
Brick-work. (Bricklaying.) The English regulation brick is $8 \frac{1}{2} \times 4 \times 2 \frac{1}{2}$ inches. Of such, -
One foot of brick-work ($1 \frac{1}{2}$ bricks thick) contains 17 bricks.

One foot superficial of Flemish bond requires 8 brieks.

One cubic foot comprises 125 bricks, or 95 pounds of sand, or 135 pounds of clay, or 126 pounds of common earth.
One great ton weight (2,210 pounds) comprises

330 bricks, or $23 \frac{1}{2}$ cubic feet of sund, or $17 \frac{1}{3}$ of clay, or 18 of earth.

One cubic foot of brick-work weighs 120 punds; 1 rod of fresh brick-work ($11+\frac{1}{4}$ cubic yards) weighs $35, \$ 40$ pounds.
Bridge. 1. (Engincering.) A structure erected over a water-way, ravine, or road, for the transit of persons, animals, or rehicles. A rimuluct.

The only reference to a brilge in the canonical Scriptures is an indirect one, in a name referring to the "bridge of the sons of Jacob." it is at a place northeast of the Sea of Calilee, and a bridge still exists at the place.
The bridge erected by Nitocris, acrose the Euphrates at Pabylon, consisted of stone piers supporting a series of wooden platforms, which were capable of being withdrawn, to prevent passage at night between the portion of the city on the respective sides of the river. (Heronote's, 1. 156.)
The "lhuge stones crampel together by iron hars and melted lead" rere probably in the piens. Whe man surmise that the foundations of these were laid while the river was temporarily direrted, or made in an artificial channel to which the river was subsequently transferted. Either plan was possible in that country, and the former was tried, to the cost of the Babylonians, by Cyrus, many centuries alter Nitocris.

Ancient bridges of great magnitude exist in China. This ingenious people constructed them of wood, stone, chains, and ropes, before history commenced to be written in Europe. The great wall of China (IVan-li-chang, the myriad-nule-wall) was finished about $220 \mathrm{~B} . \mathrm{C}$., and has many stone bridges over the rarious streams which it crosses in its course of 1,250 miles. It puts into the shalle the British wall of Agricola, which united the Tyne and the Solway, 80 miles ; and the other Roman wall which minted the Forth and Clyde, 36 miles.
The Egyptians built no permanent bridges across the Nile, but were familiar with framing trestlework, and mith ponton and draw bridges ; the latter are seen frequently in their paintings representing fortified torns, sieges, etc.
The Greeks had but small rivers, and had no stone bridges until after the Roman conquest.
We lean from the Greek historians that bridges Were constructed by Cyrus (536 B в. (-), Darius (190 R. c.), Xerxes ($450 \mathrm{~B} . \mathrm{c}$.), and Prrrhus (280 B. c.). Each of these was a military bridge for a special purpose, and hal no permanent character. The bridge of Cyrus, over the Meander, was supportesl on boats, like those which crossed the Bosphorus and the Hellespont under the orders of his successors; Xenophon states that the bridge of Cyrus had seren boats.
The brilge of Ferxes was sno paces in length. Ships were used as pontons; cords of flax and biblos united them: tranoserse beams were laid on the ropes; planks on the beams; soil on the planks; and the armies crossel thereon. Cords anl posts at the sides alforded some degree of protection.

How many bridges were built by Pyrrhus in his expeditions, history does not inform us; hut the bridges in his Italian campaigns, about $\quad 980$ B. C.. over the streams emptying into the Alriatic, are mentioned by the Greek historians.

The first bridge in Rome was built across the Tiber, 621 в. c., by Anens Martius, uniting the Janiculum and Jons Arentinns, and was memorable for its defence by Horatius Cocles against Lars Porsenna the Etrusian, about 508 b. c. ; also as the spot whence the body of Heliogabalus was cast into the Tiber, a stone about his neek, about A. D. 21 S .

It was called the Pons sublicius, from its having leen built upon stakes, or piles. The original bridge Was huilt about the time of Josialh, king of Judah, and a few years previous to Š•buchadnezzar.

The Pontus Salanius was erected by Tarquinins Priscrs, about 600 B. C. It spannell the Tererone, and is beliesed to have had three arches of stone. Doubts hare been suggested as to the authenticity of this account; but it is not surprising when we consider the Cloaca Mraxima, constrncted in the same reign.

The Romans appear to lave luen the first to construct archenl bridges; several of which still exist in Syria and Palestine, and are the ohlest stont-arch bridges in existence, unless some of the Etrustan and Chinese bridges antedate them.
The Pons Senatorius was erectel across the Tiber by Caius Flavius Scipio, $12{ }^{-}$в. с.

A trestle-brilge on piles (a, Fis. 924) was huilt by Julius Cesar across the Rhine about 55 B. c. He left an account of its construction, but the authorities construct it differently from the specification extant. It was founded upon piles driven into the bed of the river. The piles were muited by

Fig. 924.

a beam, on which were lail joists in the dirertion of the length of the linilge. ['rion the joists werr laid hurdles supporting the roal-bed. An inclined fender proterted the piers up stram, and each pier was stayed below by a cluster of piles. It was huilt in ten days.
I magnificent bridge with four stone arcles was built by Augustus near Nami, on the mad from Rome to Loretto. The arches were resjuctively 75 , 135. 114, and 142 feet span. One arch remains.

The bridge of Trajan (1 , Fig. (124), which conssenl the Danube, was one of the greatent enginepring works of antiquity. It was constructed of timber resting upon stone piers. Each span consisted of three rows of concentric arches, united by bindingpieces formed upon each division: these abitteal ulon timbers radiating with the curre, whiclo were framed into heads ancl sills, again strengthened by braces and struts; the joists which carried the floor traversed the bridge, and rested upon strong plates laid upon the timber arches.

A pollodorus was the architect, A. 1r. 105. The brilge was t. 70 feet long. The foumlation was made by sinking larye harges fillew with stones, line, and sand, and filling in the interatios with
batgs of similar naterial. On these the fiess were built. The bridere had 20 semicircular arches of 180 feet 5 inehe's span. Their springings were 46 feet above the gencral level of the river. The phers were 150 feret high above their fommations, 64 feet thick, 85 feet 3 inche's witle. The bribge was 60 feet wisle
It was destroyed by Hadrian, the suceessor of Trajan, to prevent the incursions of the barlnatians. Hone was then legiming to assmue the defensive.

Among the other lioman brilges which yet remain, whole or in jart, to testify to the skill of the enerineers and extort our atmiration, are those of Merika and Aloantata, in spain. The former is over the Guadiana, 3,900 fect long, and has 64 arches. The latter is over the Tagns, 670 Spanish feet loug, 6 arehes ; road-hed 205 feet above the river.

The bridgess of London are celebrated in history, especially that fortion of history in which we who speak English are most interested. A wooden bridge existed over the Thamms in A. D. 978 . One was built of wood in 1014; one by Peter of Colechmeh, 11761200, witl honses on each side commetenl by arches of timber which crossed the street. 'This was burned in July, 1212 , and 3,000 persons perisherl. The luildings being on fire at the Surry ent, a great crowd rushed to see the fire, and the wind blew the huming shingles to the north end, lighting the buiklings at the Midhllesex sile of the river. Betwern fire and watpr the loss of life was drearlful. The hridge was restored in 1300 ; again pretially burned in 1471,1632 , and 1725 . The houses were pulled down in 1756. At what tine stone arches were substitutel for wooden slams does not appera. Whem the presmat London briklge was built in 1831, the ehm piles of the old bridgt were jet sound, after 600 years' use.

In the twelfth and thirteenth centuries A. Is, a very useful society flomished in Emrope, called thu " Brothers of the Bridge," The building of brikges wats at that time rleemed an act of piety, and we must lighly resueet that devotion which, in the fear of Gool, fimds its expression in deeds of exalted? usefulu'ss.
lownezet built a bridge at Arignon over the lhone, which was tiulisled in 1188 . It lad 18 stone arches, and wils 3,000 feet long. The arch which smpported the chapel dedicateml to St. Nicholas, the patron of salors and thone whose business is upon the waters, remained long after the other arebes ham been swept away by the stoms of centuries. Benezet's tomb was in the crypt.

About 1300 , lssim, the Moorish king of Granata, erected a fine bridge at Cordova, across the Guadal! ${ }^{\text {faiver. }}$

Perronet montions a stone bridge of thret arches, one of whiclu had a span of 158 feet 9 inches, at Verona, erected in 1354. Also a bridge with a stone areh 183.8 feet span, 70.6 lepe rise, erected 1454 , at Vielle Bronde, over the Altier, by Grmmier.

The lialto, of Venice, was erected by Antonio del Ponte, 1588 . It has a sian of $98 \frac{1}{2}$ feet.

The art of bridere-building, which was understoor\} by the Romans, fell into dlismse when that politioal system hecame disintegrated. When the arts revived, the ltalians took the lead.

Wnch has been done of late years, and the designs become more ant more bold. Lonton Bridge, Menai Thbular Brulge, the St. Lawreuce Bridge at Nontreal, the Cincinnati lbilge, Soutliwark Bridge, Lonclon, the Cahin John Creek Bridge, Maryland, and the Schuylkill Bridge at lhiladelphina, are trophies of thoir kind. The susjeension brirge across the East liver, Nuw Tork (sere Frontispiece), is by fur the bold-
est undertaking in the suspension line, nearly f00 fent greater than the now widest span, - the bridge it Comeimati. The steel tubular-areh britge at St. Lonlis is to rross the Mississippi in three spans, which have only one rival anong arches, - a single-sphan bidge in llolamb.

The highest bridge in the world is the Verrugas Viatuet on the Lima and Oroya Railroat, in the Andes of l'run. It crosses a mommtain-torrent cilled the Agma de Verrngas, in a wild amd picturesque lovality 12,000 feet above the level of the sea. The structure consists of fonl deck-spans, or trusses, three of which are 110 fiet long, and one, the centril? spath, 125, feet long. The spaths rest on piors linilt al wronght-iron columms. The piers are 50 fect long by 15 feet wide on top. There being three piers, the total length of the vialuet is 575 feet. Thu piers are respertively 145 feet, 252 leet, aml 187 feest high. Liult piev consists of 12 legs, whill in phan form a rectangle. The legs are fonnoosed of a suries of wronght-iron six-segment colmmas, in lengths of 25 leet, commertions brint made hy cast-iron joint-boxes having temons on earh end running into the columm. The columms have an exterior diameter, ineluding Hanges, of 16 inehes.

The mombtan-elain will he erossed at an altitmle of 15,000 feet lyy a tumbel 3,000 feet in length. The grates are the strepest known on any ordinary railwity. The worknen employed are Cholos Indians, the only operatives who can endure for a prolonged ferient the rarifert atmosplore at this great elevation.

The sulheret, after this slight historical general sketel, will be considered moder the headings whieh maturally suggest themselves, founded upon the differenees in material, construction, and purpose.

See under their respective leads : -

Arcleal-beann bridge.
Balance-bridge.
Bascule briakg.
Boat-brilge.
Buwstring-hridern.
Bringe-equipag".
bridge-stoue.
bridge-train.
Cable-suspunsion britge.
Camil-lritgos.
Carriacre-bridge.
Chain-brilge.
Cheek-bringe.
Chinka-hrilge.
Counterpoise-bridge.

1) ruwbritge.

Electric lrielga.
Fery-brilge.
Fire-lridge.
Flame-brilge.
Floating-hridge.
Flyiag-bridge.
Fout-lridge.
Fumbere-bridge.
Girdrc-bidge.
llalf-lattice gimler.
Iloist-hrilge.
lluse-bridgre.
lron bridge.

hou-arch bridge.

2 (Steam.) a. A lower vertieal partition at the lack of the grate-space of a furnace. The flame in bassing the britge is cleflected upward against the botton of the boiler.
liridges are of metal or tire-brick. They may be hollow and form a part of the water-space of the haller. simb are called water-bridges.

Lattice-briklge,
leaf-bridge.
Lititing-bridge.
Military-bridge.
Millstone-bridge.
Pile-bridge.
Pivot-brilge.
l'latform-brictge.
Ponton-brilge.
Ratt-bridge.
kolling-bridge.
liope-bridge.
Skew-bridge.
Steel-bridge.
Stiftening-girder.
Stone-bridge.
sinspension-bridge.
siwing-bridge.
Swivel-bridge.
Tension-britge.
Trainway for ferry-boats,
Trestle-brilge.
Truss-bridge.
Tubular-bridge.
Tubular-arch bridge.
Turn-bridge.
Viathect.
Weigh-briulge.
Wooden bridge.

When a hollow water-brilge depends from the bottom of the boiler of which it forms a part, it is called a henginy brulyc.

A bridge in the mid-space, with flue-space above and below it, is a mied-fiather.
b. "The middle part of the fire-bars in a manin". boiler, on either side of which the fires are bankenl." - Admieal Smith.
3. (Shipbuilding.) A partial deck extencting liom side to side of a vessel amidships. It is common in steam-vessels, affording a convenient station tor the otficer in command, and extents over the space heptween the paddle-boxes. It is also known in England as the hurricane-deck or briulgc-deck.
4. a. (Metallurgy.) The low wall of division hetween the fuel-chamber and hearth of a Revelibematuly Fursace (which sep).
b. (Pudlling.) The wall at the chul of the bearth towards the stack, compelling the caloric current to asceud and then descend towards the foot of the stack.
5. (Music.) A bar placed beneath the strings of a musical instrument to elevate them abore the sounding-board.
6. (Ordmence.) The pieces of timber between the transoms of a gun-carriage. (Finglish.)
7. (Horology.) A piece misel in the mithle and fastened at both ends to the wateli-plate, ant forming a bearing for one or more pivots.

When supported at one end, it is a cock:
S. (Eugraring.) A board resting on end-cleats, used by an engraver to span the plate on whieh he is working, to support the hand clear of the plate.
9. (1/ining.) The platform or staging by which ore, limestone, fuel, ete., are conveyed to the month of a smelting-furnace.
10. (Elcctricity.) A device used for masmring the resistance of an element of an electric circuit. See Electric Bridge.
Bridge-board. (Cirrprutry.) A notched hoird to which the theads und risers of a stair are fastened. A notch-board.

Bridge-eq'ui-page. The United States bridgeequiparge is composed of two distinct trains, - the rescrve and the advance-gnard trains. The former is intended to accompany large bodies of troops in the field, and is prorided with the material for the construction of brilges of sufficient capacity to pass large armies with their heaviest trains over rivers of any size and capacity. For these the French ponton is adapted.

The advance-guard train is intended for the use of light troops, such as advance-gnards, cavalry expeditions, etc. It is organized, both as regards naterial and carriages, with a view to rapictity of movement. At the same time, it is capable of furnishing a bridge which will fulfill all the requirements of troops engaged on such service. For this train the canvas ponton is adapted. See Ponton-bringe.

Bridge-head. (Furtiticition.) A work colsmandine the extremity of bridge nearest to the enrluy ; alêtc de pont.
Bridge-o'ver. (Curpentry.) A term showing that certun parts lie across and rest on others; as, common joists, bridge-over binding-joists, etc.
Bridge-pile. (C'ivil Engincoring.) A pile diriven to aipport a timber of a brilge.

Bridge-rail. (Railroarling.) A railroad-rail having an arched tread and lateral foot tlanges. It was :uloptell by Brunel for the Great Western Liailway

Fig. 925.

Brillgr-Rait.
of England, which is excelled hy none in the solidity of its track and bed. It is laid on a longitudinal sleejer in cross-ties. Felt saturatel in pitch, or its equivalent, is placed beneath the rail over the sleeper, and gives a certain resiliency to the track.

The other rails are known as Edegelinils and Fuot-rails (which see).

Bridge-stone. (Masnmry.) A stone lail from the pavement to the entrance-loor of a house, spanning a sumken area.
(finul-making.) A Hat stone serving as a bridge across a gutter or narrow area.
Bridge-train. A bridge-cquipment or puntontrain, consisting of a military hridge composed of portable hoats. See Bindie-equipage; Pontonbridee.
Bridge-tree. (Milling.) The bean which supports the spindle of the rmmer in a grinding-mill. On the upper surface of the hridye-/ree is the sorket of the spindle. The bridge-tree is capable of vertical adjustment, to vary the relative distance of the grinding-surfaces, by moving the runner towards or from the bed-stone. The adjutsting ilevice is called a lighter-screve. See Grindise-mil.L.

Bridge-truss. A structure of thrust and tension pieces, forming a skeleton beam, in a riaduct. It has several varieties: the lattice, the archot truss, or combination of arch and truss, the drek-truss, in whieh the road-bed is on the straight stringers. See Wooden Bringe; lion bridge.
Fig. 926 shows a deck-truss in which the railwaytrack is laid upon the straining-beams, which are supported ly posts and braces which act as tension-bars.

Fing 926.

Fig. 927.

Fig. 9.27 show's a trissed arch B, whose enets rest on skewhacks or shoes G. A represents one of the chorils. II are tension-straps, which act as sus-peusion-chains to the chords, having their bearings on levers stepped in the shoes and braced against the truss by struts I.

Briduge-ward. (Locksmilhing.) The main ward of a key; usually in the plane of rotation. See Key.

Bridg'ing. (Carpontry.) Short cross-pieces connecting aljacent floor-joists to prevent lateral deflection. See Chiminey.

Single bridying has one pair of diagonal braces at the midlength of the joists. Double bridying consists of two pairs of cross-braces, diviting the joist into three lengths.
Bridg'ing-floor. (Crupmery.) A thoor in which brilging-joists are used without girders.

Bridg'ing-joist. (Building.) A joist in a clonble floor, resting unon the bimer or binding-joist, and supprorting the floor. A flowr-joist.
Bridg'ing-piece. (Curpentry.) A strut-piece nailed between joists or beams, to prevent lateral dethection. I strutting or straininy piece.
Bri'dle. 1. (Suddery.) A head-stall, bit, and bearing or riling rein, completing the head-gear of a horse's harness.

Bridles lave differed in form, material, and caparisons in diferent nations and times, from the simple thong of the Indian to the rather preposterous bridle of the Japanese, as seen in the United States Patent Office collection. The sculptures disentombed by Layard, and the Egyptian paintings and carvings,

Fig. 928.

Assyrian Bridle (from Sculpture ut Nineveh)
show patterns for the chase, for war, and for display. Except for a limited time the Jews had but few horsers. This animal in those days was for show or lor warfare, and the ox and ass divided the elrudgery. The use and application of the bridle are, however, frequently mentioned in Scripture.

The primitive bridle was a noose aronnd the lower jaw of the liorse. In the most ancient paintings of

Egypt, we find the head-equipments of the horses in full order, the brichles and hits complete.

David refers to the lit and brible as the means of governing the horse and the ass, and Job refers to the bridle. Solomon bought his horses in Egypt, contrary to the express command of the law. Ile paid about $\$ 75$ apiece (150 shekels). But the precious metals were relatively higher than now, in proportion to food and other necessaries.

The old Grecian bridle had som what similar leathers to our own. The bit was in several jointed portions. A breaking-bit for intractable horses was armed with prongs (lupatum, wolves' teeth).

Ilomer refers to the bridle aud bit. Xenophon speaks of their uses and management. The last-mentioned writer rufers also to the double-bridle, - a smooth snafle-hit and a cruel spiked bit.
The Japanese brille las a network of strings to defend the eyes from thes. Thereins are of silk. The horse is usually led by a man holding the hridle near the bit, as the bridle-reins are held by grooms on each side, leaving the rider's hands free to hold on by the pummel.
The moden bridtc of Enrope and America consists of the following pieces:-

The croum-piece.
Brow-band.
C'heek-strap.

Sometimes: -

Nose-band.
Fig. 929 illustrates a number of bridles having cheching or salety devices.

In a the clriving-reins are attached at E by a gumelastic strap) and snap-hook C^{\prime} to the rings of the snatle-bit. Fare-pieces $G^{\prime} G^{\prime}$ are also attached to these rings, passing upward throngh the loops II I, and uniting to form the throat-latch K, to which the hitching-strap L is secured. The combined throatlatch and face-piece prevents the britle slipping, as the draft upon the hitch-strap draws the ring into the angles of the mouth. In driving, a pull on the lines stretches the gum, which attaches the drivingreins to the rings of the bit, and draws upon the face-straps and throat-latch to pull the bit into the angles of the mouth.
b. Two pairs of branch-reins are attached to the ends of the driving-lines, one $I I$ leating directly to the bit-rings, and the other c c passing over the horse; its lower branches A connet with the same rings by a spiral spring within cases F.
c. The overdraw-strap A and check-rein B are seenred to the hit-ring C, and the driving-rein D to a swivel on the lit. The driving-rein passes through a ling on the end of the overdraw-strap, and is also connecterl to the eherk-rein. A strong pull on the driving-rein throws up the horse's head and prevents him from kicking.
d. The lit-ring F ' is suspended on each side from a ring D on the check-strap by a ruming strap, which, connected primarily to the luit-ring, passes up and down through the cheek-ring; the run-

Fig. 929.
a

Britles.
ning-stran is they carried down throngh the hit-ring and connected by a ring to a safety-rein I. The latter is also connected to the gag-rein K, so that pulling upon the safety-rein shortens the gag-rein, and at the same time draws up the bit toward the ring on the cheek-strap.
c. The driving-reins run orer pullers attached to the bit-rings and throat-latch, and thence pass to the check-hook. Stops on the cheek portion of the rein limit the length of the gag part.
f. This bridle has a safety attachment formed by supplemental reins A within the ordinary reins, and which, connecting directly to the cheek-straps, pass through the rings of the bit, and serse to forcibly pull the bit into the corners of the mouth.
g. The driving-rein connects with the cheek-strap, which is pulled through the bit-ring, and draws the bit up into the angle of the month.
h. A lever-jaw A on each side is snspended from the throat-latch of the bridle. The jaws are kept apart by a spring, but by pulling on the rein C may be hrought together, so as to compress the horse's wimplipe and choke him into submission.
2. (Muchinery.) a. A lisk attachment, limiting the separation of two pieces.
 which keep it in $\mathrm{p}^{\text {lace, and serve to guide and limit }}$ its motion.
3. (Nautical.) a. One of the ropes by which the bortine is fastened to the leech of a sail.
b. A mooring-lawser.
4. (Husbandry.) The piece on the forward end of a plow-beam, to which the draft-shackle is attarhed. The clovis. Also called the muzile or plouhead. See Pluw.
5. (Firc-urms.) That piece in a gun-lock which serves to bind down the sear and tombler, and prevent their lateral motion.

Bridle-bit. Bridle-bits are of great antiyuity, as is proved by the Egyptian and Assyrian paintings: and sculptures. Xenoplion ($400 \mathrm{~B} . \mathrm{c}$.) describes several kinds, smooth, sharp, and toothied. The rurb is a molern invention, and was introduced into England from the Continent in the reign of Charles 1.

The command exercised by the bit has led to the use of it in metaphor, as in a remarkable liassage of James in his Epistle general : -
"Belold, we put bits in the horses' mouths that they may obey us."

Etruscan and Grecian sculpture represent the bridle substantially as we yet have it.

The Greeks had a serere bridle, armed with teeth, which came orer the nose like the catezon, a European hit but little known among us. Another rough bit was also known as a lupaton, owing to its sharp prongs like wolves' teeth.

Bridle-Lits may be classed under three heads: snafiles, curb-lits, and stiff lits.

The snafile (c, Fig. 931) has two bars, jointed together in the middle of the mouth, and has rings at the ends for the rein. It sometimes has cheek-pieces, to keep the ring from pulling into the mouth of the animal.

The curb-bit consists of the following parts : -
Check-picas or branches with eyes for the clicekstraps and for the reins, and holes for the curb-chain ; a mouth-piece, uniting the checli-pieces and forming the bit proper ; sometimes a bar uniting the lower ends of the branches ; a curb-chain.
Inthe Mexican bit the curb-claain and its strap are replaced by a curb-ring.

By means of the branches, a leverage is obtained upon the horse's jaw, the curbchain behind the jaw

Fig. 931.

Bridle-Bits. forming the fulcrum.

The illustration shors bits employed in the United States military service.
a, ordinary curb-bit.
b, Mexican lit.
$c c$, watering bridle-lits or snaftics.
The stiff til (a, Fig. 932) has rein-rings at the ends, and is nsually without branches. It lacks the niddle-joint of the smupile.
b is a new furm of upper-far bit. It is fastened by a nose-strap to the upper jaw, and buckled to the gag bearing-rein. A safety-rein passes to the usual bit-rings, and is also connected to the bearing-rein, so as to pull the usual bit back against the jaws,
and the apper-jaw bit up into the angle of the mouth.
The clustic bit (c) consists of a chain covered by clusily coiled wire between the bit-rings.
duother form of elastie lit is made of twisted wire with a soft rubler covering.

A large number of contrivances have been pateuted for giving a greater command over the horse, by means of pulling the bit upwardly into the angle of the mouth instead of pulling against the jaw. See Bredele.
al las tubular bit-rings through whieh pass the straps connecting the driving-reins to the heal-stall. When the lines are pulled upon, besides drawing the bit against the jaw, the line slips through the tubu-

lar bit-rings, and draws the stift hit up into the angle of the mouth. The illustration shows one litring empty aul the other with the strap passing through it.
e has a pulley-frame swiveled to the ends of the bit A; the driving-reins are buckled to the rings $I I$, and when they are pullerl, the straps E run through the pulleys and draw the bit up into the angle of the month. The rings B are for the bearing-rein. As the pulley-frames are swiveled, the bit is carried upward into the month without turning the bit in the mouth. The pulley-frames are removable when required, so as to leave the bit in the ordinary condition.

The bit f is designed to effect the same purpose. One rein is comected to the bit-ring and the other to the slotted cherk-pieces; when the latter rein is pulled, the rigid bit slides up the slots and is drawn into the fomers of the month.
Bri'dle-ca'ble. (Nuntical.) A cable procerding from a vessel to the middle of another cable which is moored at each end.

Bri'dle-port. (Shipbuilding.) A port in the bow for a main-deek ehase-gun; through it mooring-hinithes or bow-fasts are passed.
Bri'dle-rein. A rein passing from the land to the liit, or from the claek-hook to the bit, or, in wagon-harness, from the top of the hames to the bit.
The bridle-rein may be a cluck-rein, gag-rein, or a riding-bridle rein; the latter a snaffe or curb-rein, according to the kiud of bit.

Bri-doon'. (S'addlcry.) 1. The snaffle-bit and rein used in European military equipments in conneetion with a eurb-bit whieh has its own rein.
2. In the United States the term is sometimes applied to a simple snaffle without cross-bars, and having a rein attachord to its rings.
Bri'er-scythe. (IIusbandry.) A stout, short-
blated seythe in a mearly straight handle, and used for cutting lown brambles and thr like.

Bri'er-tooth Saw, A saw whose interlental spaces are deeply deprensect ly oblipue filing on altermate sides. Gee Githet-xaw.

Brig. (Nrauticul.) A two-masted vessel, squarerigged on hoth masts. It has a gaff-sail on each lower mast; that on the manmast is called the driver. When the driver is bent to rings on a trysail mast, just abaft the maimmast, the vessel was formerly called a smou.

A hermaphoolite brig is a vessel rigged as a brig on the formast and like a schooner on the manmast, carrying squure sails forward ant jore-anelaft sails aloaft.

Brig'an-tine. (Xieuticrel.) I two-masted resmel brig-riggenl on the foremast, but having no lown square sail on the after or manmast.

Bril'liant. 1. (Diamond-metting.) A molle of cutting gems, consisting of lozenge-shaped facets alternating with triangles. The variations are known as the half brilliant, fill brilliant, split or trap brillient, double brillinut or Lisbon cut. See (rTTMN: Gems.

A dianond cut as a brilliant has two truncaterd portions, respectively above and below the girdle, which is at the largest circunference. The uppor portion, which projects from the setting, is callowl the bizet, and is one third of the whole depth of the gen. The remaining two-thirds is inbedded, and is called the culasse. The facets of the lizet and the enlasse have emsequently different inclinations and exhibit diflerent figures, as will be apparent from the illostrations.
A well-cut brilliant, held in a bean oflight, relle \cdot ts nearly the whole of the light which falls upan it, throwing it out and refracting it in colored rays through the facets in front. With the exception of one small point of light through the rollet, the brilliant throws an oprine shatow on a serepin.
a. Bizet: the chanfered portion of the stune between the fable and tlre girdle.
b. Collet; the liorizontal face at the bottom of the stone.

Facet; small, triangular faces.
c. Shew or skill fucels: livided into upper and under, and respectively wrought upon the biset ind pavilion, in each case trrmi-
 nating in the girdlc.
d. Star-fuccts; wrought on the bizet, and terminating in the table.
c. Cirdle; the line eneompassing the stone; its outer elge by which it is grasped in mounting.
f. Lozenyes; rhombal facets formed on the bizet by the star and skill foucts.
g. Pavilion; the chamfered portion of the stone between the girdle and collet.
h. Table; the horizontal face at the top of the brilliant.
2. (Printing.) A rery small type, smaller than Diamond.

Pearl.
 Dismond

3. (Fubric.) A cotton goods woven with a small raised pattern, and printed or plain.
4. (Pyrotechny.) A form of pyrotechuics for making a bright light. The filling is gunpowder 16 and steel-filings 4 ; or, gunpowder 16 , borings 6 .

Brin. Ove of the radiating sticks of a fan, from 12 to 24 in number and about 14 inches lones. The outermost are larger and longer, and are called panaches.

Brine-e-vap'o-ra-tor. An appiratus for evaporating brine, in order to proluce salt. The common furnaces for this purpose have a row of pans set
izing the impression or giving the proper prominence to the dark and light prarts of woodents.

Bris'tle. Bristles for hrush-making are assorted according to color.

Washed with potash-lye aud soap, to free them from animal fat.

Whitened by bleaching them with fumes of brimstone.

Combed with a steel comb, to lay them parallel and remove the short hair with which they may be mixed.

Sorted by continually pulling out the longer hairs from the bunch, butting the end of the hunch on the benclı.

Bound in lunches called knots, which are inserted in the bored holes in the brush-backs, and tied and glued in position.

The face-ends of the bunches are then sheared. Machines are in use, and some patented for-
Assorting bristles. Cleaning bristles.
Buuching bristles.
Washing bristles.

Bris'tol-board. (Paper.) A superior article of cardloward, in which all the sheets of paper composing it are white, and erasures may therefore be made without exposing an inferior underlying quality. See Carnboard.

Bris'tol-brick A brick composed principally of granular silicious matter. U'sed for jolishing steel, etc. The name is derived from Bristol, England, near which city they are made.

Bris'ure. (Fortification.) A hreak in the general direction of the parapet of the curtain, when constructed with orillons and retired Hanks.

Brit-an'nia-met'al. A white-metal alloy, resembling silver in some degree, and used for making table-ware, etc.

There are several formulas for compounding this white alloy for table-ware: -

| | Copper. Tin. Antimony. Bismuth. Brass. Zinc. | | | | | |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Larduer's | -8 | 302 | 28 | | 8 | |
| Orerman's | 3 | $S S$ | 7 | | | 1 |
| Another | 1 | 1 | 2 | | | |
| Another | | 4 | 4 | 4 | 4 | |
| Another | 2 | 100 | | 2 | 8 | |

See ante, White-Metal Alloys, 1. 63.
Brit'ish-gum. An alhesire material, nsed by calico-printers, and made by scorching potato-starch.

Britz'ska. (Vchiclc.) A Russian carriage, having a calash top and interior arrangements adapted for usc as a couch on long journess.

Broach. 1. A tapering steel tool, of jrismatic form, and whose edges are used for reaming ont holes. It is particularly used by watchmakers in cularging holes in watch-plates. When smooth, it is
Broaches.
no longer a broach, but a hurnisher, and is used for burnishing pirot-holes. The number of sides rary ; the smaller the uumber, the more salient is the edge.

Broaches are also used by dentists for enlarging the nerre camals of the teeth for the insertion of the dow-el-pins which secnre pirot-tecth.

The end of a broach has as many facets as the shaft has sides, and the tang is 4 -sided.
a is the carpenter's hroach for reaming out holes in wood. The angle of its edges would be inadmissible in metal as hard as copper.
b isa half-round broach. The edges are rectangular.
c has five sides with angles of 108°.
d has but two facets and an inserted steel cutter at their angle.
e has angles of 90°, and but three facets; the rounded back follows the circle of the hole.
f has one angle of 90°.
g represents the gun-barrel broach of four sides; slips or spills of segmental form occupying the spaces between the rectangular broach and the eircumscribing cylinder.
Broaches of $3,4,5,6,8$ sides have respectively angles of $60^{\circ}, 90^{\circ}, 108^{\circ}, 120^{\circ}$, and 135°. The polygonal broaches are the most commonly used.

Broaches twisted while hot have an increased energy of bite, when rotated in the direction of the spiral, and less when rotateal in the other divertion.

Roberts's broach (English) has longitudinal cutters inserted in grooves at each angle.

Some broaches have file tweth to emable them to cut with a thrust, without rotation. These are more properly drijts (which see).

A round broach is used for burnishing pivot-holes.
2. A gimlet used in opening casks for samples. The hole is closed by a spile.
3. (Candle-making.) The stick from which can-dle-wicks are suspended for lipping.
4. (IIusbandry.) A sharpened stake used by thatehers to secure the gavels or layers of straw.
5. (Locksmithing.) That pin in a lock which enters the barrel of the key.

Broach-post. (Carpentry.) A king-post.
Broad. (Wood-turning.) A bent tnrning-tool, or

Fig. 936.
 one formed of a disk, with sharpened edges secured to a stem. Used for turning down the insides and bottons of eylinders in the lathe. Fig. 936 showssereral different forms of the tool, - the bottom-tool, hook-tool, square-tool, heart-shaped tool.

Broad-axe. An axe with a broad edge: for hewing timber. The chamfer of the edge is all on one side, the flat. side of the bit going agrainst the wood. The hindfe has a crook, so that the knuckles are not grazel against the timber when hewing.

Fig. 937.

Broad-axe.

The Israelites west of the Jordan had but small advantages of timber, and were not skillful hewers. They imported axemen and timber. Lebanon had cedar and fir ; Bashan had oak. The kings of Syria and Egypt fought for their possession for centuries. Even firewood was scarce in Judea and Samaria. The poor widows gathered a bundle of sticks then as now.
Dung and hay used for heating ovens, Ezekiel iv. 12-15, Matt. vi. 30.
Brushwood also, -"as the crackling of thoms under a pot," etc.
Broad'cast Sow'er. (Husbandry.) A machine which spreads the seed regularly upon the surface of the ground, in contradistinction to a drill which sows the seed in rows.

Number of several seeds in a bushel, and number per square foot upon an area of an acre:-

The Egyptians anll homans sowed from a hasket. In the West we prefer a bacg or sack which is made into a pouch by tying the bag-string to one corner of the bottom. lininy mentions that it is important for the action of the hand and feet to kecep time, to secure an ceren spread of the seed. It is just so with us. A right-handed man will dip his hand into the bag for sied just as his felt foot touches the gronnl. Some sow with both hands.

Under the Romans, the amount of seed to the jugerum (four filths of an acre) was, of wheat, spelt, and barley, respectively, 5,10 , and 6 modii. A modius was two gallons.

Broad'cloth. (Fubric.) A wide and superior article of woolen cloth, plain or twilled, and dyed in the wool or the piece. A cloth not orer 2! inches broad is a narrow cloth. It is folded lengthwise in the piece.
The operationsin broadeloth-making may be shortiy cited as follows : -

The wool, being shorn, goes to the sorter, who seleets the grades and parts of Heeces adapted for this superior kind of goods.

Oiled, carderl, and nsun into yarn.
Woven into a weh of such a width as to permit subsequent shrinkage.

Felted by wetting, soaping to remove grease, and ponnding. The effect is to condense it and shrink it in width and length. After removal of the soap by fuller's earth, water, and pounding, the web is dried by stretching on tenter-bars.

Napped on a gigging-machine, which raises the nap by the little recurved spires of the teasel (dipsacus fullonum).

Shorn to bring the naps to a length.
Hot-pressed to give smoothness and polish.
Broad-gage. (Railway Engineering.) A distance hetween rails over $06 \frac{1}{3}$ inches. The width of 4 feet $8 \frac{1}{2}$ inches was adopted by Stephenson, being the usual grade of the coal-wagons on the railways in the North of England. He found it, did not make it. Brunel, who was not used to following anybody, either under or above ground, struck out a path for himself, and gave the broad-gage to the Great Western Railway of England, making it \bar{i} feet. It was a rery expensive experiment, and has been rednced to the standard of $56 \frac{1}{2}$ inches. See Rallway-gage.

Broad-glass. Glass in large sheets for cutting into lights or panes. For very many years, the mode of making sheet-glass was by forming a disk, which was united to the blowing-tube by a boss, around which point the glass was also much thicker than at other portions, especially near the periphery of the disk. See Crown-GLass. Owing to the vexatious excise laws of England, it was almost impossible to introduce improvements in the manufacture of giass, as was illustrated in the abortive attempts of the English opticians to manufacture lenses of large sizes, even under semi-official sanction. The general relaxation of the excise system nuder Sir Robert Peel's Act of 1846 , remlered possible the introduction into England of an inproved methol, for some time then past in use in France and Butgium. The giass used npon the Exhibition Puiting of 1851 was made upon this plan, which is brietly as follows:-
The workman dips his iron tube into the semiviscil glass, and takes up a quantity amounting to 12 or 14 ibs. ; he rolls the mass on a wooden block,
till it assumes a eylindrical slape; he applies his month to the other end of the tube, and blows until the mass assumes a hollow ovoid form ; be whirls this round lis: head, or, rather, in a rertical circle 10 or 12 feet in diameter, and elongates the oroid into a eylimker with round ends; he re-heats the glass two or three times during these processes, to maintain the proper consistency, and at length the remote end of the hollow mass gives way, and we have before us a cylinder of glass, attached ouly at one end to the tube. The cylinders are disserered from the tube, and are cut lengthwise with a diamond; they are placed in a kiln, where the heat gradually opens the fissure, and there is finally presented a flat piece of glass, which can be cut to any smaller size.

This glass is called brord-glass, cylinder-gluss, sheol-glass, and by several other names of minor usefulness, value, or appropriateness. Siee CxLinderglass.

Broad-horn. The old-fashioned term for the flat-boat of the Western and Southwestern rivers. Also called an ark:

Broad-pen'nant. (Niutical.) A square piece of bunting carried at the mast-head of a vessel haring in command an officer of a certain rank. In the British and American naries it signifies a commodore's vessel.

Broad'side. 1. (Printing.) A sheet of paper printed on one side, the matter forming a single page.
2. (Nautical.) a. The side of a ship, above the water, from the bow to the quarter.
b. All the guns, collectively, carried on one side of a war ressel.

Broad'sword. A sword with a broad blade, designed principally for cutting.

Broad'stone. (Masoury.) An ashlar.
Broad-tool. 1. (Masonry.) A stone-mason's chisel which has an edge $3 \frac{1}{2}$ inches wide. It is used for finish-dressing. The previous tools are the point or punch, inch-tool, and boaster (two inches wide).
2. (Turning.) A Broan (which see).

Broad Win'dow-glass. Glass blown of a cylindrical form, split longitudinally, and spreal flat. See Broad-glass ; Cylinder-glass.

Brob. (Carpentry.) A peculiar form of spike

Brob. driven alongside a timber which makes a buttjoint against another, to prevent the slipping of the former. Fur instance, several brobs are driven round a post which supports a roof. timber in a tunnel or gallery.
Bro-cade'. (Fabric.) A rich, stout silk. A common nane for any kind of stuff wrought and enriched with raisel flowers. In the East, a cloth of gold and silk. The manufacture of brocade was ristablished at Ifons, in 1757.
Bro-ca-telle'. (Masomry.) A kind of marble whose color is a mixture of gray, jellow, ren, and dove shades.

Bro-ca-tel'lo. (Fabric.) A coarse brocade of cotton, or silk and cotton.

Bro-ché-goods. (Fiubric.) Goods embroidered or embossed.
Brog. A joiner's awl.
Broil'er. (nmmestic.)
A gridirou. The later

devices have provision for turning the grids so as to expose each side of the meat alternately to the action of the tire.

In the upper example the gridiron is made in two parts, hinged together, and so that it may rerolve and expose hoth sides of the meat, which cau be examined during the cooking process by mirans of a transparent-ly-covered opening in the top of the case. The grids are piroted within a covered case.
ln the other example it is simply a double frame with means for

Broiler. locking together.

Brok'en-space Saw. A tine hand-sam.
Brok'en Twill. (Fubric.) A variety of twill in textile fabrics.

Bron'cho-tome. (Surgical.) A knife used in the operation of cutting into the bronchus, or mind. pipe. Asclepiades, who lived at the beginning of the first century B. c., proposed the operation of bronchotomy, though it is not certain that he performed it.

It was practiced three hundred years afterward by Antyllus, and was particularly described by Paulus Eguieta about A. D. 780.

Bron'tern. A brazen vessel in the basement below a stage, to imitate thunder.

Bronze. 1. An alloy composed of copper and tin, sometimes with a little zinc and lead. The "Big-Ben" hell of Westminster, the largest bell in England, is composed of 22 parts copper, 2 parts tin. Gun-metal is a bronze, 9 parts copler, 1 of tin. It is probable that some of the ancient alloys which we read of as "brass" were really bronze. The Phoenicians brought tin from Cormwall 1100 B. C., before the building of Solomon's Temple. See Brass.
"Tarshish was thy merchant [Trre]; with silver, iron, tin, and lead they traded in thy fairs."
The tin of Cornwall, and also probably that from the peninsula of Malacea, was mixed with the copper of the Wady Maghara to form the Egsptian, Ploenician, and Assyrian bronzes. Dr. Vilson (Prchistoric M(un) supposes that tin was first brought to the Mediterranean from Malacca, and gave a new impetus to early Eastern civilization. Britain was the next source. Chili and Mexico are more lately known as proluctive sources of the same useful metal.
The ordinary Assyrian loronze is composed of copper 10 , tin 1. Their bell-metal was, copper 86 , tin 14 . The ancient bronze cutting-tools contained from 4 to 15 per cent of tin, from which it is gathered that the secret of their manufacture is rather in their mode of working and tempering than in their con-
position．This appears to be also the ease with Chi－ nese eymbals and tam－tams，whose tones are not ri－ valed hy the instrmments made by limopean artists， though analysis of the alloy fails to disclose any rea－ son for this．Bronze，containing 20 per cent of tin， is brittle at the ordinary temperature，becomes mal－ leable at a hall red heat．See Asxbabise．

Bronze is the oldest alloy with which we art：ae－ quainted，and is asmmed to have preceded the uss of iron in the majority of countries which have passed through the various stages．It is not a vio－ lent assumption that the stune and bone implernent age precelled the age of eopper tools；that the latter was the first metal which was used in the mechamic arts；that the alloying of copper with tin to harden it preceded the use of iron（see Alloy）；that bass （еоpper and zinc）was a discovery later than either （see Brass）；that the first iron atilized was of the na ture of steel，as yet prohlued in many countries of Europe，Asia，and Atriva liy the native metallurgists． In speaking of ages，no general worklwite atra of contemporary progress is intended．There are tribes yet in the bone age（see AXe），others in the bronze． Some of the bone men have jumped into the iron （which they purclase）bceause they hat no eopper， and iron was the first metal with which they became acyuainted；such are some of the Sonth sea lslanders．

Hesiod， 900 B．c．，states that iron was diseovered after copper and tin，and that those who were an－ rient，in his day，nsel bronze．Lauretius mentions also the gralation：－－
＂The prineval arnss were the hands，the nails，and the teeth，
Together with stones and bramehes，the firaments of the forests；
Afterwarls was found the power of iron and of hrouse，
But the ase of bronze was known before that of iron．＂
Bronze implements are obtained by casting，and， it is believed，by subsequent hammering while hot． （Nee supra．）Bronze and copper were cast in ancient Egypt ；the Chinese state that Y＇u，who was semi－ king with a partner（Chun）on the throne of China， 2200 в．c．，cansed nine vases to be cast，on which were engraved maps of the nine provinces of the Em－ pire．The Greeks，Etruscans，and the pupils of the latter，the Romans，excelied in the art ；and the museums of Europe have almost numberless speci－ mens of their art in statuary，household utensils， and ornaments．When the Spaniands first entered the province of Tuspan，they mistook the bright copper or hronze axes of the natives for gold，and were greatly mortified，after they had accmmatated them in considerable mmbers，to discover the mis－ take they hat made．Bernal Diaz narrates that ＂each Indian had，besides his ornaments of gold，a copper axe，which was very lighly polished，with the handle curiously carvod，as if to serve equally for an ornament as for the field of battle．We first thought these axes were make of an inferior kind of gold；we therefore commenced taking them in ex－ change，and in the space of two days had collecterd more than six hundred；with which we were no less rejoiced，as long as we were iguorant of their real valute，than the Intians with our glass beads．＂

Ancient American Bronzes．	Copper	Tin．	Iron．
Chisel froun silver－mines，Cuzo			
Chisel from Cuzeo ．	92.385	7.615	
Linife from grave，Atacama	9787	3.13	
Krawe ．${ }^{\text {Crar }}$ Chili			
Crawbar from Chili	92.385	7.615 3.965	0.371
Perforated axe			
Personal ornament，Truigilla	95.440	4.560	
Bodkin from grave ．．	96.70	3.30	

The bronzes of Europe took a much wider range of variation．

	Copper．	Tin．	Lead	1 ron．
Spenr－head，Lincolnshire	86	14		
Bronze vessel，Cumbridgesbire ．	88	12		
Floxible mails ．	30	1		
Sword，France．	87.47	12.53		
Medal ．	100	8－12		
Axe－hearl，Mid－Lothian	88.5	11.12	0.78	
Caldron，Duddingstone	84.8	7.14	8.53	
Mirrors	100	30－50		
Sword，Iredand	83.50	5.15	8.35	3
Sword，Thames．	89.69	9.58		0.33
A xe－head，Ireland	89.33	9.19		0.33
Drinking－horn，Kings Co．，Ireland	79.34	10.87	9.11	
W＇edge，Ireland	94	5.9		0.1

See also Brasses and Bronzes，with the addition of lion，1． 61.

	遃	$\underset{\sim}{E}$	¢	范	令	号	豕家
Statuary bronze	91.4	1.4	5.5	1.7			
Chureh bells ．	80	10.1	5.6	4.3			
Church hells	16	3－5					
Clack bells ．	72	26.5				1.5	
（ Gun－metal ．．	9	1					
Gangs ．．	81.6	18.4					
Cymbals ．．．	4	1					
Latlie－busises．．	80	20					
Machinery bearings－．	7	1					
Machinery bearings，hard	77.4	15.6	7				
Speculum metal ．	66	22			12		
Sureulum metal ．．	7	4	3				
Specnlum metal－			21				
Sperculum metal－	6	2		1		\cdots	
Speculnm metal（hord	126.4	58.9				－	
Aluminium bronze	90						10

Cooley＇s recipes for hronze ：－

	Copper．	Tin．	Zine．	Lead．
For edge－tnols ．	100	14		
tor gilding ．	82	3	18	2
For medals ${ }^{\text {a }}$ ．	89	8	3	
For medals（M．Chaudet）	95	4		
For mortars ．．	93	$\stackrel{2}{2}$		
For statuary．${ }^{\text {Or }}$	88	9	${ }_{10}^{2}$	1
Or（Statue，Louis XV．）．	${ }_{91}{ }^{2}$	5 9	101	

Alloysinto which aluminimm enters，either in com－ bination with copler alone，or with that and other metals，are usually termed ahminium bronzes；the composition of some of these is given below ：－

Alumininas	7.57 .5	13.70	10	1		100		10				10.5
Iron ．		27.18										
Copper Platinum	92． 90	31.71 98.84	100	100						1		89.3
Platinum												
Тіи Nickel		58.92 20.62	70	70								
Silyer．		10830				5						
Zine ．		32.31										
Golit	2.5											
Tungrter			5	5								

siee also Almminm Bronze，1p．70， 71.
2. (Cotton-manufacture.) One style of calicoprinting, peculiar rather from the character of its colors, than from any specific novelty in treat. nent.

Bronze Pow'der. Finely ${ }^{\text {pulverized metal, }}$ ol powder having a metallic base, applied to the surface of paper, leather, and other materials, for imparting a metallic color and huster.

1. Gold powoder for bronzins is made by grinding leaf-gold with honey; dissolving the mixture to obtain the gold by deposition, the honey water being decanted.
2. Germutn. gold is a yellow-alloy leaf similatly treated.
3. Mosaic gold is prepared by incorporating and grinding tin, 16 ; Hower of sulphur, 7 ; mereury, s; and sal-ammoniac, 8 ; and then subliming the amalgam. A flaky gold colored powder remains in the matrass.
4. Copper pourder is obtained by saturating nitrous acid with copper, and then precinitating the copper by exposing iron bars in the solution.
5. Bisulphide of tin. It has a golden luster, flaky texture, and is used for ormamental work, such as piper-hangings, and as a sulustitute for goldleat.
6. Dutch foil reduced to a powder by grinding.
7. Verdigris, 8 ; tutty nowder, 4; borax, 2 ; niter, 2 ; bichloride of mercury, $\frac{1}{4}$; grind into a laste with oil, and fuse them together.
8. (Iron-colored) plumbago in powider.
9. (Red) sulp. copper, 100 ; carb. surla, 60 ; mix and incorporate by heat; cool, powier, and add copper filings, 15 ; mix ; keep at a white heat for twenty minutes; cool, yowder, wash, and diy.

Bronz'ing. The process of givints a bronze-like or antique-metallic appearance to the surface of metals.

The processes vary; they may be classed as -
Coating with a melted alloy.
Coating with a metal in paste, solution, or vapor. Corrosion.
Coating with a gum.
Application of bronze powder.
Painting.
The modes vary with the material : -
I. As to copper (some of them applicable to brass).

1. The surface is cleaned, nolished, and a paste of crocus powder aud water applied to it. Apply lieat to develop the color required.
2. Plumbago applied in the same manner. By employing mixtures of plumbago and crocus, different shades are obtained.
3. The copper is exposed at a high heat to thes finmes of zinc.
4. The copper vessel is filled with a water acidulated with hydrochlorie acil, an amalgam of zine and eream of tartar being auded. Boil for a while.

The latter two processes are more properly brassing.
5. Corrosion processes : -
a. Wash the cleaned copper with a dilute solution of sulphuret of potassium, or lyylrosulphuret of ammonia is applied with a brush.
b. Apply solution of verdigris, 2 ; sal-ammoniac, 1 ; and vinegar, 16.
c. Or, verdigris, 2 ; vermilion, 2 ; alum, 5 ; salammoniae, 5 ; vimegar sufficient to form a thin paste. Blue vitriol inclines to dark brown, horax to yellow brown.
d. Or, sal-ammoniac, 1 ; crean tartar, 3 ; common salt, 3 ; hot water, 16 ; dissolve, and add nitrate of copper, 3 , dissolvel in water, s; apply repeatedly with a brush.
c. Or, salt of sorel, 1 ; sal-ammoniac, 3 ; distilled vinegar, 32 ; aply as above.
f. Or, a weak solution of chloride of platinium.
11. As to iron : -
?. Clean the metal, and wash it with or immerse it in a solution of sulplate of copper or rerdigris, when it will acquire a coating of copper.
b. The metal may be dipped in molten metal, copper, or its alloys.
c. The polished metal - a gun-barrel, for instance - may be dropperd in a solution of chloride of antimony and sulphate of copler. This is browning.
d. The ordinary solution consists of : anuafortis, 1 ; sweet suirits of niter, 1 ; blue vitriol, 4 ; tinc. ture of the muriate of iron, 2 ; water, 32 .
c. Or, blue vitriol, 1 ; sweet spirits of niter, 1 ; water, 16.
f. The iron is cleaned, polished, coated with linseed-oil, and heaterl to develop the tint required. Tucker's patent, Dec. $15,1863$.
g. The iron is cleaned, polished, and lacquered. The lacquer consists of shell-lac in alcohol, witl or without the addition of saffron, annotto, aloes, or other coloring substances.
h. The iron is painted with a gole-paint, so called; Dutch metal and varnish.
i. The iron is prainted green, and rubbed with bronze jowder.
111. As to tin:-

Clean the castings, and wasl them with a mixture of 1 part each of sulphate of copper and sulplate of iron in 20 parts of water; dry and wash again with a solution of verdignis, 5 parts; in distilled vinegar; 11 parts. When dry, polish with colcothar.

1V. As to plaster : -
Plaster-of-paris statmettes, medals, etc., may be bronzed in the following manner :-

Prepare a soap from linseed-oil boiled with caustic soda lye, to which add a solution of common salt; and concentrate it by loiling, till it hecomes somewhat graunlar upon the sufface; it is then strained through a linen eloth, and what passes through is dilnted witl boiling water, and again filtered. Dis* solve 4 parts of blue vitriol and 1 part of copleras separately in hot water, and add this solution to the solution of soap as long as it uccasions any precipitate. This flocenlent [recipitate is a combination of the oxides of copper and irou with the margaric acill of the soap, the former giving a green and the latter a leddish-brown color, the comblination of the two resembling that greenish lust whieh is charaeteristic of ancient hronzes. Whon the precipitate is completely separated, a fresh portion of the vitriol solution is to be poured upon it in a copper pan, and boiled in order to wash it. After some time the liquid part is poured off, and the soap' washed with warm and afterward with cold water, pressed in a linen bag, and draiumi and dried, when it is ready for use, in the folfowing manner :-

Three pounds of pure linseed-oil are boileel with 12 ounces of finely powdered litharge, and the mixture is strainel through a eanvas rloth and permitted to stand in a wam place until it becomes elear. 15 ounces of this, 12 ounces of the above. described soap, and \bar{y} ounces of fine white wax, are melted together at a gentle heat in a porcelain basin, by means of a water-bath. The mixture must be kept some time in a molten state, to expel any moisture which it may contain. It is then applied by means of a paint-brush to the surface of the gypsmm, which is heated to the temperature of about $200^{\circ} \mathrm{F}$. After exposure to the air for a tew days the surface is rubled with eotton-wool or a
fine rag, and variegated with a few streaks of metal powder or shell gold. Small objects may be dipped in the melted mixture and then exposed to the heat of the fire until thoronghly penetrated and evenly coated witll it.

The bronze letters and figllres upon the bonds and paper currency of the United states - as, for instance, "the faint attempt at a metullic riny," as Mr. Secretary Chase called it, on the old twenty-fivecent fractional currency - are made by printing in drying-oil, and applying the metal in fine dust to the damp surface.

Bronz'ing-ma-chine'. A machine for bronzing wall-papers or printed shects. Those parts of the sheet which are to receive the bronze powder are first printed with letters or figures in ink or size. The machines vary in thespecial devices for distributing and remoring superfluous yowder.

In Fig. 941 the freshly printed paper is carried between endless tapes under a fur-covered roller, through a fur-lined hox, and around a roller beneath a wiper-apron. It operates by first coating the freshly inked parts with bronze-dust, and then removing the same from between the letters.

In the example (Fig. 942) the freshly printed yaper is laid upon the feed-braid, and its edge seized by the gripper a, so that the revolution of the wheel \dot{A} carries the sheet past the fur-wheel C, which re-

Fig. $9+2$.

volves at the bottom of the bronze-hopper E; thence past the burnisher H, which removes superfluous bronze, and is itself deaned by the brush I, which drlivers the bronze into the eollecting-box G. The sheet then passes between the wheel A and aymon g, and receives a final brushing at the point of delivery.

Brooch. 1. An ornamental clasp with a pin for fastening the dress.

The term corresponds to ouch (which see), under which name the ornamental clasp appears in the

King lames version of the Bible, Exodus xxviii. 11, xxxix. 18, and in other places. See Minshien's "Duc. tor in Linguas," 1615 ; Phillips's "World of Words," 1658. See also the same prassages in the "Bishop"s" and "Coverdale's" versions. In the "Wickliffe" versiou it is rendered "hookes."
The ouch or brooch was a clasp or button, and, in course of time, came to be dastened with a pin called a brouch (Fr. broche), and hence the name brooch, of this form of ormamental clasp, has been attributed to the name of the pin (broach) by which it is lastened.
'This brooch or pin, probably as large as the cork-ing-pin of Swift's time, of old formed a stiletto upon occasion, as among the Athenian dames, who made such pointed inquiries of the man who alone escaped from the slaughter of the party of Athenians who made a raid upon Egina, to capture the olive-wood statues of Damia and Allxesia, plundered by the Eginctans from the Epidaurians. Herodotus, V. 87 , say's:-
"When he came back to Athens, bringing word of the calamity, the wives of those who had been sent out on the expedition took it sorely to heart that he aloneslould havesurvived the slaughter; they therefore crowded around the man, and struck him with the brooches by which their dresses were fastened, each, as slie struck, asking him, 'Where did you leave my husband ?' and the man died in this way."

The upshot of it was, that the men of A thens were so disgusted at the conduct of the women, that they changed their dress, which was a short Dorian tunic having no sleeves, ami fastened over both shoulders by brooches, and compelled them to wear the lonic linen gown, with short, loose sleeves, and with a skirt reaching to the ankles. "This," Herodotus says, " loes not require brooches."

This brooch was not a buckle, but a pin with a looked head ; so it was a broach, after all.
2. A painting all of one color, as in sepin or indiaink.

Brood. (Mining.) Any heterogeneous mixture among tin or copper ore; as, mundick, black-jack, etc.

Broom. A domestic utensil for sweeping, made of various materials, most commonly, with us, of the broom-corn, which is a species of doura or sorghum, and came from Africa. Of late years much attention lias been direeted to the subject of broom-heads, so that, instead of the handle and head being thrown away as useless when the com is worn out, they are made permanent, with arrangements for clamping the corn and unclamping it, so that it may be removed when worn out, and fresh corn substituted.

Benjamin Franklin introduced broom-com into this country, previous to which brooms were made of evergreen boughs. It is said that, while examining an imported com-whisk, he discovered a single sped, which he planted in lis garden, and from whieh the corn was propagaterl.

Brooms are, however, made of various materials, animal and regetable.

Among the kinds may be cited (and some of them are really brushes on long handles) : -

Carpet.	Heaith.
Coir.	Hickory.
Hair.	Whisks.

Broom-corn Seed-strip'per. A machine like a flax-ripple, for removing the seeds from broomcom. It is like a comb, over which the corn-brush is thrown, and the seeds stripped off by pulling the brush hetwren the teeth.

Broom-han'dle Ma-chine'. A lathe with a hollow mandrel and internal cutters. The stick is
passed longitudinally through the mandrel and rounded throughout its length.

In the example the hollow mandrel has a pair of circular cutters for cutting off the rough corners of the handle; also a tapering bit oscillating on a pirot aud acted on by a spring, a lever being connected with the cutter by a link. and the bit being con.

Fig. 943.

Broom-Handle Lathe
trolled by plates connected with catches, projections resting on the flanges of the cam-wheels attaclied to a shaft, there being, farther on the mandrel, a third bereled cutter, with its cutting-edge flatwise thereto, so that by their morements the various work is effected.

Broom-head. A clasp or cap for holding the bunch of brooru-corn, so that a worn stump may be removed and fresh brush substituted. There are rery many forms, among which may be cited the examples annexed, which require but little explana. tion.

In the upper left-hand example the broom-corn is hung over the stirrup and drawn into the cap by the screwing of the stirrup into the handle.

The next figure shows another stirrup, screwshank, and cap arrangement.

The figure beneath the one last described has a head whose bars have prongs to enter the bunches of brush. The bars of one side open to admit the broom-com, and are then locked in closed position.

The next examples have variously slaped head and modes of securing the contents.

The lower figure has a clasp with a pair of hinged jaws with pronged bars.

Broom-sew'ing Ma-chine'. A machine for pressing a bunch of broom-com into shape for a broom, and sewing it in its flattened form. The hroom is placed between jaws a a, closell by an eccentric c, operated by lever b.

The machine being set in motion by the rotation of the shaft of the cam-rheel A, the cam-groove of the latter, actuating the lever f, forces forward the needle-bar e, thus diring the needle with its thread through the broom abose the twine wound around the latter. The shuttle C, operated by lever B, acting on the opposite side of the broom in conjunction with the needle, forms the stitel. Tlis being done, the reverse movement of the needle-bar withdraws the needle, the eccentric n lifts the jaws a, so that the next stroke of the needle carries the stitch below the binding-twine, the jaws being meanwhile moreal along the gnides x by means of a pawl, operated by

Broom-Sewing Machine.
a cam n on a supplemental shaft moved by gears $h j$, the pawl gearing with a ratchet formed at the under side of the outermost of the jaws a. The next outward movement of the needle, the jaws being, of course, again lowered, carries the stitch above the binding-twine. In this manner the stitches are formed altemately above and below the bindingtwine, the distanee apart of the stitehes corresponding, of course, to the intermittent feed given, as just deseribed, to the jaws ε upon their supporting-guides ic. The needle is supplied from sjool E, which has a tension-spriug g.

Brough'am. (Vehicle.) From brouette, a form of fiacre invented by Dupin about 1671. A closed carriage with a single inside seat for two persons, and an elevated driver's seat. The front is glazed, and the fore-wheets turn on a short lock.

Brow-band. (Suddlery.) A band of a bridle, head-stall, or halter, which passes in front of the horse's forelead, and has loojs at its ends, throngh whieh pass the cheek-straps.

Brown'ing. A process by which the surfaces of articles of iron achuire a shining brown luster; this may be produced by chloride of antimony.

Browning, or Bronzing Liquid. Sulphate of copper, 1 oz. ; sweet spirit of niter, 1 oz ; water, 1 pint. Mix. In a few days it will be fit for use.

Browning for Guen-Betrels. Tinet. of mur. of iron, 1 oz . ; nitric ether, 1 oz ; sulph. of eopper, 4 scruples; rain-water, 1 pint. If the process is to be hurvied, add 2 or 3 grains of oxymuriate of merenry.

When the barrel is finished, let it remain a short time in lime-water, to nentralize any acid which may have penetrated; then rub it well with an iron wire seratch-brush.

Another recipe is :-

Nitric ether
Alcolhol
Sulphate of copper Muriated tiuct. of iron
:---
1 ounce.
$1 \frac{1}{2}$ onnees.
$1 \frac{1}{2}$ ounces.

Tinct. of gum benzoin $\cdot \frac{12}{2}$ ounces.
Water $\cdot{ }^{\text {pints. }}$
The blue vitriol is first dissolved in the water (boiling).
Brown Pa'per. A coarse kind of wralpuing-puper, which is made from unbleached material, such as junk, hemp, refuse flax, etc. It is made of various qualities, from munilla to stravo.

Brown Ware. A common variety of pottery, namen from its color.

Brow-post. (Litrpentry.) A beanr that goes aeruss a building.

Bruis'er. A concave tool used in grinding lenses or the speculums of telescopes.

Bruis'ing. (Leather-manufacture.) After curried leather has been duubed and dried, it is gruined by folding grain-side in, and rubbing with a crippler. It is then extended and rubbed on the grain-side, which is called bruising.

Bruis'ing-ma-chine'. A machine for bruising rough feed to make it nore palatable and digestible for stock. It is principally used in Britain in bruising prickly plants such as the furze, which is also known as whin or gorse (Ulex Europeus),-a prickly plant very common in the British Islands, and very nutritious when brought intu a condition which does not repel the animals.

The mode of preparing it, where machinery is not aecessible, is by means of the chopping-block and mallet.

Fig. 946.

Furze-Bruising.
The illustration shows a bruising-machine with studded cylinders.
Bruis'ing-mill. (1/illing.) A hand-mill in which grain for feed, malt for brewing, and flax-secd for pressing, are coarsely groumd. It consists of two cast-iron rollers mounted on a stroug frame, and so arranged that grain is carrid letween them and crushed more or less accorling to the degree to which the rollers are tightened un by the handscrew at the end of the frame. With the lanil-mill une man will erush about $2 \frac{1}{2}$ bushels of oats or flasseed per hour, and two men 4 bushels. By horse or steam power it will erush from 15 to 24 bushels per hom: Of malt, from two to three times the ahove quantities may be gromel. (Fig. 947.)
Brush. 1. Au assemblage of hairs, hog's bristles, strips of whalebone, short wires, fastened to a lianale, cither collectively or in separate tufts.

Fig. 947.

The smallest kind of brushes are used in wa-ter-color, and some kinds of house, sign, and coach painting, and are called pencits; camel, badger, stuirrel, goat, fitel, and sable hair, ete., are employed. These are made by inserting a tuft of the hairs with their roots boumd together into a quill previously softened, which, on lyying, serves to hohl them fast; for the larger sizes, a tiu tube, either round or lhat, is employed.

Hocss' bristlesare, however, the material principally used, the whiter and better kinds lreing employed for hair, tooth, clothes, and hat brushes, and also for the better classes of paint-brushes.

The bristles are first sorted according to color, and then, by means of a scries of combs (α, Fig. 948), having teeth formed of needles of various sizes, and placed at different distances apart, they are assorted according to size, by employing at first the largest comb and then in surccession the smaller ones, fixed to a work-table.
The paint-brush - the simplest form of brush is marle by iuserting full-length bristles between two projecting prongs on the handle, and securing then by a wrapping of twine, which is afterward protected lyy a coating of glue mixed with red-kad. In other paint-bushes the bristles are surrounded by a metullic cap, which binds them to the handle. In large paint-brushes and painter's dusters, the handle is siecurell by driving its smaller eml foremost into the bristles, placed within an iron cup, which binds them fast.
Hair-brooms, dusters, rte., are nuade by inserting tufts of bristles into a stock or head previonsly bored with holes for their reception. These are frequently bored angularly to the face, or the face itself is rounded so as to give the tufts an outward splay when inserted ; the root-ends are first dippeel into melted pitch, then homil with thread, again dipped, and then inserted with a sort of twisting motion. Brush. es of this description are usually mrude with bristles of the full length; but where stiffiness is renguired, as in sernbbing, hair, and other similar brushes, each tuft of bristles is doubled so as to present both ends outward; these are then cut off sipuare and even, presenting a hard surface, especially when the doubling is made near the root-ends.

The stocks or brush-boards are ent from pieces of requisite thickness, so as to get tro out of each width of board (b, Fig. 348). The holes are drilled through a pattern-board, to insure uniformity ; this is flat for a plane-surface brush, but if the edge is to have obligue rows of bristles, a pattern bent to a corresjomiing obliquity is employed. Dreming, the next stel', is performed by clamping the drilled stock to a table and passing a loop of brass wire through the first hole in the first rom, inserting a tuft of bistles through the loop and drawing on the wire, so as to pull the tuft into place, when, bending the wire again, another loop is formed, and so on successively until a row is completed, when the tufts are cut off with shears to a length regulated by a gagr ; or, in case the bristles are short, the stock is fillel previous to cutting. In Fig. 948, c shows a perforated brush-
back, d a tuft ready for insertion, f the face of ant oval brush after drawing, and g a brush of black bristles with an edging of white bristles, cut and fin-

Fig. 948.

ished. The drawing-wires are neatly covered with veneer to strengthen and improve the brush, and prevent the wires from scratching the hand; after which the brush is finished up with a spoke-shave and seraper, saud-papered, und varnished. In the smaller kinds of drawn brushes, such as nail and tooth brushes, the holes are sunk in narrow grooves in the stock, which are afterwards filled with a hard red cement.

The best sorts of brushes are tremenned; in this process a number of holes are drilled in the bone back either transversely or longitudinally, and a number of holes are sunk through to these from the face-side of the brush; the tufts are then drawn with strong thread or silk, and the longitudinal or transverse holes filled with plugs of bone or ivory.

Whalebone, cut into strips, and split, is used in the same manner as bristles, to form hrusher, either by itself or in conjunction with bristles. 1n the latter case, the adulteration is soon deterted by the more rapid wear and splitting of the ends of the whalebone.
In Woodbury's hrush-making machine a quantity of the lnistles is laid upon a comb-shaped feeder, and a steel point parts from their elge, as spread upon the apron, just enough for oule bunch. A plunger comes down upon this bunch and bends it double, the two halves fitting into slots in a follower in size snited to the work in hand. A carrier then pushes about two inches of wire through the bunch at the bend, and cuts oft the part thus advanced. The plunger now pushes the doubled bunch with wire down into a nut with spiral threads or rifles on the inside, at the same time giving it a twist. The effect of this motion is to wrap the wire as a spiral or serew thread around the bunch, and the twisting or gimlet motion continues so as to serew the bunch, wire and all, into the hole of the brush-stock below, giving it the firmness and solidity of a screw. Then releasing its hold and giving one revolution backward, to take the twist ont of the hunch, the plonger Hies up and is ready for another bunch, which it prepares and inserts by the same motions. This set of operations is completed at the rate of about 70 series per minute, thus finishing an ordinary scrub-bing-brush within that time. As the holes do not pass throngh the woorl, no back is required.

Among the varieties and parts of brushes, and the appliances concerned in their making, may be named: -

Blacking-brush.
Black-lead brush.
Bottle-brush.
Brass-finisher's brush.
Bristle-assortingmachine. Brusli-luack.
brush for cannon.
Brush-handle.
Brush-head.
brushing-machine.
Brush-making machine.
Carpet-brush.
Carriage-brush.
Cloth-brush.
Clothes-brush.
Drawn-brush.
Dusting-brush.
Ear-brush.
Engine-brush.
Feather-brush
Flesh-brush.
Flue-brush.
Furniture-brush.
Graining-brush.
Hair-brush.
ITair-pencil.
Harness-brush.
Hat-brush.
Hearth-brush.

Horse-brush.
Hydraulic-brush.
lrigating-brush.
Lure.
Marking-brush.
Mechanical broom.
Nail-bruslt.
Paint-brush.
Paste-brush.
Revolving-brush.
Rotary-brush.
Scrubbing-bruslı. shoe-brush.
spoke-brush.
Stock-brush.
Street-sweeping machine.
Tar-brush.
Tool-brush.
Tooth-brush.
Tube-brush.
Velvet-brush.
Whisk-brush.
Wire-brush.
2. A mop for cannon. See Spoxgr.

Brush-hat. One ill which the surface is contin. mally brushed by a hand-brush, luring the process of sizing, so as to bring a nap to the surface.
Brush'ing-ma-chine'. 1. (Hat-mating.) A machine for hrushing lats, to remove the dust after pouncing, or to lay the nap smoothly.
2. (Woolen-mamufueture.) A machine used to lay the nap on cloth before shearing. It has a cylimer rovered with brushes. For some purposes, the cloth is damped by exposure to steam, which escapes in minute jets from a copler box extending the whole width of the machine. Sometimes called a brushingmill.
3. (Fla.k-manufucture.) A machine for scutching Hax, in which the beaters are superseded by stilf brushes of whalebone. See Scutcining-macine.

Brush-pull'er. (Ayriculture.) A machine for pulling up brush by the roots. It sometimes consists of a mere hand-tool, with a gripper to give a firmer hold thim the hand will readily afford. As a machine, it is a traveling implement with closing jars, which seize the bushes and pull them out as the team moves on.
Brush-wheel. a. A whel with bristles on its periphery, used to turn anothe? wheel. One of the wherls being driven, commu-
 nicates motion to the other by frictional contact. The contacting surface may be a brush, leather, intia-rubber, cloth, or anything else which is slightly rlastic and not too slippery. The relative rate of motion may be adjusted by moving the wheel whose periphery is engaged towards or from the chuter of the face-wheel. The motion may be communicated hy contact of the peripheries of the respective wheels.
b. A circular brush ruming in a lathe, and used to polish articles, is also called a brush-wheel.
These brushes are hard or soft, and the wheels are from two to eight inches in thameter.

They are uspel with emery, putty-powder, rottenstone, crocns, rouge, cte., and other kinds of polish-ing-powder, with oil or dry. They are especially useful in chased, indented, carved, and onen work.

The brishes are generally of bristles, but sometimes of wire.

Brus'sels Car'pet. A carpet having a heavy linen web, incloved in worsted yarns of different colors, raisel into loops to form the pattern. The ordinary l3russels carpet has an uncut pile. In the imporial Brussels the figure is raised above the ground and its pile is cut, but the ground is uncut.

In the illnstration the small dots represent the ends of the linen welt-threads; the double waving lines the linen watp-threads; the five lines inclosed

Fig. 950

Brussels Carpet
between the linen warp and weft represent the worsted yarn which is pulled upon to form loops over the wires, which are represented in the figure hy the larger dots, and are subsequently withdrawn. The pattern is formed by bringing to the surface, at any particular spot, such one of the colored yarns as is required, and they are formed into loops by being tumed over wires. As the yarns are taken up, very unequally, they are not wound upon a yarnbeam, but are separately wound upon bobbins arranged on frames at the lack of the loom, a small leaden weight being attached to caeb bobbin to give it the required tension.

In the Brussels-curpet loom there are as many frames as there are colors, and the- mumber of bobhins is regulated ly the wilth of the carpet. With ?-9ard-with valut there are 260 hobbins to a frame,

but when the carnet is one yard wide, each frame will ${ }^{\circ}$ have 344 bobbins. The warp-yarn from each bobbin is termed an ond; this may consist of one, two, or three threads, according to the quality of the carpet. The ends are carried through small brass eyes, called mucils, attached to fine cords, one eye and one end for each cortl. Each cord is passed over a pulley fixmb above the loom, and is fastened to a stick. For a $\frac{3}{4}$ carpet there are 1,300 mails, cords, and pulleys to each loom. Those cords which will raise to the surface a certain set of yarns reguired for one row in the pattern are bound together into a lush.

One lash is necessary for every set or row of colors that has to be drawn to the surface, and the lashes are taken in regnlar succession till the pattern is complete.
The number of lashes required will depend upon the number of weft-threads which oceur in the regular recurrence of a complete pattern. If the pattern be a yard long, it may require as many as 320 lashes. The lashes are pulled by a boy whio is called the draver, in the mamer of the Driwl.00m (which see). Like the latter, the arrangement described has been superseded to some extent by the jacquard attachment.

In operation, the first lash being pulled raises one fifth of the yarns, their colors being such as go to form the commencement of the pattern. A light wooden board termed a sword is set up on edge beneath the raised cnds. The lask is let go ; a round wire is inserted in the bosom, or opening formed by the sword, which is then withdrawn. The weaver then depresses a treadle which works the heddles and crosses the linen warps, anel depresses all the worsted ends except those looped over the wire. The shutcle with a linen weft is then thrown: the other treadle is depressed, which crosses the warps, again locking the linen weft and raising the worsted ends. Haring thrown another linen weft-thread, and driven all home against the web by the batten, le repeats the process, the drawer pulling on the second lash and so on. When a number of wires are thus employed, the ones farthest from the batten may be mithdrawn and used over again. Sixty wires form a set.

In making $W^{\text {rillton }}$ or pilc carpct the wires are fiattened and have a groose on top, acting as a director for the knife which cuts the row of loups and releases the wire.

The quality of Broussels and Wilton curpcts is estimated br the number of wires to the inch. The nsual number for Brussclsis nine, and for W ilton ten. In either fabric great care is requisite in beating up evenly, or tbe pattern would not match when the breadths were joined together at the sides. A bell rings when 64,50 , or 90 lashes have been woren, aud then the weaver tests by a measure whether the required number of lashes measures $\frac{1}{}$ of a yard. If too short, he repeats the last lash; if too long, he omits it.

As the five ends run throughout the yarn while only one of the fire is taken up on an arerage at each lush, it has been attempted to clye the yarn in places, so as to make one set of emls till the varions colors of the pattern. See Pristed Cahpet.

Brus'sels Lace. Brussels point has the network made by the pillow and bobbins.

Brussels ground has a hexagonal mesh, formed by plaiting, and twisting four llaxen threads to a perpendicular line of meslo.

Brussels wirc-ground is of silk. The meshes are partly straight and partly arched.

The pattern in each case is work ed on with a needle after the mesh is completed.

- Bub. A substitute for yeast, employed by the distiller: Prepased by mixing meal or flour with a little yeast in a quantity of warm wort and water.

Bub'ble. The glass spirit-tube of a level.
One of the small hollow beads, or floating globes, for testing the strength of spirits by the rate at which they rise in the liquor. Now superseded by the alcoholmater.
Bub'ble-tri'er. An instrument for testing the delicacy and accuracy of the tubes for holding the spirit in leveling-instruments.

The tube is charged with spirit all but a bubble:
of air, and is tried on its different sides to ascertain on which side the bubble mores most regularly. The stage of the bubble-trier has a micrometer screm for its adjustmeut.

Bu-cen'taur. (l'esscl.) The state barge of Venice.

Buck. (Masonry.) 1. To break ore into fragments with a hammer, crusher, or grinder. This is subsequent to the operations of spalling, cobling, and sorting.
2. A frame of two crotches to hold a stick while being cross-cut. See Buck-saw.
Buck-board. (I'chicle.) i plank bolted to the hind axle and to a bolster on the fore axle, being a cheap substitute for a hed, coupling, and springs.

Buck'et. 1. A ressel of wood, leather, metal. or other snitable material, provided with a handle, and adapted for containing liquids or solid materials. as in carrying or hoisting.

The ordinary wooden bucket is of pine or cedar, and holds $2 \frac{1}{2}$ gallons.

The bucket for loisting is metal-bonnd, and sometimes is equal in capacity to a cask of 100 gallons. A corrf.

In mining, square boxes with falling bottoms are known as dumping-buckets. When lhaving sides which open when a latch is withdrawn, they are. tilling-buckets.

On shipboard, buckets kept for emergencies in case of fire, etc., are frequently of tarred or waxed canras or of leather. Watering-buckets for horses are, in the "nited States military service, made of stout, untarred canras, and also of sole-leather, strengthened by a copper rim at top and bottom connected by side strips.
Previous to the general introduction of water-mains and fire-plugs, leathern fire-buckets were in common nisp. The spectators, always numerous on occasions of fire, were formed in two lines, one of which passed the full buckets from hand to hand, for supplying the engine, and the other passed the empty ones back to be replenished. Some of these relics of the past may yet be seen in old warehouses, etc.
2. (Hater-vitheel.) The vane or float of a waterwheel.
The shrouding of a water-wheel consists of annular plates at the periplery, which form the sides of the burket: the bucket-cuds, in fact, but constituting a part of the sides of the wheel.
A radial bucket is one which has the lottom in a right line, continuous with the radins of the wheel. The lower piece of a hucket is the bottom or floor.

Fig. 952.

The onter piece is the arm or urist. The junction of the bottom and rerm is the clbow.

The bucket-pitch is a circular line passing through the elbows of the series of buckets.

In the jllustration (Fig. 952), the buckets L are each slaperd of a single piece of metal, and they are fastened consecutively on the rim A, which is continnous and forms the inner side of eaeh bueket.
The buckets B on the left-hand side of the wheel are in section, ant show the shaje of the interior.
3. (Hydrunlu' Enginecring.) Thescoop of a drelg-ing-machine, usually having a
Fig. 953. hinged bottom, whieh is closed while raising mud, etc., from the bottom, and opened to deposit the loul. That illustrated is of semi-cylindricalshaje, and formed in two sections, $\boldsymbol{\varepsilon} u^{\prime}$. These are separated when the bucket is lowered down into the mud, and drawn together by the toggle. levers $c c$ at the moment of raising.
4. A cup of sheet-metal, or

Fig. 954

Elevator-Burkee.
one having a metallie mouth, forming one of a serius fixed to the endless band of a grain-elevator. The grain is seooped up at the lowest position of the bucket and discharged on passing the highest, as in a chain elevator-bucket jump.
5. (Nautical.) A globe of hoops covered with canras, used as a recall-signal for whale-boats.
Buck'et-en'gine. (Hydruulic Engineering.) A maebine to utilize a stream of water which has consjul. erable fall and but modmate quantity. It consists of a series of buekets attacherl to an endless chain which rums over sprocket-whecls, from one or both of which power is obtained. The water Hows into each bucket after passing the summit, and is discharged as each bucket jeaches the lowest jart of its course.

Buck'et-hook. (Hitsbendry.) A levice for holding a bucket against a tree while catching shgar-maple sap. It may lie driven into the tree, or may have a pair of expansible arms which embrace the trees.

Buck'et-mak'ing Ma-chine'. Several machines may be inelnded under this general title.

A lathe whose hollow chuck holds the staves, which are embraced by a truss-hoop, while the jusile is turned out and the rim thmed ofl smoothly. Being then tumed end about, amd mit upon a conico-frustal chuck, the ontsile is turned smooth, the lower edge turned off, and the troat mate.

The piece to form the botton is fustenm to a face plate, and turned off smooth and circular, the edge being feathereit to fit the eroze.

Another form of bucket-machine is one which cuts ulp a conieal frustum of woot. so that a serips of anmular conical pieres are cut ont of the solid, the pieces forming a nest of bucket-siles fitting within each
other, and only mimus the wood which was removed in making the saw-kert?

The block is placed upon a table whose angle with the horizontal is such as to make vertical that side of the bucket-block on which the hand-saw is work. ing.

Buck'et-valve. (Strom-engine.) The valve on the top of the air-pump bucket. It rises as the bucket plunges into the water in the cistern heneath, and closes as the said bucket rises to discharge its loal through the delivery-velue.

In marine engines a flat netallic plate governs the passage between the air-pmmp and condenser.

Buck'et-wheel. (IIydranlic Enginecring.) A very ancient form of waterraising device, having a

Burket- Wherl.
whed over which passes a rope having nots or buckets which dip into the water of the well and lischarge at the surface.

In another form the pots are attaehed to the whecl and dip the water of a river, which they discharge into an elevatell trough. Siee Nonia.

The illustration hows a wheel as used

Fir. 957. in Syria, Inclia, Egypt, rete, but made in morlern style by the Gions. The buckets are mate of galvanizer iron, and an ass walking $1 \frac{1}{2}$ miles an homr -Syrian gait-will raise 3,120 gallons per hour from a deptlz of 30 feet.

Jn one form of waterelevator the buckets are small, and constitute links in a chain. the more common form is disks or luttons on a chain rising throngl a tube and thus carrying mps the water.

Tle bucket-wheel is used in grain-elevators.
 Cormerchars.

Bucket-Wher?

Buck'ing. 1. (Cot-(on-inmufucture.) Soaking eloth in lye, as a part of the process of bleaching, alternating with croftinf,

BUCKKAM.

or exposing on the grass to air and light. Sce Bt'eking-kier.
2. (Mining.) Breaking up the ore by hammers. The tool is called the buching-iron, and the bench is the bucking-plate.

Buck'ing-i'ron. (Mining.) The miner's hammer, used in breaking up masses of ore.

Buck'ing-keir. (Cotton-manufocturc.) Linen or cotton cloth is cleansed of the dirt and grease contracted in spinning and weaving, by boiling it with lime in a pan which is heated below. The

Fig. 938

Buching-Kerr.
goods rest on a false hottom, and the pressure of the steam evolsed raises the water in the central column and ejects it from the edge of the circular cap in a stream upon the upper surface of the goods, through which it filters, to be again.discharged as before.

Buck'ing-plate. (Mining.) The miner's table on which ore is broken.

Buck'le. 1. (Saddlery, etc.) A derice with a fiame and tongue for securing straps, etc.
Buckles of brass, having circular rims and a tongue, are found in the British barrows or tumnli.
The annexed figure represents Roman bronze buckles now in the British Musenm. They weve wom by

Fig. 959.

Romon Buckles (Bronze).
women and men, to fasten their scarfs, shawls, cloaks, belts, etc. We read of them in Honer, Euripides, Herodotus, and elsewhere. See Brooch.

Shoe-buckles were introduced into England during the reign of Charles I1. (1670). These, as well as knee-buckles, were generally made of silver, sometimes of gold, - ailorned with precious stones, but are now disused, except as ceremonial or uniform dresses in some parts of Europe.

The principal use of buckles is for fastening the different straps of harness and horse equipments, for which purpose immense mumbers are made, forming a considerable branch of trade, of which Pirmingham is the metropolis.

Much the greater part of harmess. bnckles are either japauned or plated, the former heing used for wagon, cart, and the commoner kinds of harness generally; and the latter for carriage-harness.

The plating material is usually brass, though many silver-plated buckles are manufactured.

Buckles are also made of hright malleable iron, and of blued iron; the latter are the kind employed in horse equipments for the lavalry in the United States Service.
Buckles are dividel into bar-buckles and rollerbuckles, the only difference being that the latter have a thin metallic tube around the bar opposite the tongue, which, by its revolution, facilitates the passage of the strap.
a (Fig. 960) bas a wire passed through the ends of the loop and bent ends to form tongues. b has a bent wirc embracing the waist of the loop. c, the recurved ends of the loop form the tongue. d has a tongue and pressure-bar on one crossbar. c is a tug.

Yig. 960.

buckle. f is a buckle in which the strap is pinched between a piroted har and the lip of the frame. In g the strap is pinched between the two parts of the frame, which are pivoted together. h has a number of projections, which fit corresponding holes in the strap. i is a skate-strap buckle, in which the tongue can be loosened from the strap by lifting the rear end of the buckle. k is a tug-buckle, in which the tongue is vibrated by means of a cam. l has a pair of metallic jaws and a tongue extending across them. m has a pair of serrated-faced blocks which are pinched together by the strain on the strapl.
2. A permanent distortion or k ink in a saw-hlade, or a bulge which mars the flatness of a sheet-metal plate.
3. (Sau.) The iron loop by which a mill-saw is attarled to the straining-frame or sash.

Buck'le-chape. (Saddlcry.) The part ly which the buckle is secured to the band.
Buck'led Plates. (Building.) A form of iron plates for flooring, having a slight convexity in the middle and a flat rim round the edge, called the fillet. They are usually square or oblong, and are laid upon iron beams or girders, convexity upward.
Buck'ler. (Nautical.) a. Allock of wood made to fit in the hawse-hole, or hole in the half-ports, when at sea.
b. The lower half of a divided port lid or shutter.

Buck'ram. (Fabric.) A coarse fabric of linen or hemp, stiffened with glne, and placed in coats and other carments to hold them in shape.
This was not the material worm by Falstaff"s "two rogues in buckram suits." See Baribacan.

Buck-saw. Afranicsaw with one extended bar to form a handle, and adapted to a nearly ver. tical motion, in crosseutting wood held by a saw-buck.
Buck'shot. A kind of leaden shot, larger than swan-shot, used in hunting large game, and formerly for the military strvice. Those formerly employed for making musket-cartridges weigh about 160 or 170 to the pound. 15 (sonctimes 12), or a caliber . 69 ball and 3 buckshot, were put up in a cartridge.
They are usually made by molding or compression.

Buck'skin. A specie's ol' soft leather, usmally of yellow or grayish hue, originally (as its name imports) prepared by treating deer-skins in a peculiar way ; it is now, bowever, mostly prepared from sheepskins. There are two processes for dressing skins to give the soft character which is admired in buckskin ; one is by oil, and the other by brains. The latter more nearly resembles the Indian mode, and both of them require a great deal of manipulation. As to the former, the skins are limed, then workedout on the beam; then they are milled, straitsoil being mostly used, in the proportion of seven to filteen gallons to 100 skins, according to size. The surplus oil runs through the mill into tubs of water below, whenee the oil and water are pumped into a tank in which a certain amount of oil of vitriol is placed ; this causes the oil to rise to the top, whence it runs off into barels, and is known as sod-oil, heing used for stuffing and dressing calfskins. The skins are then worked over the beam again, this operation being known as "scudding." The skins are next dried; then they are put into a lye consisting of from fifteen to forty pounls of soda-ash for 100 skins; this takes out the animal oil, which rises to the top and is skimmed off for sod-oil. They are scoured and dried repeatedly, and then undergo the operation of staking; the last operation is the finishing, which is done first on a pumice-wheel and then on an emery-wheel. The skins are then ready to go to the cutting-shop.

By the other plan, the skins are graincd, brained, and smoked. The skin is soaked till soft, the bair and cuticle curried off, beamed, stretched, and broken in drying. It is then soaked in brains dissolved in warn water; which makes the skin thick and spongy. It is carefully stretched and worked, and is tested by gathering into a sack-form and inflating, when pressure will drive off the contained water in a spray. It is now wrung, stretched, rubbed, and hung in a smoke. A slight tanning in willow-bark ooze sometimes follows.
Buck-wag'on. (Vehiele.) A rude wagon formed of a single board resting on the axletrees, and forming by its elasticity a spring seat for the driver.
Buck'wheat Hull'er. A form of mill, or an ordinary grinding-mill with a particular dress and set of the stones, adapted to remove the hull from the grains of buckwheat, preparatory to griuding the farinaceous portion into flour.
Bud'ding-knife. (Agriculturc.) A knife with
a convex blade and flattened handle, used for cutting the scion, naking the incision, and inserting buds beneath the bark of fruit-trees. A spearshaped slip of ivory at the hilt is used for loosening the bark from the wood.

Bud'dle. (Mining.) An oblong inclined vat in which stamped ore is exposed to the action of running water, in order that the lighter portions may be washed away while the heavier are retained. Several different deseriptions of apparatus are called by this name as generic.

The trunk-huddle, or German chest. See Trunk.
The stirring-buddle, consisting of a trough and settling-tank.

The nicking-buddle or sleeping-tuble, buldle-hole or sluice-pit.

Buddles of different construction are known as flat, round, hand, rotating, concave. Many of the contrivances for gold-washing, used in California

and known by technical names, may be called buddles. The rockers, long-toms, and sluices act in this manner. The buddle represented is used in Cornwall, England.

The ore is spread over an inclined board, and a divided stream of water directed upon it, so as to gradually carry it down to a lower level, where the inclination is not so great. The quantity of water is regulated by the roughness of the ore, and may be at the maximum as much as would run though a circular aperture $1 \frac{1}{2}$ inches in diameter, down to an amount equal to one tenth of that quantity. The richer and heavier ores subside first, and the lighter portions are carried farther on. The contents of the buddle are then separated into three or four qualities, according to their proximity to the head of the buddle.

The various lots are again buddled, or tozcd, or suljected to the aetion of the keeve or jigging macline.
Bud'dling. (Mining.) Separating the ore from the refuse in an inclined trough or cistern through which water tlows. See Budde.
Bude-light. Invented by Mr. Gurney of Bude, Cornwall, Eugland.
It consists of an oil or gas burner, supplied with a jet of oxygen gas, by which the brilliancy of the flame is increased.
In the Argand form of burner the oxygen gas is supplied up thee central tube.
Budge-bar'rel. (Ordiance.) A small copperbound barrel having only one head, its mouth being closed by a leathern bag with a cap and drawstring. It is used for supplying the guns of forts and siege-batteries with cartridges from the magazine.
Bud'ge-ro. (Boct.) A large pleasure-boat used on the Ganges.

Bud'get. (Tiling.) A nocket used by tilers for holding the nails in lathing for tiling.

Buff. A polishing leather.
A slip, lap, or wheel covered with leather and
used for polishing. So called, as the kind of leather used was buffalo, was dressed with oil or brains, and had a soft and fuzzy surface. See BuffLeather.

Buf'fa-lo. (Cotton-manufacturc.) A hamper of buffalo-leather used in a factory to convey hobbins from the throstle.

Buf'fer. An elastic device or fender for deadening the shock caused by the impingement of one object against another.

A fender or resilient pad or block, placed on the end of a sill-piece of a car-bed to moderate the concussion of colliding cars. According to the construction and application, it assumes a specific name ; and the parts involved are also distinguished with this word as an affix, e. g., -

The buffer bar or beam is attached to the framework of the car, and carries the buyjer-box, in which is the buffer-rod, on whose end is the buffer-dish; the latter receives the impact, which is resisted by the buffer-spriny, inclosed in the box.

The buffers in use on

English railways consist of disks of metal or wood which project from the ends of the carriages, and are commonly covered with cushions of leather. The disks are attached to iron rods placed underneath the frame of the carriage, and as they are pressed inward by the contact of the adjoining carriage, act against the ends of elliptic springs, which lessen the jar resulting from the contact. The aim of the English mode of coupling is to bring the whole train to the condition of an object whose anyielding sections have a cartilaginons articulation, which permits a certain degree of flexure, extensiou, and compression at the joints.

Another form is a short spiral spring covered with leather and having a disk at the end, placed at the end of each of the main side-timbers of the carframe.

A third form has a central buffer with a shaft acting upon a spiral spring beneath the carriagebody:

In the example, the buffer-disks $E E$ are on rods

In a fourth, the shaft acts upon a piston in an aircrlinder, the spring being pneumatic.

There are varions modifications.
The buffers sometimes take the form of elastic cushions of leather, stuffed with horse-hair; or of disks or blocks of rulcanized rubber.

Buf'fer-spring. That which gives resiliency to the buffer, and enables it to moderate the jar incident to the contact of tro cars.

The buffer and druze spring is effective both as to colliding contact and also as to the drawing apart in starting or increasing speed.

Buf'fing and Pol'ish-ing Ma-chine'. One having a wheel covered with what is technically known as buff-leather, thongh not usually made of buffalo-hide. The leather holds the polishing material, crocus, rouge, or what not. Buffing has come to mean polishing, from the derived name of the material which is used in applying the polishing material.
Buff-leather. A strong oil-leather prepared from the hide of the butfalo, elk, or ox. It is so named from the buffic, or wild bull, of Poland and Hungary. Formerly it was largely used for armor. It was said to be pistol-shot proof, and capable of turning the edge of a sword. It was tanned soft and white. Its place is now filled by the leather of cow-skins for a common, and of the American buffalo (bison) for a superior, article.
It is yet much used in the saber, knapsack, and cartridge-box belts of European armies.
The buffers and buff-wheels of the cutler, lapidary, and polisher were originally covered with the said buff-leather, and some are yet.

A thick, tough, felted material of which belts were made was formerly commonly known in the military service as buff, probably from its yellow color when not pipe-clayed; and armorers' buff-sticks, etc., are generally covered with pieces from old belts. It was an excellent material for this purpose.
Buft-stick. (Polishing.) A strip of wood covered with buff-leather charged with polishing-powder.

Buff-wheel. (Polishing.) A wheel of wood or of other uterial, covered with leather, and used in polishing metals, glass, etc. The surface is plied with material of coarse or fine quality, according to the character and condition of the work, one buffwheel always having its own grade of polishing-pow. der, be it emery, rotten-stone, tripoli, erocus, rouge, putty-ponder, etc.
Bug'ga-Iow. ($V_{\text {essel.) An East India coasting- }}$ ressel with one mast and a lateen sail.
The buggarah is an Arab vessel of the Persian Gulf. The bugis, a prahu or boat trading between Singapore and the islands of the Indian Archipelago.
The bujrah is a flat-bottomed Ganges boat with cabins.
Bug'gy. (Vehiele.) A light four-wheeled vehicle, having a single seat. The top, when it has \{one, is of the $c a-$ lash kind. In thiscaseitis com. monly known as a top-buggy.
Bug'gy-boat.
One having a
having shoulders which impinge upon coiled plate- provision for the attachment of wheels, so as to be springs C. Beneath the car-heds are seen the springs of the car-coupling. converted into a land vehicle.

It was invented and used by Sir Samuel Ben-
tham, in Russia, 1781, and was patented by him. He afterwards extemded the idea to baggage-wanons. A flexible boat of connected sections was also used by him to convey the Empuess Catharine down the Dneiper, and was called by him the "Vermicular." The idea las been lately revived on the Thames, the boat being ealled the "Commetor." Benthan's boat had six sections, drew six inclees of water when loarked, and was rowed by 124 oarsmen. No space of more than an inch was to be found hetween the sections during flexion of the wormlike vessel. The vessel was fitted up with cabins and many conveniences.

Bug'gy-cul'ti-va'tor. (Agriculture.) One having wheels and a seat so that the person may ride. See Cultivator.

Bug'gy-plow. One having usually several plows attached to a single frame, and having a seat for the plowman, who rides and drives. Sce Gangplow.

Bug'gy-top. (Irchicle.) The calash top of the single-seated rehicle known as a buggy. In many of these carriages it is now made shifting, so that it may be entirely detached from the frame of the seat and constitute the vehicle an open buggy. In other forms the top rail only of the seat is shifting.

Bu'gle. 1. (Music.) A brass wind-instrument of the trumpet kind.
2. A long, slender glass head; sometimes arranged in oruamental forms and attached to varions articles of ladies' wearing-apparel. Wampum, which fomerly served as a circulating medium among the North American Indians, was composed of beads of this kind made from the interior parts of clam-shells, by rubbing pieces of the shell into the required slapee upon a hard stone, drilling a longitudinal hole, and polishing by friction. Those formed from the bluish-biack portions of the shell were twice the value of the white ones.

The ancient bgyptians made many kinds of beads. Ladies are represented stringing them ; a purse has been found knitted with small glass bugles.

Buhl. The name is derived from André Buhl, an Italian who was celebrated in France, in the reign of Louis XIV., for making artistic work in darkcolored tortoise-shell or wood, inlaid with brass and ornamented with the graver.

The term is now more general, and includes work in contrasted materials, inlaid with the saw.

Reisner preferrel wood, and his productions were known as Reisuer-work.

Veneers or thin plates of the substances are glued to the opposite sides of a sheet of paper ; another sheet is pasted on one outside surface, and on this the design is traced. A fine frame-saw called a buchl-saw is made to follow the tracing, cutting through both thicknesses. The two layers are then

Buthl-Snu.
that the latter may avoid the angle of large works.
Buhr. A coarse, flinty, cayernons stone, whose cellular texture makes it highly suitable fur millstones.

France, Sardinia, and Germany yield the buthostone.

The separate loweck which are hooped together to form a bulir-stone are known as pancs.

The French bulus are from a quarry near Paris, where the stratuns is ahout three milistones thick. lt is a purms silicions stone of great hardness.
Buhr, Me-tal'lic. A grinding-plate of metal, made as a substitute for the real brehr-stone, and used for some coarse work, such as grinding corn for stock.

Build'er's Jack. A kind of scatlold which is supported on a window-sill and against the wall, and extends ontwardly, to mable a workman to stand outside while repairing or painting.

Building-block. Brittrer's Jark. (Shipbuiliting.) One of the temporary structures resting upon the slip, and supporting the keel of a ship, while building.

They consist of blocks of timber so arranged as to be removable by knocking out the key-pieces or templets.

CC, caps.
$A B$, angle-block, shoul with iron.
$T T$, wedges called tomplets.
$G{ }^{\prime}{ }^{\prime}$, groundway.
h, kecl.
Build'ing-mov'er. A heary truck on rullers or wide track-wherl, used in moving houses. In the example, the building rests on a cross bolster, which

Fig. 968.

is supported by two trucks with three roilers eachIn turning, rollers journaled beneath the bolster traverse ways upon the trucks.

Build'ing-slip. (Shipurighting.) it yard prepared for sliphuilding. Sce-Launch; Hybraulic Slip; Slif-DחCK.

Built-beam. (Carpentry.) A compound beant made np of a number of planks, or thin, decp beams, laid parallel and secured together.

Built-rib. (Carpontry.) An arched beam made of parallel plank laid edgewise and bolted together. See Arched Beam; Rib.

Built-up. Said of masts made of pieces an! hooped ; and of cannon having an inner core and onter reinforements.

Buke-mus'lin. (Fulric.) A plain, clrar kind of muslin, woven for working in the tambom and
for ladies' dresses. (Simmonds.) Generally written book-muslin.

Bulge, Bilge, or Bouge. 1. (Coopering.) The swell of it cask, principally in the middle.
2. (Shipbuilding.) The flat portion of a ship's bottom. See Bilge.

Bulk'head. (Shipwrighting.) A partition in a ship which divides the interior space into compartments. In wooden vessels they are made of timber, and in ships of war are so arranged as to be easily removed in preparing for action, etc. ln iron vessels they are formed by plates riveted to the ribs or frames, both on the sides and bottom, each bulkhead making a complete transverse section of the vessel, and the whole being so secured as to prevent water passing from one side to the other. Several of these, being introduced, divide the vessel into water-tight compartments.

The bulkheads affording the greatest protection are those placed a few feet respectively from the stem and stern; the forward one checking the water that would enter through a damaged stem, and the after one averting the danger of any accident that might arise to the stern-pnst or rudderhraces, or to the tube of the shafts of screw-vessels. The water receiverl into these small compartments rould very slightly imperle the way of the ship by throwing her out of trim, as the quantity they would contain would be comparatively trifling. The bulkheads more amilships assist in strengthening the vessel, and prevent fire spreading beyond the comprarment in which it commencel. In case of a leak, they confine the water to that compartment where it entered.

Witer-tight bulkheads have for ages been in use in China, but have only been generally introluced into this country since iron ships have been used; they are now generally employed in iron vessels, and their adoption has become a law and is enforced in Eugland, under the regulations of their Board of Trade; in small vessels they can only be used transversely, but in larger ones they may be applied longitudinally, and are so employed in the "Great Eastern," or were before she was refitted to adapt her for the great work of laying the submarine cables of the world.

The ship "Terror," Commander Back, fitted with bulkheads for Arctic service in 1835, came home with the after section full of water.
Bull-dog. (Fr. torchis.) (Metal-acorking.) A refractory material used as a lining for the boshes of puddling or smelting furnaces. It is a decomposed protosilicate of iron.

Bul/len. The arn or chaff from flax or hemp.
Bul'leu-nail. An upholsterer's nail, with a round heal, a short shank, turned and lacquered.
Bul'let. (From the French boulet, diminutive of boulc, a ball.) A small projectile for fire-arms.

The use of round bullets dates back to the time when gunpowder was first used in ordnance. Bullets are now usually cylindrical, with conical or conoidal points.

In 1418, four thousnd bullets were ordered to be made of stone from the quarries of Maidstone, England. These were probably for cannon, as were the iron ones mentioned in Ryder"s "Fœdera," 1550.

The trajectory of a bullet is the line described by its center on its passage through the air. It would be a parabolic curve in a vacunm, but the resistance of the atmosphere greatly modifies this and reduces the range, so that a $24-\mathrm{pdr}$. cannon-ball, fired at an angle of 45°, with an initial velocity of 1,400 feet per second, ranges only some 2,100 yards instead of
more than 20,001 , as it would do if the atmosphere offered no resistance.
The actual velocity of the smooth-bore musket round ball, weighing 412 grains, with a charge of 110 grains poriter, at the time of leaving the gun, has been found to be 1,500 feet per second, and that of the elongated ball, cal. . 58 of an inch, with 60 grains of powder, 963 feet ; but though the latter has so much less velocity at the time of leaving the gun, its range is at least equal and its accuracy far superior.

The greater accuracy of the rifle is due to the fact that the rotary motion given the bullet by the spiral grooves of the gun keeps it always paint foremost, and that the bullet is caused to completely fill the bore so that it leaves it in a line with the axis of the piece, which rarely happens in a smoothbore gun, owing to the difference in diameter between the bullet and the bore.

The ritle was introduced by Koller, a gunsmith
Fig. 969.

of Nuremberg, about the leginning of the 16 th century, and the increased accuracy given by this species of arm was soon appreciated ; and froin the fact of a troop of horse known as Carabins having been armed with them, the weapon itself was subsequently called carbine.
The round ball, however, still held its place until very recently, both for rifled and smooth-bore gums: anil it was not until the wars of the French in Algeria, subsequent to 1830, that experiments on an extended scale were made as to the practicability of using that form of projectile, the pointed and elongated, which both mathematics and common-sense showed to be best adapted to both accuracy and long range.

Among the first of the improved balls was the Brunswick (0 , Fig. 969), which had a circumferential belt, and was adapted for a two-grooved rifle. $b b$ is the Delvigne, adapted for a sulb-caliber powderchamber, and resting by an amular shoulder upon a woorlen sabot. It had a patch of greased serge. Ninie and Thouvenin introdnced an clongated bullet with a cylindrical grooved body and a conical point. This had a greased paper patch, and was expanded to fill the grooves by being driven down upon a trige in the breech of the gun. This was adopted in the Fronch service in 1846 . Delvigne subsequently patented an elongated bullet with a recessed base which he called the cylindro-ogivat.
Minie, in 1847, protuced the well-known bullet c, in which the tige was dispensed with, and the bullet expanded by the explosive force of the powder in the cup, which was inserted into a fiusto-conical cavity in the base of the bullet. The English substituted a conoidal wooden plug in their Entield-ritte bullet d.
In 1856, after a series of experiments by the Ordnance Department, an elongated hullet c, with a cavity, was adoptell for the United States army. The diameter is .577 of an inch, that of the ann forwhich it is intended being . 58 of an inch. Two varieties were mate, both being precisely similar on the exterior, but diflering in the size of the eavity; that for the rifte-musket weighing 500 grains, and the other for the pistol-carbine but 450 grains.
$f f$ is the bullet of Thirouse, a French artillery officer. It is composed of lead backed by a sabot of woul with three circular grooves near its base. The Nesler ball g was intended for a smooth-bore.
Of the other hullets in Fig. 969, some are celebrated on account of the ingenuity or success of their inventors, others as having been adopted by different governments.
h is the American conoidal pointed bullet.
i, the Colt, with a rabbet for the cartridge capsule.
j, the American "picket," with a hemispherical base.
$k k$, Haycock's Canadian bullet, with a conoidal point and a conical base.
l, Mangeot's bullet with a conoidal point, hemispherical hase, and two circular grooves.
m, the Prussian needle-gun bullet.
n, Norton elongated percussion rifle-shell, fitted with wooden plug (1830)
o, Gardiner's explosive shell-bullet, cast around a thiu shell of copper attached to a mandrel, which is afterwards withdrawn, leaving a fuse-hole in the rear through which the charge is exploded in about $1 \frac{1}{4}$ seconds.
$o o$ is a Spanish bullet containing a charge of powder and a fulminate.
p is the Swiss federal bullet.
$p^{\prime} p$, the Swiss Wurstrmberger bullet.
q and q are views of the Jacob's bullet and shell.
r and r are views of the Peter's ball, having an interior tige; one view shows it distended and battered.
s is the Belgian bullet.
t, Pritchell's bullet.
u, Mlangeot's bullet.
$v v$, Austrian bullets.
ww, Deane and Allams's bullets, with tails.
x, English bullet, with wad.
y, Sardinian bullet.
z, Beckwith's bullet.
a a, steel-pointed bullet.
$b b$, the Charrin bullet, with zinc or steel point.
c c, c, Tamissier's steel-pointed bullet; one view
showing it intact, and the other after compression in the grooves of the rifle.
$d d$, the Saxon bullet.
$c c$, the Balen mollifieation of the Minie, with tinned iron cup.
$f f$, Wilkinson's bullet.
$g g$, Whitworth's hexagonal bullet.
$h h$, Latcaster's bullet.
$i i$, Meflord's sub-caliber bullet, with spiral grooves on the shoulder to impart rotation.
$j j$, McMurtry's bullet, with spital grooves.
$i k$, Williams's bullet, with a headed tige to expand a rounding disk at the base.
$l l$, Dibhle's bullet, with a recess for the powder.
$m \mathrm{~m}$, Shaler's triple bullet, the pieces of which are intended to diverge after leaving the muzzle.
$n n$, Maduell's bullet, which is built up of interlocking prortions, which part as they leave the capsule and muzzle.
$q q$, Shocks's perforated bullet, with a sabot in the rear.
$r r$, Hope's bullet, with a hent tail to direct it in a curved path.
$s s$, Matteson's bullet, with spiral openings tluongh it.

The following table shows the number of spherieal leaden balls in a pound, from $1 \frac{5}{6}$ to .237 of an inch diameter :-

Diam.	No.	Diam.	No.	Diam.	No.	Diam.	No.	Dinm.	No.
luch.		lneh.		Inch.		Inch.		lnch.	
167	1	.71	13	. 488	40	. 329	130	. 265	250
1.326	2	. 693	14	469	45	. 321	140	. 262	260
1.157	3	. 617	15	. 453	50	. 314	150	259	270
1051	4	. 662	16	426	60	.307	160	. 255	280
.97\%	5	. 65	17	. 405	-0	. 301	170	252	290
. 919	6	. 63%	18	. 395	75	.295	180	249	300
. 873	7	. 625	19	. 388	80	29	190	. 247	310
. 835	8	.615	20	.35	88	. 285	200	.244	320
. 802	9	. 57	35	. 372	90	. $2 \mathrm{S1}$	210	. 242	330
.75	10	. 537	30	. 359	104	.276	220	. 239	340
.75	11	. 51	35	.348	110	.272	230	. 237	350
. 73	12	. 505	36	. 338	120	. 268	240		

Bul'let-com'pass-es. A pair of scribing compasses with a bullet on the end of one leg to set in a hole. Cone-compasses, Club-compasscs.

Bul'let-ex-tract'or. A pair of pinchers with projecting elaws, adapted to imber themselves in a bullet so as to draw it from its bed and extract it. When closed, these form a smooth, blunt surface, like a probe, and are opened against the bullet so as to spread apart the vessels which might oppose the retraction.

Bul'let-hook. A hook-ended tool for extracting bullets.

An iron bullet-hook was disinterred at Pompeii in 1819 by Dr. Savenko, of St. Petersburg. It was in company with a number of other surgical instruments. See Probl.

Bul'let-la'dle. One for melting lean to run bullets. It is usually a bemispherical ladle with a spont, but in one case the ladle has a hole in the

Fig. 970. bottom guarded by a spring plug and operated by a trigger on the handle: in

Bullet-Ex-
tractor. another case a part of the ladle is covered, and the lead thus flows out at a guarded opening which keeps back the dross of oxide.

Bul'let-mak'ing Ma-chine. Leaden bullets, as well for the military service as for other purposes, were formerly all made by casting.

The most common form of bullet-mold, where
large numbers of bullets were required, was precisely like the common bullet-mold, but casting four, six, or more bullets. The gates were afterward cut off and the bullet trimmed by hand. The whole process was slow, and required a comparatively large number ol hands.

To increase the rapidity of fabrication, revolving bullet-molds were tried, consisting of a cylindrical ring, to which revolution was imparted by a hand. crank and gearing, the molten lead being fed to the mold during its revolution; the gates were cut by a kuife attached to the mold at the same operation; when full, the mold was opened and the bullets discharged, after which the mold was clamped shut again and the operation recommenced. These contrivances were ingenious, but were very liable to get out of order.

In 1857, De Zeng invented a mold for elongated bullets, constructed very similarly to the ordinary bullet-mold on a large scale, but which was mounted on a stand and worked by means of a treadle, through which, aided by the hands of the operator on the handles, the mold was opened and closed, and the gates cut off. This was an ingenious and efficient apparatns, ancl, with the aid of a bny to pour the lead, could be worked with great rapidity, seemingly limited only by the time required for the cooling of the metal at each cast.

Pressed leaden bullets are undoubtedly superior to cast ones, and those for the ordinary arms in the military service are made in the former way. The lead is generally procured in the form of "bullet wire," coiled on reels. This is cut in lengths of 25 inches, and fed to the machine by a boy. Elongated hullets are formed by a three-part die, which opens and closes with great rapidity, delivering the bullets at the rate of about 3,000 per hour; these have a slight burr or feather at the points where the dies cone together, which is afterwards trimmed off by hand.
Molds and rolls are provided with each machine, so that the bars may be cast from the pig, and rolled to give them density"; but, as observed above, the lead is generally procured in the form of wire. It is estimated that a man can cast 1,500 bars, or trim and roll 2,000 bars, in a day of tell hours.

Bruff's machine, 1813, has a furnace and a press, in which respectively the lead is cast into

Bruff's Bullet-Compressing Machine.
ingots and made into round bullets. The figures are side and end views of the press. The lead is cast into flat plates of the required thickness, and of a width equal to the length of the rolls. It passes from above, downward, between the upper
pair of rolls A, which are grooved longitudinally ; by them it is pressed into round rods, - or, move correctly, long cylindrical pieces, -one half of each of which is formed by the groose in the face of one roll, while the other balf is formed by the corresponding groove in the opnosite roll, the two working in apposition and moving at an equal rate. Each bar, as it falls from the upper rolls, alights upon the lower roll B, which is grooved circumferentially, and carries the romid bar against the curved steel plate C, whose face is groored in correspondence to the groores of the wheel B. The bar is nipped between the surfaces, and is cut into sections by the adjacent edges of the roll and plate, and as the pieces roll down in the grooves of the plate and are pressed on the opposite sides in the grooves of the roll, they gradually assume a perfectly spherical form and are discharged.

The elongated shot or bullets now used for rifles are made at Woolwich in the following way: The machine for this purpose consists of four sets of duplicate punches and dies, independently worked is pairs by two eccentrics, diven by gearing from two separate driving-shafts. The lead, coiled round four reels, is fed from them through a shearing-lever into the grippers, where it is clutched ; a piece is cut to a suitalle length by an unward movement of the shearing-lever; the grippers then olen, the piece cut off falls down, and is clutched by another piece of apparatus. At this moment a punch advances, and presses the lead into the die, thus forming a bullet. A small plate comes up immediately in front of the die, and the bullet is puslied through it by a small pin, worked by a lever and cam; by this operation the ragged edge is removed which had been left on the bullet by the die. The nachinery, when driven at the rate of thirty revolutions per minute, will make 120 bullets in that time, or 72,000 in a day of ten hours.

Bullet-mold. An implement opening like a pair of pinchers, having jaws which shut closely together, and a spherical or other slaped cavity made by a cherry-reamer, with an ingate by which the melted lead is noured in.

Bul'let-probe. A sound for exploring tissue to find the siutus of a bullet. It is usually a soft steel wire with a bulbous extremity. Nelaton used a sound with a file-like extremity, which might receive traces of the bullet in cases where there is doubt of the character of the body with which it is brought in collision. He afterwards used a sonde, with a termination of an olive-shaped body of white unvarnished porcelain, which would receive a black mark by contact with the bullet.

Bul'let-screw. One at the end of a ramrod to penetrate a bullet and enable the latter to be withdramn from the piece. See Ball-screw.
Bullet-shell. An explosire bullet for smallarms. Jacobs's bullet-shells, used with the rifle of General Jacobs of the East India service, have an inclosed copper tube containing the bursting-clarge, which may be fulminate or common powder, and is exploded by a percussion-cap or globule on striking.
In experinents made with them at Enfield in 1857. caissons were blown up at distances of 2,000 and 2,400 yards ; and brick-walls much damaged at those distances by their explosion. See Bullet.
Bul'ling. (Blasting.) Parting a piece of loosened rock from its bed by means of exploding gunpuwder poured into the fissures.
Bul'lion. 1. A word whose original meaning indicated a younded stud or ornament, and came to mean a metallic clasp, boss, hook, button, or buckle.

The meaning bas diverged in two directions.

It now means (ct) a mass of gold or silver in bars or in mass, uncoined ; and, by association, a showy metallic ornament or metal-covered fringe ; if genuine, of goll or silver, but sometimes a mere colorable imitation in baser metal.
b. A form of heavy twisted fringe, whose cords (L. bulla, an object swelling upand becoming romel) are prominent; as, in degree, the strands of a cuble.

Bublion-fringe for epaulets is made of silk covered with line gold or silver wire.
2. (Glass-making.) The extreme end of the glass bulb at the end of the blowing-tube. The bulb having assmmed a conical form is rested on a horizontal bar called the bullion-bar, to assist in bringing it to the spherical form.

Bull-nose Ring. A hook whose knobs enter the nostrils and clamp the dividing cartilage or sentum of the nose. It is used to lead vicions or obstinate bulls, and occasionally to fasten or hitch them.

A passage in Ezekiel shows that lions and camels were similarly led about, and that prisoners and captives were treated in the same way. Manasseh, the vicious and unfortunate king of Judah, was thus led by the nose, and carried away captive, $677 \mathrm{~B} . \mathrm{c}$. , by the captain of the host of the king of Assyria. Repenting in exile, he was restored, and died in peace in Jerusalem.

A bas-1elief, discovered by Layard at Khorsabad, shows that the practice was considered worthy of illustration by permanent record; and it certainly was far more humane than the Egyptian modes of tying prisoners in the times of the Rameses, and the practices in vogue among the savages of Turkestan at this day, and which we hope are now in course of abatement by Russia.

Bull's-eye. 1. (Nautical.) a. A small pulley of hard wood, having a groove round the ontside and a hole in the middle, answering the purpose of a thimble.
b. A bulb or thick disk of glass let into a ship's side or deck.
c. One of the perforated balls on the jaw-rope of a gaff.
2. The center of a target.
3. The lens of a dark-lantern.
4. (Glass.) The central boss which is attached to the bunting-iron or pontil, in the operation of making crown-glass.
5. (Microscope.) A plano-convex lens, used as an illuminator to concentrate rays upon
Fig. 972. an opaque microscopic object.
6. A small lantern with a lens in one side of it, to eoncentrate the light in any given direction. A poliecman's, ucatchman's, or dark lantern. It has a slide by which the emission of light is prevented, and is unfortumately almost as handy for burglars as policemen. A duerk-lantern.

Bull's-eye Crin'gle. (Nautical.)
Dak-Lantern A wooder ring or thimble used as a cringle in the leech of a sail.
Bull's-nose. (Curpontry.) A term sometimes applied to thic angle formed by the junction of two plane surfaces.

Bul'wark. 1. A rampart, wall, or parapet around an inclosure, such as a fortification or battery.

The boulcvards of Paris and other cities are on the site of the ramparts of the former fortifications.
2. (Nautical.) The sides of a ship above the upper deck.

Bum'boat. (Nautical.) A boat used to carry provisions to vessels. So named from its clumsy form.

Bum'kin; Boom'kin. (Nautical.) a. Λ boom on each side of the bow, to laul the fore-tack to.
b. On the quarter for the standing part of the main-brace.
c. Over the stern, to extend the mizzen.

Bump'er. A projecting head at the end of a rail-way-car, to receive or deliver the contact when cars

come together, and, by transferming the force to a spring, moderate the jar incident to the collision. In the illustration the spring is of a spital form. Sce also BuFfer.

Bump'ing-post. (Railway Eitginecring.) A timber or set of timbers at the termination of a railroad track, to limit the motion of the train in that direction. In the example, the three members, -

Fig. 964.

Bumping-Post

sills 4, pasts 2 , and braces 13 , -are bolted together, and a part of the strain transferred from the posts and thrown upon the sill beneath the track.

Bunch. 1. (Mining.) The expanded portion of a piphe-vcin ; that is, one which, instead of preserving a uniform size, has contractions and expansions. A body of ore not contimuous like a coursce. Also called a squat.
2. (Flax-manufacturc.) Three bundles, or 180,000 yards, of linen yarn.

Each bundle has 60,000 yards, and is made up of 20 hanks, pach having 10 leas, and each lea being 300 yards in length. See Bundle.

Bun'der-boat. The surf-boat of the Malabar coast of India.

Bun'dle. (F7ax-manufacture.) Twenty hanks, or 60,000 yards, of linen yarn make a bundle.

Table.	
120 yarns of $2 \frac{1}{2}$ yards $=300$ yards $=1$ lca .	
10 leas	3,000 yards = 1 hank.
20 hanks	60,000 yards $=1$ bundle .
3 bundles	180,000 yards $=1$ bunech

Bun'dle-pil'Iar. (Architccture.) A column or pier with others of small dimensions attached to it.

Bun'aling-ma-chine'. One for grasping a number of articles into a bundle ready for tying. Machines of this character are used for fire-wood, asparagus, and many other things sold in tied bundles. The handle is adjusted in position to expand the bands or straps for receiving the article to

Bradling-Machine.
be bound, when it is diawn down, and by a slight turn of the hand-piece the machine will be locked and the hundle beld securely until tied up.

Bun'dling-press. A jress in which hanks of yarn are pressed into cubical packages for transportation, storage, or sale.

The press has an iron frame beneath the wooden table, on the respective ends of which the yarn and the tying twine are placed. The hanks of yarn are

Fig. 976.

> Bundling-Press.
placed between the standards of the press-box, the sides of which are slotted, to allow the strings to be laid in prosition before the yarn is filled in. The top is then shat down and secured by the key-rods, which enter the notches in the top bars.
The iron cross is then turned, operating a pinion beneath the table; the pinion engages with and tums a large cog-wheel, to one of whose arms a pitman is connected. The pitman raises the follower, which forms the bottom of the press-box, and squeezes the bundle of hanks against the top pieces which form the cover. The stiings are then brought around and tied, the slits in the sides and top of the box permitfing them to come against the cotton.
After tying, the pressure is slackened, the keyrods withdrawn, the cover thrown lack, and the tied bundle withdrawn.
The invention shown in Fig. 977 is primarily designed for bundling yarn, but is adapted for compressing other like materials. It consists of a frame having uprights $b b$ at each side, carwing transverse hars $c c$ at top. For use, the yarn to be hundled is placed on the bars c, the platen e having been previously run out on the extension d;

cords are passed around the bundle, and the platen is run in on its guides and forced down by means of the screw f, compressing the wool into a small space; the cords are then tied, the platen run out asain, and the bundle remored.

Bung. 1. (Coopering.) A stopper for the large opening in the bulge of a cask called the bung-hole.
The common bung is metely a thick circular piece of wood or cork, over which a square piece of tin is usually nailed. Improred devices relate to means for aduntting air to allow the contained liquid to be drawn, or for permitting gases generated inside to escape before attaining a dangerons degree of pressure.

Fig. $978(A)$ is designed to allow the carbonic acid generated during the process of fermentation to depart mithout allowing access of externalair, whose oxygenaggravates
 the process.

The carbonic acid passes up tube d in the bung a, and escapes into the air around the lower eulges of the cone c, which is submerged in the reservoir b, the latter being filled with water, or preferably with the must, wine, or beer with which the cask is filled.

It is a sulstitute for a bent tube. inserted into the hung, and its other end inverted into a tumbler of liguid which stands on the top of the cask.

BUOV.

B is a bung with a spring pheg
C has an immer bridge into which the stem of the bung screws.
D is a screw-bung.
E is a bung with a vent and a screw vent-plug.
2. (Potlery.) A pile of seggars forming a cylindrical column in a kiln.
Bung-bor'er. (Coopering.) A conical auger for leaming ont a bung-hole.

Bung-cut'ter. A machine for cutting bungs.
There are four forms : -

1. The amular borer. (See Augre.) This has a pointed cutter on a stem, like a center-bit without the ronting-cutter.
2. A lathe which turns the circular bung:
3. A cylindrical saw which advances against the blank (or conversely) and cuts out a circular disk.
4. A descending tubular knife which cuts the disk out of the stufl, or ents a square blank into a circular shape.

Of the latter class is Fig. 979, in which the square blocks are placed in a vertical pile in the hopper, and fed automatically one by one to the plunger, by which they are forced through the circular cavity of

the cutter and formed into cylindrical blanks. i is the feeding slide-bar which pushes the lowest blank of the pile beneath the plunger c, which forces it dowa upon the circular cutter D.
Bun'go. (Boat.) A kind of canoe used in the Southern States and in South America.

Bung-start'er. (Coopering.) A flogger. A bat to start the bung of a cask by beating on the bulge alongside of the bung.
Bung-vent. A passage for admitting air through the bung of a cask, to allow a free

Fig. 980.

Bung-Vent. flow of liquil from the tap. In the example, the cavity in the bung comnmuicates with the atmosphere and with the interior of the harrel hy separate passages. The valve in the cavity rises frecJy to almit air, but resists the passage of gases from the barrel. See also Buxg.
Bunk'er. (Nautical.) A coal-space below decks on steamers.

Bun'sen-bat'ter-y. Invented by Bunsen, Pro-
fessor of Chemistry at Breslan. Also ealled the Electropoion Buttery and the Carbon Batlery. A modification of the Grove battery, carbon or falscoke replacing the platimum, and a solution of hichromate of potash replacing the nitric acid of the Grove battery.

In this form of battery, the carbon or coke is sometimes formed into a cup, replacing both the platinum and the porous cup.
There are several modilications of the Bunsen battery, mainly mechameal, looking to a more compact arrangement of the elements, ceonomizing space, ett.
There are also several formulas for the biehromate solution: -

Bunsen : 5 pounds bichromate of potash elissolved in 2 gallons boiling water.

Prevost (Scptember 27, 1870) : water, 800: bichromate potash, 50 ; sulphuric acid, 50 ; chromic acid, 2.
V. Barjou : biclıromate of potash, quicklime, sulphurie acid.
Bastet (September 26, 1871) : bichromate of potash, water, nitrates of cither soda or potassa, ind sulphuric acil.
Bunt. (Nautical.) The middle perpendicular portion of a sail.
Bunt'ing. (Fabric.) A tbin woolen stuff of which flags are made.
Bunt'ing-i'son. (Glass.) The glass-blower's pipe.

Buntline. (Neuticul.) One of the ropes attached to the foot-rope of a sail, which passes in front of the canvas, and is one of the means of taking it in, turning it up forward so as to spill the wind and avoid bellying.
Bunt line-cloth. (Frautical.) The lining sewed up a sail under the buntline, to prevent the rope from chating the sail.
Buoy. A Hoating body anchored or fastened in the vicinity, and employed to point out the position

Fig. 981.

of anything under water, as a ship's anchor, reef, shoal, or danger of any kind.

Buoys, in general, are divided into three kinds: the men-buoy (r), which is in the form of a parabolic spindle, generally truncated at one end, and when
intended as a mark by which to point out a shoal, I into the sand or mud, and energetically oppose rearranged to carry a mast or frame of cage-work, and loaded so as to float in a vertical position. Smaller buoys of this kind are used as anchor-buoys.

The can-broy (b) is conical, frusto-conical, or conoidal in shape, and Hoats upon its side when moored.

The cask-brooy is a short frustum of a spinulle, truncated at each end; it is sometimes cylindrical or nearly so. It is chiefly used for carrying the warps of ressels layiug at moorings. A good tight common cask may be used for the same purpose, and is far less cxpensive.

Lifc or safety buoys are intended to save the life of a person falling overboard. They are suspended below a ship's taftrail, and are so arranged that they can be let go at a moment's notice; the same pmll which casts the buoy loose lighting a port-fire, to indicate the position of the bnoy to the person orerbuard as well as to the crew of the boat sent to pick biu up, thus serving as a point of resort for both. Such is the life-buoy of Lientenant Cook. A fuse, composed of a proper mixture of phosphide of calcium, is attached to the bnoy. In case of a mau orerboarl, the life-prescrver is thrown into the water; the moment the fuse becomes wet, it begins to give off a gas which takes fire in the air ; and the wetter it becomes the more gas and the brighter the light produced. The light can be made to last an bunr. See Life-bevy.

Spar-buoys are also frequently employed to point out channels in rivers and less exponecl situations; these are nothing more than masts or spriss of proper length, painted of any desired color, and anchored.

Buoys are made either of wood or sheet-iron; gutta-percha stretcheel on wooden or metallic frames has also been proposed.

When employed to point out shoals or dangers, they are painted of some distinctly visible color, and where more than one is anchored in the same vicinity, their colors are varied so that they may be readily distinguished from each other; for example, the buoys on one side of a channel may be black and those on the other red, so that the narigator can tell at once, by the color, on which side they are to be passed. Herbert's buoy (1) is intended to be anchored by having the mooring-chain attached near its center of gravity, so as to reduce the tendency to pitch and roll in rough water and impart greater stability to the bnoy; the shape of the buoy and the conical hollow in its base also conduce to these objects.

An improred bnoy (f), designed to have similar adrantages, was patented by W. M. Ellis, Oct. 7, 1856. It is moored by attaching the cables in the line of the calculated center of tidal pressure ; and the forked or V-link or shackle is connected to the buoy by means of a trunnion-bolt passing through a metallic tube or pipe set and secured within the bnoy. The figure f will show the method of effecting these objects.

Submerged buoys have been suggested, anchored by a weiglit heavier than the floating power of the bioy. As the weight ceases to exert a sinking force when it reaches the bottom, the capacity of the broy to sustain a load is the same as if it floated at the surface, and an upright or spindle on its upper part presents but a small surface to the action of waves. Two or more such buoys sunk to the deadwater point may be so arranged as to suppiust a superstructure above the level of the sea, as in d.

Buoys in certain situations may be moored by screw-jiles (c), which are readily driven by rotation

traction.

Other designations are:-
Anchor broy, one attached by a rope to au anchor to show the position of the latter.

Cuble buoy, an empty cask to keep a hempen cable above the bottom in rocky anchorage.

Leading broy, in the form of a millstone.
Sounding buoy, used in sounding an anchorageground.

The slings of a buoy are the part of the buoy-rope bent to or around the buoy.
Buoy-rope. (Niuticul.) The rope which fastens a buoy to au auchor.
Buoy-safe. A metallic body divided into compartments, by which it is braced, and having water-tight doors opening to the inside. The bnoy has an eucircling annor of cork.

Bur; Burr. 1. (Machinery.) A small circular saw or toatlied drum used on a mandrel placed between the centers of a lathe.
2. (Metal-work-
 ing.) A roughness left on metal by a cutting-tool, such as a graver or turning-clnisel. The bur of a graver is removed by a scraper; that of a lathe-tool by a bumisher or in the polishing process. A bur is purposely made on a currier's knife and a comb-maker's file, and in each case constitutes the cutting edge.
3. (Kitting-machine.) A wheel with thin plates or projections inclined to the axis of the bur, and used to depress the thread between the needles and below the beards; it is then called a sinker. It becomes a krocker-off when it raises the loops over the top of the needle. See Sinker.
4. A fluted ream-

ing-tool.

Fig. 983.
5. (Dentistry.)

A dentist's instrument of the nature of a drill, but having a serrated or tile-cut head, larger than the shank. The instruments are made of many sizes, and the heads are spherical, bulbous, cylindrical, fiustal, diskshaped, or conical.

Dentast's Burs
In the example
are shown the round, whecl, inucrted conc, cone, cylinder, cylindroid, conoid burs.
6. A triangular chisel.
7. A planchet driven out of a shect of metal by a punch.
8. A washer placed on the small cnd of a riret before the end is swaged down.
9. The jet, spmuc, or neck on a cast bullet.

Bur-chis'el. A triangular chisel, used to clear the corners of mortises.

Bur-cut'ter. (Mctal-worhing.) A niplpers for
cutting away the flange from a leaden bntlet or bahl. A ber-nipuer.

Bur'den. 1. (Nautical.) The tonnage or carrying capacity (by weight) of a vessel.
2. (Mcculleryy.) The charge of a fumace.
3. (Mininy.) The tops or heads of stream work, which lie over the stream of tin.

Bur-dett'. (Fubric.) A cotton stuff.
Bur-drill. A drill with an enlarged heal used by operative den-
Fig 934. tists.

The set consists of five varieties : The pulp-canal reanter, small and larger; the roumd bur-drill ; the excavator ; the undercutting bur-drill. See also Bur.
Bu-rette'. A small, graduated glass tule used in pharmacy or in the laboratory for measuring or transfering small quantities of liquid. It sometimes has a stop-cock, and the discharge through its small orilice is sometimes checked by the finget placed on the opening above, as in the relinche or pipette.

As invented by Gay Lussac, for dividing a fluid into minute portions, it consists of a large tube, graduated to $\frac{1}{00}$ and $\frac{1}{\text { dinit }}$, and a smaller parallel connectel tube.

Bur-gage. (Mctul-working.) A plate perforated with holes of gradnated sizes, whose numbers determine the trade sizes of drills and burs.

Bur-gee'. (Nauctical.) A flay ending in two points. See Flag.

Bur'geoise. (Printing.) A size of type. See Boungeutsis.
Burg'lar-a-larm'. A device to be attached to a
tols, or torpedoes, sometimes associated with devices for lighting a lamp, and in one case (Powell, July 23,1861) having an arrangement for upsetting the lsed, and thereby calling the attention of the steeper to the disturbance. The contrivance instanced by the Marpuis of Worcester, with alam, fire, tinder, and pistol, is described in his "Century ol Inventions," and is citerl ante, lage 56.

One device has a hinged plate on the threshold of the aloor, and partially concealed by the carpet. The foot of a person entering the room depresses the plate, and by means of a lever and rod actuates a bell, whose ringing gives motice of the presence of the intruder.

Another : an ordinary clock-alam is placed with. in a case attached to the door, and is sprung by the oprening of the door.

The ithustration shows three forms : a pistol a fastened to the door-jainb by its pivoted post, whose tang strews into the jamb. Its muzzle is presented towards the crack of the door, and its trigger is tripped when the loor opens, with consequences to the chambermaid or too impulsive friends.
b is placed anywhere in the room, and is tripped by a cord leading to a door or window whose surreltitions opening is to be announced.
c is a torpedo suspended by a pin from the door, and dropped when the latter opens.
Fig. 956 shows one of the numerons forms of the application of the electric circuit and apraratus to grard the wintows and doors of a house.

Copper wires ruming throngh the honse are connected with a battery, and have circuit comections attached to the doors and windows, so that when a door or window is opened the armature is released

Fig. 986

Burglar-Alarms.
door or a winclow, to make an alarm when it is opened from withont. Some alarms are portable, to be used by travelers in securing their doors against intrusion. As their name indieates, they are intended to make a noise when startet, and they consist of bells, pis-
from the magnets, and causes a bell to strike, and lights a fluid lamp or candle.
The circuit leing completel by the motion of the door or window, the magnet B attracts the armature C , and sets free the detent, so that the weight runs the alarm-hamuner, while the match-puller is reciprocated and lights the lamp L.

Burg'lar-a-larm' Lock. A lock with an alarm appratus attached so that, when properly set, the same will be put in operation and an alarm somnted, in case the bolt of the lock is improperly moved.

When the latch is drawn in, the escapement is set in motion, being dhiven by the cog graving and spring, "ach pulsation of the escapement-lever being a hlow of the hammer upon the bell.

Bur'i-al-case. A nummy-shaped form of coffin, made of various materials, wood, metal, earthenware, concrete, asphaltum compounds, papiermaché. lts furnishing and arrangement involve improvements in the lids, glass over the face, means of fastening, hermetical sealing, and the complete isolation of the body from air by enveloping the corpse in a resinons or other air-excluding compound.
Bu'rin. 1. (Eigraving.) The cutting-tool of an engraver on metal. A graver.
2. (IFusonry.) A triangular square-shuped stee] tool whetted off oblifuely at the end, so as to exhibit a diamond. It is shaped like a graver, and is used by the marble-worker.
Bur'lap. (Fubric.) A coarse, heary goods for wapping, made of jute, flax, manilla, or hemp.
Burl'ing. (Woolen-menufucture.) A process in which woolen cloth is examined for rents, flaws, knots, defective yarns, etc., a deficiency being made good with a needle, and offensive matters removed. This is doue after scouring and before julling.

Burl has the same old English definition as Bur, and the name of the process is probably derived from the plan of piching out the burs from the cloth.

Burl'ing-i'ron. (W'oolen-manufacture.) A sort of pinchers or aippers, used in burling eloth.
Burl'ing-ma-chine'. One for removing knots and foreign matters projecting from the surface of woolen cloth hefore fulling.

Burn'er. That part of a lighting apparatus at which combustion takes place. See Gas-burner; Lamp-burver.
Also applied to the corresponding portions of gashealcrs and gas-storcs (which see). See also VaYorblrnek; Petroleum Stote.
Bur'nett-izing. A process for preventing decay of wood and tibrous materials or fabrics, patented in England by Burnett, 183 .

The wood or fiber is immersed in a solution of chloride of zine, 1 pound ; water, 4 gallons for wood, 5 gallons for fabrics, 2 gallons for felt, contained in a wooden tank.

Timber is saturated two days for each inch of thickness, and then set on end to drain for from two to fourteen weeks.
Cotton, yams, cordage, and woolens ave immersed for forty-eight hours.
Burn'ing. 1. (Metal-working.) Joining metals by melting their adjacent edges, or heating the adjacent elges and running into the internediate space some molten metal of the same kind.

It differs from soldering in this:-
In burning, a heat is required sufficient to melt the original metal, and a thux is seldom used.

In soldering, a lower heat is used and a more fusible metal euployed, assisted by a tlux̌.

The superior quality of the fomer process mises from the fact that the joint will witlistand the same heat as the body of the article.

It is apt to be stronger, as the article soldered has usually more tenacity than the solder ; tin-plate or copper than the alloy of tin and lead, for instance.

The article burned together being homogeneous, the parts expand and contract evenly by changes in temperature; the solders have a greater range of expansion by given changes of temperature than the metals they connect.

The solders oxidize more or less freely than the metals they connect, and establish galvanic circuits which destroy the integrity of the joint; especially in the presence of heat, moisture, of acids.

As an instance, the leaden vessels and chambers for sulphuric acid camot profitably be united with tin solder, as the acid acts so freely on the tin. The joint was therefore made by doubling the edges in a hollow lap and pouring reil-hot lead on to the joint. This is now performed by burning together, the heat being applied by an airo-hydrogen blow-pipe. See Blow-plpe.
Pewter is burned together by a nearly red-hot sol-dering-bit, which melts a strip of pewter laid in the angle. Supertluous metal is tiled off when cold.

Brass is burned together, as in the case of brass mural circles for observatories, that are from 4 to 6 feet in diameter, and are cast in six or more segments.

The ends of the segments are filed clean; two pieces are fixed rertically in a sand-mold, in their relative positions; a shallow space is left around the joint, and the entire charge of a crucible, say thirty or forty ponnds of the meltel brass, a little hotter than usual, is then poured on the joint to heat it to the melting-point. The metal overflows the shallow chamber or hole, and runs into a pit preprared for it in the sand, but the last quantity of metal that remains solidifies with the ends of the segments and forms a joint almost or quite as perfect as the general substance of the metal. The process is repeated for every joint of the circle.

Cast-iron is also united br buming. It was first practiced by the native smiths of 1ndia and China, Who occasioned much surprise to their Occidental neighbors by the way in which they mended castiron kettles and pots, which were supposed to be irretrievably ruined.
The first notice of it by Europeans appears to have been by Van Braam, in 1794-95, who was attached to the Dutch Embassy at Pekin, and who atterwards settled in the United States.

The figure represents the itinerant artist with his portable forge, at work in the strect. The front lalf of the wooden chest is his Fung-Serneg, or bellows. lts principle is that of the double-acting lorce-pump, and it is constructed wholly of wood, except the valves and packing of the piston, which are paper, and singnlarly durable. The long coarse file, with a prolonged smontl extremity to slide through a ring, fixed on the chest, is a common accessory to a tinker's budget. By the arrangement, lie possesses a tolerably good substitute for a beuch and rise, and can increase or diminish the pressure of the file on the olject operated on, at pleasure.

The European plan for burning logether cast-iron surfaces consists in using an excess of metal which is poured continuously through the fissure until the edges of the metal are in a semi-Huid condition,

Fig. 988.

Burning.
much as in the ease of the brass mural circles previonsly mentioned.

As nearly analogous to the just-described processes, may be mentioned in this place the modes of uniting metal to metal by simple leat and contact.

A thin plate of silver and a stonter bar of copper, their surfaces being scraped pertectly clean, are tied together by a binding-wire and united by partial fusion without the aid of solder. The two metals are raised to a heat just short of the melting-point of silver, and when afterwards rolleil the two metals maintain a perfect contact and the same proportional thickness however attenuated they may become.

The compensation balance of the clironometer and smperior watches is another example of the union of metals by heat and contact.

The balance is a small tly-wheel made of one piece of steel, covered with a hoop of hass. Its principles and applications are described under Balanee (which see). The two metals are thus united: the disk of steel, when turned and pierced with a central hole, is fixed by a little serew-bolt and nut to the bottom of a small crucible with a central elevation smaller than the disk. The brass is melted ind poured into the crucible around the disk. When cooled, the crucible is broken, the superfluous brass is turned off in the lathe, the arms are made by the file as usual, and lastly, the hoop is divided in two places, at opposite ends of its diametrical arm.

A little black-lead is sometimes introluced between the steel disk and the crucible.

The airo-hydrogen blow-pipe, a modification of the oxybydrogen blow-pipe invented by Dr. Hare, of Philadelphia, is used in melting the adjacent edges of inetals so as to unite them by fusion, or in fusing stripis of the same metal over a seam or joint where the edges of sheet-metal abut upon each other. See Blow-pipe.
2. (Cercmics.) The final heating of clay ware, which elanges it hom the dricil or biscuited condition to the perfect ware. The glaze or enamel is applied to the bakcd ware, and is vitrified in the burning.

Burn'ing-glass. (Optics.) A convex lens of large size and short focus, used for cansing an intense heat by concentrating the snn's rays on a very small area.

Pliny states that the ancients hal glohes of glass and crystal which produced fire, and lametaneus adds that a glass sphere full of water did the same.

Any convex lens may be employed as a burningglass, its calorific effect, as in the case of a mirror, being proportional to the number of rays concentrated in given area, or to the relative citcular
areas of the lens and the spot on which the reflucted rays fall.

About $1774, \mathrm{M}$. de Tiudano construeted a hollow glass lens, of 11 feet focus, filled with oil of turpentine, of which it held 140 l'aris pints (nearty epanal to the same number of Euglish quarts). By this lens a bar of steel 4 incles long and $\frac{1}{3}$ of an incli square was melted in five minntes. Three and six live silver pieces were fused in a few seconds, and grains of platinum were melted sufficiently to coliere, but not to form a spherical drop.

The " l'arker" lens or burning-glass was made in London at a cost of $\$ 3,500$. It was of llint glass, 36 inches in diameter, double convex, its sides portions of a spluere of 18 teet molins. Its focus was 6 feet 8 inches; diameter of focus at that distance, 1 inch; weight, 212 pounds. A second lens, of 16 inches diameter and weight 21 pounds, was used to concentrate the rays, the focal distance beinf then 63 inches, the diameter of focus $\frac{1}{2}$ inch. This lens was carried to China by an officer in the suite of Lord Macartney, and left at lekin.

The effects of the burning arrangement were as follows: -

Substances.	Weight. Grains.	Time. Seconds.	Substances. ${ }_{\text {G }}$	Weight. Grains.	Time. Secnods.
Gold (pure)	20	4	Camelian	10	75
Silver (pure)	20	3	Jasper	10	25
Copper (pure)	e) 33	20	Onyx	10	20
1'latimum			Garmet	10	17
(pure)	10	3	Spar	10	60
Nickel	16	3	hotten-stone	10	80
Bar-iron	10	12	Slate	10	2
Cast-iron	10	3	Asbestos	10	10
Steel	10	12	Limustone	10	35
Topaz	3	45	Pumice-stone	- 10	24
Emerald	2	25	Lava	10	24
Flint	19	30	Volcanic elay	y 10	60

See Burning-mireof.
Burn'ing-house. (Mctallurgy.) A miner's term for a kiln or roasting-furnace in which volatile mineral matters are expelled, as the salphur from tin pyrites. A kiln.

Burn'ing-mir'ror. A concave mirror, or a combination of plane mirrors, so arranged as to concentrate the sun's heating rays on a common object.
The most celebrated of these are the mirrors of Archimedes, who thereby humed the Roman tleet of Marcellus at Symacuse. Each coneave mirror was separately binged, and they were brought to bear in combination upon the oljject in the common focus.

In Peru, previous to the Spanish Contuest, the rays of the sun were collected in a concave mirror and fire kindled thereby.

Besides the familiar instance of the burning of the fleet of Marcellus by Arehimedes, another instance is cited by the historian Zonaras, who records that Proclus consumed by a similar apparatus the ships of the Seythian leader Vitalian, when he be. sieged Constantinople in the beginning of the sixth centary. It must, however, be mentioned that Malaba, another old chronicler, says that l'roclus operated on this occasion by burning sulphur showered upon the ships by machines.

Stettala, a canon of Milan, made a parabolic reflector with a focus of 45 feet, at which distance it ignited wool. It is understood to be the first of that form, thongh Digges in the sixteenth century, Newton and Napier in the seventeenth century, experimented with parabolic mirrors.

Villette, an optician of Lyons, eonstructed three mirrors alont 1670. One of then, purchased by the king of France, was 30 inches in dinmeter and 36 inches focus. The diameter of the focus was
about 1 inch. It inamectiately set fire to green wool; it fused silver and copper in a few seconds, and in one minute vitrified brick and flint earth.

The Baton ron Tchionhansen's mirror, 1687, was a concave metallic plate 5 feet 3 inches in dianeter, and having focal length of $3 \frac{1}{2}$ feet. Its effects were similar to those of the mirror just cited, and it is recorded that slate was tronsformed into a kind of black glass, which, when laid hold of by a pair of pinchers, conld be drawn out into filaments.

Bntlon made a machine with 140 plane milrors 4×3 inches, placed in a frame and separately adjustable by temper-screws. With 24 of the mirrors adjusted to a common focus at a distance of 66 French feet, he fired pitch and tow. With a polyhedron frame set with 168 pieces of plain lookingglass, 6 inches square, he fired beechwood at 150 feet, and melted a silver plate at 60 feet. He then constructed one on similar principles, with 360 mirrors 8×6 inches in a frame 8×7 feet. With this most metals were melted at 25 to 40 feet distance, and wood was bumed at 210 feet distance.

Burn'ing-on. A process of mending castings by uniting two fractured portions, or by attaching a buew piece to a casting.

The casting is so fitted into a mold, in connection with a pattern, that the latter portion shall represent the piece required. The mold being opened, the pattern is remored and the mold reclosed, leaving the casting in position. Netal is then flowed through the mold until the face of the casting becomes softencd, when the flow is stopped, and the mold allowed to fill in the usual manner.

When two castings are to be united, the molten metal is poured through a space between them until the respective surfaces become softened so as to unite fairly with the metal. The flow is stopned and the chink allowed to fill. It is then cooled in the ordinary manner. See Burning.

Burnish-er. A tool for smoothing or pressing down surfaces to close the pores or obliterate lines or marks.

The eugtaver's burnisher is made of steel, elliptical in cross-section, and coming to a dull point like

Fig. 959.

Engravers' Eurnishers.
a probe. The larcer one in the figure is the ordinary form, and the smaller one is used by stipple-engravers.

Burnishers are often made of dogs' teeth (the canine tooth), which is of a convenient shape and size for some purposes, and, like other teeth, has a very hard enamel.

They are also sometimes made of agate, which is an extremely hard mineral, and is useful in bumishing paper for collars. Paper is much more wearing than steel softened for the engraver or die-sinker, owing to the presence of silex in the fiber.

Burnishers of bloodstone are used for putting goldleaf on china-ware.

Agate burnishers are used by book binders.
The gilder's bumisher is of agate or porphyry.
A round broach is used for bumishing pivotholes.
For cutlers' use the bumisher is inlaid into a piece of wood with handles like a spoke-shave.
The clog-burnisher used by cutlers is inserted into a handle which has a ring and staple at one end, so
that the left hand of the operator is free for handling the work.
For still larger work, the burnisher is at the bottom end of a pole suspended from the ceiling.
A flat-bladed bumisher is used in restoring the edges to the teeth of the comb-maker's files. These teeth are made by a file, not a chisel, and have a forward inclination of 15°.
A round bumisher is also used to restore the edge to the steel scraper used by cabinet-makers in finishing surfaces, especially of vencers.
Also by the currier in preserving the wire-edge of his knife. Called a steel, and resembling an cuwl.
The dentist's bumisher has a bulbous, spherical, or probe-shaped termination for smootling the surface of metallic filling of teeth.

Fig. 951.

The stuff for pieture-frames, looking-Shoemaker's glasses, etc., or other object to be gilt, is- Burnisher.
Primed with white stuff in several coats. This consists of hot size and whiting.
The surface is smoothed with pumice-stone and ylass-paper.
lt then receives a number of coats of a peculiar size, formed of pipe-clay, red-chalk, black-lead, suet, and bullock's blood, thimed with a solution of gelatine.

On this the gold-leaf is laid and burnished. See Gilding.

Fig. 992.

Burushing-Machine.

Bur'nish-ing-ma-chine'. One for giving a polish by compression. Such are the machines for burnishing paper-collars and boot-soles. One of the latter is shown in Fig. 992.
The last w is secured eceentrically to the crossheal t, which receives motion from the shafts so F and band-wheels $g g^{\prime}$. By means of a cluteh $f f^{\prime} f^{\prime \prime}$ the motion may be reversed so that the boot-sole may be bimished to one shank and then turned back again. The burnishing-tool also revolves with its stock d and mandrel C, but is adjusted relatively to the boot-sole by sliding-gages which do not pritake of the motion.
Burr. 1. The waste or refuse of raw silk.
2. A vitrified brick.

In a mechanieal sense, see Bur.
Bur'ras-pipe. A tube to contain lunar caustic or other corrosive.

Bur'rel-shot. (Projectilcs.) A medley of shot, stones, chunks of iron, etc., to be projected from a cannon at short range. Emergency shot. Langrel.
Bur'ring. (Woolen-manuficture.) A process in the manufacture of wool by which burs and foreign matters are removel from the wool, which has been opened by the preceding willowing-process.

Bur'ring-ma-chine'. A machine for piching and burring wool. It follows the willowing machine and precedes cardiny.

A picking and burring machine is exhilited in a section which displays the working parts. A is the feed-cloth by which the wool is carried into the maehine; a are two Huted iron rollers which draw in the wool, and it is then exposed to the action of

Fig. 993.

Burring-Machine.
a heary iron heater B, which, revolving in the direction of the arrow, beats and separates the wool and throws it down on the cloth D, while dust and dirt pass through the grating C. The cloth D has a chain fastened to each side, the links of which work into studs on the rollers $d d$, thas insuring regularity of motion ; the loose wool is carried forward by this cloth under the wire cage E, which, pressing upon it, forms it into a loose lap or flecee. This is taken off the clotin by the hrush F, and transferred by it to the comb-cylinder K^{\prime}, which has a number of fine iron combs, set longitudinally round its eircumference. By the revolution of the cylinder the wool is carried on to the carl-roller G, which takes it off the comb-cylinder, and is itself stripped by the brush II, the latter returning the wool to the Jarge cylinder K, which then carries it forward to and against a steel blade or stright edge placed vertieally at a very small distance from the combcylinder; the latter draws the wool through the narrow slit, but every bur, secd, or other toreign
substance, is storped by the phate. A roller l, covered with spiral blades, revolves against the plate, and carries off the arrested burs, together with any lacks of wool which may be attached to them, and throws them back to the cylinder M, the teeth of which throw them back over the bars of a grating to a small Huted roller N, which delivers the lock of wool - by this time detached from the bur-down the sloping board.

The wool which has passed the opening at the plate is carried on by the combs till it is stripped off ly the brushes fixed in the angles of a large prismatic roller L, which delivers it down the inclined exit-board.
Bur'ring-saw. A serrated wheel or blade which works in a burring-machine to seize the fibers of wool and draw them away from the burs, which caunot pass the opening through which the saw works.

Bur'ring-wheel. A circular or anuular wheel with serrated periphery, used in burring wool or ginning cotton.

Fig. 995.

Burring- Wheel.
Bur'rock. (Hydraulic Enginccring.) A small weir or dam in a river to direct the stream to gaps where fish-trapis are placed.

Burr-pump. (Nautical.) A form of bilge-water pump in which a cup-shaped cone of leather is nailed by a disk (burr) on the end of a pump-rod, the cone collarpsing as it is depressed, and expanding by the weight of the column of water as it is raised.
Burst'ing-charge. 1. (1/ining.) A small charge of fine powler, placed in contact with a charge of coarse powder or nitroleum to ensure the ignition of the latter. It is usually fired by voltaic means.
2. (Ordnance.) The charge of powder required for bursting a shell or case-shot; it may be poured in loose, or placed in a burster-bag.

Bur'ton. A peculiar style of tackle. It has at least two movable blocks or pulleys and two ropes. The weight is suspended to a hook-block in the bight of the ruming part.
This arrangement of cords and pulleys is susceptible of great variation, so as to increase in a twofold, fourfoll ratio, or otherwise. Each pulley has but one sheave, and there are as many ropes as movable pulleys. The numbers indicate the relative tensions of different cords. (Fig. 996.)

Bur'ton-tack'le. An arrangement of pulleys. See Burton.

Burt's Nip'pers. An instrmment used for keeping the line prerpencicular in cleep-sea soundings. It is suspended from a bag which thoats on the surface, and the sounding-line is passed between a plate or sjring and a roller, which allow it to run freely through in descending, but "nip" "it when it strikes

Spanish Burton.
botton and stops running or is pulled backward. It thus also indicates the precise up-and-down depth of the sounding.

BusL. (Fr. bouchc, a month.) A bearing for a spindle or arbor, as in the case of the wooden chocks; called also follovers, which surround the spindle within the eye of a bed-stone, and lorm the upper bearing of the spindle. A piece of metal or wood inscrted into a plate to receive the wear of a pivot or arbor.

A thimble, slceve, or hollow socket placed in a hole in a plate or block, and adapted to receive a spindle, gudgeon, or pivot. It forms a lining for a bearingsocket.

Old and worn pivot-holes are bored out, bushed, and a new pivot-hole drilled. The collar of a lathespindle is a bush. Gun-vents are bushed. Bushmictal is a bronze - copper and tin - used for journals.

The pirot-holes of the old-fashioned wooden clocks were bushed with hox or pear-tree wood. Dogwood or apple-tree wood also affords good material for wooden bushing.

The circular guide in which a rod slides.
A circular piece of metal let into the sheaves of such blocks as have iron pins.

A collar around a piston-rod or a bearing in a shaft-hanger is sometimes called a bush. See Busuing.

Bush-ex-tractor. (Husbondry.) An imple. ment for pulling out bushes and grubs. It usually consists of a lever having at its lower end a claw, cleris, or grapple, which pinches the stem of the bush against the lever, and then, the lever being depressed by rocking on its rolling shoe or axle, the latter forms the fulcrum, and the grub is torn u, by the roots. It is of the nature of a claw-bar or canthook, or a pair of claws.

Bush-ham'mer. 1. The mason's large breaking-

hammer.

2. The niller's hammer for dressing millstones. The steel bits are usually detachable from the sockets of the heads, to enable them to be dressed on a grindstone.
In the example the frame is hade of two parts, with shoulders, and with cavitics for bolts, and projections from the base for the support of the cutters which are socketed therein.

Bush-Hammer.
Bush-har'row. An agricultural implement consisting of a nuniber of limbs or saplings confined in a frame and dragged over ground to cover grass-seed.

Bush'ing. A lining for a hole. Often called a Bush
 (which see).
a is a bushing for the bung-hole of a barrel.
b is a bushing to reduce the caliber of a gun-barrel; a taper tube is brazed in place at the end between the two, and makes all fast.
e is a breech-loading cannon, having a bushing secured by joint-screws and a reinforce on the exterior.
d is a metallic hub with an inner bushing to form the axle-box.

Bush-scythe. A stout short seythe for cutting brush and briers.

Busk. A stiffening bone or plate in a corset, to maintain its shape and prevent its gathering in folds and wrinkles around the waist. The busk is made of wood, steel, brass, whalebove, or vulcanite.

Buss. (Vessel.) A two-masted fishing-vessel of from 50 to 70 tous burden. It has a cabin at each end.
"They lave a designe to get the king to hire a docke for the herring busses to lie up in." - Perris, 1661.

Bust. A statue of the upper part of the person, embracing the head, shoulders, and breast.
Lysistratus, the sculptor, is cited as the inventor of cast. ing busts, etc., from molds, 328 B. C. Busts from the face in plaster of Paris were first taken by Andrea Verocchi, A. 1. 1466 . The plaster east is made by pouring the Huid plaster around the head and face, which are previously well oiled, to prevent adhesion, the hair being proterted by an oiled eap. When the plas-

ter has partially set, and while it is yet in a soft state, the mold is divided into sections for removal by strings or fine wires previonsly arranged in the interior. Busts are now turned hy machinery construeted on the principle of Blanchard's lathe for turning irregular forms, which was origimally ap plied to turning grun-stocks and spokes for carriagewheels.

Butch'er-knife. A knife for cutting meat. The tang of the blade is usually riveted between two scales, which form the handle.

The Roman butcher-knives, used also for sacrificial purnoses, were wile at the hilt-end of the blade, and had sharp points. The pole-axe is also shown in the fignre.

Next to the pole-axe is the seva or sccespita, for eutting the throats of the animals. On the left is the dolubra, for dismembering. Below are the cultri or cultelli, for skimming and slicing.

But'ment-cheek. (Cierpentry.) The part of a mortisell timber smrounding the mortise, and against which the shoulders of the tenon bear.

Butt. The hinder, larger, or blunter end of an ohject; as of a gum, a connecting-rod, a crow-bar, etc.

1. The end of a conneeting-rod against which the boxing is attached by the stratp, cotter, and gib.
2. The end of an object where it comes squarely against another.
3. A joint where the ends of two objects come squarely together without scarfing or chanfering.
4. A form of door-hinge which serews to the edge of a door, and butts against the casing instead of extending along the face of a loor, like the strap-hinge. It consists of two oblong plates, one edge of each of which is dentated to fit its fellow, a pintle traversing each interlocking portion to form a joint. See Butt-hinge.
5. a. A target.
b. A wooden strueture, consisting of several thicknesses of boards, separated by small intervals, for the purpose of ascertaining the depth of penetration of bullets.
c. A frame of iron and wood, representing a large section of armor-plating, and moored in position for determining the destructive power of shot, shell, and given charges of powder.
d. A mound of earth to receive the bullets in the proof of gun-barrels.
6. (Shipbuilding.) The meeting-joint of two planks in a strake. The joint between two strakes is a seam.
7. The thick part of an ox-hide.
8. The standing portion of a half-coupling at the end of a hose.
9. The shoulder-end of a gun-stock covered with a heel-plate.
10. A large cask containing 126 wine gallons.

Butt-chain. (Saddlery.) A short chain which reaches from the leather tng to the single-tree, to each of which it is hooked.

But'ter. 1. (Woocl-working.) A machine for sawing of the ends of boards, to render them square and to remove faulty portions.

In the large saw-milis of the lumber-regions donble butters are used, one saw being pemanent and the other adjustahle by a spline on a grooved mandrel, to adapt it for boarls of varying lengths. The boards are laid upon parallel, traversing, endless clains, with dogs at intervals.

2. See Churn.

But'ter-fly-cock. A valve having two semicircular wings pivoted on a central cross-bar. A butterfly-valve.

But'ter-fly-valve. A double clack-valve, cach leaf of which is hinged to a bar crossing the passage-way, as in the examples annexed.
f, butterfly pump. valve.
b, Lutterfly throttlevalve.
But'ter-is. (Farri-
 cry.) A knife with a bent slank, used by blacksmiths to pare the hoofs of horses. It has a blade like a chisel, and is operated by a thrust movement, the handle resting against the shoulder.
The term is probably from the French boutoir ; Provincial, boutcoun. Some old Roman paring-implements of iron are yet extant.

But'ter-mold. (Husbandry.) An implement by which pats of butter of a given size are slaped and printed for market.

Butter-

Fig. 1001.
tongs. An implement for cutting and transferring pieces of butter. In Fig. 1001 the blades are attached to shanks which mite in a suring coil, so as to scparate them when not in actual

Butter-Tongs.
use.
But'ter-work'er. (Ifushandry.) An implement

Eutter-Worker.
for pressing and rolling butter to free it of the butternilk. It may be a fluted roller working in a

bowl or on a board, or a conical roller on a slanting board which permits the buttermilk to run ofl.

Butt-how'el. (Coopering.) A howeling-adze usel by coopers.

Butt-hinge. A hinge formed of two plates and interlocking projecting pieces which are connecten by a pinlle.

The bult-hinge is so called becanse, instead of fastening on the faces of the door and jamb like the

Butt-Hinge.
ancient hinges, the leaves are secured to the door and casing at points which abub upon each other.

A rising bull is one in which the leaf attaclied to the door ascends as the door is opened, an incline on one leaf climbing on the incline of the part it rests on, so as to give to the door a tendency to descend and close in so doing.

The following names are known in the trade : -

Broad butts.
Narrow butts.
Loose-joint butts.
Reversible butts.
Shutter-butts.
But'ting-ma-chine'. A machine having planingcutters on the face of a disk-wheel, and used for swoothing, cornering, or rounding the euds of joists

Fig. 1005.

B.uting. Machine.
or small timbers nsed in the frames of agricultural implements, etc. The stuff is laid alongside the fence or gace, and is fed up endwise to the cutter.

But'ting-ring. (Vchicle.) A collar on the axle against which the hub butts, and which limits

the inward movement of the wheel, as the linch-pin or axle-nut does the outward. In the example, a bntting-Hange on the axle enters a groove in the inner end of the box, and abuts against springs whose elasticity lessens the jar when the wheel plays longitudinally on its spindle.

But'ting-saw. A cross-cut saw attached to a stock at one emd, and used for butting logs on the carriage of a saw-mill. Many logs are longht to the mill with the slanting kerf given by the axe in felling or logging. To butt a log is to cut or saw it off square at the end, so that it may lie safely upon the rabbet of the head-block in any position, and be readily held by the dogs. The action of this saw is that of a dray-saw.

Butt-joint. A joint in which the pieces come square against each other, endwise. In iron work the parts are welded, and the tern is used in contradistinction to a lap-joint or weld.

But'tock. (Shipbuilding.) The rounded-in, overhanging part on each side and in front of the rudder: terminating beneath by merging into the rua.

But'tock-lines. The curves shown by a vertical longitudinal section of the after-part of a ship's bull, parallel to the keel. A similar section forward exhibits the bou-lines, and a continuous section through the whole length of the ship the buttock and bor lincs.

But'ton 1. A small circular disk or knob with a shank for attaclment to an object, awl forming, in concert with an opening in another ohject, or another side of the same, a nicans of fastening the two together.

The ancient modes of fastening dresses were pins, brooches, buckles, and tie-strings.

Iron, steel, bmas, copper, pewter, lead, gold, silver, horn, shell, pearl, tortoise-shell, ivory, bone, hoofs, hair, silk, cotton, linen, Florentine, guttapercha, india-rubber, vulcanite, amber, velvet, cloth, glass, porcelain, wood, enamel, jet, compressed earth, clay, precious stones, are among the most prominent sulistances employed in the manufacture of buttons.

Buttons of brass are noticed on dresses of the tenth century. A bout 1670 the metallic buttonmanufacture of England took its rise.

A manufactory was established in Birmingham,
England, 1689, and that city still maintains a preëminence in this manufacture, as in so manyothers, employing no less than 4,981 persons in this branch of industry alone, according to the census of 1851.

Detallic buttons with shauks are usually made br punching the disks forming their faces out of a plate of sheet brass containing less zine than com| mon brass; the edges of the disks are afterwards trimmed to remove the bur, and their faces are planished under the action of a hammer.

The maker's name is stamped on the back and the face embossed at one operation, by means of cameo and intaglio dies.
The shanks are made of wire by a machine; a shears cuts off a piece of suitable length from the coil; a stud then presses against the midule of the cut piece, and forces it between the jaws of a vice, which give it a staple-like form, compressing it so as to foim the eye of the shank; it is then struck by a small hanmer, which makes it level, and another morement drops it into a box.
The shanks are then placed in their proper positions on the disks, being retained by a bent, flat strip of iron, a piece of solder being placed at the foot of each slank. A huudred or more are then put on an iron plate and heated in an oven until the solicr melts, fixing the shank and forming a
backing to the button. They are then turneit separately in a lathe adapted for the purpose, and, if desired, gilt, which pperation was, previous to the electro-plating process being perfected, pertormed by coating the brass disk with an amalgam of mercury and gold, the former of which was afterward driven off by heat.

When the face only is gilt, the buttons are tech. nically known as tops, but when gilding is applied to the whole surface they are termed all-overs. The gilding, thongh extremely thin, admits of being briglitly polished by means of an agate or bloodstone burnisher.
Gilt buttons first made by Taylor, of Birmingham, England, 1768. Manufacture improved, 1790.
Metallic buttons without slanks are formed by stamping ; those of wood, bone, etc., are turned; the holes, of which there may be two or four for attaching the button to the garment, are drilied while the button is in the lathe by means of four long drills converging toward the button, forming all four of the holes at once.
Cast buttous are nade by taking a large number of impressions in a molel and inserting in each the loop of metal, whose expanded ends project into the mold and are surrounded by the metal of the button. The buttons, being cleaned from the sand, are chucked and turned, when they may be timnel, silvered, or gilded, as required.
Papier-maché buttons were made in 1778 .
Dother-of-pearl buttons are cut out of the shell by means of a small cylindrical saw. The disks are turned in a lathe, and if the shell be sufficiently thick it is split so as to form two buttons. A dovetail hole is drillel for the shank, which is fixed by a slight blow with a hammer, its lower part expanding into the doretail, so as to prevent its heing readily withdrawn. The ormanental flutings and corrugations when present are formed in the lathe by means of an eccentric chuck and slide-rest.
A number of patents for making covered buttons, which are in such extensive use for onter garments, have been taken out in England since the first patent of Sanlers in 1809; but the general principles of construction of the more important kinds may be reduced to two: in one of these a metallin disk or shell is stamped out of thin sheet-iron, for the face part, and a smaller dish or collct, having a perforation for the shank to pass through, is stamped out in like manuer for the back. A circular piece of the textile fabric to be used is cut out by a die, and a pad of similar shape, commonly made of soft paper, silk, and thread is formed, which fills up the vacant space between the two metallic disks. The parts -- namely, the two disks, the pad and the circular piece of linen, silk, or other material forming the face - are united to constitute the finished button by means of a stamping-press and appropriate convex and concave dies. The shank, of soft material through which a needle can be prassen, protrudes at back through the aperture in the collet.
ln the other plan, the disk for the hody is left flat, and the back piece is a small circular disk with a round hole in its center, and having its edge cut into eight sharp triangular points, which are so lent as to forms nearly a right angle with the disk, inclining slightly inward. To complete the hutton three pieces of paper and two pieces of cloth are necessary, which are armanged in the following manner.

On the piece of cloth forming the outer covering is laid a piece of paper of the same size, upon which is placed the iron disk forming the body ; on this is another piece of paper the same size as the body;
on this is a small pellet of paper to belp form the shank; a piece of coarse cloth is laid on this, and the metallic back placed over it. In putting on the back, the cloth is gatherel u p over the whole of the materials and the points of the back pressed into the cloth; as these are bent slightly inward, the pressure causes them to bend still more as they enter the cloth, forming eight little hooks, which hold the button together in a neat and effectual manner; the paper pellet causes the cloth to protrule through the lole in the back, forming the cloth shank by which the button is sewed to the coat.

Fig. 1007 shows two forms of self-fastening buttons, having screws which pass from the rear of the material into the shanks.

Fig. 1007.
 piece of wood or metal, swiveled by a screw through the middle, and used as a fistening for a door or gate.

A knob on a sliding-bolt.
3. (Afetallucrgy.) A glohule of metal remaining in the culpel Self. Fastening Buttons. after fision.

But'ton-brace. A tool for making luttons. The handle is like the common brace; the bit has cut. ters, but no router, and removes a circular blank or planchet of bone, pearl, wood, or whatever the material may be; an ammelar bit operating like a crownsaw or trephine.
But'ton-hole Cut'ter. A device on the shears principle, specially adapted for cutting button-loles; the variations in construction principally relate to means for atjusting the length of the cut, and its angle with the edge of the cloth.
In Fig. 100s, the cutter a may be alpuroached toward the center of motion, so as to cut its whole

Fig 1025

length, or projected outwardly so that its edge may only partially bear against the jaw a, to make a shorter cut.
But'ton-hole Sew'ing-machine. In working button-holes by machinery, it is common for the perforating-nuedle to descend first through the material back from the slit, and then throngh the slit, or else a thread may he carried from the mader side upover the edge of the material, and be locked by the needle in its next descent. The needle may be made to descend through the material and through the slit, hy moving the material laterally, as well as forward by the feed, as in patent to Miller, March 7, 1854; or the needle-carrying box may be moved laterally after cach stiteh, by means of a cam, as in patent to Humphrey, October 7, 1862. The needlethread is locked at each descent by a sccond thread carried by either a lonper or a shuttle. In patent to Sleiner, June 19, 1860, the needle and shuttle operate as in an ordinary machine, but after the sluttle has passed through the loop of needle-thread, a hook catches its thread and passes it in the form of a loop up through the button-hole slit and spreads it in the path of, and the needle enters it at its next descent.

In patent to liehfuss, Day 23,1865 , the ueedle descends through the material back from the slit, a looper passes its thread through the loop of needlethread, and then passes up through the slit, where its loop is caught by a hook, and spread in the jath of the needle, which enters it at its next descent. Other methouls of working button-holes have been attempted, but not found practicable.
Button-hole Shears. A scissors having an

Fig. 1013.

Button-Hole Cutter. adjustability for length of cut, for the purpose of cutting button-holes. Ju one example, a set screw on one part of the shears bears against a washer on the other prortion, to regulate the relative lateral adjustment of the two parts.
In the other example, the button-lole cutter is attached to the shank of the shears.

Buttor-Hole Shenrs.
But'ton-hook. A hook for grasping a button below the heal, in order to draw it throngh the but-ton-hole and fasten it.
But'ton Key or Fas'ten-er, A sping loop, the free ends of which, being passed throngh the shank of a button, expand so as to holll the loop in position and keep the button in place. A piece of coiled wire, making two or more turns, is also used for this purpose.
But'ton-lathe. A machine for cutting round disks for buttons. The material consists of plates of horn, bone, ivory; wood, mother-of-pearl, etc. The
stulf, and the wings make a circular cut, cutting out a disk of the material, which is adranced to the cnttur by a sliding bar in the back poppet-head.

In the example, the moving jaw of the clutch is forced against the blank by a spring, and drawn back by depressiou of the treadle. The bits are bronght singly and alteruately against the blank, being moved thereto by the bell-crauk hand-lever.

But'ton-loom. (IJ'earing.) A loon for wearing button-blank coveriugs.

But'ton-mold. A disk of bone, wood, or metal, to be covered with fabric to form a bitton.

But'ton Riv'et-ing-ma-chine'. A tool for fastening huttons to ganments by swaging down on the Lack of the wasber the rad of the rivet which forms the shank of the button. In the exanple the

plunger is pointed, rotates as it descends, and spreads the end of the rivet. A sleeve on the phunger fits the hollow in the face of the button, and the flanged head of the rivet is beut over toward the falnic, which is thereby clamped against the convexity of the button.
But'ton-tool. A tool for cutting out buttons or circular blanks therefor. An annular bit. See Button-lathe.
But'tress. 1. (1Tasonry.) a. A pier or lean-to pillar on the exterior of a wall, to enable it to withstand an interior thust, as in the case of a retaining or breast wall.
b. A flying buttress is one which is in the form of a section of an areh, springing fiom a wall or pillar.
2. (Fortification.) A counterfort or sustaining wall or pillar, built acgainst and at right augles to the wall to which it forms a revetuent. See CotNTERFORT.

Butt-weld, (Forging.) A weld in which the edges are square-butted and janmed against each other, and then welded. A jump-ucld.

Buzz-saw. Another name for the circular saw, derived from the buzz or hum incilent to the hish speed at which it is rum. Spe Cubctlat: Sall.

By'ard. (1/ining.) A leather breaststrap used ly miners in banling the wagons in eoal-mines.

Bye-wash. (IIydroulic Engincering.) 0 . A channel to elivert past a reservoir water of streams which would otherwise flow with it, and which are impure or otherwise undesirable. Called also a di-version-cut.
b. The outlet of water from a dam. A uastc.

Bys'sa. (Firc-rrms.) An ancient form of cannou for throwing stoues.

C.

Caam. The weaver's recd. The sley or slaie. Crecminy, the sctting of the rearl by the lisposing of the warp-threads.

Cab. 1. A two or four wheelech, one-horse, closed vehick, adapted to seat two persons inside, and having an elevated seat for the driver in front. The hanson-cal, has a seat behind for the driver. The cab of l'ickwick's time had two wheels and an outsible seat on the right sile, over the wheel. In the one shown, the driver's seat behind the body of the

cab rests on a spring, and is supportel on the rear extension of the frame of the vehicle. "It has a sulpplementary seat next the clash-boand, and also an opening in the back of the cover to permit commmication between the driver and passenger.

Cabs were introluced into London for hire, 1823. Fifty were first started ; there are now 7,000 in that city.
2. The covered part in front of a locomotire which protects the engineer and fireman, and shiehls the levers, ete.

Cab'bling. (Mctallurgy.) A process of hreaking up picces of flat iron, to be fagoted, reheated, and rolled.

The series of processes are as follows:-

1. The pigriton is treated in a refining-furnace.
2. The loop is forged.
3. Melted in contact with charcoal, and worked with a rubble.
4. Tiltced; making a flat, oval plate.
5. Cubllcd; that is, broken up into pieces.
6. Fuyoted.
7. Reheated in a reverberatory furnace.
8. Hammered.
9. Rollecl.

Ca-be'ca. (Fibric.) The finest kinds of India silk, as distinguished from the bariga, or inferior kind. Cabesse.

Cab'i-net-file. A smooth, single-cut file, used in wood-working, especially by furniture-makers and joiners.
Cab'i-net-or'gan. (Music.) A superior elass anl size of reel organ.

Ca'ble. 1. The strongest kind of rope, chain, or eluster of wires designed for holding a ship at anchor, for supprorting the roadway of a suspension-bridge, for mooring, warping, and for other purposes.

Cables for supporting suspension-bridges were formerly made of a munber of wire ropes, each of which consistexl of wire twisted into strands. Sns-pension-bridge cables are now made of separately stretched steel wires, each of which is brought to a certain strain, and the bunch bound up into a cable, wrappech, pareeled, and then served with wire amd paintel.
Submarine cables for telegraphic purposes have an interior core of copper wire surromuted ly wires twisted alter the mamer of a rope, the whole being protected by a mon-conducting waterprool coating of gutta-percha or india-rubber.

A large cable-laid rope is thus made : -
Hemp is laid up riyht-handed into yarns.
Yarus are haid in left-luaneled into strends.
Thre strends are laid it] right-lectuled jnto a hant:scr.

Three hansers laid ny left-handed make a cable.
Ser Rore.
Below ten inches in circumference, a rope is called a hanwser.

Cables or ropes are -
Scricd; hound with rope, marline, or other small stuff, to prevent chating.

Spliced; united by working the yarns or strands of the two portions together.

Parceled; wapped with tarred canvas.
Wormed; having the spial crevices between the lays filled with strands; usually a preliminary to serving.

A cable's length is 120 fathoms $=720$ feet.
A strecm cathe is a hawser for mooring.
To bit the cable, is to wind it aromed the bitls.
To buoy the cable, is to support it by floats which keep it clear of the ground in a rocky anchorage.

To coil the calle, is to dispose it in helical tiers.
To cut the cable, is to sever it by an axe, or by mashackling, in club-laculing or to save the time meecssary for weighting.
To drug the eable, is to hanl it in the wake of the ressel.
To flect the eable, is to allow it to surge hack on the uhelps of the enjstan or wimdlass, as the eable climbs on to the larger part of the cone.

To heare the cable, is to hanl in aboard.
To nip the cable, is to stop the rumuing out by a pinching-rope, clamp, or lever.
To may out, is to allow the eable to run out.
To screce the cable, is to wrap it with ropes to keep it from being clafeal.
To slip the cable, is to let it run elear ont, thans losing the calle.

To stopper, to fasten to the litts.
To ubbend, to detach from the anchor.
To underrun; with hempen hawsers, to take on board on one side of a boat and pay out on the other, examining and cleansing.
To vecir a cable, to allow it to run out, keeping command over it.
A kenk is a short tum in a cable which prevents its ruming through the hawse-lrole.

Ships' cables were anciently made of flax, papyrus, or spartimu; more lately ol hemp or coir, but now usually of iton links.
A hempen cable of 12 inches girth and 120 fathoms (720 feet) long, weighs 3,075 pounds.
The weight of a hempell cable (120 lathoms) may
be aseertained by multiplying the square of the girth in inches by 21 . The product is the weight in pounds, nearly.

The breaking-strain may be found by dividing the weight in pounds by 100 ; this gives the break-ing-stmin in tons.
2. A molding representing a cable or spiral scroll.

Ca'ble-buoy. (Acuticul.) A floating object secured by a rope to an anchor, to denote the position of the latter.

Ca'ble-grip'per. A lever compressor over the cable-well, and by which the cable is stopped from rumning out.

Ca'ble-hook. 1. A hook for attachment to the messenger by which the cable is hauled in on a man-of-war, or other ship having a large number of hands, without having reeourse to the calstan. It may also be attached to a hawser, for underruming the cable.
2. A hook by which the cable is handled. Each seaman has a loonk in lighting-up the cable or packing in tiers.

Ca'ble-laid. Heavy role, laid up cable-wise. See Cable.

Ca'ble-mold'ing. A bead or torus molding, cut in imitation of the twisting of a rone, much used in the later period of the Norman style.

Ca'ble-nip'per. (Vautical.) A device serving to bind the mossenger to the eable, and composed of a number of rope-yams or small stuff marled together.

Ca'ble-shackTe. A D-shaped ring or clcris, by which one length of cable is connected to another, or, upon occasion, the cable comnected to an object, such as the anchor-ring.

Ca'ble-stop'per. (Nautical.) A device to stop the paying out of the cable. In the example, a

Fig 1014.

Cable-Stopper.
pair of jaws slide on the rail, being moved simultaneously by an eccentrieally slotted wheel and a lever.

The rope is passed around the pin and clamperl by hoth jaws.

Ca'ble-tier. (N‘autical.) a. A coil of a cable. A fothe; one layer of cable as it lies in a tier.
b. A cable-locker.

Ca'bling. (Archirccture.) A ronnd molding, frequently used in the flutes of columns, pilasters, etc.

Ca-boose'. 1. (Nautical.) A small loonse on deck in which the cooking is lone on a merchantressel.
2. (Railway Enginecring.) A car attached to the rear of a freight train, fitted up for the accommodation of the conductor, brakemen, and chance passengers.
Cab^{\prime} ri-o-let'. A vehicle for hire introduced from France into England in 1823. Shortened into cob (which see).

Cab'urn. (Noutical.) Spun rope-yarn for seizinty, worming, and similar uses.

Ca-ca'o-mill. A mill for grinding the mut of the theobromus cacan, to rednee it to the condition of fake cacuo. It differs from clocolate in being gromnd with a prortion of its hull, instead of being carefully hulled before grinding. It is mixed in the hopper with flour, sugar, etc., and passed though a number of steel mills resembling paintmills, by which the nut is reduced and the ingredients intimately ineorporated therewith hy means of friction, heat, and the oil evolved from the nut.
The Thcobrome cacao, "Food for the gods," so named by Linnrus, from which cacae, broma, and chocolate are made, is grown in Caraccas, in the sheltered valleys, 500 feet abore the level of the sea. The Mexican name is cacuratl. The tree is 20 feet in hight, and frequently planted with intermediate rows of coffee-trees, to shelter the young cacao-trees from the scorching heat. The erops are gathered in December and June, and a well-bearing tree will produce from 20 to 30 pods, which are gathered in a period of three weeks or so, as they turn yellow. After being allowed to lie in heaps for a time to farther ripen, the pods are opened, the pulp removed, and the beans spread on mats in the sun. As they dry, each obtains a hard, thin skin, and is of the size of a kidney hean. The next processes are those of the manufacturer, who commences by roasting the nuts and removing the husks.
Ca-cha-ra'do. (Fabric.) A kind of Spanish linen.

Ca-dene'. A common kind of carpet, imported from the Levant.

Cad'mi-um. Equivalent, 56 ; symbol, Ccl. ; speeific gravity, 8.65 ; fusing-point, $450^{\circ} \mathrm{F}$. A White metal resembling tin in appearance and zinc in properties.
lts use is as an ingredient in alloys.
Cad'rans. An instrument for measuring the angies in cutting and polishing gems. See AsguzomETER.
Caf'fa. (Fabric.) A kind of painted cloth goods manufactured in lindia.
Cag. A small cask used for packing herrings and other provisions. A kcg.

Cage. 1. The prison of a bird or other animal. It is usually made of wire, sometimes of wicker, slats, 4ilints, or strips of metal.

Fig. 1015.

Those for squirrels or mice have usually a dormitory at one end, and a cylinder in which the numal is supposed to amuse himself by rimuing without making any progress. In the example, the bars of

Fig. 1016.

Squirrel-Cage.
the tread-wheel are mate by cutting slots in a sheet of metal subsequently bent to a cylimhical shape.
2. (Mining.) a. The phat form on which trundles or hatches are mased or lowered in a shatt.
In coal-mining, the hutches or low-wheel cars are loaded and brought to the foot of the shaft, where from one to four are placed on the cage to be elevated. Arrived at the top, the cage rests on the folding-benvels, which open befere it and then shut antomatically beneath it. The hutches are then run off, dumped, and returned to the cage, to be lowered again. See Holsting-machine.
Provision is made to stop the cage in case of the breaking of the hoisting-rope, and also to prevent its over-winding.
The safety-cage shewn in Fig. 1017 runson vertical guides, and has a cover to protect the men from falling objects. It has a spring f, which bears down the $\operatorname{rod} \epsilon$ to which the rope is attached. In case the

hoisting-rope breaks, the spring forees mart the two juws $c c$, whose claws catch into the wooden guide-
bars $d d$, and aryest the dnwnward course of the cage. $b b$ are coal-hutches on the 1 lat forms $a a$ of the cage, and the illustration shows the rope as broken and the descent arrested.
b. The trundle-wheel of a whin on which the rope is wound. Also called a drum or a turntree.
3. (Jachizery.) π. A skeleton frame to confine a ball-valve within a certain range of motion.
b. A wire guard placed over an eduction-opening, to allow liquid to pass, but restrain the passage of solids.
4. (Carpentry.) An outer work of timber for inclosing another work, as the
cage of stairs.
5. For microscopic objects in water, a cup having a glass battom and cover, between which a drep of water centaining amimalcule, or other minute objects, is placed for

Fig 1018.
 microscopic examination, in order to prevent their escaping beyond the focus of the microseope.

Ca-hier'. (Bookbinding.) A pile of gathered sheets; the successive numbers of a serial.

Ca-ique'. A bont usel on the Bosphoris.
Cais'son. 1. A carriage accompnining a fieddpicce to carry ammunition, and participating with it in its maneuvers, forming in line in the rear of its piece when the latter is in action. The name ectisson is also applied to an ammunition-chest. See Gux-carriage.
2. A water-tight structure or bag placed beneath a sunken vessel, and then either sulplijed with air by pumping out the water and allowing air to enter, or distender by air from an air-pmmp, so as to assist in floating the ressel.
3. A water-tight box or casing used in foumding and building structures in water too deep for the coffer-dam; such as piers of bridges, quays, etc.
The caissens employed in builling the piers of the railroald bridge over the Susquehama at Havre de Grace, Mil., are an example of the nse in the first-mentioned capacity.

Caissons resting upon a river-bed suhject to washing have proved to be unsafe, as was evinced at Westminster Brilge, where the caisson was undermined by the current ; the structure was saved by shectpiling and underpianing.

The plan arlonter by Peromet and other eminent French architects was to drive a substratum of piles, which were sawn off to a level surface, forming a foumdation for the strncture which settled the caisson on its bed of piles as the masonry progressel. For
 the purpose of securing the coincidence of the caisson and its bed of piles, one of the latter was allowed ta project upwardly, as high as the top of the caisson, occupying a well or water-tight curb which was open at each end. The long pile formed a guide, causing the caisson to settle correctly into position. The guide-pile has been oceasionally used, but is by no means a necessary feature of the work.

When the work is concluded, the sides of the caisson are knocked away, learing the pier in position, as shown in the illustration.
ab represents the sinking of the caisson.
u, the pier on its foundation.
The caissons used by De Cessart in 1757 for the piers of the bridge at Saumur were sunk upon a foundation of piles, the heads of which were previously cut off to a level of about six feet below the water-surface. Each caisson was 48×20 feet, the ends being pointed and the sides removable, so that they could be used with anuther bottom after the masonry was laid nearly to the water-line. The bottom had a floor of lower beams laid side by sile, and planks 14 melhes thick, and the frame timbers were rabbeted to receive the uprights of the sides, which were secured to the bottom framing ly dovetails and wedges, so that, the latter being withdrawn, the sides were disconmected.

The sides were 16 feet high, of scantling laid on edge and maintained in position by uprights, secured by struts and overhead braces, so as to resist the pressure of the water, and also by lap-joints and uprights at the angles of the caisson, the whole carefully calked. The caisson was built on the bank of the river upon piles cut to three different hights above the water; by blocking un, its hottom was kept level while building, and hy removing these blocks, and with the aid of jacks, it was tilted so

Fig. 1020.

> Caisson.
as to slide readily into the water, when it was towed into position, and the masonry laid until it sunk squarely on the heads of the piles previously driven for its reception.

The modern or puenmatic caisson, which is sunk through quicksands or submerged carth or rock, is the invention of M. Triger, who contrived by the aill of air-pumps to keep the water expelled from the sheet-iron cylinders, which he sunk thongh yuicksands in reaching the coal-measures in the vicinity of the river Loire, in France.

The seams of coal in this district of France lie under a stratum of quicksand from 58 to 66 feet thick, and they had been found to be inaccessible by all the ordinary modes of mining previously practiced.

Fig. 1021 illustrates the eaisson of M. Triger, and shows the comparatively simple form which the apparatus assumed when used for sinking a simple shaft through a water-bearing stratum above the coal. Air is forced in through the pipe A to the morking-chamber \mathcal{L}, which las a man-hole in the floor above. C is the midile chamber, which has also a man-hole in its ceiling. D is a pipe hy which sand and water are ejecterl from chamber B, under the pressure of the condensed air in the latter. The pressufe of air in cliamber E being such as to exclude the water, the workman descends through the man-hole in the floor of clamber E and closes the toor behind him. Admitting air from chamber B until the pressure is equal in the two, he opens the door in the floor of chamber C and descends to his work. The buckets are similarly managed, the
middle chamber C, acting as the means of commmieation, being filled with air at normal pressure, or with compressed air, according as it is in communication with the open air of chamber E or the condensed air of chamber B. The device which thus acts as an internediate is termed an air-lock, and is the notable point of invention in the apparatus.

The cast-iron piles which supnort the arched bridge over the Medway at Rochester, England, were sumk by the means of compressed air, which kept them empty of water while workmen excavated the inaterials inside the piles. Each pier consists

Triger's Caissor.
of fourteen cast-iron cylinders placed in a double row, and sunk through the bed of the rirer into the hard clalk.
This plan is the reverse of Pott's morle of sinking cylinders, in which the air is withdrawn from the interior so as to utilize the pressure of the atmosphere in forcing the pile downward, while the material, of a somewhat soft nature, asconded into the cylinder. The contents were from time to time scooped out, and the air-exhansting process repeated. This plan was athoted with a bridge which crosses the Thames near Richmond, England.
Fig. 1022 is a section of the movalle iron caisson user in building the piers of a brilge at Copenhagen, Demmark. It comprises an upper chamber communicating with the air, an intermediate or airchamber, both equal and eylindrical in section, and a
lower working-chamber of larger section than the foregoing, and adapted to the shape of the pier ; the whole raised or lowered hy suspension-chains, and ballasted with iron and water contained in two annular chambers A and B, surrounding the lower part of the air-lock. In working, the apparatus was lowered to the bottom of tho water, and an excavation made until a stratum capable of forming a solid fomdation was reached; uron this a layer of concrete was laid, and then the structure completed with brick-work faced with granite; the caisson was gradually raised as this progressed, and when it was finished up to the water-line, the caisson with its

Caisson at Copenhagen.
suspending stage and tackling was removed to the site designed for another pier, where a similar operation was repeaterl.

Caissons of this kind, having an open bottom anl proviled with air-locks, act upon the principle of the diving-lell, the pressure of air in the workingchamber and air-locks being equal to that of the depth of water in which they are submerged. This remlers the nse of the air-lock necessary.
The piers of the $11 l i n+1 s^{s}$ and St. Louis Railwaybridge, across the Mississiphi, at St. Louis, are con-
structed by means of an analogous device. Sec AirLock, орр. p. 49.

These, however, are not designed to be removable. The matter to be excavated, being principally sand, is brought up by sand-pmmps with extension suctionpipes. A hose, connected with a force-pump, is employed to reduce this matter to a proper consistency. When solid rock is reached, the air-chamber, locks, and shafts are filled with concrete to the top of the pier, which has been gridually built up on the roof of the air-chamber, and around the caisson, as the sinking of the latter proceeded.
The caisson designed to find a stable surface and establish the founclation of the pier for the East River Bridge, between New York and Brooklyn, is rectangular; in length, 168 feet; width, 102 feet ; interior light, $9 \frac{1}{2}$ feet, with a roof 5 feet thick; the sides are 9 fect thick at the roof, sloping tlown to is round edge, so as to facilitate its entry into the ground. This part is of cast-iron, protected by boiler-plate ; the remainder, of heavy timbers strongly bolted, braced, and specially coated to prevent leakage of air or water through the pores and joints. It is provided with air-slafts and locks, and air-supply shalts for the chambers, and also two water-chambers, into which materials cxcavated by the workmen are phaced, and elerated by a peculiar dredge.
4. A sunk panel in a ceiling. See Coffer.
5. A chest filled with explosive material, haid in or beneath the track or explected position of an enemy.
Cake-cut'ter. A device for eutting sheets of dough into round or ornamental forms, as heart shaperl, etc.
Cake-mix'er. A device for incorporating toget her the ingredients of cake, etc. It consists of an exterior case containing upright stationary fingers, between which a set of downwarlly projecting lingers are caused to rotate by means of an attached crank, the slough or batter being stirreal between the two.

Cal'a-bas. An early light form of musket. Used in and after 1578.

Cal'a-man'co. (Fabric.) A woolen stuff, checkered in the warp, so that the checks are seen on one side ouly. It was fashionalike in the time of Adelison and his compeers. The stuft had a fine gloss, and was used for ecelesiastical habits. The urigimal goods of that name was made of camel's-lair, as the name indicates.
Cal'a-mine. A native carbonate of zine. The original means of alloying copper with zine, obtaining brass. This beautiful alloy was known long lecfore the true theory of its production was understood. Calamine was known to the Greeks, Romans, and Arabians, hut does not seem to have been considered as a metallic ore. It was ascertained empirically that finsing copper in contact with a certain stone gave it a yellow color, and the result - brass - was highly valued. Aristotle and Strabo refer to this earth, as do also Ambrosius, Bishop of Nilan, lourth century ; Primasius, Bishop of Adrumetum, in NFriea, sixth century; and lsidore, lishop of Seville, seventh rentury. These learned prelates mention an addition by which copper acquired a gold color. This was undoubtedly calcamine.

Albertus Magmus, A. D. 1280, seems to have suspected the truth; lut it was reserved for Paracelsus, who died in 1541 , to define zine as a metal and give it the proper standing in its group. The great Paracelsus was an empiric rather than a dhilosopher, but experiment has evolved the facts around whiela theories arespun.

Ca-lash'. (Vchicle.) A light earriage with very low wherls. It may be open, or covered with a folding tol, which may be let down at pleasure.

Ca-lash' - top.
(Vihicle.) A folding leather top, with bows and joints; sometimes called a half-head. Cal'car. 1. (Glass-making.) A furnace in which glass frit is calcinel, to effect a partial union before it is vitrified in the glass pot. The word is derived from the French calquaisc. Colear. See Fritting-furnace.
2. (1/ctet.) An annealing arch or oven.

Cal'ci-na'tion. Oxidation by the application of heat and access of air.
Marble, limestone, and chalk, carbonates of lime, are deprived of their carbonie acid and water by calcination.
Gypsunz, alum, borax, magnesia, are deprived of their water of crystallization by celcization.
Copper and other ores are calcined, to drive off the sulphur, the sulphurets being oxidized and sulphuric acid being disengaged and volatilized.

The roasting of ores is a conmon and analogous process. Sce Roasting ; Desulphitizing.
This exposure of a boly to a strong heat destroys colesion of the parts, and renders the boty capable of being pulverized. In this condition metallic bodjes become calxes ; otherwise known as metallic oxides.

Cal'ci-na'tion-pot. A sort of crucible used for preparing animal charcoal.
Cal-ci'ner. The calcining or roasting furnace.
Cal-cin'ing-fur'nace. A large reverberatory furnace, having a fire at one end, two chimneys at opposite comers, four doors at which the operation is observed, the rabbles introduced, and the naterial withetrawn, and hoppers above by which the ore is in-

troduced. The charge of copper ore, for instance, is about $3 \frac{1}{2}$ tons, which is dropped on to the hearth when the sliding bottoms of the hoppers are withdrawn. The hearth is 23 feet long and 23 feet wide, the yaulted ceiling descending towards the flnes. The fire is built upon scorix, which are piled upon the gratebars.

The effect of the roasting is to reduce the sulphurets, the sulphur uniting with oxymen and passing off in a gascons condition. Arsenic, if present, is also sublimed and carried off. The product is in a condition for smelting.

Fig. 1034.

Kotary Catcming-Furnace.
The process with this charge of copper ore takes $11 \frac{1}{2}$ hours, and the calcined ores are raked out into reservoirs below the door-ways.
In another example, the cylinder is supported on rollers, and is lined with fire-brick. It is also provided with passages to contain the ore to be calcined, and to conduct the products of combustion from the furnace. The passages are grooved from end to end, and the ore is supplied to the same by means of a hopper, the supply being regulated by the feeddevice; the ore escapes through into the trough, from which it is washed by a stream of water.

Other forms of calcining-furnaces are circular, hor-izontally-rotating tables. See Reducing; Desulphutizing.

Cal'ci-um. Eqnivalent, 20 ; symbol, Ca. ; specific gravity, 1.578 ; melts at $442^{\circ} \mathrm{F}$. It is a lightyellow metal. The carbonate of lime oceurs in mature in the forms of limestone, chalk, and marble. The oxide of calcium (lime) is an ingredient in all nortars and cements, and enters into the composition of glass and pottery.

The sulphate of lime (gypsum) oceurs naturally in the form of alabaster and selenite. When ground, it forms the well-known plaster-of-paris, used for molding, statuary, and for manure.

The chloride of lime is well known as a bleaching and disinfecting agent.

Cal'ci-um-light. The Drummond or oxyhydrogen light, in which streams of oxygen and hydrogen are dirceted and inflamed upon a ball of lime whose ineandescence gives a very vivid and brilliant light. See Drummond-light.

Cal'cu-lating-ma-chine'. The abacus is the simplest form of calculating-machine. See Abacus.
A number of these are considered under Aruthompter (which see).
Pascal, when 19 years of age (1650), invented one which forms the basis of most of the calculating-machines and registers of the present day. It consists of a train of wheels numbered 0 to 9 , and gearing into each other so as respectively to represent units, tens, hundreds, etc. It is the usual registering-device of gas-meters, etc.
Babbage commenced one at the expense of the English govermment, in 1S21, and worked upon it till 1833, when work upon it was suspented, after an outlay of $£ 15,000$. The portion completed is in the library of the King's College, London.

This renowned but unfinished machine works upon a peculiar arithmetical principle. The differences between numbers in a table are the elements out of which Mr. Babbage constructs the table itself, and on this accomnt he called his a Difference-Engine. For instance, in a table of square numbers, $1,4,9$, $16,25,36$, etc., the difference between the first and second is 3 ; between the second and third, 5 ; and so we get a series, $3,5,7,9,11$, etc. Again, this
series of first differences, if viewed in a similar man. ner, presents us with amother and remarkable series, $2,2,2$, ete. It is found that almost all numerical tables, when thus analysed into successive orders of diflerences, end at last in a very simple series, constituting the materials - the atomic elements, so to speak - which, by addition, will prodnce all the numbers required in the table. The process of addition lies at the root of the whole method.

How to accomplish this by meenanism was the question which Mr. Babbage unlertook to solve. The lirst term of the table and the first term of each order of differences being gisen, the whole table can he constructed from those elements ; and dials were made to indicate these numbers. There are rows of dials to represent the successive orders of differences, and rows to represent the successive digits in a number ; and by an extraordinary assemblage of mechanism, the wheels to which these dials are attached act npon each other in an order, determined by the original aljustment. Fach dial las on its edges the set of digits from 0 to 9 . There are axes nuon which the dials revolve; teeth to the wheels behind the dials; bolts which act on or into these teeth; wedges to withdraw the bolts ; and shoulders which regulate the action of the bolts on the teeth-wheels: all this determines the process of aldition.

When it is understood that the skillful Dr. Lardner oceapied twenty-tive pages in the Edinburgh Review in partially describing the complex action of the machine, and gave up other features as hopeless without a mass of illustrative diagrams, we shall be pardoned for not occupying space by attempting firther description.

Harper's Magazine, Vol. XXX. pl. $34-39$, gives some account of it, accompanied by it cat.
G. and E. Schentz, Swedish engincers, constructed a working machine, $1837-43$, alter studying the Babbage nanchine; it was brought to England in 1854. It is stated to have been bought for $£ 1000$ for the Dudley Observatory, Albany, N. Y.

The Messrs. Schentz lave since completed one for the British govermment, which was subsequently employed in calculating a large volume of life-tables, which the authorities at Somerset House declare never would have been undertaken dad not this machine been in existence.

Cal'cu-la'ting and Meas'ur-ing In'struments. Siee under the followng lieads:-

Abacus.
Adding-machine.
Addressing-machine.
Almucanter-staff.
Ambulator.
Angular instrunents. Arrow.
Atwood's machine.
Authometer.
Back-staff:
Balance.
Ballot-bor.
Batter-level.
Bencli-marks.
Bevel-sfuare.
Boning.
Bow.
Burette.
Calculating-machine.
Caliper-rule.
Calipers.
Chain-inclinometer.
Circhaferentor.
Circumventor.

Coin-assorter.
Coin-weighing machine.
Comparatemr.
Conformator.
Counter.
Cominter-senles.
Cross.
Cross-staff.
Dantish balance.
Datum-line.
Declinator.
Delineator.
Demi-nircle.
Deadiometer.
Dividers.
Dividing-engine.
Dotchin.
Dumpy-level.
Dynamometer.
Electrometer.
Electric-balance.
Fare-box.
Fare-register.
Filucet. Measuring

Fore-statf.
Funnel. Measuring
Gage.
Giging-rod.
Gament-measurer.
Gas-meter.
Gas-register:
Geometrie syuare.
Grading-instrument.
(iradnated glass.
Grain-measurer.
(itain-scales.
Grain-tester.
Gini-pendulun.
Gunter's chain.
Gunter's scale.
Hydrostatic balance.
Hyspometrw balance
lndicator.
Jacob's stall.
Label.
Letter-balance.
Level (varictics, see Lev. EL).
Leveling-staff.
Libella.
Limb.
Linen-prover.
Litrameter:
Log.
Lumber-measurer.
Map-measurer.
Meter (varieties, see Me- Timgent-scale.
TER).
Metrograph.
Metronome.
Micrometer:
Miter-syuare.
Multiplying-machine.
Napier's loones.
Necelle-instrument.
Nonius.
Numbering-machine.
Numbering-stauy.
Ohject-statt.
Octime.
Oilometer.
Ortical square.
Ontkeeper.
Pinging-machine.
Petometer.
Perambulator.
Plane-table.
Planimeter.

Platform-seales.
Plotting-seale.
l'lumb.
l'rismatic compass.
Quidrant.
Qundrat.
liceipiangle.
Register.
Scale.
Scales.
Seil-way measurer.
Sector.
Semicircle.
Sextant.
Shutlle-scale.
sliding-scale.
Spuecific-gravity apparatus.
Speed-indicator.
sphereometer.
Spring-balance.
Square.
Stadimu.
Station-pointer.
Steelyad.
Sterconcter.
Surveying-cross.
Surveying-chain.
Surveying-compass.
Surveying-instruments.
Swan-lan.
Tally.
Tiupe-measure.
Tenting-machine.
Theodolite.
Time-table.
Tourists' indicator.
Transit.
Thaverse-board.
Triangular-scale.
Tripod. Surveyor's
Tron.
T'-s!nare.
Universal sifunre.
Yemier.
Yernier-compass.
Vernier-transit.
Yolvette.
Way-wiser.
Weather-glass.
Weigh-brilge.
Weighing-machine.
Weighing-scales.

See also specific indexes under Meter; Scopf; Gige ; Gharii ; Level; Isdicator: Michometen; Register.

Cal'cu-la'tor. A machine, in the nature of an ormy, invented by Ferguson, for exhibiting the motion of the heavenly bodits.

Cal'cu-li In'stru-ments. (Surgical,) These conprise instrumments for remoring stony concretions in the human blader; for erushing them so as to allow them to pass through the urethra and be discharged by the natural flow of urine; for grasping and withdrawing them, and for making incisions into the blader. See Lithonidiprer; Litholabe; Lihotomy Fohceps; Lifhotumy linifl; Lithotomy staff, ete.
Cal'e-bas'ser-ie. (Fr.) A Belgian method of remelting iron in a sort of eupola limmace.

Ca-leche'. A simall hooded carriage on two wheels.
Cal'en-dar-clock. One which indicates, in ad-
dition to the minute and hour of the day, the day of the week and month, - sometimes the year also, witl the phases of the moon, etc.
The Roman calendar is said to have heen introduced by Romulus, 735 b. c., who divided the year into teu months, comprising 304 days; fifty days less than the lunar ycar, and 61 days less than the solar year. Its commencement, therefore, did not correspond with any fixed season. Numa Pompilius, they tell us, 713 B . c., correctel it by adding two monthis, and made it commence at the winter solstice. Julius Cæsar, 46 B. c., sent for Susigenes of Alexandria, who again corrected it, making the year 365 days, 6 hours, every fourth year being leapyear. This is denominated the Julian style, and prevailed generally throughout the Roman world. Julius nate the first day of the reformed year begin with the day of the new moon following the solstice, which day thus became the first of January.

The year of the change was called the year of confusion, oring to its containiug 445 days. The Greeks left off their lunar months, and their intercalations of 45 days every fourth year; the Egyptians changel their thot, or first day of their year, which changed from one season to another ; and the Hebrews did the like. It was generally adopted for a time in those portions of the three continents dominated by the Romans.

Time works changes, but changes in the modes of measuring time are resented innovations. The vernal and autumnal equinoxes, the summer and winter solstices, each formed the commencement periods for the years over large areas of country at various times. The uniformity of the Roman system was lost when they abandoned their prorinces, but as the intellectnal center still remainedi in the Sonth the nations arain gave in their aulhereuce. By an edict of Charles 15 . in 1564 , the beginning of the year was ordered in France, at January the first. The change was not made in England till a much later period, and is far from invariable even now in that country:
lin the time of Pope (Gregory X111., A. D. 1582, the calendar had become defective to the anomit of ten entire days, the vernal equinox falling on the 11 th instead of the 21st of March. This was owing to the fact that the solar year is 365 days, 5 hours, and 49 minutes nearly, instead of 365 clays, 6 hours, as defined by the Julian system. To compeusate for the error, Gregory ordained, by a brief issmed October 5, that the current year (1582) should lave only 355 lays; October 5 became October 15. To obviate further irregularities, it was determined that a year beginning a century should not be bissextile, with the excepition of that beginning each fourth century. Thus the years 1700 and 1800 were not bissextile, nor will 1900 be, but the year 2,000 will be a leap-year. In this mamer three days are retrenched in 400 years, because the lapse of 11 minutes 10.3 seconds makes three days in about that period.
The Protestant States of Germany adopted the New style at rarious times from 1700 to 1774. Great Britain adopted the New: Style by act of Parliament, September, 1752 ; the 3 d of the month being called the $14 t$ th. In one of Hogarth's pictures, "The Election," a drunken bummer holds erect a placard with the inscription, "Give us our Eleven Days." He is sitting all in a heap upon the ground, protesting against the loss of time while squandering the present. lu some of the English mining-districts, the year is yet divided into 13 "mining months." Contracts are thus made, and wages paill; it has the advantage of cansing the month and the week to terminate on the same day.

The Greek Church have not adopted the Gregorian innovation, as they consider it, and still use what we call O.S. (old style). The Jews have their own new year ; so have the Turks; the Chinese celebrate their new year by making a dreadful din.
The Russians yct adhere to the Julian style, so that in writing to Russia it is necessary to date thus, for instance, $\frac{12}{24}$ March, or $\frac{25}{7}$ September October , or $\frac{28 \text { Derember, } 1872}{9 \text { January, } 1873}$, as the case may be.
The English civil year, from the $14 t h$ century till the adoption of the New Style of Gregory XIII. in 1752 , commenced on Laly-day, the day of the Annunciation of the B. V. M., March 25 ; the halfyear was at Michaelmas, the Feast of St. Michacl, September 29. Leases are yet drawn in England, occupation and rent being calculated with reference to these recurring festwals. The Ohl Style is still retained in the English Treasury, so that the Christmas dividends are not cousidered due till Twelfthlay, the midsummer till July 5, and so on. The usage of the commencement of the year at March 25 is still retained, so the first day of the financial year is Lady-day of the Ohl Style, that is, new Lady-day March 25, + the 11 days removed by act of Parliament 1752, $=$ April 6 ; thus embodying both the ancient practices, namely, the conmencement of the year at about the vernal equinox and the old Julian style, which had lost 11 days in 179 S years.
The Mexicans had a year of 360 days and 5 supplementary dars. They divided it into 18 months of 20 days each, and had a leap-year. Their year commenced at the vernal equinox.

The Peruvian year began with the winter solstice.
The Jewish civil year is 12
lunar nonths $=35 \overline{5}$ days.
Their ecelesiastical year begins at the remal eqninox, about Marclı 22. The civil year 5634 A. m. begins september 23, 1873, and ends September 11, 1874.
The Mohamniedan year is 12 lunar months $=355$ days; the year 1090 A. 1 . (Ammo Hegiræ) commencing March 1, 1873, and ending February 17, 1874.

The Chinese new year commences at midnight on thie recurrence of the new moon which falls nearest to the point when the sun is in the 15° of Aquarius; say, the nearest new moon to the 5th of Febrinary.
The first day of the new year of the Frencla revolu-

Calendar-Cloch. tionary period was September 22, 1792; their year consisted of 12 months of 30 days each, with five sacred (!) days at the end, dedicated to Virtue, Genius, Labor, Opinion, and Reward (!!). The bissextile day each fourth year was devoted to the renewal of the oath of liberty.

The appearance of the calendar-clock is familiar, the names of the days and months appearing at slits in the dial or case ; or else indicated by pointers on a number or lettered dial or dials. The illustration shows one of the first-mentioned kind, in which the names of the days of the week and months of the year are inscribed on two revolving drums, and presented consecutively at slits in the front of the case, - removed, in the example, to expose the works.

Cal'en-der'ing. The series of operations, differing according to the goods, of straigitening, damping, pressing, stretching, starehing, drying, embossing, and watering woven goods; including the various processes intervening hetween the blaching or dyeing and the packing for market.

The fabric is first passel over a water-cistern, kept constantly full, by which it is wetted, preparatory to being drawn through a pair of rollers, by which it is partially smoothed. It is also pulled ont brealthwise, and the edges knocked against a smooth beating-stock.

It is now ready to go through the mangle, which consists of a number of rollers, adjustable to any desired pressure, so as to remove any creases which may remain. For this purpose, the bottom rollers are sometimes grooved, the grooves spreading ontwardly from the center on either side. Above these are three smooth rollers, two of wood and one of brass, which equalize the surface and stretch the cloth.

The starching is effiected by drawing the cloth under a roller, which dips into a trough of tlourstarch, fermented, previous to boiling, to deprive it of gluten. Superfluous starcll is removed by other rollers, between which the cloth passes, and falls back into the trough.

The stufl is now dried, lyy passing it over heated cylinders of timned iron or copper in the case of heavy goods, while mushins are merely stretched on frames in a warm room. What is called putcht finish nay be given it by working the two long sides of the frame backwards and forwards in opposite direetions, giving the muslin a diagonal motion, which is continuel until it is quite dry. This removes the harsh and stiff appearance caused by the starch.

The process of giving the glossy surface-finish distinctively known as ealendering is described under Calendering-machine.

Cal'en-der'ing-ma-chine'. Though the business of the calenderer includes all the finishing pro-

Fig. 1026.

cesses by which hleached or dyed cotton and linen goods are stretched, starched, glossed, and pressel, yet the calendering-machinc proper is a machine betwren whose loaded rollers the cloth is passed to give it the finish and luster desireal.
Cloth which was formerly calenderel by hurnishing with a smootl flint-stone, is now glazed by
passing between rollers, one of which moves slower than the other, so that a rubling aetion is oblained.

The machine was introduced into England by the Huguenots about 1685, on the revocation of the Edict of Nantes. 'This ellict was granted to the Protcstants of France by Ilenry IV., April 13, 1598, and revoked by Lonis X1V., Oetober 22, 1685. They scattered to England, to Charleston, S. C., and other places, taking their industry and their skill with them.

The fabric is first damped by passing it slowly over the damping or degging machine, containing a cireular brush, the points of which, as they rapidly revolve, just touch the surlace of the water and dash a cloud of fine spray against the cloth, by which it is uniformly damped. it is then reaty for calendering.

By means of a weighted lever, or by screws on top, of the calendering-machine, any repuired amount of pressure may be applied to the fabric ; a very great pressure, by flattening the threads, gives a snoooth and silky surface. By passing two folds between the rollers at the sanie time, the threals of each mutually prodnce a meshed appearance on the other. A watered surface is produced by passing the goods in a very damp state through phain or indented rollers ; sometimes a slight lateral motion is given it.

The rollers are heated, when required, by inserting a red-hot cylinder into them.

Cal'i-ber. 1. The bore of a fire-arm or gim, or the weight of the ball which fills it to its capacity, allowing for wincloge.

Sometimes ajplied to steam cylinders and pumps.
It finds three different modes of exjuression : -
a. The diameter in inches; as, S-inch gun, 10 inch cylinder, ete.
4. In the weight of the solid, round shot adapted thereto; as, 8 -pounder, 12 -pounder gun.
c. In the hundredths of an inch expressed lecimally ; as, carbines and rifles of $.44, .50, .55$ inch caliber.
2. (Horology.) a. The plate on which the arrangement of the pieces of a clock is traced. The patternplate.
l. The space between two plates of a watch, which determines the flatness of the movement.

Cal'i-ber-com'pass. A form of calipers adapted to measure the sizes of bores. See Calirelis.

Another kind is nsed for measuring shot and shell. See Sinall-gage.

Cal'i-ber-rule. A gunner's calipers; having two seales to determine the weight of a ball from its diameter, and conversely.

Cal'i-co-print/ing. A mode of impressing figured desigus upon cloth; the term also including motes and processes not strictly mechanieal.

Calico is printed cotton cloth. In England, such are callad prints; calico being the plain white cotton eloth, bleached or unblenched.

The name culico is derived from Calicut, a seaport of Nalabar, visited by Vasco de Gama in 1498, and aftervards the principal seat of the Portuguese power in India. Calico was brought from India to England in 1631.

Where the art originated, it cannot be said to be useless to inquire ; for, though the positive answer may not appear, the iuquiry leads in directions which will be either "fresh fiekis anm pastures new," or to regions which we tread again with pleasure and enthusiasin.
The Chinese have used printing-blocks from time immemorial. Printing on cloth preceded printing on 1 neper, but it cannot now be determined how long ago. The Chinese applicd the art to printing on bads, leaves, skins, or seale-board.

The natives of India were far in advance of all other people, both in the variety of their styles and the excellence of their execution. They used wax as a resist; used mordants of different kinds, so as to produce different colors by boiling the cloth in a solution of one color. They also had the bandanma style, in which spots are left white by topical pressme on the parts, preventing the access of the dye.

Of the resist style, the pallampoor may be cited. In this, the pattern was painted in wax noon the cloth, which was then dyed. (See Pallampour.) Of the mordant style we have an excellent account in Pliny (d. A. D. 79) : -
"Robes and white veils are painted in Egypt in a wonderful way; they are first imbrued, not with dyes, but with dye-absorbing drugs, by which, though they seem to be unialtered, yet, when immersed for a little while in a caldron of the boiling dye-liqnor, they are found to become painted. let, as there is only one culor in the caldron, it is marvellons to see many colors imparted to the robe, in consequence of the inlluence of the excipient drug. Nor cam the dye be washed out. A caldron, which would of itself merely confuse the colors of eloths previonsly tlyed, is thus male to impart several colors from a single dye-stuff, puinting us it boils." See Momdist.

It will be noticed that Pliny credits the Egyptians with the work; this may be true as to the goods he saw, but it is also quite likely that the goods he saw were of Hindoostanee manufacture, brought to the Mediterranem by the Aralians. It is evident that the Egyptians also practiced the art, but it was upon linen, and not cotton, the peculiar stulf which Herodotus calls tree-wool and rightly ascribes to India. (See Cortos.) In the latter country, the cali-co-printing, whether of the resist or mordent styles, was performed by hand, and was rather painting than printing, as to the mode of its execution.

Variegated linen cloths of Silon are mentioned by Homer ; and Herodotus speaks of the garments of the inhabitants of the Cauca sus as variegated with figures tyed by infusions of leaves.

Cortez found the Mexicans in possession of the art, their garments of cotton being adorned with Dolly Varden figures in black, blue, red, yellow, and green.

The art was practiced in Asia Minor aud the Levant long before its introduction into Europe, and even then it came in at the soutlrwest, with the Saracens. Abderahman 11I. foumled the cotton, silk, and leather mamufactures in Spain, abont A. D. 930. He also devoted great attention to the sugarcane, rice, and the mniberry. This great Arabian people also tanght Europe to make Chinese paper of pulped fiber.

It seems a pity that these gentlemen should be worstel by those gloomy tyrants, the Pedros and l'hilips, and that the liberality and civilization of Cordova should be superseded by the ligotry of Dominic.

About the close of the seventeenth century, Augsburg lecame famons for the manutacture of its printod cottons and linens. About the same time, that is, in 1696, calico-printing was introduce linto England from France, by one of the French victims of the revolntion of the Edict of Nantes. He established works on the Thames, near Richmond. This rillainons act of Louis XIT. inured to the benefit of other nations, especially Englanil, who gave an asylum to many industrions artificers and artists. About twenty-five years afterwarls, the linen, silk, and woolen mannfacturers obtained a law against the use of printed cotton gools, cither improrteil or home-
made. This was relaxed in $1 \% 30$ to this extent, that goods with linen chain and cotton filling were allowed to be printed, paying an excise duty efual to twelve cents per square yard. In 1774 this restriction was removed, all cotton printed gools were allowed to be made; the duty was reduced to six cents per square yard. This was afterwards increased to seven cents, and in 1831 was abolished.

The history of the fight in France of printed calicoes against the linen and woolen manufacturers is sulstantially similar to that just recorded, except that the government of France resisted the mobs instead of becoming subservient to them, as in England. Thus the French passed tbrough the ordeal of absurd sumptuary legislation, and got rill of the incubus sooner than their more conservative neighbors north of "the Channel."
"Sir Martin Noell told us the dispute between him, as farmer of the additional duty, and the East India Company, whether callico be linnen or no ; which he says it is, having been ever esteemed so: they say it is made of cotton woole, and grows npon trees, not like flax and hemp. But it was carried against the Company, thongh they stand out against the verlict." - Pepys's Diary, February 27, Ib64.

Coloring substances for calico-printing are divided into substantive and adjective. The former are capable of producing permanent dyes of themselves; the latter require eertain intermediate matters, called mordants.

The commonest mordants are the acetate of iron, the acetate of alumina, and some solutions of tin.

1. Madder or chintz style.

The parts of the cloth which are to have a modder color imparted to them are pinted with a mordant. After ageing, that is, allowing the mordant to become firmly attacled to the cloth, the superfluous mordant is washed away by a warm mixture of cowdung and water: It is then washed and winced in a weak solution of alum and size. It is then drawn through a colored solution, and this becomes fixed in the parts where the mordant has been applied. The cloth is washed in soap and water, bran and water, or dilute solution of chloride of lime, which removes the dye from the unmordanted portion of the cloth. It is then ready for rinsing, dryiug, starching, calendering, and folding.
2. Printing by steam.

In this process the colors printed with a mordant are fixed by steam driven throngh the cloth and aeting upon the mordant. After crying and ageing, the thickening material is washed out, and the cloth finished in the usual manner by starching and calendering.

3. The padding or plaguage style.

By this a pattern may be producel on white or colored ground, or a ground may be formed for a design in other colors. The cloth is spread with a colored paste, dried, and then printel with another colored solution; a chemical reaction takes place where the colors are mingled, forming a pattern upon the general ground of the former color. This is the style referred to by Pliny, - " a design on a white ground is produced by printing with one solution anll wincing in the other."
4. The resist or rescrve stype.

The white cloth is printed with a paste which resists the action of color when the cloth is placed in the vat. The cloth is then dyed in the piece, and subsequent washing removes the dye from the part proteeted by the resist-puste.
5. The discharge or rongeant style.

The dyed or mordanted eloth is printed witl a a discharger, which revders the color, where it is inm-
messecl, colorless or soluble, so that it may be washed out.
6. The china-blue style.

This is only practiced with indigo, of which several shades may be associated with white. The bleached calico is printed with a combination of indigo and other materials, aged, and immersed suceessively in three solutions. The effect is to cause the surface-indigo to permeate the cloth and become precipitated in an insoluble form.
7. Decoloring or culevage style.

The dyed goolsare treated with chlorine or chromic acid to discharge the colors at the required places.
8. Spirit-color printing.

The colors are produced by a mixture of dye extracts and solution of tin, called by the dyers spirits of tin.
9. The bandanaa style, in which spots are left white by topical pressure on the parts, preventing the aceess of the dye.
There are several mechanical modes of printing calico:-
a. Wooden blocks prepared with a pattern on one surface and pressed down on the cloth by hand.
b. Severul such blocks fixed in a frame and worked by nachinery.
c. The pattern engraved on a flat eopper plate, which is pressed down upon the cloth.
d. The pattern is engraved on a copper eylinder, over the surfuse of which the cloth is made to travel. By a combination of cylinders, varions colors are laid on to form a various-culored priut.

All the cheaper printed cottons are now printed by the cylinder process. The pattern is engraved on a roller of soft steel, about three inches long and one in diameter, called the dic, so as to exactly oceupy its external surface; this is hardened by being heated to redness and suddenly planged in coll water. The design is then tiansferred by means of a rotatory press from the die to a similar small roller in a soft state, called the mill, proIucing an impression in relief. The mill is then hardened and placed in a rotary press, imprinting the pattern on the copper cylinder from 30 to 40 inches long and from 4 to 12 inches wide, from which the calico is printed; the impression has to be repeated a sufficient number of times to cover the face of the copper eylinder, care being taken to make the junctions' of the small eylinder accurately fit each other.

For eostly and delieate goods, such as shawls and velvets, the block method of printing is still adhered to. In this method, cach color has a block to itself, on which a certain portion of the puttern is cut or engraved; the bloeks are nsel singly and by hand, each printing as much as its size will permit. Where the whole design is but a repetition of one small pattern, the whole surface of the eloth is printed by a succession of applications of the same two or three blocks; but where a large shawl, for example, displays a design which is not merely a repetition of small bits of pattern, the number of blocks often becomes multiplied to an extraordinary degree. A fine barege shawl is meutioned as having reguired more than five hundred blocks to produce the entire pattern, every one representing a different part of the device, cither in color or pattern, from any of the others. The great number of the blocks in such a ease is principally due to the fineness, intricaey, and the non-repetitive character of the pattern, and not to its size, mulike the loud trousers pattern of Regent Street, which required that three gentlemen should walk abreast to exhibit it.

In the calico-printing machine, the pattern is en-
graved on eyl. inders of copper, whiell sup,ply themsel ves with their resjrective colors during their revolutions, by means of inking aprons f fron the col-or-tubs h. Each cylinder is engraved with its portion of the pattern in relief, and they are so arranged that each makes its imbression in the exact spot in relation to the other parts of

Fis. $10: 3$.

Calico-Printing Machine. the pittern. The machine illustrated is adapted for two patternrollers. The cloth to be printed is unwound from a roller l, and passes beneath the smooth roller a, receiving an impression from each of the rollers c as it passes. The roller a runs in journal boxes, which are regulated by a set screw b at each end, and a smoothing-roller c, actuated by a set serew d, holds the eloth against the roller u. The pattern-rollers $c c$ are inked by the aprons $f f$, which pass over the rollers i i i, the outside surfaces of the aprons coming in contact with the surfaces of the rollers $g g$, which revolve in the ink-troughs $h h$.

After receiving the implessions from the patternrollers $c e$, the cloth h is led ofl to be dried and folder.

In another form of the machine, each copper cylinder is engraved with as much of the pattern as

Fig. 1028.

the printing in a particular color; the pattern being sunken in, not raised upon, the cylinder. The cylinders are arranged horizontally, and each, as it rotates, dips into a trough containing its own particular color, mixed as a thickish lijuid. A long knife, called a doctor, then comes in eontact with the surface, and scrapes off all the color, except that contained in the engraved lines of the pattern. The
cloth is made to travel over rollers and beams, and to come in contact with the printing-eylinders in succession, being pressed upon each in its passage, and receiving from each an impression. The cylinders are exactly placed in reference to the pattern, and the tension and rate of the eloth is so regulated that it comes to each eylinder in exact time and place to receive each color in proper relation to each other.

Fig. 1028 shows a form of machine in which the cloth is presented serially to a set of hexagonal prisms whose facets, at each rotation of the prismearrier, receive their color from cams which rotate in their respective color-tronghs. Two of these troughs are shown, but more may be applied if desired. The motion of the prism-reel and of the colorcams is so prearranged that the salient portion of each eam advances to give color to its appropriate prism, while the others pass by uncolored. 10, 11, 12, are ordinary printing-rolls, which may be auxiliary to the prismatie colorers. A is the main cylinder which earries the entl apron on which the cloth passes from the pay-off roller, past the printing, and thence to the dryer or ageing-loft.

Cal'i-duct. A pipe tor conveying hot water or steam for heating purposes.
A term given by Cardinal Polignac, 1713, to the pipes, etc., in which air was heated by the adjacent fire, and from which the air passed into the room.
They were used by the ancient Romans (see Hypocaust), and in the Arab palaces of Cordova, in Spain, about A. D. 1000 , being imbedded in the walls, and carrying the heat of the hypocaust to the apartments in winter.
Ca'lin. An alloy of lead and tin, used by the Chinese as a lining for tea canisters and boxes.

Cal'i-pers. An instrument, jointed like a pair

Caliners.
of dividers, but with arched legs, and adapted for taking the diameter of convex or coneave bodies.

It is said to have been invented by an artificer of Nuremberg in 1540 . This will not do ; the calipers is a ntechanical thumb and finger, a device of very aucient date, and is shown on Roman tombs. Sec Compasses.
α is a bow calipers, with are and tangent serew.
b, a calipers whose legs are operated by a wormwheel and pinion.
c is an inside and outside calipers with a graduated arc and index-finger.
d is a ealipers which shows by the inclex and are at the joint the distension of the points. One leg has a spring, and expands as the calipers is passed over the work, the index on the leg showing the amount of variation from the true size to which the joints have been set.
e is a spring calipers.
f, a common form of calipers with are.
g, inside calipers. h, inside and ontside calipers.
i is a vernier calipers, for inside or outside measurements, which reads to thousandths of inches. On the other side are sixty-fourths or fiftieths of inches to read without a vernier. The description of the mode of using this instrument is well worth embodying here, but we cannot spare room.
j is a spring calipers with pivoted operating screw and nut.
k is a calipers for measuring standing or cut timber; it has arms about thirteen feet long, and a brass arc on which are figures denoting the quartergirth in feet and inches.

Gunners' calipers are for measuring the bore or caliber of guns and projectiles.

A scale like a sliding-rule has different sets of numbers engraved on it, to exhibit the corresponding diameters in inches and weights in pounds.
The graduation is in accordance with the rule that with balls of the same metal the weights of the balls are as the cubes of their diameters.
Calipers for inspecting hollow projectiles comprise :-
Those for measuring the thickness of metal at the bottom, at the sides, and at the fuse-hole reinforce.

The first consists of a semicircular arm laving a diametrical sliding index ; the second, of a similar arm, pivoted, and the third of a graduated bar with a stationary and a sliding toe. See Shell-gage.

Cal'i-per-square. A square having a graduated bar and aljustable jaw or jaws. The example is a rule carrying two cross-heads, one of which is adjusted slightly by a nut, the other being movable along the rule. The cross-heads on one side are adapted to the measurensent of interior diameters or sizes, and on the other side to the measurement of external sizes. See also i, Fig. 1029.

Fig. 1030.

Catiper-Square.
Caiks.

Cal'i-ver. An old form of hand-gum. An arquecbus.
Calk. A projection from a shoe or clog which digs into the iee or frozen ground to prevent slipling. The word is allied to the Anglo-Saxon word calc, a shoe ; or the Latin calcar, a spur.

In a horseshoe, the calk a consists of a downward projection from the heel, made by turning over the iron of the heel and sharpening it.

The calk b attached to a boot consists of a plate with spurs, which project a little below the heel.

Calk'ing. 1. (Shipwrighting.) The process of filling the seams between the planks of ressels, and of spreading the ends of the trcenaits, by driving in oakum.

Oukum is made by cutting old ropes and cables into short lengths called junk, and picking that to pieces.

The seam is opened by a reaming-iron, driven by a bcetlc, and the threads of oaknm driven in, one aftel another, by a calking-iron and bectle. It is farther compressed by a making-iron, or horsc-iron, held by one man and driven by another. This is called horsing-up.

It is then paycd with melted pitch.
The calking of plates in iron ships is performed by two men, - one holding a chisel or calking-tool, and the other striking it with a hammer, making a slight indentation along the seam. The effect of this is to force the edge of one plate hard against the other, and thus fill up any slight crevice between the plates which the rivets have failed to close. See Calktigchisel.
2. Tracing with a style the outlines of a print which lies on a colored-chalk paper superimposed ou a white sheet of paper. By this means a chalk outline is imparted to the lower paper. It is the principle of the manifold writer. Also written calquing.

Calk'ing - an'vil. A blacksmith's anvil or hardy, adapted for the turning over, forming, and sharpening of horseshoe-calks.

Calk'ing-chis'el. Calkingchisels for closing the seans between iron plates are made of different sizes and forms. The annexed illustration is as good as a specific description. It shows chisels in side and front views, aud also the operation.

Calk'ing-i'ron. A Calkingchisel (which see).

Calk'ing-tongs. An implement for sharpening the calks of horseshoes. In the example, the set screw G is set so that the rear of the calk may

Fig. 1033

Calking-Tongs.
hear against it, while its lower edge is trinumed by the chisel-edged jaw H without detaching the shoe.

Calking-Tise.

Calk'ing-vise. An anvil with a jaw attached, acting as a vise

to grasp the shoe while the calks are swaged by the hammer.
Calk-sharp'en-er. A device for sharpening horseshoe-calks. In the example, the frame B is clamped to the shoe by means of a screw. The ro-

Fig 1035.

Calk-Sharpner.
tary cutter G is arljustable on the frame, and is operated by a crank I.

Calk-swage. A swage for Fig. 1036. forming horseshoe-calks. That illustrated has the dic-piece B inserted into a metallic block A, so that it may be readily removed and replaced by another. The shank sets in the hardyhole of the anvil.
Call. A boatswnin's whistle.
Cal-laud Bat'ter-y. A
 double-fllid battery, invented by Jean Armand Calland, a French electrician ; practically a modification of Daniell's.
The porous cup or partition is dispensed with, a single cell being used; the separation of the fluids being effected by their difference in specific gravity.

In the cell the copper or - element is at the bottom, while the zinc or + element is suspended in the upper half of the cell, which is then filled with a saturated solution of sulphate of zinc. Sulphate of copper, in crystals, is then gently dropped in, falling to the bottom, where it dissolves, and remains, owing to its greater specific gravity.
Of the Callaul battery, there are several modifications; namely, -
Hill's, in which a vertical glass-tube, open-at both ends, is introduced, its lower end resting in the copper solution, its upper end extending up to the top of the cell. Its function is that of a feedingreservoir for the copper solution, the sulplate of copper being introduced therein.

Phelns's, in which the changes are merely mechanical, giving greater surface to the elements, and suspending the zinc by a central upright arm from a three-armed support resting on top of the cell.

The Callaud battery has met with great favor, and

Call- Fe Cl gone into extended use on account of its simplicity, cheapness, and constancy.
Call-bell. A smallstationaryhand. bell. In that illustrated a vertical plunger passes through the axis of the bell, and, by means of its slotted plate, ribrates the clapyer, which is piroted beneath. The blow is repeated as the plunger is again raised by the spiral spring.
Cal-li'o-pe. Calliope (the sweet-roiced) was, in ancient inythology, the muse who presided over epic poetry, or poetry in general.
The instrument represented in Fig. 1038 can, horrever, hardly lay claim to be called swect-voiced. It consists of a scifes of steam-whistles toned to pro-

Ca-lor'ic-en'gine. A name conferred by Ericsson upon his hot-air engine. See Air-Exgine.
Ca-lor'i-fere. A French heating-apparatus, invented by Bonnemain, of Paris, 17i7, in which an ascending curreut of hot water proceeds from a

Fig. 1039.

boiler, and, after coursing throngh the system of lieating-pipes in the rarious stories and apartments, descends again to the hoiler, comparatively cool.

The system has been amplified, hot-water urns being placed in the various apartments and heated by a branch-pipe from the main artery, the cooled water or water of condensation flowing to the renous system of descending pipes, which reach again the heart whence the water flowed.

Watt warmed buildings in this manner in 1784.
Cal'o-rif'ics. In the systematic classification of mechanical subjects, those derices concerned in heating, by fire directly or by steam, hot Tater, or hot air in ressels or by pipes or fues.

Heating and cooking stores, grates, ranges, and fireplaces; lot-air furnaces, Hues, and ducts, their dampers, valves, regulators, and thermostats; gas stores and cookers; cooking-utensils, and the appliances of the abore. See list under Stoves and Heating-appliasces.
Cal'o-rim'e-ter. An instrument for measuring the quantity of heat given out by bodies in passing from one temperature to another.

In its special form, as inrented by Lavoisier and Laplace, it operates by duce musical notes. The valves by which steam is admitted to the whistles are operated by keys arranged like those of an organ.

It is sometimes placel on the upper or hurricane deck of steamboats, serving to amuse the passengers and astonish the natives on shore. be tested; the melting of ice around the body to This , determining the specific heat of tbe body: of the boly up to some fixed temperature, say 212° then plunging it into dry ice, and subsequently determining the amount of ice which it ruelts in cooling down to 32°.

CAMEL

The body whose specific heat is to be determined, after laving been weighed and heated for some time in an oil or water bath, is placed in the central compartment $M K$. A lid is quickly placed over it, and covertl with pounded ice, which alrealy fills the sumounling vessel A. Over this another lid is placed and covered with ice, which the outer concentric vessel B also contains. Finally a double lid covers the whole. The vessel M is thin, so that the ice in A is quickly melted, and, Howing out by the stopeack, is collected and weighed. The iee in B is but little affected, and any water that may collect passes of by stoprock E.
The latent heat of water being known, the specific heat of the substance may be realily caleulated from the guantity of water which has been melted from the ice in A.
Black's method was a single block of ice in which a cavity was made to contain the heated body over which an ice cover was laid. After a time the substance and carity were wiped dry witly a eloth, the weight of the water of liquefiction determined, incluting the moisture imbibet by the cloth.
Other moles are cited by writers on thermoties.
Ca-lor'i-mo'tor. A voltaic battery formed of a single pair of extremely large plates. The plates muy be coiled around each other, and suspended over a tub of acilulated water, into which they may be lowered at pleasure.
The apparatus possesses extraordinary deflagrating power.

Ca-lotte'. (Architecture.) A cup-shaped elevation or small dome in the ceiling of a chamber or alcove, to increase its elevation; so called from calntle, a segment of a sphere.
Cal'o-type. (Photography.) A process invented by Fox Tralbot. Paper saturated with iodide of silver is exposed to light, and the latent image developed, and afterwards hixed by hyposulphite of soda.

The paper is floaterl on a solntion of iodide of potassium, dried, floated on a solution of nitrate of silver. The effert is a film of iolide of silver, by the double decomposition of the two salts in contact. Exeess of salts is washed away, and the paper dried, in the dark. The slieet, before nse, is floated on a solution of gallo-nitrate of silver. After exposure in the camera the latent imare is developed by nitrate of silver and saturated solution of gallic acid; then fixed by bromide of potassium and liyposulphite of soda. The result is a negative, which by a repetition of the process produces a positive.

Calqu'ing. See Calking.

Cal'trop. (Fortification.) A pointed instrument to impede the progress of eavalry.
It is a ball with four spikes, so arranged that, fall as it will, one is vertical and the other three stand as a tripod.
Bronze caltrops (tribulus) were sed by the Romans.
Calx. 1. Broken and refuse glass, which is restored to the pots.
2. A metallic oxide, the result of the calcination of a metallic earth or ore.
Cal'y-on. Flint or pebble stone, used in building walls, ete.
Cam. A revolving disk, usually of a spiral, eccentric, or heart shape, fixed on a shaft; or such other form as to impart to a lever, rod, or' block in contact with it such velocity or alternating or variable motion as may be required. See CamWHEEL.

The cam for one form of expansion gear of steamengines has a disk of cast-iron whose periphery is cut in steps so as to suit the different degrees of expansion.

Ca-ma'ieu. (Fine Arts.) A painting in a single color. A monochrome.
Cam-ball Valve. A valve actuated by a cam on the axis of a ball-lever, so that, as the Hoat rises in the cistern, the cam shall press against the stem of the value and close it agniust its seat, thus shut-

Cam- Ball Valve.

ting off the supply when a given level has been attained in the cistern, tank, or boiler.

Cam-bayes'. Cotton cloths made in Bengal, Madras, and other places in India.

Cam'ber. 1. A curvature upwards, as a deck amidslips, a bridge, a beam, or a lintel.

It is given for-
a. Conferring stability, as in a bridge, beam, or girder.
b. Giving a water-shed, as in a deck or roof.
c. Compensating for settling or sulsidence, as in the soffits of straight arches.
2. The curve of a ship's plank.

Cam'ber-beam. A beam which is laid upon the straining-becm in a truncatel roof, and supports the lead or copper covering of the summit. It has a slope towards each end to rum ofl the water.

Cam/ber-slip. (Brichlaying.) A strip of wool with one edge curved equal to a rise of one inch in six feet. Used for striking the soffit-lines of straight arches, to give them a slight rise, in order that they may settle straight.

Cam'brel. An iron with hooks on which to hang meat. See Gambrel.

Cam'bric. (Fabric.) a. A delicate linen fabric, originally manufactured at Cambray.

It is oll fine texture, white, and is checked, striped, or plain.
b. A cotton fabric in imitation of fine linen. Its varieties are, glazed, white, and colored for linings; twillel, figured, striped, and comled.

Came. A grooved bar of lead adapted to hold a pane of glass. These cames cross each other at angles, being usually diagonally disposed in lattice lorm in the frame of the window. The diamondshaped panes are termed quarrels; the mode of glazing, jret-work.

Cam'el. 1. A water-tight structure placed beneath a vessel or a load, to raise it in the water, in order to assist its prassage over a shoal, a bar, or to enable it to be navigated in shoal-water.

Camels were used by the ancients in floating and moving heavy obelisks and monoliths.

The camels used by the Venetians for floating large vessels over the Laguna consisted of four cases with concave sides, so made as to embrace the whole ship. They were towed mnder the ship, fastened together, and the water was then pumped out.
Camels are in frequent use in Holland for floating vessels over the sands and bars. The length of one of these camels is 127 feet; the breadth at one end is 22 feet, at the other 13 feet. The interior is divided by water tight partitions.

A vessel drawing 15 feet of water could, by this means, be made to draw only 11 feet, and the largest man-of-war in the Dutch service could be made io pass the sand-bars of the Zuyder Zee. The in-
rention, in Holland, is ascribed to Meuves Meindertszoon Bakker, of Amsterlam, about 1688.

The approaches to Ansterlam had always been olstructed by sand-hars and similar obstacles, so that vessels of heavy draft were fored to receive and deliver the grenter part of their cargoes several miles below the city, which was effected by means of lighters. To enable large vessels to pass the shoals, previous to the invention of the camel, large chests filled with water were fastened to their bottoms, and the water was alterwards pumped out. This method was attended with great difficulty, but in the year 1672 it was employed to get the whole Duteh fleet to sea.
The camel of Bakker consisted of two half-ships built in such a mamner that they could be applied below water on each side of the hull of a large vessel.
On the deck of each were a number of windlasses from which ropes proceeded through openings in the one, and, heing carried under the vessel to ber raised, cutered like openings in the other, aml were carried to the winellasses on deck. When used, a sufficient 'quatity of water to sink them to the required ilepth wis admitted into the two lialves of the camel; the ropes were cast loose, and the vessel combucted between them. Large beams were passerl horizontally through the port-holes, with their ends resting on the caunel on each side. The ropes were made fast, the ship secured between the two parts of the camel, and the water pumperl out, when they, of course, rose, bearing the ship up with them. By this appratus, a vessel could be raised from four to six feet.

A primitive arrangement of this sort was used by Perry in 1813, by which he succeeded in getting his two largest vessels, which drew too much water to cross the har, out of the harbor of Erie, Penn., in the face of the enemy. The guns, loaded and shotted, were whipped out, landed, and placed in battery on the shore.
A large scow was placed on each side of the vessel and filled with water; beams were passerl through the jorts, resting on blocking in the sumken scows, which were then pumped out, raising the ressels several feet.

The camels used by Colonel Gowen, in remoring the sunken ressels which obstructed Selbastopol harbor, had a lifting-power of 5,000 tons. They were nearly submerged, and then connected by chain-falls to a vessel, through the ports or under the bottom. Being then pumped out, the vessel was raised, and floated to shallower water, when the process was repeater, and so on.
2. (Slocking-frame.) A bar mounted upon four wheels, and capable of being drawn forward and backward throngh a small space. Upon it are mounted the jacks with their springs, and the slur-bar upon which traverses the slur by which the jacks are actuated successively.

Cam'e-o. 1. Salient, as opnosed to intaglio.
2. A stone or shell carved in relief.

The peculiar feature required in the material is that it shall have parallel layers of different colors. Some varieties of chalcedony folfill this requisition, as the ayate, which is striped and has lavers of varying eurvatures, and sonetimes curionsly contorted strata around a general center.

Another chalcedony is the onyx, which has parallel layers of varying colors, and is considered the choicest material for cutting cameos.

The commoner material for cameos is the conchshell (strombus), a mollusk fonnil in many parts of the world, and having two distinct layers of diflerent colors and character. The inmer layer is dark-
colored, black in the finer specimens from the West Indies and Sonth America, and pink in other specimens, which are not so highly prized, as being less like the Oriental onyx.

The porcelanous or inner portion is very hard and intractable to tools of steel. It is dark, and forms the basis or gronnd of the picture, which is cut in the nacreous, whiter, exterior portion, which yichls readily to graving-tools.

In dividing the shell into pieces of suitable size for the purpose inteniled, the lapilary's slicer is used, furnished with diamond dust or solne abradant of sufficiently harl grit. Whatever may he the material employed, the figure is cut in one layer upon the other layer as a basis or gromml.

The piece of shell is cemented to a block, ant is cut by a variety of carving-tools, rather approaching the chisel in their manner of manipulation; the cut being obliquely downwards, to avoid scaling off a layer of the nacreous shell.

The limits of this work forbid detailed artistic description. The work in relief is polished with put-ty-powder, apulied by a tooth-brush.

Engraving in relief on monocolored gems, such as the beryl or emerald, does not fulfill the conditions of the true cameo.

Cam'e-o-in'crus-ta'tion. During the last century the Bohemian glass-makers excited surprise by producing las-retief casts of busts and medals in. closed within a coating of white Hint-glass, and an extension of this art was subsequently patented in England. The process consists in making the article to be incrusted of less fusible materials than those of which the glass by which it is incrusted is composed. A mixture of China clay and silicate of potash is found to answer this requirement. The bust or bas-relief is made of this material in a plas. ter mold, and after being slightly baked is gradnally conled. A mass of transparent glass is blown hollow, with one end open, and the clay camen, heated to redness, is placed within it. The mass is pressel or weldel to make the two substances allhere, and the glass-b ower draws out the air from within, thus cansing the glass to collapse anil to firmly unite with the cameo. When the glass is cut and polishel to any desired form, the effect produces is striking and beautiful; for the clay camen or bust has the appearance of unburnishel silver isolated in the midst of the solid, transparent glass. Small articles are incrusted in a more expeclitious manner, especially upon glass goblets or similar hollow vessels. The hot cameo is placed upon the hot vessel, a small piece of semi-hipuid glass is dropped upon it, and this both fixes the cameo in its place and forms a glassy layer to inclose it.

Cam'e-o-type. (Photography.) A fanciful name given to a small viguette dagnerreotype for mounting in a jaweled frame like a cameo.

Cam'e-ra. The cameras used in photography are known by names which inlicate construetion or purpose. They are, -

Foldiug, so as to he portable.
Expanding; the foont part is rigid and carries the lens, the after part slides on the front part, and carries the slark slide and focusing-screen.
Bellows-camera ; the front and after sides connected by a Hexible cover:

Copying-camera.
Solar camera; the sun's rays are transmitted through a transparent negative.

Stcreosoopic camera ; two cameras in one, taking two pictures on the sause plate. A substitute arrangement is that in which the camera receives successive positions on one stand with two stations.

Ponoramic camera, one in which a picture may be taken upon one flat, including an angle of 90° more or less. Invented by Sutton. Sen also Photograbhic camera.

Cam'e-ra-lu'ci-da. Foundel upon the invention of Baptista Porta (1589), by Dr. Haoke, abont 1674. Improved by Wollaston, 1805. l'hil. Trans., Vol. XXXV1II. p. 741.

It consists of a glass prism $a b c d$, by means of which rays of light are hent by two reflections into a path at right angles to their previous direction. A ray of light proceeding from O enters the face of the prism at a, is reflected by b and c till it assumes the direction $c E$, at which latter point is the eye of the observer.

As a contrivance of Dr. Wollaston, for the purpose of delineating a microscopic object, it consists of a prism fitted on the lront of the eye-piece of the microscope E, in place of the cap by which it is usually surmounted. The rays passing through the eye-piece into the prism are reflected from its oblique surface and come to its upper horizontal surface at right angles to their former direction, and
drawing the slides. See Photographic Camera; Sulall Camera, etc.

Before the photographic art had attained any celebrity, the camera was sold in the stores of opticians in a portahle form, and used in taking sketches from life and from nature.

The beams of light enter at the lens in front of the box,

Fig. 1044.

Camera-Obscura. and the image of the objects in the field are reflected hy the mirror b against the under side of the ground glass α. The outlines of the objects are then traced on the ground glass, or on a sheet of paper sufficiently transparent tor the purpose.

Cam'e-ra-stand. (Photography.) A frame on which the camera rests, and which is auljustahle, to

Fig. 1045.
Fig. 1043.

Camera-Lucida

Cameta-Stand.
the eye receives them with a part of the pupil, while it looks beyoud the prism, with the other part of the pupil, to a white paper surface N, on the table, and the hand follows with a pencil-point, P, the outlines of the olyject apprently projected thereon. The image and the paper ofcupy the same field, and the image, therefore, is apparently displayed upon the paper.

The optigraph is an instrument for the same purpose, but of different construction. See Optigraph.

Cam'e-ra-ob-scu'ra. The invention of this instrument has been credited to Roger Bacon, 1297, and to Alberti, 1437. It was described by Leouardo dal Vinci, in 1500, as an imitation of the mechanical structure of the eye. The theory of optical sensation was lail down by Alhazen the Saracen, A. D. 1100. See Binocular Glisses.

Baptista Porta, in 1589, mentions it in his hook on "Natural Magic." Sir Isaac Newton remodeled it, 1700. Daguerre, in 1839, rendered the images obtained therein permament, after Wedgewood, Davy, and Niepce had only partially succeeded. See ProTognaphy.

The camnra-obseura as describel by Baptista Porta is a dark chamber of cylindrical form, with a lens at one end and a white eard or paper at the other, so placed as to $b=$ within the focus of the glass upon which the external im'ge is depicted.

The instrument, for the uses of photographers, las been enlarged and improved. Achromatic and periscopie glass have been employed ; facilities for adjustment in hight, angle of presentation, and for focus, and arrangements for introducing and with-
vary the hight, horizontal presentation, or inclination of the optic-axis as may be required. In the cxample, the elevation and inclination of the cam-era-platform are obtained by a compround arrangement of lifting-bars, ratchets, and pawls, acting within and upon a frame mounted on casters.

Cam-gear Wheel. An arrangement of gearing.

1. The motion of the camshaped cog-wheel being continnous, and the rotation of its axis in uniform times, the speed imparted to the piuion is variable, and the respective axes altermately approach and recede is the cogged cam revolves.
2. The motion being derived from the pinion by the band from the drum, the meshing of the pinion with the cogged cam will give a

Cam-Gear Wheel variable vibrating movement to the bell-crank and to the rod connceted thereto.
Ca'mi-on. A heary dray for the transportation of orinance.
Cam'let. (Fabric.) A cloak-stuff formerly made of camel's hair, alone or mixed with silk; since made of wool and silk or wool and flax. It was a fashionable cloak stulf in the dlays of our fathers and their fathers. It was rigid from close weaving, and nearly waterproof. It went out when indiarubber fabrics came in.

Camel's-hair cloth is used for tent coverings in Algiers by the Kabyles and Berbers; in China for carpets ; in Turkey for soldiers' coverlets; in Circassia for dreaduaught cloaks. Fine or coarse, its uses are great and rarious. Marco Polo refers to this manufacture at the city of Kalaka, in the province of Tangut, in the domain of the great Genghis Khan.
"After dinner, I put on my new camelott suit; the best I ever wore in my life, the suit costing me above $£ 24$ " (Pepys's Diary, 1665). This was a rich silk.
"This night my new camelott riding coate to my colored cloth suit came home" (PEPY's, 1662). This latter was possibly not "my gray cloth suit and faced white coate, nade out of one of ny wife's petty-coates."
Ca-mot'flet. (Fortification.) A small mine or coutermine charge intended to blow in the side of a gallery.
Cam'pa-nile. (Archutcture.) A bell-tower,

Fig. 1047.

rampanile. principally used for church purposes, but now sometimes for domestic edifices in the ltalian strle.

Camp-bed. A bedstead for the use of military men or travelers ; they are variously constructed, the object beinglightness and economy of space for facility of transportation, and are usually rade of iron. A cot.
Camp-ceil'ing. (Architecture.) One in which the marginal portion is sloping, following the line of the ratters, while the mid-portion is level.

Camp-chair. A form of folding chair adapted to be carried by a pedestrian, or packell away in an ambulance or wagon when on the march. See Fold-ing-chair.

Camp-kit. A hox, with its contents, for containing soldiers' cooking and mess utensils, such as the camp-kettle, plates, etc.

Camp-mill. A mill adapted for the use of an amy, to grind grain on the march or in camp. It is carried on a wagon or running-gears, and is sometimes driven by the wheels in traveling; sometimes by a sweep operated by horses or men after the wheels are anchored or sunk in the ground.

The first portable mill thus adapted to its own carriage appears to have been invented by Pompeo Targone, engineer to the Marquis Ambrose Spinola, about the end of the sixteenth century. See Grind-ing-mill ; Hand-mill.

Camp-ta'ble. One adapted to fold into a small space for transportation.

Camp-sheet'ing. (Hydraulic Engincering.) A piling erected at the font of an embankment to prerent the out-thrust, or the washing by the current or waves.

It consists of guide-piles exteriorly, against which are placed wale-pieces, which are horizontal timbers. Within these are driven vertical planks of the nature of pile-sheeting.

Camp-stool. A chair whose frame folds up into a small compass for convenience of packing or carriage. Camp-stools were known in ancient Egypt,
and were constructed in a manner similar to ours. They frequently occur in the paintings, and some have been preserved till our time. One found at Sakkarah is in the Abbott Collection, New York. See Chair; Folning-chair.

Camp-stove. A light sheet-iron store, specially arranged with a view to portahility, and adapted for heating a tent or hut, and for cooking purposes.

Camp-tu'li-con. (Fabric.) A connpound used as a substitute for carpet or oil-cloth.

It is made by a combination of powdered cork and the poorer qualities of india-rubber, and is painted or ornamented on the surface like oil-cloth. It is not suitable for chambers, as being a good conductor of heat, and fecling as cold to the bare feet as wood or oil-cloth. A convenient application of this substance is for cleaning knives, and is made by covering a strip of rood with it ; then sprinkling the surface with the cleaning powder, and rubbing on the knife. The surface does not wear away; and the result is very satisfactory.

Cam-shaft. A shaft having cams or wipcrs, for raising the pestles of stamping-mills. A tumblingshaft, or wallowcr. See Cam-wheel.

Cam-wheel. A whecl with a projection (or projections) either on the periphery or face, adapted to give motion to another object against which it impinges by sliding contact. The wiper-wheel is an example (which see).

In the illustration, a represents the cam-wheel as lifting a stamp-rod or beetle; in b the duty of the cam-wheel is to give an intermittent, recirrocating motion to the bar, which is returned by a spring after each impulsc. Their forms and applications

Fig. 1048

are very various, and the actions of the heart-wheel and eccentric are substantially similar. The heart is a cam rith a regular notion, so as to produce a back and forrard reciprocation in equal times withont any sharp percussive action; differing in this respect from the action of the two preceding and from that of the tilt-hammer. See Heariwheel.
c is a cam and yoke in use in France for the valve motion of steam-engines. It is used for giving an intermittent, rectilinear reciprocating motion. The circular disk carries the cam ; the valve has a momentary rest and then a rapid motion, a single stroke and return for each revolution of the disk.

Fig. 1049 is an illustration of a cam-wheel having a waving slot through the wheel, in which traverses a rollet on a bar, which communicates a reciprocating motion to the cutter-bar of a harvester.
ln Fig. 1050,

Fig 1049.

Cam Harvester-Hzeel.
the cams are on the faces of the wheels $D D$, consisting of a double reries of inclined curves, hetween

Fig. 1050.

Duble Cam-Whect.
which is the race U of the roller E, whose ascillation in its track gives the reciprocation to the $\operatorname{rod} G$ on the end of the cutter-bar.

Fig. 1051 shows a lisk B having irregular facegrooves, by wbich are actuated the bell-crank levers

of the needle-carrier and feed-bar of a sewng-machine.

Can. 1. A sheet-metal vessel for containing lifnids, etc. Cans are commonly cylindrical, but for some purposes are made square or of conical form, and provided with a handle and spout, as oil-cans for lubricating purposes.
2. The tin cylinder which receives a sliver from the carling-macline. It revolves upon a eenter eccentric to the center of motion of the delivering surfaces, thereby causing the sliver to arrauge itself in a series of coils throughout the area of the can ; as the can is filled, it rises against a plate at the top, anit as the operation proceeds is pressel down and comlensed.
Cans derive their names sometimes from peculiarity of construction or material, but more usually from their purpose or intended contents; such as -

Caustic alkali.	Oil.
Fruit.	Oyster.
Gumpowder.	Paint.
Mills.	Preserve, etc.

Ca-nal'. An artificial channel filled with water, and designed for navigation.
The term is also sometimes applied to narrow straits or inlets of the ocean.

Egypt anld Assyria bear the palm of priority in camals. Their immense plains were early irrigated by water from the rivers Nile, Euphrates, and Tigris. The main arteries of their network of waterconrses becume the avenues for the transportation of produce.
The great canal which mited the Nile to the Red Sea was dug by the orlers of Sesostris (1500 B. c.) according to Strabo, Pliny, and Aristotle ; so that China is fairly anticipated for once, as the Great Canal of China was not male till the ninth century A. n., about the time of Charlemagne.

The Egyptian canal comunenced about twelve miles ahove the modern town of Belhays, the Bubrstis Ayria of the liomans. It was abont 96 miles long, and was on the point of leing abanlonet several times, as it was feared that the fresh water of the Nile would he ruined by the salt water of the Red Sea, which has several feet greater elevation than the nsinal level of the river. The difficulty was avoiled by some hydraulic contrivance, according to Diodorus Siculus and Strabo. The word is translated Slutce (which see). It was probably an inclined clute.
The canal built by Sesostris was reopened by Pharaoh Necho about 605 в. c., by I'toleny Philadelphns about 300 в. C., by the Cresars, by the Caliphs; and was abandoned when Yasco de Gama circunmavigatert the Cape of Good Hope.
The canal which conducted the water of the Nile to Lake Meris during half the year, and distributed it during the other half for the purpose of irrigation, was a stupendous work, and, according to Savary, was forty leagues in length. Two additional canals were also provided with sluices, which governed the iaflux and efflur. Diodorns Siculus also describes the canal. His measurements differ from the modern ones.
Herodotus states that the Lake Moeris was excavated 1385 B. C., and was 450 miles in circumter. ence. It was probably a natural hasin artificially adapted as a reservoir to be filled during ligh Nile.
Nebuchadnezzar constructed a canal 400 or 500 miles long, rumning from Hit, the Is of Herolotus, to the Bay of Graine, on the Persian Gulf. It is referred to by Straho-(XV1. 1052). 1t has been traced by Colonel Rawlinson from Hit almost to the Bay of Graine.
Herodotus and Pliny mention the canals of Asia Minor. The first constructed in Europe was probably that dug by Xerxes across the low 1stlimus of Athos. The Greeks attempted to cut one across the 1 sthmus of Corinth.

Among the early European canals may be mentionel the canal through the Pontine Marshes, made 162 в. c. ; and the Fossa Phillistina and Carlonania, dug by the Etruscans, and which derivel their water fron the Palus, now the Po.
Caius Marins, 51 b. C., constructed the Fossa Marina between Arles and Fos, a laven on the Meliterrauean.
Lucius Verns undertook to unite the Saone and Moselle, and also to unite the Mediterranean and the German Ocean by means of the Rhone, Saone, Moselle, and Rhine. His death prevented the execution of the projest.
The great ohject of the Romans was to increase the facility of transportation, the great economical arent of civilization. Therir land and water ways were the arteries and veins of commerce, and the
ligatures which bound the provinces to the metropolis and the state.

The Rhine had in early Roman times but two outlets; Yirgil calls it bicornis, and Tacitus says that the largest of these branches, that nearest to Gaul, is called Irahatum. In the days of Charlemagne the Rhine communicated with the Lseaut by a branch of the Meuse which has since disappeared. A great inundation, A. D. 860 , obliterated many minor channels near the efllux, and opened new ones. In the thirteenth century the Zuyder Zee was converted from an inland fresh-water lake into a gulf of the sea by a storm which destroyed the barrier between it and the latter. The Roman Jegions under Drusus, B. c. 12, dug a canal between the Rhine and the small river Sala, as a military defence; this became enlarged into a third branch of the Rhine; it is mentioned by Pliny. A fourth brauch, the Leck, was createll subsequently, in a similar manner, during an insurrection under Clandius Civilis.

When the Roman Empire fell to pieces, all engineering enterprises ceased, and the completed works fell into decay. Charlemane revived the project of uniting the Rhine and the Daube, so as to conneet the German Ocean and the Black Sea.

The first canal in Eugland was the Caerdike, cut by the Romans.

Canals were constructed in Clina before the Christian era. No mention is mide of eanals in the Bible. The largest hydraulic works therein mentioned are those of Solomon, who introduced abundant water for baths, gardens, and fish-ponds, - aqueduets, not canals.

The largest canal in the world is the Imperial Canal of China, which extends southward from Pekin and unites the Pei-ho with the Yang-tseKiang. A part of the canal was constructed in the seventh century, and a part in the ninth, A. D. It is 825 miles long, and with its connected rivers gives an inlanl navigation of 2,000 miles, and comects 41 citie;. Authorities differ as to whether the Chinese canals overcome grades by locks or inclined planes. It is to be presumed they have both.

From the twelfth to the fifteenth centuries canals in the Netherlands were made in great numbers.

The ship-eanal, 51 miles in length, whereby the commerce of Amsterdam reaches the ocean, is wide and deep enough to float two passing frigates. It was built $1819-25$, at a cost of $\$ 4,250,000$. A still deeper and wider olle is now in progress.

Previous to the invention of canal-locks by the brothers Domenico, sluices were employed in Italy. These were boarded conduits, forming chutes down which the vessel slid or tloated; a gate at the upper end being lifted for the entrance of the ressel, and restored again to form a dam to preserve the upper level.

Movable gates to restrain the water on the higher level and admit the passage of boats were introduced in the navigation of the Tesino and Adda to Milan.

Cresy dates the invention of canal-locks to 1188, when Pitentino restored the Mincio to its ancient channel to the Po, from whence it had been diverted by the Romans in the time of Quintus Curtims Hostilius.

The eanal of Languedoe, which unites the Garonne with the Mediterranean, passes across the narrow portion of France north of the Pyronees, and is 150 miles in length. It mite; the Atlantic and Mediterranean, and was coustrycted by Audreossy, an Italian engineer, in the reign of Louis XIV. The fall from the summit at Namrouse to Cette, on the Mediterranean, is 621 feet 6 inches. The fali from
the summit to the Garonne is 198 feet. There are 74 locks on the eastem portion, 26 locks on the Atlantic section, which ends at Toulouse, on the Ga. ronne ; 100 locks in atl.

The surface of the canal is 64 feet broad; the bottom, 34 feet; the depth, 6 feet 4 inches. The canalhoats are 80 feet long, 18 feet broad, draw 5 feet 4 inches of water, and carry 100 tons.

The eanal cost $\$ 6,000,000$.
The canal of Charolais unites the Loire and Saone, which, at one place, approach within eiglateen leagues of each other, and fall into the Bay of Biscay and the Mediterranean respectively. The project was agitated as carly as 1555 , and varions surveys and reports were made, as well as several conmencements attempted. The lavisll expenditure upon the buildings and parks for the personal aggrandizement of Louis XIV. clelayed the works of public utility, and it was not till near the end of the last century that it was opened. Its length is 114.322 metres.

The canal uniting the Somme and the Scheldt was mondertaken in 1776 and completed in 1810. The length is $32 \frac{1}{2}$ miles.

The canal of Orleans is 45 miles long, uniting the Loire and the Seine.

The canal between the Baltic and North Seas at Kiel was opened 1785. That from the Cattegat to the Baltic, 1794-1800. The main line of the Ganges Canal, 525 miles long, for irrigating the country between the Ganges and the Jumna, was opened in 1854. When completed, it will be 900 miles long, and will irrigate $1,470,000$ acres. Its estimated cost is $£ 1,555,545$. Sir Proby Cantley, engineer.

The canal in England joining the Trent and the Witham was made A. D. I134, in the reign of Henry 1. The Bridgewater Canal commenced in 1759. In England there are 2, 500 miles of canals.

Of the American canals:-
The James River and Kanawha, 147 miles long, overcomes the greatest grade, having a lift of $1,9 \mathrm{I} 6$ feet.

The Morris and Essex, 101 miles long, overcomes a grade of 1,674 feet, accomplished by 29 locks and 22 inclined jlanes.

The Erie, by DeWitt Clinton, is the lougest, 363 miles, with 84 locks.

The Erie Canal was commenced in 1817, and conpleted in 1825. The main line learling from Albany, on the Hudson, to Buffalo, on Lake Erie, measures 363 miles in length, and cost about $\$ 7,200,000$. The Champlain, Oswego, Chemung, Cayuga, and Crooked Lake Canals, and some others, join the main line, and, including these bramch canals, it measures 543 miles in length, and cost upwards of $\$ 11,500,000$. This canal was originally 40 feet in breadth at the water-line, 28 feet at the bottom, and t feet in depth. Its dimensions proved too small for the extensive trade which it had to support, and the depth of water was increased to 7 feet, and the extreme breadth of the eaual to 60 feet. There are 84 locks on the main line. These locks, originally 90 feet in length and 15 in breadth, and with an average lift of 8 feet 2 inches, have since been minch enlarged. The total rise and fall is 692 feet. The towmath is elevated 4 feet above the level of the water, and is 10 feet in breadth. At loekport the eanal descends 60 feet by means of 5 locks excarated in solid rock, and afterwards proceeds on a uniform level for a distance of 63 miles to Genesee River, over which it is carried on an queduct haring 9 arches of 50 feet span each. Fight and a half miles from this point it passes over the Caynga marsh, on an embankment 2 miles in length, and in some places 70 feet in light. At Syracuse, the "long level"
conmmences, which extends for a distance of $69 \frac{1}{2}$ miles to Frankfort, without an intervening lock. Alter leaving Frankfort, the canal erosses the rivel Molawk, first by an apueduct 748 feet in length, supported on 16 picrs, elerated 25 feet above the surface of the river, and afterwards by another aqueduct 1,188 feet in lengtli, and emerges into the Hudson at Albany.

The widest are the Cormwall, Beanharnois, and Lachine (Canada), being respectively 12, 11, and $8 \frac{1}{2}$ miles long, and 150,190 , and 120 feet wide. Each has a depth of 10 feet, and locks 200 feet long, respectively 55,45 , and 55 feet wide. The most costly per mile is the Lachine (Canada), $\mathrm{S}_{\frac{1}{2}}$ miles long, cost $\$ 2,000,000 ; \$ 235,934$ per mile. The Chesapeake and Delaware cost $\$ 203,703$ per mile. The cheapest per mile is the Ohio and Erie, 307 miles long, $\$ 15,300$ per mile. The greatest number of locks are on the Schnylkill Canal, 105 miles long, 120 locks.

The Welland (Canada), 36 miles long, admits ves sels of a tonnage of 500 tons. The locks liave double the capacity of any other. Cost, 87,000,000.
The Suez Canal comects the Bediterranean and the Red Sea, thins miting the Atlantic and Indiun Oceans, and saving the immense ditour around the continent of Africa formerly necessary to reach the lndies from any portion of Europe. The length of the canal is about 90 miles, having a depth of from 20 to 26 feet, and a width of from 180 to 300 feet, sulficient to accommodate vessels passing each other on the transit from ocean to ocean. The total cost of this canal, with the necessary docks, etc., was about $\$ 100,000,000$.

In the making of the Suez Canal, the total amonnt of earth removel amounterl to about four hundred million cubic yards. By working day and night, the machines of M . Borel and Lavelley were able to remove 78,056 to 108,000 cubic metres per montl.

After ten years of labor this great work was completed. Upon the 17th of November, 1869 , the opening of the camal was inalugmated in the presence of the Empress Engenie and the Emperor of Austria, and of princes, ambassalors, and men of science from Europe and America.

The transit between the two seas was safely made by the fleet. But the rerfuisite alepth had not been attained. Seventeen and a half feet of draft could be carried through the canal. Since then the depth nas been increased to twenty-two feet, and ultimately will be twenty-six feet.

The length of the canal is 100 miles. The establisherl surface-width is abont 325 feet, except in difficult cuttings, where it is 190 feet. The least battom willth is 72 feet. The lighest gromnd ent through is at El Guist, where it is 85 feet ; at Serapeum it is 62 feet ; and at Chalouf, near Suez, it is 56 feet.
The excavation of the camal, althongh of considerable difficulty, was exceeded by the necessity for creating artificial harbors at the extremities. The liarhor at Port Said, upon the Meditermanean, has the general form of a triangle, the base resting on the shore and the longer side on the west, protecting the entrance from the moving sand. The longer arm or mole is 8,200 feet, extending to the 26 -fuet curve of sounding. It is proposed to extend this mole 2,300 feet farther. As this larbor is exposed to northeast winds, an inside basin has been constructed. The area of the onter harbor is "onal to 400 acres, and will permit twenty line-of-battle shijis to swing freely at anchor.

At the other extremity of the canal, a mole 2,550 feet in lengtly protects the channel, which has been dreelgen to the depth of 27 feet. The mole at Suez differs from that at Port said in construction; the
latter being lomed of concrete bloeks of 13 enbic teet, the former of stome quarriel from the neighboring mountain.

The following is a summary of the expenditures up to the date of the opening of the canal:-
General expenclitures for preliminary
surveys from 1854 to 1859
\$15, 825,525
General expenses of administration and
negotiations between France and
Egypt
3,394,245
Sanitary service, 1866-1869
121,410
Trlegraph service . .. $\quad 34,000$
Transport service, boats, stock, buildings 1,644,435
Payment of contractors for material $3,442,785$
Dredging-machines and heavy jlant
$3,442,185$
$6,819.240$
Workshops
844, 150
Works of construction, canal, and ports $43,534,330$
Miscellaneous.
1,392,495
Expenses of varions branches of com-
pany management
3,841,050
$\$ 80,893,665$
The average cost of the canal per mile is $\$ 808,936$
This mamnificent work is a better scheme than the proposition of another Frenchman ; to dig a canal from the Bay of Acre to the water-shed of the Jordan, and across the water-shed between the Dead Sea and the Gulf of Akabah, thus uniting the Mediterranean with the Red Sea.
The depression of the valley of the Jordan is a long narrow basin, 200 miles in lengtl and about 20 in breadtl. Abont one fourtl is now covered with water. It inclinles the Deall $S_{\text {ea }}$ and the Lake of Tiberias, which are 60 miles apart, and the river Jordan, by which they are comnected. The dejoth of the ordinary surface of the water in the Dead Sea is 1,388 feet below the Meliterranean waterlevel, and the depth of water in the deepest part of the Dead Sea is 1,350 feet; showing the total depth of this great depression to be 2,738 feet helow the Mediterranean level. The land adjacent to the sea, however, is a table-land 3,000 feet above the Dediterranean, so that the whole depth of this great natural gorge is about 6,000 feet. The gorge is continued throngly the Fied Sea into the Indian Occan, but a ridge 113 feet above the Red Sea separates the waters of the Gulf of Akabah from those of the Salt lake. The fissure, with the exception statel, may thus be said to extend from Mount llemon to Akabah, 350 miles, and thence to the Straits of Babelmandel, 1, 200 miles farther.

The water of the Red Sea has a few fret elevation above that of the Mediterranean, which would make a water-fall of 1,400 feet depth if the water-slied at the north end of the Gulf ot Akabah were to be cut throngh, allowing the gorge to fill with the waters of the south.

This would add about 1,400 feet depth of water to the Dead Sea, and would put the lower enil of the Jordan that far under water. The city of Tiberius would be submerged 600 feet below the surface of the salt water, and the waters would ramily among the hills of Jutea and the afthents of the Jordan till they found themselves checked by the monntains of "the land of Zebulon and the land of Naphtali, heyond Jordan, Galilee of the Gentiles." Tlie sites of Capemamm and Bethsaida would thus exprerience a pratt of the fate of Sodom, submergence in salt water, while the Dead Sea would be somewhat freshented.

Aqueducts with east-iron beds, silpported hy arehes and piers, were introduced by Telford, 1793^{-}

1829, in the construction of several canals; the Shrewsbury, and the Ellesmere and Chester, for instance. The aqueduct over the Ceirog is i10 feet in lengtly, and the water surface 70 feet above the level of the river; ten arches lare each 40 feet span. The breadth of the top is 22 feet ; breadth of water, 11 feet ; depth, 5 feet.

The stone piers are 33 feet in deptlo and 13 in thickness; the spandrels have longitudinal walls, supporting the cast-iron plates which form the bottom of the canal. The plates have flunges on their edges, and are united by means of nuts and screws.

The sides of the canal are built of cut-stone upou the cast-iron bed; they are $5 \frac{1}{2}$ feet thick on each
side, and the stone is backed with hard-burned briek laid in cement. The sides have iron railings. It was completed in 1801, and cost about $\$ 100,000$.

Another aqueduct on the same canal, the Ellesmere and Chester, at Pont-y-Cysyllte, is 1,007 feet long, and the water-level is 127 feet above the waters of the Dee. It has 2 abutments and 18 piers. The piers are founded on sandstone rock, arc 12×20 feet at the bottom, and $7 \frac{1}{2} \times 13$ feet at the top. For 70 feet of their light they are solid, and the remaining 50 hollow, the walls being 2 feet in thickness, with one inner cross-wall. The width of the water-way is 11 feet 10 inches, of which the towingpath covers 4 feet 8 iuches, leaving 7 feet 2 iuches

Fig. 1052.

for the boat. The towing-path stands upon iron pillars, and the water flows heneath it.

In this aqueduct, the sides, as well as the bottom, are made of cast-iron. The arehes have a span of 45 feet, and a rise above the springing, 7 feet 6 inches.

Canals are classed as :-
Level or ditch canals; consisting of one reach, level thronghout.
Lateral eanals; which conneet places in the same valley, the fall heing in one direction only.

Summit canals; in which the work crosses one or more summits, at wbich provision of water must be supplied.

Canals are now projected:-
To turn Lake Michigan into the Mississipni. This is under way.

Across the Isthmus of Corinth. This, as nas been remarked, was projected $600 \mathrm{~B} . \mathrm{c}$. It attraeted the attention, also, of Demetrius Poliorketes, Julius Cesar, Caligula, and Herodes Atticus; but it was reserved for Nero to take the first active step toward the accomplishment of this end. He completed a eanal for a distance of 3,683 feet on the Corinthian, and 6,946 feet on the Savonian, side of the isthmus.
This importaut historical fact has been lately ascertained through the investigations of Mons. Grimand de Caux. The entire width of the isthmus at that point amounts to about 18,799 feet, so that it would seem the canal was more than half cut through. A canal across the Isthmus of Corinth would shorten the route from Trieste to Athens forty-one hours for sailing-vessels, and fifteen hours for steamers ; from Marseilles to Athens fourteen hours for sailing-vessels and five hours for steamers; and, finally, from Gibraltar to Athens six hours for the former and two and a half for the latter.
A Jarge ship-ramal to comnect the Baltic and North Seas. There are now two small ones across the Isthmus of Holstein, - the Streckenitz Camal, 1390-98,
between the Elbe and the Trave; and the Schleswiek Holstein, or Eyder Canal, 1775-84, between Kiel, on the Baltie, and Rendsburg, on the Eyder.

Ca-nal'-boat. A large boat, generally decked, and towed by horses; they vary in capacity, according to the width and depth of the canal on which they are employed. The usual capacity of those on the Chesapeake and Ohio Canal, one of the widest and deepest in the United States, is 110 to 115 tons of coal.
Rankine states that the heariest boat one horse can draw at a speed of from 2 to $2 \frac{1}{2}$ miles per hour weighs with its cargo 105 tons, is about 70 feet long, 12 feet broad, and lraws $4 \frac{1}{2}$ feet of water.

A boat to be drawn by one horse at the rate of $3 \frac{1}{2}$ to 4 miles per hour will be about 70 feet long, 6 or 7 broad, and draw about $\frac{21}{2}$ feet of water.
Ca-nal'-bridge. A bridge adapted to form a viaduct above the water-way. Dovable canalbriuges may be of one of the following kinds:-

1. Turning horizontally. See Siving-bridge; Pivot-bilidee.
2. Turning vertically. See Bascule-bridgr.
3. Rolling horizontally and in the direction of its length ; one form of draubridge.
4. Lifting vertically". See Lift-bringe.
5. Floating in the eaual and withdrawn into a dock to allow masted boats or ressels to prass. See Floating-bridge:

Ca-nal'-lift. A contrivance for conveying a canal-boat from one level to another without the use of water in the usual lock. It may be of the nature of the slip or marine railway, such as used on the Morris and Essex Canal, N. J., or it may be a meshanical lift by means of tackle. In one case it is proposed to float the vessel in a caisson which is supported in level position on a wedge-shaped frame which traverses on the ways.

Ca-nal'-lock. An inclosure with gates at each end, forming a connection between the upper and lower levels of a canal.

In the accontlanying drawings, A is the lockchamber; a a, the side walls; E the floor, or invert. The size of the ebamber is a little longer than the longest boat required to occupy it ; its brealth say 1 foot wider than the said boat; its depth $1 \frac{1}{2}$ more

CANCELING-PRESS.

Canal-Lock (Longiturlinal Section).
than the draft of a loaded boat plus the lift, and, say, 2 feet added for the coping.
The floor is level with the bottom of the lower reach, and is recessed, for the opening of the tailgates. The heal-bay has sile walls having gatechambers to receive the head-gates. The floor is level with the upper pond.
The sides of the tail-bay end in curved wings, and the floor or aprom is pitched with dry stone.

At the head of the lock-cheonber is the lift-wall, above which are the hecul-grtcs, whose lower edges press against the heted miter-sill.
The tuil-gates, which close against the tuil mitersill.
The culverts through the side walls shown in dotted lines are for filling or emptying the lockchamber. These slnices are governed by slidevalves.

The eylindrical recesses in the side walls in which the gates are hinged are called hollow quoins.

Each gate is composed of a hecl-post, miter-post, balancc-bur, cross-picces, cleading, and diagonal bracing.

There was a lock at london Bridge in Pepys's time, 1661 ; at least, he calls it such. It was prohably a sluice, and the chatty fellow "was fain to stand upon onc of the piers about the bridge, before the men could drag their boat through the lock."

Ca-nal'lock Gate. The hinget doors at each end of a canal-lock, which are oprened and closed to adnit the passige of vessels. Of these there are two at each end of the lock. They are hang on pintles in the stone-work, and open outwardly, being turned by levers, similar to the tiller of a rudier, and when closed the two edges must fit as accurately together as possible to Irevent the passage of water.

At least one gite at each end must be proviled with a sluice or flood-gate near its bottom. When a boat is to prass from a higher to a lower level in the canal, the gates at the lower end are closed, nut water admitted into the lock at the other end until the water in the lock is at the same hight as that of the canal above ; the upper gates are then opened, and the boat admitted into the lock, when these gates and their sluice are closed. The water is
then drawn from the lock by the sluice in the gate at the lower end, and when the water in the lock is at the hight of the lower level, the lower gates are opencl, and the hoat allowed to prass out.

To elevate the Loat from a lower to a higher level, the water in the lock is hrought to the lower level by opening the sluice at that end, if necessary, the gates being then opened and the boat passed in, these gates are again closed, and water admitted by the upher shice until a sufficient hight is attained, when the upper gates are opened and the boat passed out of the lock.

Can-buoy. (Naulicul.) A conical buoy. See Buoy.

Can-cart. A lightly framed two-wherled vehicle supporting a large can for containing wilk, ete.
lig. 1054.

Can-Cart.
The illustration gives a clear idea of the arrangement.

Can'cel. A leaf to be cut out and replaced by a correctel ${ }^{\text {nigre. }}$
Can'cel-li. Among the Romans, iron gratings and trellis-work ; in modern buildings, latticed windows made with cross-bars of wood, iron, lead, ete.

Can'cel-ing-press. A press having a plunger which defaces a ${ }^{1 r i n t e d}$ stamp. These presses are

usually worked by a blow or by a lever. In some, the lace of the stamp is cancelled hy printing upon it the date of cancellation, as in the example (Fig.

1055, in which a socket in the lower end of the plunger has a type-chase, which may have movable type to indicate month and year inside the motto of the chase, which may be the title, etc., of the firn. A central slot in the face of the chase is occupied by one link of an endless chain, whose consecntive links have type corresponding to the days of the month, and moved in the required snccession by sprocketwheels in the plunger.

In other forms of canceling-stamps the plunger is armed with blades or points, which penetrate and tear the paper of the printed stamp, so that it may not be restorable by a process which wonld discharge the ink of cancellation.

Such an one is represented in Fig. 1056, which is operated by percussion of the jllunger or rotation of the screw.

Can'cel-ing-stamp. A press for defacing printed stamps, to prevent their re-use. Sec CascelingPress.

Can'de-la'brum. A lamp-stand. Its tripedal form among the ancients is believed to have been derived from the shape of its predecessors, - braziers or basins for bolding fuel, momed on tripods.

Among the Greeks and liomans they were highly ormamental, and made of bronze and marble. They' survived until lately in the branched sticks for the candles whereby balls and stately dinner-tables were illuminated.
"Euphorion, in his 'Historic Commentaries,' says that the young Dionysius, the tyrant of Sicily, dedicated, in the Prytanem of Tarentum, a candlestick capable of containing as great a number of candles as there are days in the year." - Atheselis, in tbe "Deijmosojhists."

Candi-teer'. (Fortificction.) A protection for miners, consisting of brushwood, ete.

Can'dle. A cylinder of tallow, wax, paraffine, stearine, spermaccti, or other fatty material, in the axis of which is a woody wick consisting of parallel, woven, or twisted fibres, or a rush.

We may presume that the earliest forms of portable artificial lights were brands and torches, to which succeeded cressets and lamis. An elevated fire in a brazier or cresset, fed at intervals with inflammable material, such as wood and fatty or oily matters, would be an effective light for Eastern habitations, where the courts are open to the sky. We use its substantial equivalent at camp-meetings. It mnst be remembered that the uses of artificial light for reading and study are comparatively modern; the universal lighting up of every louse as soun as darkness covers the land is a modern necessity and a modern invention. The long winter evenings of previous generations were spent by the light of the fire, not of lanms or candles, so far as the bulk of the people of all lands was concerned. But a rery small number could read, and books were so scarce that kings gave secmrity when they borrowed them; Bibles were chained in churches; and there was one law for the man who could read, and anotleer for bim who could not, the former being entitlell to " lienefit of clergy." In reviewing the mode of life of kings 500 years since, in comparatively barbarons England, we find one of the royal Plantagenets sitting on a stool whose three legs were driven into the dirt forming the floor of his bedchamber on the second floor, orer the archell ceiling of the common hall betow. His queen sits on the foot of the bedstead, and as evening draws on they find thenselves sleepy after a heavy supper of beef and beer. As the drowsy king has sworn hinself hoarse in recounting to his satellites the bunting adventures of the day, and lias no scholastic
resources, being unable to read and havinge no books, he finds time heavy on his hands.

Whike meditating on the question of whether it is worth while to kick off lis loots before going to bed, he is interruyted by a chamberlain, who sleeps alove, and lias no way of ascending except by coming through the royal apartment. As times were not then what they once were, when the folks scattered themselves promiscuonsly over the floor of the hall, and people were becoming effeminate, the king bids his architect to contrive some mode by which his bedroom shall not be mate a passage-way for the garreteers. To the disgust of the said chanberlain, " o ' rainy nights," the buikler makes an outside staircase like a ladder, and his lordship in attendance may go up, and in at the window.

Such people had but little use for a candle; they rose early, ate heartily, and slept, and no doubt snored leavily.

Scholars aje scattered all along the pathway of history ; but as for kings, their councilors, and the common yeople, they were like Scott's hero, William of Deloraine, the "stark, moss-trooping Scot," who, whatever other fanlts he might have had, was guiltless of violating a lady's correspondence.
> "And safer by none may thy errand be done, Letter or line know I never a one."

If, as Byron says, "Marmion is exactly what Willian of Deloraine would have been had he been able to read and write," the plentiful lack of learning was in his favor, as one had better remain a mere cattle-thief than hecome worsc.

Lamps were known in all the ancient countries where civilization had dawned. In China, Inlia, Egypt and Etruria, they have been so long used that the memory of man lunneth not to the contrary. Comparatively modern Greece and Rone gathered them from the nations whence they delived their civilization, their mechanic arts, their conveniences, and all lut their fine arts. In this latter respect, while they still retained much of the conventional, they burst the absmal fetters with which the priests had crippled the artists of Egypt. The sensuons and scoffing Greek, tlough a mannerist in his own way, would naturally prefer a warm model to a stone Pasht. See Lamp.

Some nations have been fortunate in the possession of bitumen, or mineral pitch, so termed, and have used it for lighting purposes from time immemorial. This has been the case especially with the Asiatic uations in the vicinity of the Casjuan Sea.

Splinters of wood satnrated in rock-oil, olive-oil, or animal grease, may be considered as incijnient candles; and the likeness became still more apparent when a frayed piece of soft bark or a twisted lock of natural fiber, such as that of cotton or the aselepias, was dipped in melted bitumen, jutch, or an amimal grease that is hard at ordinary temperatures.

The candle (candcla) was used by the Romans before the invention of lamps (lucernce). Poman candles hat wicks of rush (scirpus), and were made of wax (cerea) or tallow (scbacea).

Alfred the Great used a graduated wax candle as a time-keeper, and placed it in a lantern to equalize its consumption by preventing faring.

Splinters of wood saturated with animal fat were used in England by the poor, 1. 1. 1300. The pith of swamp-rush (Juncuseffitsus) was snbseqnently used for a wick, and answered the phrpose tolevably, though it conducted the grease slowly, gave a very moderate light, and was easily extinguished by drafts. It is still used there, and is ealled a rush-light.

Diogenes ($330 \mathrm{~B} . \mathrm{C}$.$) , who searched in daylight$
with a lantern for an honest man, was anticipated by three lnndred years in the propheey of Zephaniah, wherein it is declared that derusalem shall be searched with candles, and the men that are settled on their lees shall be punishet. The eandles so frequently refered to in Seripture, gencrally in metaphor, were 110 dount cores of twisted fibers dipped in pitch, wax, of tallow. The candlesticks in their sacred builhings were very rich and ornate, and became a regular charge for a division of the priests. It is probible light was continually maintained, as in the Magian, Egyptian, and Greeian temples.

Cambles are of several varieties : -

1. Paruffine; obtained from the distillation of coal at a low heat, also from lignite, peat, and wood. Frequently combined in candles with sperm and stearine. See Paraffine.
2. Spermaceti. Usually of wax and spermaceti. These are moliled.
3. Composilion. Mixtures of spemaceti, tallow, with a little resin or wax, in various proportions.
4. Stearine. In June, 1825 , Gay Lussac obtained a patent in England for candles made of the stearic acid of tallow, lard, or cocoanut oil.

The fitty acids are separated from the glycerine by canstic lime, the fat, lime, and water being boiled and stirred together until the mixture is fully sit ponified. The lime is then suturated by agitation with dilute sulphuric acid, which forms a solid sulphate of lime, and sets the fatty acids at liberty; the latter rise to the surface, and are decanted from the limy sediment. The traces of lime are removed by washing in dilnte sulphurie acid and then in elear water. The oleic acid is remored by placing the mass in loges and subjecting it to heat and pressure in a lydranlic jress. The solid stearic and margaric acids are farther pressed, puritied, washed while in a leated condition, decanted, and lun into molds.
5. Tallow. These are molded or elipped.
6. Pelm-oil. This is obtained by bruising and boiling from the fruit of the oil-palm (Elais gueineensis). It contains about 66 per cent of a solid white tat known as palmitine. The oil is bleached, eompressed in woolen bags. The solid matter is melted, lecanted, a little wax added, and run into the molds in the frames.
7. Wrax candles are not easily molded, andare therefore prepared by ponring wax on suspended wicks; the cylindrical form being alterwands given by roll'ing hot between a wooden slab and a wet table.

Larger wax cantles are made by rolling a wick into a sheet of wax, in a spiral of gradually increasing dianeter. Such were those of Drury-ianc rediqieus, -
"Tis sweet to view from half past five till six
Our long wax candles with short cotton wicks."
Wa.e topers are made by drawing a string at a regulated speed through a pian of melted wax.

The Reformation greatly decreased the consumption of wax candles and the keeping of bees. In the Castle of Wittenberg and its chureh 35,750 pounds of wax lights were burned yearly. In the beginning of the fourteenth century, wax and tallow candles were uncommon. Philip the Bald, Duke of Furgundy about 1361, oftered to St. Antony of Vienne, for the restomation of the luealth of lis sick son, as much wax as the latter weighed, and was held to lave made a princely offer. In Jannary, 1759 , 14,000 wax candles were lighted at once in the erlebration of a feast in the Electoral Palace of Dresten.

Cambles which require no smotling lave slender wires twisted in with the cotton of the wick. When burning, the top of the wick turns ontward in such a way as to enable the oxygen of the air to consume
the charred substance, which it cannot do when in the middle of the llame.

Night-lights are short thick candles with small, thin wicks.

Machines are used for making candles with an inner core of soft or inferior material, such as tallow, antl a coating of hard or superior substance, such as paratliue.

Can'dle-dip'ping Ma-chine'. A frame by which a large number of dependent wicks are lipped into a cistern of melted tallow and then lifted out of it, the jrocess being repeated until a suffieient thickness of tallow has accumulated on the wick. The candle-dipper shown is intended to give a de. terminate weight to any number of eandles. The

Dippins-Machine. wicks are suspended on rods from one end of the balance-har, and a weight is placed in the scale at the other end. The wicks are repeatedly dipped into the tallow-rat until they acquire the desired weight.

Can'dle-mold. The Sicur Le Brez of Paris is said to have been the inventor of moliling candles.

The Marquis of Worcester in his "Century of Inventions," 1655 , speaks of brass candle-molds in which a man may make 500 dozen in a day. He adds an ingredient to whiten, cheapen, and yender the candle more lasting.

At the present diy, eandle-molds are usually made of lewter or tin ; in some cases glass has been employed. They nay be inserted in a wooden frame, the upper part of which serves as a trongh; or several molds may be permanently attached to a tin trongh, the whole constituting a single mold. Each mold consists of a cylindrical tube having a conieal tip, with a circular aperture though which the donbled wiek is drawn, by means of a hooked wire, allowing the loop to project a little beyond the open end of the mold; while the other end of the wick projects beyond and closes the aprerture in the conical tip. Sticks or wires are passed through the loops, their ends resting on the edges of the moldframe. The mold is placed open ent up, and the melted tallow poured into the trough by means of a ladle. When sufficiently hard, they are withtrawn by means of the wires or sticks passing through the loops.

Can'dle-stick. A well-known donestic utensil employed for lolding and carrying a lighted cantle, now to a great extent superseded by the introdnction of gas, kerosene, etc.

The candlesticks of the ancients were very ornate, and those belonging to the temple worship were large and many-brauched. The candlestick of the Hebrew Tabernacle was in the first apartment ; a constantly buruing light was a leature in the wor* slip of most Eastern nations. A cantlestick or lamp-stand was emblematical of the priest's office, and was used, in metaphor at least, as an emblem of acceptable oblation; as in levelation, where rejection is intinated by the threat, "I will cone unto thee quickly, and will remove thy candlestick out of his place, unless thou repent."

Candlesticks are mentioned in England in the reign of Elgar, A. D. 957.

Can'droy. A machine used to prepare cotton cloths for printing, spreading out the fabric as it is rolled around the lapping-roller.

Can'dy. From the Sanskrit, handa. Sugar is from Sanskrit, 'sarkara. See Sugat.
A preparation of sugar or molasses, either alone or in combination with other substances, to flavor, color, or give it the desired consistency.
Sugar-candy, as known to the British confectioner, and known as rock-candy in the United States, consists of large crystals of sugar clarified with a lesser quantity of charcoal-powder than usual, and not filtered, and the crystals aggregated on strings suspended in the vessel in which it is evaporated, and then left to cool.
Candies of various kinds, colors, flavors, and shapes, are made by different combinations of ingredients, processes, and machines, which cannot be considered at length in this work. See "The Art of Confectionary," Tilton \& Co., Boston, 1866 ; Jarrin's "Italian Confectioner," Loudon, 1861.
lu one form of candy-making machine, the candy
Fig. 1058.

in its plastic condition prasses loetween geared rolls in whieh are dies or molds, and having a slight space between their outer faces; side-rolls are also employed for giving uniform speed; and the molded figures pass out on endiess bands driven in opposite directions, both sides of the fignres being thins set or chilled.
Cane. 1. The stem of a plant of the genus Cctamus, very common in the South of Asia along the margins of rivers and lagoons. It is split into ribbons, and used for making clair seats and backs. Machines are adaptel for splitting, planing, and polishing rattan for the various purposes to which it is adapted. After the removal of strips having the polished cuticle, the core or central portion is rounded and nsed for basket-making and other purposes. See Rattan.
2. The sugar-cane (Saccharum officinarum). See Sugar.
3. A walking-stick.

In the mannfacture of canes great quantities and varieties of materials are consumed. The black. thorn and crab, cherry-tree and furze-bush, sapling oak and Spanish reed (Arundo donax), are the favorites. Then come supple-jacks and pimentoes from the West Indies, rattans and palms from Java, white and hlack bamboos from Singrapore, and stems of the bambusa-the gigantic grass of the tropics

- from Bornco. These are cut at certain seasons, freed from varions appendages, assortect into sizes, and seasoned. Many difierent processes are required to finish even the cheapest cane. The bark is to be removed after boiling the stick in water, or to be polished after roasting it in ashes; excrescences are to be manipulated into points of beauty; handles straightenei and shanks shaped; forms twisted and lieads lasped; tops carved or mounted, surfaces charred and scraped, shanks smoothed or varnished, and bottoms shaped and ferruled. Malacca canes have frequently to be colored in parts, so that stained and natural surfaces are not listinguishable ; ivory for handles is turned or carved into shape; homs and hoofs for handles are baked, to retain their forms; tortoise-shell raspings are conglomerated by pressure into ornamental shapes, and lithographic transfers are extensively used ujon walking-sticks for the Parisian market.
The Egyptian gentleman did not consider himself "fixed " withont a walking-cane. He affectel a certain little horn or jrong near the handle-end. The lotus-flower was a favorite knob. Their canes yaried from $3 \frac{1}{2}$ to 6 fuet long. Their names were inscribed on them in hierogly] hics.

4. A water-raising device. See Hybiaulic Cane.

Cane-gun. A weapon comprising a gmobarrel with its discharging derices, arranged within the shaft of a cane so as to present the appearance of an

Cane-har'vest-er. A machine for cutting sugarcane or sorghum in the field. It differs but little essentially from the Corn-haryester (which see). In one form it has saws or blades which cut the cane near the gromnd, the cane falls over into a cradle, and a cross-cut saw cuts otr the top, whose imperfectly matured sap injures the quality of the shrear by its fecnlence, and its quantity of uncrystallizable sugar.
Cane-juice Bleach'er. Au apharatus for decolorizing cane-juice by means of sulphurons acid rapor. As the cane is crushed, the juice from the rollers passes by a trongh into a cylinder, in which is a revolving agitator consisting of a perforated cylinder with paddlewheels. At one side of the cylinder, and commmuicating with it, is a tank with a perforated cover, on which a stream of water is projected. The tank communicates with an oven containing sulphur, the vapor of which escapes into the tank, where it is purified by the water, and then passes into the cylinder, where it is mingled with the cane-juice by means of the agitator.

Cane-knife. A knife like a sword or Spanish machete, usell for cutting standing cane. It has a blade from 18 to 24 inches long, and is made in various patterns for the Southern or South American market.
The necessities of the sorghom culture in the United States have given rise to several special tools, among which are the strippers. (See Canesthipperi.) These are for the pruppose of removing the blades from the stalk, the former being green, immature, and absorbent, tending to depreciate the quantity and quality of the juice, which is feculent enough at any time.

Tlie cane must be topped also, for the same reason; the saccharine juices of the top are cinde and immature, and the panicle is not calculated for the purpose, its duty being to elaborate starch,
which is somewhat matured at the season of cutting.

Cane-mill. A machine for grinding sugar-cane or sorgham-stalks.

By a system of levers A and B the roll C is forced up against the top roll in close contact with it, so as

Fig. 1061 shows a sorghum-mill on a somewhat smaller scale, having three rolls which give two points of pressure. The cane is fed by a narrowing spont between the rolls $J K$, and then between $J L$. The juice is received in a pan, the rolls are kept clean by a scraper, and the bagasse delivered on to a discharge-board.

Sugar-Cane Mill.
to mash large and small canes. The strain is regulated by the shifting of the weights on the compound levers, so as to prodnce any pressure required. The power is apmliel to the pulley 1 , and transmitted to the upper roll throngh the pinion E. The endless apron F carries the cane to be crushed.

In Fig. 1060, the cave is fed into the mill by an endless helt G, and is held by the rollers $H g$, while the revolving knives C F chop it into pieces, which fall on the erushing-wheel beneath. This wheel grates the pieces against the concave and reduces them to a pulp, which then drops on the expressingrollers, where it is suhjected to a jet of steam, which is emitted by the nozzle Z^{\prime}, and the bagasse eventually carried out by the endless apron r.

Fig. 1060

Come-Mill.

Cane-pol'ish-ing Ma-chine'. A machine for polishing the hard siliceous cuticle of rattan-splints after they are split and rived from the cane. See Ratian ; Cane-wohing Machine.
Cane-press. Bessemer's cane-press lias a plunger reciprocating in a trunk into which the cane is introduced transversely. A length of cane is cut off at each stroke of the plunger, and then jammed against the mass of cut cane, which is eventually driven nut at the open end.

Cane-scrap'er. A machine for cutting away the woody fiber from the back of a splint of rattan, to bring it to a thin, pliable strand or braid, for weaving into a chair-seat or for similar use. See Ratran.

Cane-split'ter. One for cutting and riving splints from ratten. See Cane-working Machine; Rattan.

Fig. 1062.

Cane-Strippers.

Cane-strip'per. A knife for stripping and topping calle-stalks.
The cane-knife and stripper a has a spring jaw, which coincides with an indentation in the llade, to form a circular opeuing. This, being clasped upou the stalk, is drawn rapidly downward, stripping off the leares, and the blate is ready for topping when needed.
The cane may be stripped while standing in the fiell, which some prefer.
The cane-knife and stripper b has a spring jaw, which is arranged like the curved gnard on a swordhilt. The doted lines show the position assumed by the spring jaw when opened to be placed over a stalk.
Other forms of cane-strippers are tubes armed with knires, which strip the leaves from the stalk which passes through the tube.
Cane-work'ing Ma-chine'. Machines for splitting the strands, splints, or braids of mattan from the ceutral portion of the caue. The part used is the polished bark, and the machines for working it are known as cuinc splitlers, planers, scrapers, shuvers, dressers, reduccers, polishcrs. Some of these names are synomymous.

Silitters nake longitudinal incisions through the bark at such clistances a part as may suit the circumference of the cane and the desired width of the strand. The cane is forced through an opening, which has radial knives which divile the strands, and tangential chisels which lift the strands and part it from the central core, a cone spreading the strands outward clear of the core. The next operation is to plane, pare, or shave the inner or woody side of the strand, so as to make that side quite smooth and bring the strand to an ereus thickness. The machine has adjustable knives and gages.
The reduced splints are then polished by passing beneath rapidly rotating wheels.
Can-frame. A cotton-roving machine in which the roving is received into cans. A can-roving frame.
Can'gan. (Fabric.) Chinese coarse rotton cloth. It is in pieces 6 yards long, 19 inches wide, and has a fixel curtency value.
Can-hook. A device for slinging casks in hoist-
 ins. The ends of a piece of rope are reeverl through the eves of two flat hooks and stoppred. The tackle is hooked to the middle of the bight.
Can'is-ter-shot. Splerical iron slot, smaller: than grape, and used with guns of all calibers up to 10 inclies. They are laid in ticrs in a tin case or comister somewhat smaller in diameter than the bore of the gun, having an fron plate at the top and bottom. The interstices between the shot are filled in with sawdust closely jacked, and, when full, the iron cover is put down, and the end of the canister, which is cut into slips for the purpose, is turned down orer it. Different-sized sliot are provited for each description of cannon, those for howitzers being smaller than those for grons of the same caliber. Of the former, 48 shots are packed in the canister, and of the latter, 27. Canisters are employed against masses of troops at short ranges ; at ilistances greater than about 400 yards, case-shot are considered more efficient. Camisters for the 12 -pounder mountainhowitzer are always, and those for the smaller rifted guns generally, filled with musket-bullets.
Can-knife. I domestic implement for cutting open the lids of tin cans. See Cav-operels.

Can'ne-quin. (Fubric.) White cotion clotlı from thr Einat luties.

Can'non. 1. A fire-am of a size which requires it to be monnted for firing. As synonymons with ordicance or arkillcry, it includes givat guns, howitzers, and nortars; the latter are pieces of relatively short bore and large caliber, for fining shells. Howitzers are short pieces with sub-caliber chambers, and are, in some respects, a grade between gums and mortars.

The name is derired from the same root as canne (Fr.), a reed; and the English words can, cane, canal, canoc, etc., which, with the German kanne, Latin canna, and Greek Kávpa, are presumably derivatives from some Sanscrit root signifying a tubur lav or hollow object. See Howitzeli; Monifar.
The earliest camnon was doultles's Chinese, for thence came gunpowder. The history of cannon is the history of Guspowder and of Fire-works (see under those heads). The nitrons cfflorescence of the Tartar plains combined with the carbon of the argol fuel, and caused a sputtering beneath the pipkins of the nomads ; curiosity and ingenuity combined the materials more intinately, and chance or care added the third ingredient, sulphmr. Donbtless the paper cases and bamboos which were charged with the restless, fiery stuff were first of all intended for mere fireworks and dazeling exhibitions; but, as the art advanced, the intemittent firework was introduced, which discharged balls of fire at intervals. This appears among ins as the Roman coudle, - a very absurd name. By taking a tube of increased size, putting in a larger charge, and a missile on top of the latter, we have a fire-am; and this may have been the conclition of the matter when the advanced guard of Alexander was net in Forthern ludia liy a jeople who fought them with "balls of firt," as the ancient listorian narrates. The word came, a reed, is well chosen; for the orjginal tube was a reed or bumboo in all prohability, and was also called by that nanie. The thing and its title have kept well together for two or three thousand years. This sometimes happens, as in the case of two kinds of cloth well known in England, and to some extent here, barracan and camlct. Falstaff says : - "Two rognes in barracan (comupted into buciram) set at me"; not knowing that he was talking Arabic, - burrakian, barkia, a garment of camel's hair, from barik, a canel. Our gossiping friend Samuel Peprs, and the more stately Sir William Temple, prited themselves on their camlet clokes, which, if genmine, were even then made of camel's hair, as they were in the time of Esau and Jacob. The word is ahout the same, strange to say, in the Aramean and Aryan tongues (Heb. gamal; Ar. gromal; Greek, кauウㄱㅇ), Which may be accounted for by supposing that the Semitics rcceived the animal and its name from its original proprietors, the men who crossed the Hindoo lioosh, and, occulying the country of the five rivers, became trading acquaintances of the Jesopotamian nations.

Reference to the use of the fire-driven balls occurs at intervals along the pathway of history, and theris but little douht that the Greek emperors possersed some modes of projecting fire and explosives, perhaps halls, as early as the serenth century. Condé, in lis History of the Moors in Spain, spratis of then as used in the attack on fortified places as early as 1118, and at the siege of Cordova, 1250. It is reasonable to suppose that, failing to enter Europe at the Brzantine Gate, the adrent would be by the l'illars of Hercules, by which route arrived cotton, paper, clocks, medicines, the present (Hindoo) system of notation, and many other things, including the
shirt, its name, uses, and materials (chemisc; Sp. cemisu; Ar. Kemnis; not shirt, which only means short, and has nothing to do with it). Even the Arabic kamis betrays the origin of the stuff, being from the Sanscrit hischouma, a language of a differ-

Fig. 1064

ent family from the Arabic, the nane being evidently imported from India ly the Arabs along with the material ; for the trec-rool, as Herodotus calls cotton, was known as an Indian production in the time of the "Father of History," whose credit grows brighter and brighter as years roll by, - tardy justice.

In the eleventh century, if we may credit the chronicle of Alphonso Vl., written by Peclro, bishop of Leon, the vessels of the hing of Tunis, in the attack on Seville, "had on board a number of iron pipes, out of which volumes of thundering fire were discharged."

In the fourteenth century the references to the uses of cannon became common. Ferdinand took Gilmaltar from the Moors by cannon, in 1308. Petrarch tefers to them about the same time. The English (at Crecy, 1346), the Mnors, Arragonese, Freuch, and Danes, used them during that century.
Metalhic cammon were origimally marle by welding bars of iron longitudinally and linding them by rings, which were shrunk on over them while hot, a plan which, with some modifications, has been revived of late years, and seems more feasible in the present state of the arts than it was 500 years ago.
Some of these ancient guns were breech-loaders, having a removable chamber, insertable in the breech, where it was wedged, for the purpose of containing the charge of nowder.
The balls originally used were of stone, in some cases weighing 800 pounds or more, as is the case of the Mohammed 11. gun, mentioned presently.

Fig. 1064 shows the relative sizes, and, to some extent, the mode of construetion, of a number of the larger and more celebrated of the pieces of ordnance.
a is the Tzar-Ponschika, the great bronze gun of Moscow, cast in 1586 . Bore, 122 in . long, 36 in . diameter' ; chamber 70 in . long, 19 in . diameter ; total exterior length, 210 in.; weight, 86,240 pounds.
b, great bronze gun of Bejapoor, India, Malik-I Myden, the "Master of the Field." Cast in 1548. Bore, $28.5 \mathrm{in}$. ; total length, 170.6 in. ; weight, 89,600 pounds.
c, bronze cannon of Molianmed Il., A. D. 1464. Bore, 25 in . ; total length, 17 ft ; weight, 41,888 pounds.
d, the Dullc-Gricte, of Ghent, Holland. Wroughtiron, made in 1430 . Bore, 25 in .; total length, 197 in . ; weight, 29,120 pounds.
c, great bronze gun of Agra, India, Dhool-Dhence. Cast in 1628. Pore, 23.2 in ; total length, 170.2 in. ; weight, 67,648 poumls.
f, Wronght-iron gum, Jons Meg, Edinburgh. Made before 1460. Bore, 20 in . ; total leugth, 159 in. ; weight, 12,768 pounds.
g, Micheletto le Graud, at Mont St. Michel. Wrought-iron, made in 1423 . Bore, 19 inches.
h, Michelctie le Pctite, at the same place. Bore, 15 in .
i, Mallet's mortar, 1857-58. Bore, 36 in.; weight, 93,840 pounds.
j, English wrought-iron mizzle-loading 35 -ton gun. Pore, 12 in .; weight, 48,400 pounds.
k, Krupp's breech-loading steel gun. Bore, 11 in .
l. sca-service mortar. Bore, 13 in . weight, 11,200 pounds.
$m, 68$-pounder ; weight, 10,740 pounds.
n, Armstrong breech-loader. Bore, 7 in.
For relative sizes of projectiles, see CannonBAl.Ls.

The names adopted for cannon in the fifteenth century may be interesting: -

Name.
Aspick
---:

Canuon or ordnauce as at present constructed, and used in Europe and America, may be divided into three classes : guns, or camon proper, howitzers, and mortars. Carronades, which were a short, light species of camnon, intended for firing solid shot at short ranges, with small charges of powder, are now nearly obsolete. They were used on shipboard, and were principally distinguished by having $n o$ trumnions, being secured on their carriages or "slides" by a bolt passing through a lug or "navel" cast on their under site, and by a peculiar internal and external chamter at the muzzle; the nause is derived from that of the foumdry on the river Carron, in Stirlingshire, Scotland, where they were originally cast.
Guns, as distinguished from howitzers or mortars, are intended for firing either solid shot, shells, or case-shot, generally at moderate elevations, and, in the case of smooth-bore guns, with comparatively high charges of powder, rarying, according to the species of projectile and the object desired, to from $\frac{1}{8}$ to $\frac{1}{3}$ the weight of the solid shot proper to the caliber. The bore at the muzzle has a slight chamfic: The perpendicular portion of the muzzle is the fucc.

The different parts of a gum or howitzer are designated as follows: the brecch, including the whole mass of metal in the rear of the bottom of the bore, and extending to the rear of the base-ring ; the cascabcl, including the base of the breech and knob; the reïnforce, or reinforces, incluting the thickest part of the gun in front of the base-ring and extending forward to the chase, or conical part which terminates at the neck, or thinnest part of the gun, where the swell of the nuzzle begins; or, should there be no swell, all the part in rear of the face of the muzzle is included in the chase. The trunnions are short journals which support the gun on its carriage, the width of which is detcrmined by the distance between the rimbascs.

In the accompanying section of a 32 -pounder gun, from A to B is the cascabcl, A being the knob of the

Fig. $10 ; 5$

32-Pounter Se α-Coast Gun.
cascabel and f the basc of the brech: a is the bascring; from a to C is the first, and from C to D the second reinforce; from D to E is the chasc, expanding into the swcll of the muzzle F, which terminates in the $l i p G ; b$ is the ellipsoidal bottom of the bore, indicated hy the dotted lines ; c shows the diameter and pasition of a rimbrese, and d that of a trumaion. The diameter of the latter in gums is usually the same as that of the bore, and in howitzers, and mortars of the old pattern, as tlat of the chamber. e is the chase-ring, an ornamental fillet. The position of the vent is shown at g; its diameter is invariably two
tentlis of an incl. Rifled guns have a vent-picce of wrought-copper screwed into the piece.

Guns for use ous ship-board have a slot in the knob of the cascabel to receive the breeching, a stout rope secnred to ring-bolts in the side of the vessel for the purpose of checking the recoil.
Ritled camnon were first employed in actual service in Louis Napoleon's Italian campaign of 1859. General James's, 1861, were the first introduced into the United States service. These were service-pattern smooth-bores, rifted and furnished with projectiles also invented by General James. Captain Parrott's gun soon followed James's. This was comstructed by shrinking a wrought-iron reänforce over the breech of a cast-iron core, ancl was noted for its fewness of grooves and smallness of caliber in proportion to the weight of the projectile, which was very elongated. Wiarl's gun was of steel, hammered and welded, and was accompanied by a pectuliar and novel cartiage. The 3 -inch "Ordnance" or Griffin gun was tinally adopted for ritled fiehlartillery, and large numbers were in service at the close of the civil war in the United States. This is a wronght-iron gun weighing alout 820 pounds, rifled with 7 grooves, and carrying a projectile weighing about 10 pounls. A cast-iron rifted siegegun, $4 \frac{1}{2}$-inch caliber, and carying a 1 nojectile weigh. ing about 30 pounds, was introduced into the service at the same time.

Abont 1812, Colonel Bomford, U. S. A., introduced a chambered gun called by him the columbiad. These were made thicker at the breech and thimer at the muzzle than was then customary. This form was somewhat modified in the slell-guns of Colonel Paixhans, of the French army, about 1822, which found their way into the United Statcs land-service at a later period under the name of sea-coast howitzers.

Experiment has gradually led to the practice of increasing the thickuess of ordnance at the breech and reducing it at the muzzle, and making the resisting surfaces curvilinear. A large share of credit in this respect is due to the late Admiral Dahlgren, U. S. N.

The Rodman gun, from the late Colonel Rodman, U. S. A., resembles in general form the Dahkren gun, but is cast with a core, through which a stream of water circnlates while cooling, instead of solid, in the ordinary way; this tends to harden the metal in the inmediate vicinity of the bore and increase its temacity. This mode of casting is principally applied to the larger calibers, from 8 to 20 inches. A gun of the latter size, weighing 116,000 pounds, throws a projectile of nearly 1,100 pounds unwards of $4 \frac{1}{2}$ miles at an elevation of 25°, with a maximum charge of 200 pounds powder.
The extreme length of the piece is 20 ft .3 in . ; of bore, $17 \mathrm{ft} .6 \mathrm{in}$. ; and greatest dimacter, 5 ft .4 in .
The Crimean war (1854) imparted rquite an impulse to the improvement of ordnance and projectiles.

Lancaster's, one of the first of these, obviated riffing by making the lore elliptical, but with a gradnal twist thronghout, so that a projectile of corresponding shape would receive a rotary motion during its passage through the hore.

Armstrong's first gun was made in 1855, and a patent obtained in 1857. It has been extensively adopted in the British service, lt is built up of layers of wrought-iron bars twisted spirally in reverse directions over a steel core, and bound together by one or more wrought-iron rings shrunk on at a white heat. A peculiar breech-loading mechanism is also used with this gun. See Aismistiong Gun.

In the Alues cannon, a series of compound longitudinal rings are consecutively welded to a concave breech-piece, upon a removatbe mandrel.

Blakeley's cannon is composed of an inner tube, which may be of mild steel, upon which an outer tube of less extensible material, as laad steel, is shrunk. His first English patent was in 1855. The American patent, in which the process here mentionel is described, bears date 1864 .

Whitworth commenced experimenting about 1855 , and his guns underwent a satisfactory test in 18000 . The leading peculiarities are a bore which is hexagonal in cross section without grooves, and having a rapill twist ; the projectile is a hexagonal bolt whose spiral conforms to the t wist of the bore and is destitute of knols and used without a sabot. The device for breech-loading differs from that of Armstrong.

Krupp's first steel cannon (1849) were oljected to on account of their novelty and expense. He has since furnished camnon to Asia as well as Eimope. He has used a mixture of steel and iron, the latter metal increasing the elasticity.

The compound was cast in hlumbago crucibles, and forged while still at a red heat under an enormous steam-hammer, compressing the mass two ou three per cent, and nearly doubling its tensile strength. Cannon of over 8 -inch hore are made up of several concentric ring; those of a smaller size are forged solid.

Krupps monster gun, at the Paris Exposition of 1867 (see illustration on opposite page), consists of an inncr tubs weighing 20 tons, upon which are shumk cast-steel rings, forming at the breech a threefold and at the muzzle a twofold layer of metal ; these are made from massive ingots without welling, weighing together 30 tons.

The total weight of the gun is 50 tons ; caliber. 14 in. ; total length, $17 \frac{1}{2} \mathrm{ft}$.; weight of solid shot, 1,212 pounds; weight of shell, 1,030 pounds; charge of powder, from 110 to 130 pounds. A special car wcighing 24 tons was constructed for the transportation of this gun to Paris.

The gun is mounted on a steel carriage weighing 15 tons, supportell on a center-pintle chassis weighing 25 tons.

The breech-Joading is on Krupprs patent plan. The shot or shell is raised by a block and fall, and is rolled into the side of the breech through an aperture closed by a slide.

Though many breech-loading guns of this or similar construction were employed by North Germany during the late Franco-Prussian war, we know of none at all approaching it in size.

Baron Wahrendortf, of Sweden, some 30 to 40

gears ago, contrived a hreech-loading cannon, in whirh the bore extended the whole length of the piece, the projectile being passed in at the rear and
secured by a transverse breech plug and wedge. Caralli's rifled cannon of later late loaded at the breech in a nearly similar way.

The Broadwell breech-loading cannon has a steel wedge or breech-block A, moving horizontally in a mortise B, made through the breech of the pinece at right angles with the bore. This breech-block is

Fig 106T.

Broadwell's Breech-Block (Detril View).

operated by means of a partially threaded screw, E, located in its rear side, which tinds its socket-thread in the gun behind it, and is thus locked in position at the moment of fire.

One half-tmm of this screw is sufficient to loosen the block, and lermit it to be easily withdrawn to the position for loading the piect.

The gas-check consists in a peculiarly curred steel ring d, located in a correspondingly shaped chamber in the hore of the gun immediately in front of the breech-bloek. When the charge is fired, this ring is expanded by the gases and pressed tightly against the walls of its chamber and also against a steel bearing plate, D, let into the face of the breech-block, thus forming a perfectly tight gascheck.

Fig. 1068

Armaments of English Iron-Clads.

The armaments of the British iron-clads are of heavier and heavier guns as years go by. The annexed figure gives a comparison of the relative proportions and weights of the guns: A, "Warrior's" armament, - 68 -pounder; $4^{\frac{3}{3} \text {.ton gum. }}$ charge, 16 pounds. B, "Bellerophon's" ammament, - 250 -pomder; 12 -ton gun ; charge, 43 pounds. C, "Hercnles's" armament, - 400 -pounder ; 18-ton gun ; charge, 60 prounds. D, "Monarch's" armament. -600 -pounder ; 25-ton gun ; charge, 70 prounds. E, "Thminderer's" armament, - $600-$ pounder: 30-ton gun ; charge, 100 pounds.

These figures are exceeded by the latest English gun (the 35 -ton), which is by no means, however, what it is paraded as being, - the largest gun in the world.

Pounds.
Woolwich. 35 tons 7 cwt . (English count) $=79,084$
Armstrong (Big Will) 50,400
Krupp, 14-inch (1,050-pounder) . . 100,000
Rodman, smooth-bore (20-inch) . . 116,497
The "Thunderer," 4,400 tons, and the "Fury," 5,000 tons burden, are designed each to carry four of these 35 -ton guns, in two turrets, two guns being placed in a turret side by side.
Among the earliest cannon made in Europe were breceh-loaders, specimens of which are preserved in the Artillery Museum of Woolwich, England.
The charge was inserted in an iron cylinder, which was fixed by wedgesinits place in the breech of the gun.
Breech-loading cannon were introduced by Daniel Spekle, who died in 1589, and by Utfanus.

Cannon of ice were made at St . l'etersburg in 1740 , and repeatedly fired, - a whim.

All the riffed cammon in the British service of less than 6.3 -inch caliber are breech-loader's.

At the sicge of Badajoz, the firing was continued for 104 hours, and the number of rounds fired from each 24 -pounder iron gun averaged 1,249; at the siege of St. Sebastian each piece was fired about $3 \check{5} 0$ times in $15 \frac{1}{2}$ hours. But few of these pieces were rendered unserviceable; but it is estimated that three times the number of brass guns would have been required to produce the same effect, or maintain such long and rapid firing.

An experimental Armstrong 32 -pounder, weighing 26 cwt ., with a charge of 6 pounds and an elevation of 33°, sent its projectile 9,153 yards. The range was carefully measured. Mr. Whitworth states that his little 3 -pounder, fired at Sonthport, attained a range of 9,688 yards. The long experimental 7 -inch gun of six tons, designed by Mr. Lynall Thomas, with 25 pounds of powder, prope]ling a shot of 175 pounds, and fired with an elevation of $37 \frac{1}{2}^{\circ}$, ranged 10,075 yards. There have been seteral other instances of long ranges, and there would be more but for the general uselessness of firing at distances where no aim ean possibly be taken.

The accelerating principle has been again and again suggested, and consists in increasing the velocity of the projectile by the ignition of successive charges of powder during the passage of the ball through the bore. Henry Bessemer, and Captain Fitzmaurice of the British navy, are yet inventing and confident. The former designs a tube 60 feet Jong, with charges 60 in number, fired by electricity in quick succession, so that each may exert its force before the ball escapes at the muzzle.

Mancreiff's plan for mounting ordnance is to make the recoil of the gun in firing swing the gun backward and downward, so as to depress it below the sill of the embrasure and allow the gunners to load it without exposure to the enemy.

Varions modes of mounting and operating guns hare been devised for monitor and turret use, for which consult patents of Eads and Ericsson. Very ingenious indeed are many of these devices.
2. (1fachincry.) A metallic hub or sleere, fitted to revolve on a shaft or with it.
Can'non-ball. Properly speaking, this term should only be applied to spherical solid projectiles; but it appears to have become generic, pxtending to elongated bullets for rifled guns, and even to hollow projectiles.
Technically, balls are termed solid shot, or simply shot, to distinguish them from hollow projectiles. They are now universally made of cast-iron, though stone was formerly employed, and was used in some instances by the Turks as late as 1827 .

In South America balls of copper were formerly insed, this metal being there, at that period, cheaper than iron.

The Foedera mentions an order of Henry V., A. D. 1418, to the clerk of the works of his ordnance, for making 7,000 stone balls for his cannon, of different sizes, from the quarries of Maidstone, in lient. Although iron halls are noticed as being used by the French towards the close of the $14 t \mathrm{~h}$ century, yet no mention is made of then in English history before 1550 , when, in an acquittance for delivering up the artillery at Boulogne, they are styled boulctz de for. Stone balls were not entirely laill aside in England till the civil war, time of Charles 1.

Elongated bullets for rifled camnon are now frequently, especially by English writers, termed "bolts." These are often made flat-pointed or angularly pointed, to more readily penetrate iron plating. (See m, Fig. 1069).

Shells are hollow projectiles in which is placed a quantity of powder sutficient to burst them when exploded by means of a fuse. See Fise; Shell.

C'ase-shot are thinuer than shells, adapting them to contain a number of bullets, which are scattered at the moment of bursting.

All projectiles are made smaller than the bore of the gan which they are intended to fit. The difference between their diameter and that of the bore of the gum is termed the rindaye. This is much less for ritled than for smooth-bore arms, the former in some cases amounting to .15 , and the latter usually to .025 of an inch.

Of the class adapted for rifled guns, thase most prominent during the late civil war in this comntry were the Parrott, Hotchkiss, and Shenkl. See Sufle.
Projectiles for rifled cannon may be given a rotary motion by the expansion of a soft metallic sabot at the rear, or by means of studs cast on or affixed to the shell. The former by their expansion at the moment of firing fill the groores, while the latter are necessarily compelled to follow the groores, being unable to leave them without being torn away.
Fig. 1069 shows a few of the mumerons kinds of cannon-projectiles which have been devised.
a, the "Hotchkiss." At the moment of firing, the wedge-shaped piece, shown in section, is driven forward, expanding a soft metal ring which fills the groaves.
$b b$, the "James." The gas passes through the aperture at the back, driving out a number of pins, which expand a fibrous mass surrounding the shot and encircled by a metallic ring, which is thus forced to enter the groores. In the second this is effected without the aid of pins.
$c c$ are vertical and longitudinal sections of a similar projectile having a detachable point.
d, "Read." The gas enters through holes around the base, and expands an encircling band.
e, "Shaler." Driving forward the metallic cup at the base flattens it and expands the sabot.
f, "Cochram." A band of copper wire is expanded by forcing forward a cup at the base of the projectile, against a cylinder which surounds the latter.
g, "Boekel." The illustration shows the annular soft-metal packing being attached to a projectile by a swage and dies while the point is held on an anvil. h, "Atwater." The packing of wire webbing or cloth is expanded by wedges driven forward by plungers at the base of the shot.
i, "Woodbury," a spirally grooved projectile, with a sabot similarly grooved, for firing from a smooth-bore gun.
j, "Taggart," has a spirally flanged central aperture intended to canse the bullet to rotate on its

axis by atmospheric aetion when fired from a smooth-bore gun.
k, "Sigourney," has projecting spiral ribs to take the grooves and impart rotary motion, and ammlar belts which fit the lands and direct the flight.
l, the "Currie" ball, conoidal at each end, and having an annular groove deepening from front to rear, into which is cast a soft-metal packing-ring.
m, " "bolt" with chisel-edged points for cutting throngh iron plating. The annular groove between the cutting-edges and the point is filled with soft metal, to prevent retardation of the flight.
n, an elongated bullet with spiral flanges for imparting rotary motion when fired from a smoothbore gun. It will be obvions to practical men that some of the last projectiles figured would be of little service.
o, an "accelerating" projectile. This bullet has in front a plunger, which, on striking an object, explodes, by percussion, a clarge contained in a chamber, giving a new inpetus to the projectile.

For varieties of cannon-shot, see under the following heads:-

Angel-shot.
Bar-shot.
Bolt.
Bomb.
Burrel.
Canister.
Carcass.
Case-shot.
Chain-sṭot.
Cross-luar shot.
Double-headed shot.
Grape-shot.
See also l'rojectiles, for list of other missiles impelled by discharge from cannon.
See also Weapons.
Fig. 1070 gives an idea of the proportionate magnitudes of some of the projectiles of celelinated can-

non. The diameters and weights are inscribed in figures; the upper figure being the bore, the lower figure the weight, of the shot. (The balls a t, in the figure, are of stone.)

For description of the cannon themselves, see Cannon.
In Fig. 1070, a is the stone projectile of TsarPooschkic (Muscovite).
b shows seven sizes of the Turkisb granite balls of Scutari, weighing respectively $373,498,747,810$, 871, 1,182, and 1,640 pounds.
c is the basalt ball of Mullek-y-mydan (Indian).
d is the granite ball of the great gun of Nohammed 11.
e, the stone ball of Dulle-Gricte (Flemish).
f, stone hall of Thool-Ihance (East Indian).
g, stone ball of Mons Mig (Scotch).
h, granite ball of Jichclette le Grand.
i, granite ball of Miehelpffe lc Petite.
j, Nallet's iron bomb (English).
k to s, English elongated iron projectiles.
t, 68 -pound ball (1841).
u, Liege, French, 1,000-pound hall (1832).
v, "Beelzehub" and "Puritin," American, 1,100-
pound hall (1866).
w, Rodman, American, 450 -pound ball (1866).

Can＇non－cast＇ing．The molds for brass canuon are formed by wrapping a long taper rod of wood with a peculiar soft rone，over which is applied a coating of loam，which，as the work proceeds，is dried over a long fire，a templet being applied to form the proper outline．This model is made about one third longer than the gun is to be．It is next，when dry， blackiwashed，and covered with a shell of loam not less than three inches thick，secured by iron bands， which is also carefnlly dried．The model is next re－ mored by withdrawing the taper rod and the rope， and extracting the pieces of loam．The parts for the cascabel and trumions are formed upon wooden models，and then attached to the exterior of the shell； handles，dolphins，or ornamental figures，are modeled in wax，and placed on the clay model previons to molding the shell，from which they are melted out before casting．

When dry，the shells are placed muzzle upward in a pit in front of the furnace or furnaces，and the earth thrown in and well rammed around them．At the same time，a vertical runner，which enters the mold near the bottom，or not higher than the trun－ nions，is made for each mold，terminating in a trough or gutter，at the far end of which is a siquare hole to receive any excess of metal．The runners are stopped by iron bars，which are successively withdrawn as the preceding mold in order hecomes filled，and the furnace or furnaces are tapped by an iron bar with a taper end，so as to regulate the flow of metal，by making a larger or smaller orifice，as required．A spade or gate across the gutter at a certain point prevents the metal from flowing beyond this till the molds towards that end are filled，and when the last is removed the metal is allowed to flow into the square pit before referred to．
The general process with iron cannon is very simi－ lar．In all such large castings a large head or sprue must be allowed to maintain a pressure adequate to produce a sufficient soliditication at the breech，where the metal should be strongest．

In casting the first 20 －inch gun at Fort Pitt Foun－ Jry，in 1564，the mold was in four pieces；the core was on the Rodman plan，a fluter cylimeler of cast－ iron，circular or semi－elliptical at the lorser end， and closed at top by a cap through which a pipe enters，conducting water to the hotton，from which it rises to near the top，and is carried oft by a waste－pipe．

Five furnaces，charged in all with 105 tons of metal，were enployed，－two containing 23 tons，one 39，and the two srialler between 5 and 10 tons each． The molten metal was admitted to the bottom of the mold through two gates，one on each side．Six hours were required for its complete fusion，which was maintained for one hour twenty－tour minutes，when the large furnaces were tapped，filling the mold in twenty－two minutes．So long as a constant flow of water was admitted to the core，the temperature of that issuing from the discharge－pipe did not exceed $92^{\circ} \mathrm{F}$ ．，falling within twenty－one hours to 57° ；but when the flow was stopped，the temperature rose to the boiling－point．（See page 447．）

Can＇non－clock．A cannon with a burning－glass over the rent，so as to fire the priming when the sum reaches the meridian．Snch pieces were placed in the Palais Royal and in the Luxembourg，at l＇aris．
Can＇non－lock．A contrirance placed over the touch－hole of a cannon to explode the charge．

Can＇non－met＇al．An alloy of copler and tin． See Gu゙ぶ－metal：Alroy．

Can＇non－pin＇ion．（IForology．）A squared tu－ bular piece，placed on the arbor of the center－wheel， and adapted to hold the minnte－hand．

Can＇non－roy＇al．An old grade of service－can－ non， $8 \frac{1}{2}$ inches bore， 66 －pounder．A carthoun． Can＇non－stove．A
cast－iron store，some－ what cannon－shaped， the lower portion，or bosh，forming the fire－ pot and the upper a ra－ diating surface．It has no flues proper，but the store－pipe stands npon the top，encircling the thimble．The door is above the level of the usual level of the coals， and the middle zone of the store may have，as in the example，doors and panes of mica．
Can＇nu－la（Surgi－ cal．）A small tube in－ troduced by means of a stilctte into a cavity or

Fig． 1071.
 tumor，to withdraw a fluid．
Ca－noe＇．A light boat，narrow in the beam and adapted to be paddled．
The coracle of the ancient Britons was a frame of willow covered with hides．The North American Indian made his canoe of cedar－wood covered with an unbroken sheet of the bark of the white birch． The lndians of the plains used buffalo－hide．In the wooled regions devoid of birch the canoe was a shaped and hollowed log．
The Rob Roy canoe，so celebrated from the ad－ ventures of Mr．Macgregor in traveling 3,000 miles on the narigable streans and head－waters of Europe and Asia，was made of well－seasoned and selected plank．Such a canoe is 13 feet long， 26 inches wide， 12 inches deep，and bas a＂cumber＂of 2 inches．The opening in the deck in which the voyager places himself is 4 feet long and 1 foot 8 inches wide．A canoe for two persons，sitting face to face，should he about two thirds larger．

In Nerr York，the form and construction known as the nautilus is most approved，it is made of wood， the keel leing oak and the hull of cedar．Abroad， there are seteral types，all more or less in favor． Assuming the traveler to weigh one hundred and sixty pounds，a nantilus should have a length of 14 feet，and a beam of 2 feet 4 inches．It is lon－ est amidships，its depth there heing 12 inches，ris－ ing to 20 at the stem and 22 at the bow：In each end is a water－tight compartment，and the whole is so contrived that in event of a capsize it will right itself as scon as relieved of its burden．It is fitted with a sprit－sail， 7 feet from tip to boom， and is，indeed，calculated more for sailing than pad－ dling，while the reverse is the case with most of the English canoes．

Appliances and means are carried for cooking， fishing，hanting，etc．；and in supplying these minor conveniences much ingenuity and adaptiveness las been displayed．An apparatus heated by a spirit－ lamp serves for the preparation of food．Water－ proof haversacks carry tea，coffee，sugar，rice，and other comestibles，as well as quinine to cure the ague，which pursues bipeds withont feathers who paddle about in wet places．

Canoes are also made of galranized iron，caout－ chouc．and paper．The latter comes the nearest in lightness to Hiawatha＇s ：－
＂Thus the Birch Canne wis builded
In the valley，by the river，
In the bosoin of the forest ；

And the forest's life was in it,
All its mystery and its magic,
All the lightness of the birch-tree,
All the toughness of the cedar,
All the larch's supple sinews;
And it thoated on the river
Like a yellow leaf in autumu,
Like a yellow water-lily."
The canoes of the Feejees are double, of unequal size ; the smaller serving as an outrigger. Large oues are 100 feet in length. The two cauoes are

Can-Opener.
conneeted by a platform about 15 feet wide, and projecting two or three feet beyond the sides. The bottom of eael consists of a single plank; the sides are fitted by dovetailing, and closely united by lashings passed through flanges left on each of the pieces. The joints are closed by the gum of the hread-fruit tree. The sails are large, and made of mats. The mast is about half the length of the canoe, and the yard and boom are still longer. Captain Cook estimated the naval foree of the Society 1slands at 1,700 war-canoes, manned by 68,000 men. See Boat, pp. 311, 312.

Can'on. 1. (Surgical.) An instrument used in sewing up wounds.
2. (Printing.) A large type, used for posters and handbills.
3. The part of a bell by which it is suspended. Otherwise called the ear.
Can'on-bit. The barrel of a hit ; the portion in the mouth of a horse.
Can-o'pen-er. A domestic inplement for opening cans containing fruit, oysters, and what not. The illustration shows several forms.
a has a prong which is thrust through the tin and forms a fulcrum for the cutter.
ζ is designed to bore a round hole.

fixed upon the clutch, the treadle being depressed to throw the hevels out of gear, and withdraw the clutch from the surface of the metal in the solderingfurnaces; releasing the treadle, the bevels are thrown into gear, and a spring forces the rol bearing the clutch downward, until the lower edge of the can is slightly immersed in the molten solder, and caused to rotate against the surface of a soldering-iron held therein, after which the treadle is again depressed and the can remored.
Cant. An angle; a berel ; a chamfer ; a slope; an arris : a hif: a ridge.

1. (Building.) a. A canted wall is one which forms an angle with the face of another wall.
b. A cunted column is one whose flutes are formed in cants instead of curres.
c. When the angles are removed or absent from a post, beam, or pillar, it is said to be cented.
d. A canted molding is one which has augular turns, but no quirks or circular work. See Mulding.
2. (Coopering.) One of the segments forming a side piece in the head of a cask.
3. (Natical.) A piece of wood laid upon the deck of a vessel, to support the bulkheuds.
4. (Shipbuilding.) A cant-limber or cant-frame is one which is not square with the keel; less than 90°.
5. The angle, as of the head of a bolt. A bolt with a hexagonal or octagonal head is said to be six or eight canted.
6. (Gearing.) A segment of the rim of a wooden cog-wheel.

Can'ta-Ion'. (Fabric.) A species of woolen stuff.
Cant-block. (Noutical.) A large block used in canting whales; that is, turning them orer in flensing. The cant-purchase is suspended from the mainmast head.
Cant-board. A division in the converer-box of a flour-bolt, to separate grades of flour or olfal.
Cant-chis'el. A long and strong chisel with the basil and a rib on one side.
Cant'ed. A term applied to an object when a comer is chamfered off, - not rounded off, but presenting angles. See CaNt.
Cant-fall. (Nautical.) The purchase used in turning over the carcass of a whale when ficnsing.
Cant-file. A file having the shape of an obtuseangled triangle in its transrerse section; user in filing the imner angles of spanners and wrenches for bolts with hexagonal and octagonal heads.

Kant is an edge or corner in many of the old dialects of Europe, and the Greek кavéos, the corner of the eye, has an allied signification.
Cant-hook. A lever and suspended hook adapted for turning loss in the

Cant-Hnok. rard, on the skids, or on the saw-mill carriage.

Also, a sling with hooks for raising and tilting casks, to empty them.
Can'tick-quoin. (Naulical.) A triangular block of wood, used in chocking a cask, to keep it from rolling when stowed.
Can'ti-lev'er. One of a series of timhers, of the nature of consoles, projecting from the face of a wall to sustain an eave, cornice, entablature, or balconv. A modillm.
Cant'ing-wheel. A star-wheel for an endless chain. The cogs are canted; that is, the corners cut off. See star-wheel.

Can'tle. (Saddlery.) The upwardly projecting portion at the rear part of a saddle. See Pommel.

Cant'ling. (Brick-making.) The lower of two courses of burned brick which inclose a brick-clamp.

Cant-mold'ing. One neither perpendicular to the horizon, nor to the plane of the object to which it is attached.

Can'ton. (Building.) A salient corner formed of a pilaster or quoins, which project beyond the general faces of the walls.
Can'ton-flan'nel. (Fabrie.) Cotton cloth upon which a nap is raised in imitation of wool.

Can-toon'. (Fubric.) A strong cotton goods, with a corded surface on one side and a satiny finish on the other.

Cant-timber. (Shipbuilding). One of the timbers at the end of a ship which are cunted, that is, rise obliquely from the keel. The forward pair of cant-timbers are called the knightheads, and form a bed for the reception of the bowsprit. The canttimbers towards the stem incline forward; those towards the stern incline aft.

A cant is an angle, and the timbers in the narrow interior angles at the stem and stern are called cunttimbers.

The timber at the extreme angle is bnilt in solid, and is called the dead-wood.

Can'vas. (Fabric.) From cannabis, hemp. An unbleached, heary cloth of hemp or flax, used for sails, tents, backing for pictures, bed-bottoms, and for other purposes where a fabric of great stability is required.

An open rariety is used for tambour and worsted work.

Canvas for sails is made from 18 to 24 inches wide, and nambered from 0 to 8 , No. 0 being the thickest. A bolt is from 39 to 40 yards long. The best is made of long-fibred flax.
Bolts of canras weigh from 25 to 48 pounds, and strips 1 inch wide hare a tenacity varying from 200 to 480 pounds.
Can'vas-cut'ter. A machine for cutting canras, card-boarl, and other sheet materials into

Fig. 1076.

strips; the stuff is fed hetween rollers $D D$, guided by a strip Q, and slit by a knife L, which is ad-
justed to such distance from the latter as may be desired.

Can'vas-frame. (Calico-printing.) A diaphragm of canvas in a paint-vat used in a certain process of calico-printing. The color is admitted by a stopcack below, and up to the level of the canvas.

Can'vas-stretch'er. A quadrilateral frame on which canvas is extended for painters' uses. In the

Fig. $10 \pi \overline{7}$.

one shown, the miter-joints have dowel-pins, and are expanded by the wedges, the pins in the open center of the latter preventing their falling out.

Caout'chouc. Commonly called gun-elastic or india-rubber. A substance derived from the sap of various trees, of which the Jatropha elastica, called by the natives hevee, flourishing in the plains of Brazil, toward the lower part of the Amazon River, is the principal source of production. It was first brought to Europe in the early part of the eighteenth century, and fifty years later was mentioned by Dr. Priestly as a substance excellently adapted for removing pencil-marks from paper. Crumb of bread had previously been employenl for this purpose.

The sap, obtained by tapping the trees, is dried over a fire, which gives it the dark appearance observable iu the rubber of conmerce. For many years its various adaptabilities seemed unperceived, but in 1791 Samuel Peal obtained a patent for water-proofing fabrics by means of this gum dissolved in spirits of turpentine; though this does not seem to have led to any practical results. Besides turpentine, ether, bisulphide of carbon, naphtha, some of the volatite oils, and especially benzole, are its best solvents. Acids and alkalies exert but little influence upon it.

Hancock, 1823, and Mackintosh, were the first who really applied this gum to its present uses. Their original processes consisted in applying it, dissolved in some of the fluids hefore mentionel, to the surface of a web of cloth; this might be donbled, constituting a perfectly waterproof garment; but a mass of such laid together became almost inseparable in warm weather, compelling seamen and others much exposed to wet under the tropics to jrefer the old-fashioned oil-cloth overcoat to the "Mackintosh." This was remedied by the vulcanizing process discovered hy Gondyear.
The modes of mannfacture up to a certain point of the manufacture under the old, or non-vulcanizing, and the present, or vulcanizing, processes, are very similar. The mass of rubber bottles, blocks, or strips, were formerly compacted under a hydrostatic press, and afterward cut by knives, operated by machinery, into sheets and strips as required. For
forming elastic or corrugated goods the mbber threads were passed between rolls and kept at their full tension during this process, stretching them to several times their natural length; this caused them, when cold, to lose their elasticity. They were then, either naked, or covered with fine thread of silk or cotton, used as the warp or weft threals for the material to be fabricated, and when this was woven their elasticity was restored by passing a hot irou over the goods. Vulcanizing obviates this necessity.

In the present state of the art, the material is first cleansed by extracting the leaves, hark, dirt, and other forcign substances, as far as can be done by hand, and cut into strips ly a revolving knife, and then transferred to large fluted iron rollers termed "crackers," which grind ont most of the extraneous materials. From the crackers it is taken to the washing-machine, a large vat where it is cut into small pieces by knives, and where it undergoes a kneading and washing process which removes the remaining dirt and foreign matters. It is next transferred to a grinding-machine, composed of large hollow iron cylinders revolving in opposite directions, where the small pieces formed by the washingmachiue are kneadel into a homogeneous mass, and is then left to dry. When sufficiently dried, -which takes, perhaps, seremal months, - the rubber is transferred to the mixing-machine, in which it passes between hollow iron cylinders, heated by steam through their axes to a regulated temperature, where it is farther ground and more thoronghly incorporated. The vulcanizing ingredients are added at this stage of the process.

These may be raried to suit the caprice of the manufacturer, or to adapt the material more particularly to special uses. The combination, through the influence of heat, of sulphur with the gum, gives it the peculiar properties acquired by vulcanization, though other ingredients are largely added.

Charles Goolyear in his original patent preferred 5 parts sulphur and 7 white lead to 25 caoutchouc. The particular proportions of these and other articles are, however, we believe, generally preserved as secrets among rubber-manufacturers, each laving special fommulas of his own.

Vulcanized rubber is malterable at a moderate heat, has not the sticky tendency hefore referred to, and, when cut into threads for elastic goods, does not require to be subjected to a reheating process. This article may be and has been rendered as hard as horn, and used for combs, knife-handles, and even rolled into thin sheets and employed as a substitute for paper.
The substance called ebonite, invented by Mr. Charles Goodyear, who devoted his whole life to the development of the caprabilities of caoutchouc, contains from 30 to 60 per cent of sulphur, and has various other ingredients, as shellac, gutta-percha, chalk, barytes, pipe-clay, or white vitriol, added thereto. It is used for knife-handles, combs, and ornamental articles, being rery hard and susceptible of a high polish. Equal parts of gutta-percla and caontchoue combined with sulphur form a compound resembling horn, aud which may be used for the sane purposes. Sometimes gypsum, resin, or white-lead, are added to this. See lvory, Alitificial; Hardrubber; Pyroxyline; Vulcanite.

Caoutchouc, exposed to a heat of $600^{\circ} \mathrm{F}$. in a close vessel, yields an oily liquid which is an excellent solvent of the gum itself.
A very tenacious glue is formed by dissolving the gum in coal-tar naphtha, and evaporating the mixture to the consistency of cream, and adding, when heated, twice its weight of shellac. For use, the
glue is heated to a temperature slightly above that of boiling water. This is known as marine glue.
Cap. 1. (Wcar.) A cover for the head, with or without a visor, but without a brim.
In early times people went bareheaded. An English law of 1571 commanded all persons except genthefolks and officials to wear a woolen cap.
The Romans long went without any corering for the head, and ancient statues are bareheaded. Caps were once a symbol of liberty, and manumission of a slave was conferred by the gift of a cap. The general use of caps is referred to A. D. 1449. In the reign of Henry VIl., hats were limited in price to 20 d . and caps to $2 s .8 \mathrm{~d}_{\mathrm{c}}$. A. D. $1489 \ln$ 1571, an act of Parliament made their wear compulsory, except for maids, gentlefolks, land and office holders. See Hat.
2. (Architecture.) a. The upper member of a column or pilaster. A capital; a coronc.
b. A coping of a wall or parapet.
c. A cornice above a door.
d. The upper member of a molding.
3. (Carpentry.) a. The lintel of a door or win-dow-frame.
b. A beam joining the tops of a row of posts in a frame. A plate.
c. The hand-rail of a stairs or balustrade.
4. (Nautical.) a. A thick, strong block of wood with a round and a square hole through it, used to confine together the lead of one mast and the foot of the one above it; or the jib-boom to the bowsprit.
In smaller craft, a lower cap receives the heel of the topmast, and acts as a suhstitute for the ficl and trestlc-trees used in vessels of a larger description.
b. A parceling or covering at the end of a rope.
5. (Ordiance.) a. A sheet of lead laid over the vent of a cannon. An apron.
b. A copper capsule containing a fulminate, and placed upon the nipple to explode the charge on the fall of the hammer.
6. (Machinery.) a. The upper half of a journalbox. The lower half is the pillow. Sce lillowblock.
b. The iron-banded piece (Fig. 1078) on the end of a wooden pump-rod or pitman by which it is connected with a working-beam.
7. (Civil Enyineering.) The horizontal beam con-

Fig. 10 T 3.
Fig. 1079.

Main-Cap.

necting the heads of a row of piles of a timber bridge.
S. (Millurighting.) The movable upper story of a windmill. (Fig. 1079.)
9. (Bookbinding.) The covering of a head-band or the envelope of a book while binding.
10. (Horology.) The inuer case which covers the movement in some forms of watches. It is now nearly discontinued.
11. The tire of lead and tin on the periphery of a glazing wheel.
12. A size of paper. Flat cap is 14×17 inches ; double cap is 17×28; foolscap and legal cap are of various sizes, from $7 \frac{1}{2} \times 12$ to the size of a flat capsheet folded $5 \frac{1}{2} \times 14$. Foolscap is folded on the long edge ; legal cap on the top or short edge.
13. A little eapsule containing fulminate, placed on the nipple of a gin, and exploded by the fall of the cock to fire the piece. Sce Percussioncap.

Ca-pade'. (Hat-making.) A bat.
Ca-par'i-son. (Menage.) The bridle, saddle, and trappings complete of a horse lor military serrice.
Ca'pel-li'na. (Sp.) The bell or cover of the pile of amalgam bricks (pina) in the Spanish process of separating the mercury from the metal. See Amalgamatore (Fig. 141).
Ca'per. (Nautical.) A kind of vessel formerly used ly the Drtch as a privateer.

Cap'il-la-ry-fil'ter. A simple mode of frecing water of its larger impurities by meaus of a cord of loose fiber, such as Fig. 1080. cotton candle-wick.

The water in the upper chamber passes into the wick, and, being elevated br the capillary action, passes down the tube, and drops into the pitcher, which is placed in the chamber to receive it.
Cap'il-la-rim'e-ter. An instrument for testing the quality of oils
 by indicating the quantity of oil Capillary-Filler. which falls from a given-sized point under certain circumstances of temperature, etc.

Cap'i-tal. 1. (Architecture.) The head or uppermost part of a colnmn or pilaster. The capitals of the columns constitute the principal and most in. dicative mark of the respective orders.
2. (Fortification.) An imaginary line bisecting the prominent salient angle of a bastion or other work.
3. (Distilling.) The head of a still.
4. (Printing.) A large or upper-case letter.

Cap'o-niere'. (Fortification.) A work consisting of a double parapet, covering a passage across the ditch to the gorge of the ravelin. See Bastron.

Certain differences in construction give rise to the following names :-

Covered or casemated caponiere.
Open caponiere.
Single, simple, or half caponiere.
Palisado caponiere.
Cap'pa-dine. Silk floss or waste obtained from the cocoon after the silk has been reeled off.

Cap-pa'per. 1. A kind of writing-paper. Ruled with bhe lines, and folding on the back, it is foolscaf : with red lines to form a margin on the left hand, and made to fold on the top, it is legal cap.
2. A size of paper from $7 \frac{1}{2} \times 12$ to $8 \frac{1}{2} \times 14$.
3. A coarse wrapping-paper.

Capped Rail. A railroad rail which has a steel cap attached to an iron body. It is generally made by so disposing the steel in a fagot as to form the edge of that metal, in rolling. It is otherwise

Fig. 1081.

Capped Rail.
known as a steel-topped or stecl-hended rail. See Rail.

The illustration shows a mode of expping and soling rails as a measure of tepair.

Cap'ping-brick. A coping-brick.
Cap'ping-off. (Glussonutking.) The mode of detaching the closed end of a llown cylinder by drawing a circle around it, bringing it into the shape of an open-ended cylinder ready for splitting longitudinally.

Cap'ping-plane. (Joinery.) A plane used for the upper surfaces of staircase rails, which are faintly rounderl.

Cap-pot. (Glass-muking.) A covered glass-pot or crucible.

Cap-scut'tle. (Shipbuilding.) The framing of coamings and head-ledges aronnd a hatch and a top which shuts closely into a nebbet.

Cap-square. One of the plates which keep the trunnions of a gun in place. They are secured by keys and chains to the trumion-plates, which rest in depressions in the cheeks of the gun-carriage.

Cap'stan. A hoisting or hauling machine, consisting of a drum set vertically and revolved by handspikes.

Capstans are single or double, according as they have one or two harrels upon the same spindle. The double-canstan is revolved by two sets of men on two tecks.

They are also known as fore or aft capstans, according to position. The fore capstan stands about midway between the fore and main masts. The aft capstan abont the same distance abaft the mainmast.

Capstans were used by the ancient Romans in transporting the Expptian obelisks.

The drun-capstin for weighing heavy anchors was invented by sir samuel Horliand about 1661. In a simpler form it was nsed by the English, French, and Spanish in the filteenth century.

The capstan differs from the wiudlass in having an upright axle, the bars being placed in the sockets of the drum-heal D, and revolving horizontally as the sailors walk aromut, pushing the bars before them, and winding the cable on the whelps, W. In this mode of exerting manual power, a force of about 35 pounds is oltained, which is alout $\frac{1}{4}$ of what a man can exert unon a windlass, which has a horizontal axis, enabling the men to swing their weight on the bars. The capstan has, however, many advantages, among whiclr may be enumerated - compactness, as it does not stretch across the forecastle of a vessel ; ficility for allowing a large number of men to work at it simultaneously ; continuity of its work, ats the bars do not repuire to
be unshipped after making a quarter of a revolution.
The capstan las a central, vertical spindle, which passes through one or more decks, and is securely stepped at some point below, according to the size and character of the vessel. The spindle, in passing down through several decks, may have arrangements for being worked by men at several levels. Upous the spindle S are firmly attached the several parts. The drum-head D has syuare sockets for the cap-stan-bars, which are about 10 feet long. Under the drum-head is the barrel, consisting of the whelps II', and beneath the barrel is the paul-head, which has a series of pawls around its periphery, engaging the notches in the pawl-rime, which is a cirenlar ratrhet attached to the deck. The drum-hcad, burrct, and pawe-ring are linmly attached to the spindle and revolve with it, the cable winding on the whelps and the pawls preventing back-lash.

In Phillirs's capistan (Fig. 1083), the drum-head is fixed upon the spindle and turns it round. A vertical iron bolt passing throngla the drum-head locks it to the barrel, and the whole cajstan turns round with the spindle, forming a "single purchase." When the locking-bolt is withdrawn, the wheel-work (shown in horizontal section) acts between the spindle and the barrel, and a power of 3 to 1 is gained. The spindle makes 3 turns and the barel makes 1, and they revolve in opposite directions.
Hindmarsh (Euglish Patent, 1827) added a winch and hand and bevel gearing to the capstan-head, for occasional use. It was partly in the drum-head of the capstan and partly in the barrel.

A portable capstan for the purpose of hauling ditchingmachines and mole-plows, moving buildings, and other similar work in which a

Compound Capstan. strong power is to be applied, is shown in the illustration. The chain or rope is wound around the roller, which is in some cases moved by hand-spikes in the hands of laborers, lout in the United States is usually moved by a circular sweep and a draft animal or two. It is

Fig. 1054.

usually anchored when in use. The sweep is shown as broken off.

In Fig. 1085 is shown a steam-capstan, in which two cylinders A A are connected optionally to the steanpumps $C C$, or to the shaft D of the train, whereby the capstan E is revolved. The connections between the promping-engines and the pumps may be readily uncoupled, and the capstan thrown into gear with said engines. A regulating-screw is combined with

Fig. 1085.

Steam-Capstan.
the friction-clutch, which throws the capstan inta gear with the engines, so that the etfect of said clutch, respecting the power or speed of the capstan, may be varied.

In moring the mass of granite, weighing 1,500 tons, and used as a pedestal for the statue of Peter the Great, in St. Petersburg, Count Carbury used capstans, the fall passing to pulley-blocks, which were secured respectively to the load and to posts set firmly in the ground.

When Yitruvius moved the columns of the Temple of Diana at Ephesns from the quarry to the site, he inserted an iron pin into each end of the colnmn, and to this attached a unadrilateral as long and wide as the column. Oxen were attached to the frame, and the columi rolled along on the ground. This was the method devised by Ctesibus of Alexandria. Metagenes, son of Vitruvins, varied the plan in moving the entablature of the same temple, making the iron pirots at the ends of the block work as axles in the hubs of massive wheels. Pæomius suspended his block, which was designed for a pedestal for Apollo, upon wheels in a similar manner. He then nnited the wheels by scantling, so as to make a perfect cylinder. A rope was wound around this, and uncoiled as the oxen progressed and rolled the cylinder.

Cap'sule. 1. A saucer of clay or bone-ash in which samples of ores or metals are roasted or oxidized.
2. An eraporating dish of porcelain or other ware.
3. A gelatinous envelope for offensive medicine.
4. The shell of a metallic cartridge.

Cap'tive Bal-loon'. One which is tied to 'the earth by a rope, so as to restrain its ascensive and wandering power.

In the summer of 1868 the largest of its kind was exhibited near London; it had a enbic capacity of 300,000 fect, an ascensional power equal to eleven tons, from which, however, had to be deducted the weight of car and rope, the latter weighing about four tons. It was capable of carrying thinty people with ballast. To render its ascending power as great as possible, pure hydrogen, obtained from water, in place of coal-gas, was used. The resistance or ascensive power of the balloon requireda 200 -horse-powerengine to overcome it and draw it down. See Balloos:

Car. A wheeled vehicle.
The invention is ascribed to Erichthonins, of Athens, about $14 S 6$ B. c. It will not do. Pliuy, and other commentators of his day, knew but little of

Egypt. (SeeChariot; Cart.) Coveredandenshioned cars were used by the Romans. (See Carmage.) Triumphal cars were introduced by Tarquin the Elder, 616 b. c. Cæsar relates that Cassibelaunus, of Britain, after dismissing all his other forces, retained 4,000 war-chariots about his person?
ln the Cnited States the term has become restricted ahnost entirely to vehicles designed for traveling on railways. The rarieties are numerons, and are named from their intended nse or from some peculiarity in their construction.

Adhesion-car.	Petrolenm-car.
Aerial car.	Platform-car.
Box-car.	Provision-car.
Cal-car.	Refrigerating-car.
Dummy-car.	Revolving-car.
Dumping-car.	Safety-car.
Freight-car.	Sleeping-car.
Gravel-car.	Street-car.
Hand-car.	Tank-car.
Irish-car.	Tool-car.
Jannting-car.	Wrecking-car.

The railway-cars of the United States are carried upon trucks whicl have a swiveling adjustment beneath the car, to assist in turning curves. This is especially necessary with long cars and on roads with curves of short radius.
The cars of street-railways, being comparatively short, have pedestals for the axle-boxes attached directly to the bed-frame.

The cars constructed in 1830 for the Liverpool and Manchester Railway, England, had four wheels, but no springs; the bodies consisting of sills, to which the journal-boxes were bolted, and upon which the floors were laid. These cars were formed withont roofs. In 1831, one Mr. Joseph Kinight proposed to employ springs under all cars, to sulport the body of the car and contents, and also suggested that the treads of car-wheels should be made conical, for the purpose of facilitating their passage around the curves of the road.

Cars for the transportation of passengers in Englamel and Scotland consist of three classes, the first class being well tinished. and provided with seats for the passengers to sit ulon, which seats are furnished with cushions. The secoud class are of plain finish, without cushions or ormanents. The third class are little more than plain boxes set upon wheels and supplied with seats, but in many cases without any
roof. In addition to these three classes, there are what are termed "mixed carriages," which consist of three compartments, the center one being for firstclass passengers, and the two end ones for secondclass passengers.

The American car has a gangway lengthwise of the car, the seats on each side reversible, so that the car may travel eithcr end forward and yet allow the passenger to "face the horses." It excites the admination of the average Briton, and will yet be the favorite form of car the world over.

3. A kind of two-

Irish Jaunting-Cars. wheeled Irish vehicle in which the passengers on the two seats sit back to back, facing forwarl and backward, as in one of the figures; or else sideways, the seats being over the wheels and a well in the center ; or else, as in the other figure, a velicle in which the seats for the jassengers face each other, while the driver has a seat in front. Such cars are known as Jrish cars, or jamnting-cars.
Car'ack. (Neretical.) A kind of large trad-ing-ship, used ly the Portuguese in the East lndies.

Car'a-cole. (Cirpentry.) A term sometines usend for a staircase in a helical or spiral form.

Car'a-co-li. An alloy of gold, silver, and copper, designed for factitious jewelry.
Car'a-core. (Nuutical.) A light vessel used by the natives of Borneo and the adjacent islands, and by the Dutch as a coast-guard vessel in their East Indian possessions.

Car'at. a. A weight of 3.077 grains, used in weighing diamonds.
b. A twenty-fonrth part of a piece of gold muder assay or estimation.

The name is derived from Carat, the sweet-pea, a measure of weight among the Arabs, equal to four grains of barley.

Car'a-van. (I'chicle.) a. A vehicle for conveying passengers between Cairo and Suez. It is shaped like a light wagon, with top and curtains. A mumber of them used to meet the passengers arriving by the Red Sea or Mediterranean steam vessels, and convey them across a portion of the Egyptian territory. This route was established by lieutenant Waghorn.
b. A large inclosed vehicle for conveying wild beasts and other objects of interest in a traveling exhibition.
c. A capaeions covered vehicle for moving furniture, etc.
Car'a-van-boil'er. A wagon-shapel boiler.
Car'a-vel. (Nrutical.) a. A small ship, gal-ley-rigged, formerly used by the Spanish and Portuguese.
b. A boat used by the French in the herringfishery.
Car-ax'le. (Railuay.) The shaft which passes through the naves or hubs of the car-wheels, and on which the latter are slurunk or pressed. In the earlier forms of railway car-axles, the wheels rotated on the axles, as in the case of ordinary roadcarriages. The practice has long since become almost universal to fasten the wheels of cars to their axles, in order that they may successfully withstand the severe strains and jars to which they are exposed by the weight and surging of the cars and the inequalities of the track.

Axles have been made hollow, to obtain greater strength with economy of metal, but are not in common use, owing to the increased expeuse of manufacture.

Fig. 1087, A shows the form and proportions of an axle.

Fig 10s\%.

E, collar ; diameter, 3_{+}^{3} inches.
D, collar ; length, 8 of an inch.
B, journal ; length, 5 inches.
C, journal ; diameter, $3 \frac{1}{7}$ inches.
A, axle; length, 6 feet 74 inches.
F, hub-seat ; length, $12 \frac{3}{3}$ inches.
G, hulb-seat ; diameter, $3 \frac{7}{8}$ inches.
H, taper ; length, 3 feet $6 \frac{1}{2}$ inches.
I, middle ; diameter, $3 \frac{1}{2}$ inclies.
In addition to the ordinary form of axle, many devices have been invented, though hat few adopted, to obviate special difficulties.
The axle, constructed of one piece of metal, and with the wheels fixed firmly thereon, is suhject to severe torsional strain in turning curves, when the onter wheel has a circle of a larger are to traverse, compelling the wheel on the inner and shorter circle to slip. The torsion of the axle is very detrimental, and the slipping of the wheel is equiralent to grinding on the rail, and retards the train. To aroid these difficulties, the axle has been made in two parts, either by double bearings for the shorter axles, as in
Fig. 1088, in which a yoke surmounts the wheels, and is secured to the axleboxes by screw-bolts,

Fig. 1085.
 other equivalent arrangement, such as Du Bri's Patent, 1863.

Fig. 1089 is an illustration wherein the axle is divided at the mid-length, the inner ends of which are supported in a box or sleeve. See also patent of Hewett, 1865.

In another form of the divided axle, one portion of the axle is hollow, and forms a sleeve for the other, as in Fig. 1090.
Taylon's car-wheel (English patent, May I1, 1841) specifies an arrangement in which one wheel is fixed to a solid axle, and revolves in a hollow axle affixed to the opposite wheel.

These rarious forms of double axles, which render necessary a multiplication of parts, and consequent

Hollow Diveiles-Axle.
liability to get out of repair, have never come into general use.
Car-Ax'le Box. (Railuay Engincering.) The chamber which contains the journal of a car-axle, its lubricant, and brasses, and which slides upon and down in the hanger or pedestal as the springs contract or expand.

In Fig. 1091, B B is the box containing the lubricant and its rehicle, tow or cotton. A is the journal of the axle, haxing a collar on its end, to prevent its pulling out. A saddle has its seat on the journal, and also forms a key for the collar on the end. $G H$ are sections with semicirenlar groores, which fit upon the sboulder of the journal and keep out dirt and grit. The upper section G acts by gravity, the lower section by means of a spring $L L$ beneath it. $I I$ are guides for the slide-plates $G H$, which bear against the ring O shrunk on the shoulder of the axle.

Fig. 1092 shows the

Car-Arle Box. relation of the box to the hanger, which may also be clearly seen in Cat-treck. The box B has trumions $d d$

fitted for sliding blocks 3 , which are adapted to guides formed in the hanger. G is the saddle upon which the weight is imposed ; this rests upon a plate m, and the latter upon the bearing-block or brass which lies upon the journal. c is the axle-box cover.

The English railway axle-hox has two pieces, divided at the level of the diameter of the axle, at which point it is fastened together by iron bolts. Brasses surround the bearing portion of the axle, which receives oil from a chamber above. An inclined lid on the outside of the box allows the chamber to be replenished with oil when necessary.

Car-ax'le Box-cov'er. (Railway Engineering.) The lid on the upper outer portion of the axle-box, which is lifted to renew the oil and tow or other

Fig. 1093.

Axle-Box Cover.
lubricating material, and the tow or cotton waste. The lid, usually hinged, fits on an inclined seat, and is secured by latches or otherwise, as in the example, where it is clamped against the inside of the box by a bolt and an outer bridge-piece over the opening.

Car-ax'le Lathe. A lathe specially designed
Fig 1094.

for turning car-wheel axles, being strongly geared for heavy cut. The axle is hung upon the centers $b e$, on the head and tail stocks $a d$, and is rotated by the Clement driver c on the face-plate, which derives its mation from the gear-wheel h and bandpulley i. The slide-rest n, which carrics the cutter m, has an antomatic feed-motion by the rod j, wheel k, pinion and connections, and also a rack-feed l, with quick hand-traverse. The working parts are fended from chips, and also from the water which drips from the can g upon the cutting-tool.

Car-bas'ket. (Railway.) A sletf or rack in a

passenger car to coutain small packages, shawls, satchels, hats, ete.

Car'bine. A small arm with a short barrel, adapted for the nse of cavalry, and having a bore of .44 or 50 inch, or thereabout.
They appear to have come into notice in the army of Henry 11. of France, 1559. The, arm was $3 \frac{1}{2}$ feet long, and the practice was to fire and fall back behind the rear rank, who fired and followed suit. The troops were light cavalry, and the arm seems to have had a wheel-lock.
The term now is applied to a short gun adapted for eavalry, of which many breech-loading varicties have been tried in the Unitel States army with greater or less success. Previous to the general introduction of breech-loaters, the fire-arm in common use for cavalry, as well as enginerrs and heavy artillery, was a species of carbiue denominated musketoon, differing from the musket only in length and in the fact that the arm for the cavalry was provided with a sliug-bar for more convenient carriage on horseback ; thos: for the engineers and artillery were generally furnished with swordbayonets. These all appear to have corresponded nearly in caliber and general dimensions with the modern French carabine.

The Spencer ritle was extensively used by the cavalsy of the l'nion army during the late war.
Car'bine-thim'ble. I stiff leathern socket, secured to a l-ring on the off-side of the saldle by a strap and backie. It receives the muzzle of the horseman's carbine.
Car'bon-bat'ter-y. Another name for the "Bunsen" galvanic battery, in which carbou or gas coke replaces the platinum of the "Crove" battery, and a solution of bichromate of jotash replaces the nitric acil. The carbon is sometimes in the form of a cup, and thus constitutes the porous cup as well as an element. Sometimes known as the Electropoion Battery, though this is a generic term, and is equally applicable to other forms. See Bussen Bartemy.

Car-bon'ic-a'cid En'gine. 1. An engine driven by the expansive power of condensed carbonic-acid
gis. Brunel's gas engine, 1804 , was driven by the increment of pressure due to the passage of hot water through a coil in the gas-reservoir. See Gasengine.
2. A machine for impregnating water with car-bonic-acid gas as a beverage. Sce Aërator.
3. A form of fire-engine in which water is ejected by the pressure due to the cvolution of carbonic

acid in a closed chamber over water; or in which carbonic acid is ejected with the water, in order to assist in extinguishing fire by the exclusion of oxygen therefrom. In the example (Fig 1096), the punips are made to discharge water, into which a stream of carbonic acid is coustantly driven by an air-pump, after the water has left the punp-cylinders. See Fine-Exgine; Fire-anvihilatoh.
Car'bon-iz'er. A tank or yessel containing benzole, or other snitable liquid hydrocarbon, and through which air or gas is passed, in order to carry off an inflammable vapor. See Carburetor.

Car'bon-iz'ing-fur'nace. An apparatus for carbonizing wood, disiutegrating rocks, etc. Composed of a furnace or fire-chamber, movable upon a stationary frame, both vertically and horizontally, and pro-

Carbonizing Furnacf.
vided with a nozzle, by which the flame is directed upon the object. The furnace is connected to a blast-apparatus $K K^{-}$by means of a flexible tube and a pipe; a fine stream of water flows into this tube from a tule C connected with a water-reservoir D, and the pipe is surrounded by a water-chamber, to prevent the heat from affecting the flexible tube. The wood to be acted upon is passed before the nozzle A, being supported on rollers attached to a suitable frame.

Car'bon-light. The light produced between and
upon two carbon points, between which passes a culrent of electricity. See Electiac Light.

Car'bon-om'e-ter. An instrument to detect the presence of an excess of carbonic acid by its action upon lime water.

Car'bon-print'ing. In 1838 or 1839, Mr. Mungo Ponton first pointed out the effect of light in proTucing colorable changes in compounds of bichromate of potassa and organic matters. Mr. Fox Talbot appears to lave been the first to appreciate the effect of light in rendering insolnble the componnds of bichromate of potash and gelatine. Poitévin, in 1855, was the first to use carbon, adopting the biclnomate of gelatine as a vehicle, availing himself of its insoluble character after exposure. The process was as follows: Paper was coated with a compound of bichromate of potassa, gelatine, and lamp-black, in colll distilled water; this is allowed to dry in a dark room, subsequently exposed bencath a negative for a few minutes, according to the character of the solution and of the light, then dissolving off with hot water the parts not affected by the actinic action of the light. The picture resulting from this treatment is a positive print in black and white, of which the shades are prolluced by the carbon of the lamp-black. Poitévin also introduced various colors into the same process.

Poitévin, later, introluced another process for carbon-printing under a positive. The paper is floated in a bath of gelatine dissolved in lnkewarm water and colored with lamp-black. Such paper is sensitized in a dark room by immersion in a solution of sesquichloride of iron and tartaric acirl. This renrers the gelatine insoluble, even in boiling water. The shects are dried and exposed under transparent positives in the printing-frame. The parts of the film acted upon by light become soluble in hot water, the iron salts, under the influence of light, being reducel by the tartaric acid, restoring the organic matter to its natural solubility. The sheet is then washed in hot water, which removes the fermginous compound and develops the picture.

Swanm, of Neweastle-upon-Tyne, about 1861, was the first to introduce into a practical process the transfer of the film, after exposure, to another surface, with the face of the film downwards, so as to admit of the dissolving off of the unaltered gelatine and pigment, withont undermining the delicate portions of the picture. It will be manifest that the depth to which the actinic rays penetrate the film differs according to the transparency of the negative, and with the light tints will penetrate but a very short distance. With such tints, - when the solution takes place from the face, - when the free gelatine comes to be dissolved, the thin coating of insoluble gelatine and pigment representing the more delicate shades becomes undermined and tloats away. Swann, to avoid this, transferred the film with its affected side downward on a sheet of paper, washed from the back of the film, and transferred back again to the paper on which it remained.

Argentotype is a modified forin of carbon picture introduced by Wenderoth: in which the print is backed by a polished plate, to bring up the high lights. Johnson proposes tin as a substitute, cheaper and less likely to tarnish.

The carbon process has been carried forward in several different directions. A hardened film of bichromated gelatine has been pressed in a sheet of lead in a hydraulic press, and a reverse in lead obtained, from which gelatinous casts may be taken. See Woodbury Process.

The gelatine film earrying the impression is used to print from directly in ordinary ink. See Heliotype.

Car'bon Tool-point. An application of the diamond to mechanical purposes. These points are used to point, edge, or fuce tools for drilling, reaming, sawing, planing, tuming, shaping, carv-

Fig. 1098.

ing, engraving, and dressing flint, grindstones, whet-stones, emery, corundum, tanite, or tripoli wheels, iridium, nickel, enamel, crystals, glass, porcelain, china, steel, hardened or otherwise, chilled iron, copper, or other metals.

1 is a triangular prism-like cutter for turning or working stone, etc.

2 is a flat drill-point for drilling stone, glass, or metal.

3 is a burin for cutting or turning metal.
4 is a quadrangular prism for working stone, etc.

5 is a hexahedron to be inserted in the edge or face of a circular saw for cutting stone.

6 is a double-sided trapezoid, used in various positions for marking or turning stone, steel, or other substances.

7 is a chisel point or cutter for turning metal, ete.

8 is a drill-faced parallelogram for pointing combination drills for drilling and reaming stone, metal, etc.

9 is a quadrangular prism with a planer cuttingpoint for cutting or planing metal, etc.

10 is a truncated prism for working stone, ete.

11 is similar to 8 , and used for the same purpose.

12 is a truncated prism used for facing or edging ring or cylinder drills and circular saws for entting stone, metal, etc.

13 is a quadrangular double-faced drill-point for drilling stone, etc.

14 is a quadrangular pyramid used for reaming stone or metal.

15 is similar to 5 , and is used for the same purpose.

16 is a quadrangular cube with graveredge for cutting metal, etc.

17 is a flat octahedron for drilling stone, glass, etc.

18 is a flat ovoid; with double drillpoint, for drilling or countersinking stone, metal, ete.

19 is a tetrahedron, used the same as 18.
20 is a pyramidical drill-point, used the same as 18 and 19.
21 is a truncated prism, used the same as 1 and 10 .
22 is a drill-pointed prism-reamer.
23 is similar to 22 , and used in the same
 mamner.
24 is the same as 7 , with angular edges, and used for the same purpose.
25 is a double-inclined plane-wedge for cutting stone or metal.
26 is a quadrangular wedge for turning stone or metal.
27 is an acute conical-turned diamond-point, usel for engraving, etching steel by bank-note engravers.

28 is a diamond in its natural crystallized state, as found in the mines.

Car'boy. A large globular vessel of green glass inclosed by basket-work or a box for protection. In the latter form the box has rope handles, and the mouth and neck of the carboy protrude through the top of the box. It is used for carrying chemicals, such as sulphuric acid, the vitriol of commerce, of which it contains 160 pounds, or 12 gallous of water.

It is like a demijohn (dumayhan, Persian) except in its purpose. The latter is intended to contain spirits.

Car-brake. (Railway Engincering.) An apparatus by which pressure is applied to the wheels of railway car's, to check their speed and eventually stop' their revolution.
The usual accessories are the

Brakc-vhecl.	Shoe.
Brahe-lever.	
Brake-bar.	

1. The brake is usually hand-operated by the brakeman or guard on the car platform or roof, as the case may be. Passenger railway-cars and streetcars have on the platform a brake-wheel or lever, the revolution of whose axis winds up a chain which actuates the levers, rods, bars, and shoes, as in Fig. 1099, and the apparatus is kept at its tension by a

Fig. 1099.

Cur-Brake.
click working into a ratchet-wheel on the stem of the brake-lever. The illustration shows an arrangement of longitudinal hrake-rods beneatl2 the cars, connected together by chains, so that the brakes are brought into operation if any of the car-couplings give way.

One form of the system of rods and bars beneath the car is shown in Fig. 1100, in which a single lever F, pivoted at mid-length, is operated by chains
and rods from the brake-wheel on either platform. To the lever are attached rods $G H$, proceeding to the brake-bars, which carry the shoes.

Fig. 1101, A is a plan of the Holge brake, invented in 1849. The illustration shows the portions belonging to one truck; the rod a passes to the otber truck, where the braking-devices are repeaterl, so that the action on the wheels of both trucks is coincident and equal, by motion clerived from the brake-wheel on the platform at either end of the car. b is the rod which is pulled endways by the winding of the chain on the stem of the brake-wheel. This rod b pulls upon the lever c, which is pivoted at mid-length to the rod a, and at its other end by rol h to the lever c, which is a lever of another order, and transmits to the rod f and brake-bar g half the power exerted upon b. it will be seen that the end of lever c attached to the rod h is the fulcrum for the attainment of effect on the rod a, while the latter is the fulcrum for rod h; cach is a moving fulcrum, anil, the effect 1 on each being equal, the force of the man upon the brake-wheel is evenly divided between the wheels of the respective trucks.
Fig. 1101, B shows the English form of lever-brake for coal or gravel cars. It has a bar pivoted to the frame, and a shoe to act upon each wheel as the lever is depressed.

Fig. 1101, C is the Stevens brake, 1851, in which the action of the brakes on the wheels of the respective trucks is also coincident and exthal. The drawing shows but one trinck, but the rod a connects the levers of the respective trucks, so that the operation from either end is effective upon the whole, the result being more thorongh if the brake-wheel of the far end he left locked, so as to lorm an ultimate fulcrum for the system of levers set in motion from the,
for the time, operative end. A pull on the chain b vitrates the lever c on its fulcrum, the rod d, and brings the shoe e against the wheel; but the fulerum is itself mored, and, by drawing on the rod d, moves the lever f and draws the shoe g against the other wheel. In effecting this, the upluer end of the lever is made the fulcrum; but this is itself movable, transmitting by rod a one half of the force originally expended to the braking apparatus of the other car.

Fig. 1101, D is mother brake of allied nature, the force of the rotation of the brake-wheel stem a in winding on the clain being transmitted by rod b to a wheel ε muder the center of the car, and thence by rods $d g$ to the levers which operate the brake-bars of the respective trucks. The course of the comect-ing-rod between the two lrake-levers of a truck is

car upon another. In Fig. 1103, the brake-bars of a train are simultaneously worked by means of longitudinal connecting-rods under the car-beds and gimbal-joint connections between cars. The longitudinal screw-shaft turns in bearings in the truck, and operates a nut which is connected to and actuates the brake-levers.
3. Brakes operating continuously throughout the train are found in the patents of Marks, 1854, acting by rods and chains; stewart, 1859, having rods and cog-wheels; Burrows, 1862, by rods and levers.

Devlan's patent of 1861 acts by grasping the axle

drawn in dotted lines, representing it as on the other side of the wheels.
2. The devices are numerous in which the colliding of the cars, as the rate of motion is slacked, or as the brake is put upon the engine or forward car, is made to put the brakes of the train in operation, the effect of the brake-action being proportionate to the energy with which the forward car or engine opposes the momentum of the cars following. One form is shorn in Fig. 1102. When the engine is checked

Fig. 1102.

Car-Brate.
and the buffer-bars come together, the hrakes are applied to the ears by power derived from the sliding motion of the buffer-bars and transmitted through the medium of the rods and levers.

The action in this case is by the bumping of one

Car-Bratie.
of the wheels; Blanchard's, 1866, by a shoe on the rail.

Of the car-brakes exhibited at the Paris Exposition, 1862, Creamer's was automatie, instantaneous, and simultaneously applied to all the wheels of each car.

The machinery of the system in common use remains unaltered, but there is added to it a reserved power in the form of a closely wound and powerful spiral spring, which may be set free by the pulling of a trigger, and which, when free, is a substitute for the force of the brakeman. The apparatus is under the control of the engineer or the conductor, on any car.

With Achard's electro-magnetic brake, each carriage in the train is supplied with a hattery of six Daniell cells, connected with each other and with the engine foot-plate by means of four insulated wires passing through the whole length of the train. By means of these electric wires two distinct electric currents may be created, either of which may be closed or broken by altering the position of a handle placed before the engine-driver. The electro-magnetic force unon an armature on each car is made to wind a barrel and draw upon a clain which vibrates the levers and applies the brakes.
4. Another class of car-brakes consists of those in which braking-derices of the cars individually are operated by means of an elastic fluid, air or steam, the operative devices of each car being under the control of the engineer, upon the locomotive.
Steam-operated devices are of different forms:-
a, steam-pipes connected throughont the train and operating a pliston in a cylinder on each car, to work the brakes. b, a rod and chain connected throughout the train, the operative devices being a single cylinder on the locomotive.
c, an air-pipe connected throughont the train, a cylinder and piston beneath eaeh car to operate the hrakes, an airpump on the locomotive to condense air, which is carried by the pipes to all the cylinders in the train.
The Westinghouse Air-Brake employs atmospheric air as the medium for transmitting power to the brakes. This is condensed to the required ex-
tent by a stean-pump placed between the drivingwheels or in other convenient position on the locomotive. The air is forced into a reservoir, so that a sufficient supply may be ready for use. From this reservoir it is comlucted back under the cars of the train by pipes, connected between the cars by india-rubher lose and valved couplings. Under each car is a cylinder to which the compressed air is admitted forwarl of a piston, the stem of which is connected to a bell-crank attached to the brakelevers by rods, so that, when air is admitted in front of the piston in the cylinder, the brakes are at once ${ }^{a}$ aplied to the whecls. See Brake, p. 356.
There have been numerous attempts to secure antomatic and simultaneons action, throughout the cars of a train, by power derived from a single impulse or operation. Room cannot be spared for their systematic description, but the following patents may be consulted :-

Bessemer (English)	1841	Hodge		1860
Hancock (English)	1841	Dwelley.	-	1865
Nasmyth (English)	1839	Davidson		1860
Petit	1840	Marsh		1864
Birch	1840	Virdin		1859
Carr (Euglish)	1841	Wilcox		1856
Wablber	1852	De Bergues		1868
Fuller	1854	Chatelier		1868
Sickels	1857	Lee		1868
Cuney	1855	Ambler		1862
Goodale	1865	Branch		1858
Peidle .	1867	NeCrone		1865

Car-buf'fer. (Wailway.) A fender between cars. In the English practice, the ends of the car-frames carry elastic cushions, or bulfer-heads with springs. In our practice the spring is usually behind the drawbar. See Puffrir.

Car-bump'er. An elastic arrangement to lessen the jerk incident to the contact of colliding cars as the rate of speed is slackened. See Buffer.

Car'bu-retior. An apparatus through which coalgas, hydrogen, or air is passed throngh or over a liquid hydrocarbon, to increase or confer the illuminating power. They may be said to be of two kinds, though the purpose differs rather than the construction: -

1. For enriching gas.
2. For carbureting air.

The former of the two was the primary idea; the latter was suggested as the matter was developed.

By carbureting the gas you may use poorer coal. Bituminous coal gives off different gases, according to the quality of the coal and the way it is ristilled, and gives off different qualities of gas at different stages of the process of distillation. The value of the gas as a lighting medinm depends unon the quantity of volatile hydrocarbons; and the object of passing it through the beazole of coal-tar or the volatile oils derived from petroleum is to enrich the gas by the addition of hydrocarbon vapors. Where city gas is not available, air may be carbureted, that is, saturated with the inflammable vapor, by passing it through the liquil. There are many difficulties in perfectly accomplishing the carbureting of air or gas: -

1. The hydrocarbon vaporizes more readily in warm weather than in coll, so that the degree of saturation depends in part upon the temperature of the weather.
2. The liquids used for carbureting air are not homogeneous, but are a mixture of liquids of varions volatility; after charging the carburetor, the lighter will pass off tirst and leave a heavier and less volatile residuum.
3. The amount of vapor taken up will depend upon the speed with which the air passes through the carburetor ; so that, when the number of burners is varied, a certain change follows in the quality of the gas.
4. The material is very inflammable, and leaks of the liquid or the vapor are dangerous, requiring special provisions for safety and the attention to charging by daylight.
5. The chiel difticnlty arises from the fact that the volatilization of the hyllrocarbon is affected hy the intense cold produced by the evaporation of the liquid.
The working up of the coal-tar oils preceled the discovery of petrolenm in commercial quantities.
The primary idea was to force the gas through the liquil.
Carburetors of gas may be defined as those in which material rich in carbon is added to the usual charge of coal in the retort.
Those in which a liquid lydrocarbon is praporated by the heat of the burner, and mingles with the usual carburetwd hydrogen gas.
Those in which the gas is exposed at atmospheric temperature to the liquid hydrocarbon, so as to exhale from the latter a vapor which passes with the nsual gats to the burner.

Lowe, in England (English patent 6, 276, June 9, 1832), was for enriching the commercial carbureted hydrogen by filling the meter with coal-tar naphtha instead of water, the meter-wheel being driven by the force of the gas from the main. The uniform hight of the liquil in the meter was secured by a fountain arrangement such as is used in lamps, ink. stands, mucilage-cups, and bird-glasses. He subsequently applied (No. 8,883 of March 16, 1841) power to turn the meter-wheel. He also proposed to pass the gas through sponge, or other animal or regetable stulf or fiber, the said matter being from time to time saturated with naphtha. Also to expose the result to a canstic alkali, to remove the sulphur, and to an acid, to absorb the ammonia.
He also arranged a number of troughs one over another in a box; these discharged into encl other by overflow tubes; air is admitted helow, sweeps over the surfaces of the liquid in the successive troughs, and passes out at the top.
Also a hox having vertical partitions, with sponges, fragments of pumice-stone, or coke impregnated with naphtha, in the compartments, through which the gas passes in succession, up and down, and so on thronghout the series.
Selligue, 1834, carburetel hydrogen gas produced by the decomposition of water, and afterwards enriched the products of destructive distillation of wood, resins, oils, etc.
This idea was afterwards followed out by a num. ber of inventors.
C. B. Mansfield, who obtained an English patent (No. 11,960, November 11, 1847), gave a stimulus to the husiness by the production of a suitable liquid. He did as much, rpparently, as conld be clone with coal-tar benzole, and died from the effects of an explosion of the saturated air.

Drake, 1853 , tevolved a porous material, to expose a saturated surface to a blast of air.

Adams had a series of overflow pans somewhat as in the cat (Fig. 1104). The air is driven by the rotary fan in the chamber helow, through the central vertical pipe to the upper chamber, from whence it passes in a circuitous, reverting, downward course, in contact with the hydrocarbon liquid in the successive trays, and thereby becomes impreg. nated with vapor.

Fig. 1104.

Carburetor.
Lecarriere, in France, in February, 1853, beman by carbureting hydrogen prodnced by the decomposition of water in the presence of zine and acid, and then passed to the carbureting of air. He employed a number of cylinders in a box, making a sinuous course for the gas, whichenters at the middle, passes down and out through small holes into the second cylinder, and so on. He also introduced a regulating-float.
Marchesson, in 1853, had an upper supply-vessel with a lower chamber, containing a condnit of spiral form, divider by partitions into chambers prorided with ahsorbents, and which communicate by holes. A rariation of this was an Archinedean screw moved by the gas, which was enriched by the vaporized liquid.
Launay, 1856, used cotton wicks saturated with oil by capillarity, and exposing a large surface to the passing gas.
Teique, 1857, has a closed cylindrical chamber, with inlet and outlet pipes for the gas, and a revolving helix of wires or a helical frame with wide-meshed cloth.

Tarmaique, 1858, has a siphon arrangement for the supply of an upper chamber, which discharges by a pipe at the bottom of the lower chamber; the gas jnisses throngh the chambers.
Vesian, 1853 , introduced the float operating the valve of the admission pipe for the lipuid.
Martin, 1858, added a lamp, to expedite the raporization.
David, in 1859, used a bulb of displacement, to preserve a constant level, instead of an automatic valve of admission ; and this was so arranged as to maintain a uniform hight, although the liquid varied in density as evaporation proceeded.
Asheroft, 1857, had a float to govern the ingress of air, and cause it to pass through a uniform depth of liquid.

Levi L. Hill, 1859 , reissued 1863 , modified the richness by inlet of air, and had a double bellows for equable blast.
F. S. Pease had a separate tube to condense an excess of liquid.

Lowback, 1860 , heated the air.
Matters remained in this condition until the
discorery of petroleum; the first notice of petroleum benzine was in a Boston paper, Septeniber, 1860.
John A. Bassett, by patent March 2, 180.2, developed the use of the petroleum liquid, which gives the carburetor its practical value, the gas-tar products being expensive and difficult to manage.

Leri Sterens, December 20, 1864 , passed the air through a shower of the liquid, which was dropped into the vaporizer in measured quantities.

Irwin introduced a feature (April 11, 1865) founded on the fact that the hydrocarbon rapor conferred greater gravity upon the air, so that the weight of the carbureted air forced itself to the buruer and dispensed with a blowing apparatus. He also used a caloric engine to produce a motive-fower to generate a blast of air, and the escaping heated air was carbureted.

Bornton, 1865, dispensed with moving nuachinery in the clamber, by making a plain metallic box with a fibrous material inside, through which air was forced. He also mixed the benzoles of gas-tar and petroleum.

Myer, 1865, mashed the carbureted air, to remore extraneous matters.
Pease, $186 \overline{5}$, injected air at the lower portion of the carburetor, causing it to ascend through fluid in contact with the lower surfaces of a series

Fig. 1105. of inclined planes with tlanged edges and ends, passing from one incline to another in a zigzag upward course into the chamber, from whence it is withdrawn for use.

After this the inventions becane very numerous, having reference mainly to detail : to regulate the admission of air, the egress of carbureted air, the graduation of the quantity of liquid admitted, a forced circulation in the carbureting chamber; to regulate the temperature of the liquid, the air, and the result ; means for drawing ofl the heavy oil.

As means of forcing the air: -
Bassett and McAvoy use the weighted gas-holder, the inverted cylinder whose lower edge is immersed in the water of an annular ehamber.
Prichard forced the air by water under pressure, admitted below to expel the air from the chamber.

Douglas's has a rotary fan.
Leri Stevens's has a meter-wheel, whose shaft has

its bearing below the eenter of the partition dividing the meter aud regulation chambers, and gears with a wheel on the regulator-shatt, which has a bearing at the center of the $p^{\text {martition. Both chambers are par- }}$ tially fillen with carthereting liguid. Air is introduced to the top of the ueter-chamber. As the air is carbureted it is conducted to the regulating-apparatus.
Car-cab. (Ruiluray.) The shelter on a locomotive for the protection of the engineer and stoker.

Car'cass. 1. (Architceture.) The naked shell of a house, sides and roof withont floors, joiner's work, or plastering.
2. (Shipuerighting.) The keel, keelson, stem and stern posts, and ribs of a ship.
3. (Urehuence.) An incendiany projectile filled with a composition of saltpeter, sulphur, resin, turpentine, antimony, and tallow. It has three vents for the tlame, and sometimes pistol-barrels arranged to discharge occasiona!ly. It is discharged from a mortar or howitzer, and is intended to set fire to buildings, ships, or woolen defenses.
Car'cass-roof'ing. (Carpentry.) That which suphorts the covering by a grated frame of timberwork.
Car'cass-saw. A kind of tenon-sure. The blade is strengtliened by a metallic backing, which is bent over, and closed upon it with a hammer. It has eleven teeth to the inch.
Car'cel-lamp. A larnp of French origin, in which the oil is raised to the wick by clackwork. A mechanical lanu, insed in lighthonses, where the wick is overtlowed with oil as a m-asure of equality of supply and of safety to prevent overheating of the wick and rick-tuhe. See Dechavical Lamp.
Car-couch. A clair which may be converted into a lounge for night-traveling.
A bonk or lounge in a sleeping-car, made up of two opposite seats with an interrening bridge-piece, or of a shelf let down from above.
Car-coup'ling. (Ruilucry.) A derice for connecting the cars in a train.
In the L'nited States this is nsually a form of shackle, hut in Europe the connection is more intimate, the cars being conpled together so firmly as to prevent the jar as the cars collide or jerk apart in stopping and starting. This moule of conpling is also fonnd in many [uited States milways, esprecially where the steam or air brakes thronghout the train are operated by the engineer.
The English car-coupling (Fig. 1107, A) is a right and left screw-shackle, a on the median line making a connection sufficiently rigid to somewhat compress the buefficrs b b on each side. In some cases the buffers of adjoining cars are connected by chains, and their rols act as pistons in tubes provided with springs; the cars are thus coupled by the buffers. The draw-brer d of the coupling is connected to an elliptic spring ε, which diminishes the jerk of the cars when starting the train.

Some of these features are also found in B, which is an ald form of C'nited States coupling with buffers, copied from the English, from whence we early received our railway engines and cars. The drift is now the other way arros the Atlantic.
$C C$ are respective'y plan and eleration of the Miller compling, which comnects automatically, as the respective point-headed hooks come in collision. A sufficient amount of lateral play is allowed to the hooks " a to allow the wedge-shaped surfaces to slip past each other, and syrings $b b$ at the rear of each keep them in 'ngarement when once connecterl. Special means are used to withlraw the hooks from each other when they are to be uncoupled. The

lower riew, C^{\prime}, shows the mode of engagement less clearly, but exhibits also the spring luffers c, above the liooks, which act as fenders to the cars, and deaden the blow as the cars surge against each other in checking the speed of the train. The couplinghooks themselves have also springs d for the same 1urpose.
In Fig. 110s, D is a falling latelh-hook.
E has a gravitating hook a, with a spring which allows it to yield to the thrast of the entering link b in the act of coupling. On the back of the liook a is a handle c, which is lifted to uncouple the link.
F has a vertically sliding holt, which rises antomatically as the link collides with its lower inclined portion when coupling, and then falls down into engracment.
G shows a pair of draw-heads in which the tum-bling-latcle a links up the pin until thrust hack by the entering link. The $\operatorname{lin} b$, when fixed for automatic coupling, rests on the toe of the latch, as in the left-hand draw-head; the link jushes back the latch and allows the pin to drop from the toe, as in the right draw-head.

II II' are two draw-heads, showing the respective positions of the uncoupled and compled pins a a. In the former, the left of the figure, the pin a rests on a sliding latch, which will give way hefore the thrust of the link d,-a result already accomplished in H^{\prime}, the right-hand lignre.
$I I^{\prime}$ are two nateling draw-heads, corresponding in essential resprects with the one jnst described; stiding pistons holling up the link and retiring be, fore the thrnst of the entering link.

J has a double feature. A plate to hold the projecting link a in coupling position, and a small slid-ing-latch b above, to holil the coupling-pin c, which is dropped, when the draw-heads come into actual collision and thrust in the latch.
K has a ball a, which holds up the pin, and rolls away before the thrust of the link b, allowing the pin to drop.

In Fig. $1109 L$ has the arrors-head bolt b, which is a substitute for the usual link, and is grasped between the pair of jaws a a, which spring aprart to receive it. The arrow-head form of coupling has many variations, which principally concern the modes of retention.

IT has a bar with two slots instead of two heals, the bar being shown separately at m. As the end of the bar m enters the draw-head, it thrusts up the graritating-lateh, which immediately falls into the slot of the bar. To uncounle the link, the latch is lifted by a lever abore.

Car-Courlings.
S is a plan riew of a compling in which each dranthead las a link which couples over a horn on the corresponding draw-head of the other car. A pin in each case prevents accidental disengagement.
O is an elevation of a pair of draw-heads, each of which has a link which may be coupled over a horn on the other.
P has a two-homed tumbler, one of which carrie* a link a which may be the means of coupling to a corresponding draw head, and the other forms a latels for a link a' proceeding from the other draw-heal.
Kexdall's English patent, April 17, 1841, clescribes an elastic coupling which retains its hold while the pull is direct, and becomes detached when the pull is oblique, by reason of one of the carriages leaving the track. This feature has formed the subject of many Lnited States patents.

Card. i. (Coltom and ${ }^{\circ} \mathrm{Fool}$ Manufacture.) a. An instrument for combing wool, flax, or cotton, to disentangle or tear apart the tussocks and lay the fibers pralle] in order for spinning.
The work is analogous in some of its effects to that of hackling, in which flax for the distaff is brought into a condition for being drawn out by the hand, in the old modes of spinning. With cards and in the carding-machine shorter fiber is operated upon than in the case of hemp or long flax, of which a hank is taken and switched down upon the teeth of the hackle.

A card is a wire brush in which the teeth are insprted obliquely throngh a pirce of leather, or of cotton, linen, or india-rubber, which is then nailel to a woolen hack.

With hand-cards, they were operated by drawing thenu past each other, so as to disentangle the bunchres of fiber and lay the filaments straight. A similar effect is produced in the carding-machine (which see), but the opposing cards are upou a large re-
volving-cylinder, and a number of circumjacent wire rollers and flat cards.

The leather or other material to be furnished with tecth is perced with numerous holes, in which are fixed bent pieces of hard drawn wire eallet dents or teeth.

Each piece is tirst bent at right angles at a and b, and aftewrards a second bend at $c d$, at an obtuse angle, which must be invariable for the same set of

carls. Strict uniformity is necessary as to the size, shape, ohlipuity, and length of the teeth, and also in the angle which they bear to the cylindrical surface aromil which they are placent.

The action of the carls is as follows:-
If the two carls A and B be moved in opposite directions with a tanglel tuft of cutton-wool between them, the fibers will be seized by all the teeth, one card pmlling them one way and the other pulling them the other, until, by repeaterl arplications of the cards, the libets are disentangled and laid in parallel lines, ench card taking up and retaining a protion of the cotton. All the cotton may be gathered on one card by reversing the position of the two and phacing them as when, by drawing the upher card C over the lower one D, the teeth of the lower one offer no resistance, but give up their cotton to the uppre eard.

Just as by the persistence of application of the hand-card the bumch of cotton is at last reduced to order, so in the carding-machine the operation is repeated between a central carded cylinder, and several carded rollers and that cards, so arranged as to return impreffectly reduced knots again and again to the main cylimler. See Cabding-machine.

Cards are distinguished by quality, the form of the backing, or position ; as, -

Shect-cened or card-shect.
Fillet-carl, in form of a ribbon.
Breating-card. Finishing-card.
Top-carll; top-flut.
b. A sliver of fiber from a carding-machine.

Cardings or rolls are delivered of the length of the card-roller, the clothing on which is in longitudinal strips. See Rolleli-bowl; Carding.
2. (Jcuage.) A currying-tool formed of a piece of card-clothing mounted on a back with a handle, and used as a substitute for a cumy-comb.
3. (Wearing.) One of the prefforated pasteboards or sheet-metal plates in the Jaequarl attachment to looms for weaving figured fabrics. Each perforation represents a warp-thread which is to be lifted, and there are as many cards as there are weft-theads in at single occurrence of the pattern. The cards are presented consentively by a revolving perforated Lar. See Jacuuarn Loom.
4. (Nautical.) (From cardinal.) The dial or face of the mariner's comprass, in which the needle and dial rotate together.
"licason the cart, but passion is the gale." Pores.

It is marked with the compass-points. These points or rhumbs are 32 in number ; the angle comprehended between two points is $11^{\circ} 15{ }^{\prime}$.
5. A pasteboad. A thick paper sheet made up of sevenal layers.
6. A pasteboard cut to a size and marked for a game. The playing-ards are in four suits of thirteell each.

Cards are colored by stenciling, an art older in Europe thim that of printing by relief-blocks. The common cards of one color, red or black, are called pips; the cont ciards, of many colors, are telles. The art of stenciling as a mode of laying out omamental designs for cillving, fiescoing, and repetitive ornamentation is very ancient.

Chatto, in his "Origin and History of PlayingCards," London, 1848 , says that the parliest play-ing-carls whicl he has had an opportunity of examining were evidently stenciled, and of the date of 1440 . Stenciling cards was quite a business at Nurrmberg, $1433-i 7$, as appears by the town books. Clatto regards cards as an Eastern invention, and suploses that they became known in Enrope as a popular came between 1360 and 1390. Covelluzzo, an ltalian chronicler of the fifteenth century, says they were brought to Viterbo in 1379. Charles VI. used them 1393, and thereafter laws and commercial notices and restrictions give evidence that they were very rommon.
"There is a great deal of time lost in playing cards," said a moralizing gentleman. "Yes," said a lady devotre, "in shuftling and cutting. But then, how is it to he avoidel?" lady Spencer may have been one of the parties conversing, and Mark Isambarl Brunel, the philosopher, another. This talented mechanicinn, at all events, did invent a machine for shuttling and cntting playing-cards without the aid of the fingers, and did so at a playful request of lanly spencer.

Mr, Brmel's talent was most versatile. He constructed the Thames Tumnel ; the block-making machinery of the Portsmouth (England) Dockyarl ; a theater in New York; a canal in New York State ; the harhor defenses of New York; veneersaws; shoe-making machinery; nail-making machines; paper-ruling machines; machines for twisting, measuring, aud forming sewing-cotton into hanks; a hydrantic packing-press; improvements in suspension bridges, buikling arches without centering, steamboats, gas-engines, etc. His son, Isambard linglom Brunel, was the engineer of the Great Western Railway, of England, and the designer of the Great Eastern steam-ship.

C'ards are interesting in the history of the arts as being among the earliest subjects of the printing process. See Printing.
With the games this work has nothing to do, and perhaps, but for M. . Brunel, the subject would not have been referred to here.

A good article on the subject of cards and dice may be consulted in IIarper's Magazine, Vol. XXV1., рр. 163-176.

Card'board. Cardhoard is produced by pasting a number of sheets of paper together, Bristol board is all white paper, and is made of two or more sheets according to the thickness required. Other qualities are made by iuclosing common thick paper hetween shects of white or colored papers of the required quality.

A surface of paste is given between the contacting surfaces of the outside paper and the filling, and a pack of pasted borerds are subjected to a heavy press-
ure, which squeezes out the water. The cardboards are then hung ulp in pairs to dry, and in $2 t$ hours are ready for the press, which renders them perfeetly smooth and polished.
The cardboards are made up into a pack alternately with polished copper plates, and the prack is passed between a pair of rolls under heary pressure. This removes all inequalities, wrinkles, and protuberanees, the result being a highly polished glazed surface.

Card'board-press. A press having a pair of rolls adapted to be closed together with great force, and used to smooth and polish slicets of eard passed there-through.
Card-cloth'ing. The garniture of a cardingmachine.
Card-cut'ter. A machine for reducing cardboard to pieces of miform and proper size for cards.

In that shown, the paper is held by the aljustable gage-clamp a, and is cut by the knife b, which is elevated by the spring c anid conneetions, and depressed by hand.

Card Grind'ing-ma-chine'. A machine having a rotary emery-wheel D revolving in a central position relatively to the fluts and card cylinders, which are arranged around it. The grinding enkery; wheel has longitudinal reciprocation on its slotted

Fig 1112.

Card-Grinder.

shaft by an inclosed screw therein, and griuds simultaneously two or more top flats and tiwo or more workers, strippers, or licher-in cylinders. Each top flat reciprocates in a guile tangential to the wheei by a connecting-rod E to a crauk-pin. The bearings f for the ends of the flats and of the cylinders, as at x, are adjinstable radially to the grinding-shaft. The cylinders are rotated on their
axes by bands from pulley B on the lower shaft, reaching to the pulleys on the eylinder-shalts, as at I.
Card'ing. A roll of wool as it connes from the carding-machine. The dofing-cylimuler has longitudinal bands of cards, the wool on which is removed by the dofinuy-kinife in the form of seprame slivers, the lengti of the doffing-cylinder. These slivers fall into a roller-boul, which gives them a slight rolling and compacts them into errerdings. These have but little strength, as their fibers are only held together by being interlacel. They mext receive a slight twist in the slubbing-machinc.

Card'ing-ma-chine'. (Fiber.) a machine consisting of a congeries of toothed crlinders for drawing out and placing in parallel line the fibers of wool, cotton, or other staphe.
The hand-card, which preceded the carding-machine, consisted of two lrushes furnished with short, slanting, wire teeth, which all pointed in one direction. The wires were passed throngh leather, and the leather was nailed to a board. The brnshes were grasped, one in each hanu, and drawn past each other, so laying straight the fiber which was placed between them. The action is explaimed ander Calid (which see).

In $17+5$, Lewis Paul patented two different machines for carling. In one of them the cards are arranged ou a flat surface, and in the other they are arranged on the periphery of a drum. From what cause we know not, the inveution seemed to have no repute or success at the time, but came ont acain twelve years atterward as the invention of Hargreaves, under the auspices of Robert l'eel, of Bamber Bridge, the graulfather of the statesman, sir lobert Peel. Hargreaves fixed one of the cards in a block of wood, and the uther was slung from hooks fixeel in a bean. The hooks remained in the kitehen at "Peel Fold" in 1850, but the caris were destroyed by a nob who came from llacklium, -a purt of the same wretched story of ignorant men opposing the introduction of machinery.

The same Robert iret, or his son of the sane name and the father of the statesman, employed Hargreaves in 1762 to erect the eytinder cardingmachines in a mill at blackburn.
Though the carding-machine was well and efficiently comstrmeted in the time of Arkwhight, it was not till alter several attempts by different men, Panl, Hargreaves, and Arkwright, worked in such a manner that it is lifficult now to determine what share each had in the matter. It was not till twenty years after Paul's invention that the cylinder card-ing-machine came into extersive use; and even then it performed intermittingly, and did not yield a continuous sliver.
The cards were arranged on the surface of the drum, parallel to its axis, a space being left between each. The cotton-wool was put on by hand, and when the cards were full the machine was stoplued, the cardings taken off separately by a movable comb, the spaces between the cards regulating the substance of each carding. The cardings were then joined end to end, to make a contimous sliver. A more systematic and equable mode of feeding was alopted when a weighel quantity of cotton was made to cover a certain area of the travelling feedapron, which moved at an even rate towards the throat of the machine.

Arkwright invented the plan, yet in use in some cases, of rolling up the feeder with the cotton spread upon it, and allowing it gradually to unroll to feed the cylinder.

Another improvement was to obtain a continuous
sliver from the eylinder. This was accomplished by the doffer, but thenext point was to get it from the doffcr. Aftel mimy experiments, it appears that Arkwright hit upon the plan which is in use to the present time, the cronk and comb. It is find to say, however, that the invention is also elamed for Hargreaves. There secms to have been a rivalry of feeling between the two men, who were each highly meritorious, and we are much indebted to both. It is stated that Hibgreaves obtained a sketch of it from one of Arkwright's men. Not likely; Hargreaves seenis to have been made of better stull.

The comb is a plate of metal toothed at the edgc, and, recipocating perpulicularly, iletached the Heece from the tceth by slight reiterated strokes.

The action of the machine is substantially similar to that of the hand-ciruls, so firr as the functional eharacter is concerned ; but it emables a number of cards to act upon a continuous lep and deliver continuons sliwers.
'The bachine has a horizontal eylinder, whose entire circumference is envered with narrow fillet-eards womd spirally around it, a blank space intervening betwenn each fillet, or is covered with strips lengthwise of the cylindur. The eylinder revolves beneath a concave sleell, whose face is also lined with cards, and the teeth of each act coineidently upon the bunches of fiber to draw them apiat and lay the indiridual fibers parallel, as explained under (And.

The first carding-machines built in America were mitle for Mr. Orr, of East Bridgewater, Mass., in 1786.

The earding-machine consists of a number of rollers and drums, and one large cylinder all clothed

Carding-Machine
With cards, which are so arranged as to feed, card, dolf, aml ileliver. A portion of the circmmference of the large eylincler A is inclosed by smatler toothed mllers $D E F G$; then succeed woorlen slats lying lengthwise of the cylinder, atul supported by the sile at such distance as to allow the wire teeth to come into the reyuired proximity. These slats are called card-tops, top-cards, or top-quts. Beyond the flats is a toothed drum L, called a doffer, from whence the flence is removed by the dofong-knije; the wide ribbon is then gathered in a thimble, consolidated by iron rollers, and delivered into a can.

The operation is as follows:-
The lap-cylinder is planeal in the bearings I, and rests on the roller K^{-}; the end h of the lap is lronght to the rollers by which it is presented to the toothed drum D, which draws the cotton into the machine, aud is ealled the licker-in. The filaments thus torn from the end of the lap are immediately seized by the lage uglinder A, which revolves at a much higher speed, and are teased out by the teeth of the serond roller E, which moves more sluwly than D, and pheks the knots off the eylinder. These kmots are carried round by E and are caught by D, which presents
them again to E along with fresh material from the lap. This is the first romed which the knots take, but several more are in store for them if they are obdurate or if they escape the first attack.

The tuits or knots which pass the first pair of rollers $D E$ are arrested by the fouth roller G, which is placed closer to the eylimerr A, and moves with the same sprell as E. The knots canght by G are teased ont hy F^{*}, amd returnell to the whinder A, and may be again callght by G, if they exist.

Passing the combination of rollers, the fibers are next bronght into contact with the cands of the top Alets, which arrest knots and hold them till the entanglement is removel, or till the flat is taken out and clemed, which is occasionally done.

After all these obstacles heve heen passed, the fila. ments lie in parallel rows among the teeth of the cylinder card, and are removed therefrom by the doffer L, which is covered with a spimal fillet of cards, revolving at a much slower rate than the cylinder and in a dillerent direction. The fine lleece thus stripped from the eylinder by the doffer is removed from the latter hy a vertitally reciprocating comb, called the doffer-huife, which has a rapid rertieal motion tangentially to the ginints of the teetli. A fine fleece the whole length of the eylinder is thus obtained, and is gathered up into a ribbon, and passed in at the funnel, whence it passes to threeconsentive piairs of condensing rollers, which, revolving at a relatively greater velocity ns the sliver proceeds, sliglitly draw it, and teml to parallelize the fibers. It thence pusses as a light, downy, coherent sliver into the can, in which it is transported to the throstle, doubler, or boblin and fly frame, as the case may be.

For fine spinning, the operation is repeated, the first machine being callad a breaker-card and the second a finishing-crerd.

For the preparion of fine yarns, the cards lave closer sut wires than is necessary for ordinity or coarse work.

The catding-machine as just described is particularly adipited for cotton, but does not dilier materially from the wool-cading machine.

There are some adjuncts to the latter, howevir, which have no place in the cotton-earding machines. Among these
are the devices foroiling wool, which is necessary to keep the fibers loose and prevent theirbecoming lelted.

The xrooloiling machincry for cardiny - maclinucs has a dripping oil-tank which las a transverse and ro. tary motion above the fecel. apron of the machine, so as to drop oil upon the wool as it proceeds to-

Fig. 1114.
 wirdsthecard.

The thasverse motion is given by a crank and pituan, and the reciprocating rotary by a toothed wheel acting against the edge of the trough.

The wool carding-machine has a large cylinder surmounted by smaller ones called urekins, which work in pairs, and are called workers and eleaners. These act in succession to remore knots and tangles from the main drum, and return the fiber to the latter again to undergo the action of the next set, if still obdurate.

In the feeder shown in Fig. 1115, the material thrown into the box A is carried forward and upward by the aprons $B C F$ to the feed-rolls $H . \quad G$ is a

Fig. 1115.

picker-roll, which serves to prevent the fan D from becoming fouled, and also to prevent flocks of wool from passing unopened between the plate I and apron F. The fan D blows the wool into the passage F, whence it paises to the carling-machine.
The various rollers in a carding-machine are known by names which indicate their functions, or perhaps we may say appearance, in one case.

Feeding-rollers.
Distributing-rollers.
Workers.
Strippers.
Fly-rollers.
The material which went in as a lap comes out as a flece or as slivers.

Car'do. A pivot and socket ; an apparatus by means of which the doors of the ancients were fixed in their places, and made to revolve in opening and shutting.
Car-door Lock. For milway-cars; one with a latch opened by a hey from either side.
Card-press. (Priuting.) A small press adapted for printing cards, etc. A preferred form has an inclined bed, for convenience of feeding; the impression is given hy a cam, and is regulated by means of platen screws. The press has adjustable feed-guides, a large distributing-cylinder, two ink-ing-rollers, a card rack and receiver, and is capable of making from 1,000 to 2.000 inpressions per hour.

Card-set'ting Ma-chine'. A machine for setting the bent wire teeth (dents) in the bands or fillets of leather, or alternate layers of cotton, linen, and india-rubher, which form the backing of the wire brush of the carding-machine.

For the card-setting machine the leather is first prepared by a planing-machine, which cuts it into tillets, which are then stretched and pared to an eren thickness. This is rouncl unou a roller and fed to the machine, where it is held by a clamp while the wires are inserted. These are contained in a drum at the side. Two prickers adrance and make holes throngh the leather; a pair of sliding pinchers seize the wire, and wind off from the drum a length sufficient for a tooth; a steel tongue holds this piece by the middle while it is cut off. Steel
made by the prickers. Pinchers on the opposite sile of the leather seize the wires, and a bar rises up and bends the two limbs so as to forma a kee in each. A pusher at the back then sinks the bight of the wire iuto the leather, which is then shifted by the guide-rollers, and the process is repeated. The cards are finished and made true by grinding. (See Card-ghisding Machise.) These wire brushes are termed cards, and such fillets form the clothing of the drums, cylinders, or strips to which they are fastened.

Ca-reen'ing. (Vautical.) The operation of exposing a part of a ship's bottom by a purchase applied to the masts to tilt them laterally from the perpendicular. It was careening that upset the "Royal George" in $17 \$ 2$ at Spithead: -
"They

Had made the vessel heel,
Aud laid her on her side."
Ca'ret. (Priuting.) A mark (" \wedge ") indicating an insertion ; interlinear or nuarginal.

Car'go-jack. (Nautical.) An implement like a lifting-jack, but sometimes used upon its side for stowing heary cargo.

Car'go-port. (Nautical.) An opening in the side of ressels having two or nore decks, through which the lading is receired and delisered. It is closed by a shutter; and made water-tight before rroceeding to sea.

Car-heat'er. An arraugement for warming a railway-car. A store or a system of pipes from one heater, which communicates in turn with each of the cars in the train.

In Fig. 1116 is shown the end of a car in which is a stove D inclosed in an air-leating chamber. A is a hood with a swinging ralve T, the latter being placed in such position as to direct the air downard hy pipe B in whichever way the car may be moving.

Fig. 1116.

The air, on its way down, is washed in the cistern C, and, after heating in the clamber ayound the store, is conducted ly pipes beneath the floor, and excapes at registers R into the saloon. The outward current is induced by an adjustable cowl $I I \mathrm{~K}^{2}$, which is set with its flaring mouth towards the rear of the car for the time being.
Fig. 1117 shows an arrangement in which the cars of the train are heated by stean from the locomotire, or by leated air; pipe-couplings between the cars being the means of connecting the system of pipes and radiators of the respective cars.

When the cars are in motion, the steam-pipe is

Fig. 1117.

closed, or nearly so, and the fan set in operation to force ail throngh the furnace-pipe and register into the different cars. The air may be moistened by the almission of a small amount of steam. In case of a detention of the cars, the arir-pipe near the fin is closeal by a valve, the other air-valves are closed, and, the steam-valve being opened, steam is forcel throngh the coil in the heater and into the raliators.

Another form for heating street-cars is a stove beneath the bell aml registers in the floor, or hot-air distributing-pipes thronghout the tar.

Car'il-lon. (Nftevic.) A chime of bells, originally consisting of four, and played by keys. Sce Cunme.

One form of carilon machinery las barrels with pins, which first ellect the elevation of the hammer and then deliver the blow; but, by an improvement, the work of the pins is confined to releasing detents and cansing the hamer to strike the bell, simultaneonsly thowing forwarl a spring finger in the path of peculiar cam-wherels, continnously revolving, which thereby immediately elevate the hammer again into the striking position.
Car-in'di-ca'tor. A recristering device onvratel by a revolving wheel or axle of the car, to indicate the distance run. In one case, the indicator is operated partly by clock-work and partly by the revolving wheel or axle of the street-railway car to which it is applied. It determines at the emb of a trip whether the car has been rumniug regularly, ame, if not, at what points on the roul improper stoppages have been made, or where the speed of the car has been increased or retariled.

Car'i-ole. (Vchicle.) a. A small, open carriage.
b. A covered cart.
c. A kime ol calash.

Car-jack. (ILuilway.) A powerful form of screw-jack by which a car or locomotive is lifted, to replace it on the track, to run a truck bencath, or lor other purpose in the shop or on the roal.
The hydratlic-jack is the more efficient implement, and is now male in very compact, portable, and powerful form. See Hydiaulic-Jack.

Car-lamp. One for lighting the inside of a rait-way-car at night or in tmmels. Candles are frequently employed in the phace of oil, to avoid the danger of adding fire to the other disasters in case of the overturning of the car.

In strect car's the lampls are frequently made to illuminate a sign, which indicates to pedestrians the destination of the car; or a colored glass may imticate to halbitual patrons the sime thing.
Car-lan'tern. One allapted to be camiel on the arm, to leave hoth hames free. Sue Lastrin.

A signal-lamp indicating destination, raised above the roof of the car.

Car'let. A three-square, single-cut file, or floct, used by comb-makers. See Conbs.

Cariling. (Shipbuilding.) One of the longitndinal beams which are fianed into the transverse
deck-beams and aid in trussing the frame of the ship.
The coominys of a hatchway are bolted to the top of the curlineys, and the lecul-loclyes to the top of the berms.
Car'ling-knee. (Shipbuilding.) A knee in a ship lying across from the sides to the hatchway beneath the leck.
Car-lounge. A car-seat or sleeping-chair, so contrived as to assume a reclining position when desired. The illustration shows the lounge of one passenger and the foot-rest of the person innmediately

Fig 1118

Car-Lonnge.
hehind him. The boly of the seat is hinged at a to the frame, and the more or less reclining position is olitained by means of the kruckle-joint $E^{\prime} E^{\prime}$. The foot-rest is an extension piece, which is projected when needed; the motions of the back and legrgest are mincident.

Ca-roche'. (Veliclc.) A kind of two-wheeled pheastrr-carriage.
Car'ol. (B'uilding.) A seat fitted within the opening for a wimdow; a bay-stall. Caroll; carrol.
Car'pen-ter's Chis'el. Chisels for woodworkers' use ine made of moderately hard stecl, have one phane and one beveled mlge, and are divilenl into firmer and freming or mortise chisels.
The former lave a tang inserted into the hampe, the lower end of which rests against a thange on the stem, while in some of the latter the handle is inserted into a socket at the upper part of the stem.

Joincr's anl pering chisels are mames of grades, rather than of kimls. See Cursel.
Car'pen-ter's Clamp. A frame in which work such is doors, sinshes, shutters, ete., is forced up into phece, and held while leeing nailed or pinned.

A kiad of vise for crasping several parts and holding them while the glue sets, or for other purposes.

Car'pen-ter's Gage. A scribing-tool for depth or wielth, acrording to construction and uses. It commonly hats a point projecting from the shank B, anil it movalle heal or fence A, which is adjusted lor distance from the point, and secured by a set-

Fig. 1119.

Carpenter's Gage.
screw. In the example, revolving rollers with sharp edges are nsed instead of marking points, and the roller L is adjustable towards and from the roller E for making two parallel scribes at a determinate distance from the fence A.
Car'pen-ter's Lev'el. An implement for determining horizontality and verticality.
It has a base piece, standard, and plimb-line, and
Fig 1120.

Carpenter's Lerels.
is used by builders and road-makers in testing surfaces, to ascertain whether they are level.

The feet may be so aljusted, to suit the required grade or pitch, that the level becomes a weans of ictermining a slope.

Car'pen-ter's Plane. Carpenter's planes are of various descriptions, adapted to the different kinds of work they are intended to perform, - as, the jack-plane, for rouglh-dressing a surface; the smoothing-plane, for finishing it off; and grooving and molding planes, some of which have special names, for making grooves or elevations of various forms. See Plane.

Car'pen-ter's Plow. A plane for making a groove in the edge of a board, to be occupied by the matching tongue of another board, or by the edge of a panel.

Car'pen-ter's Rule. Ordinarily, a tro-foot rnle, jointed in the middle and divided to eighths or sixteenths of an inch.

Fig. 1121.

Carpenter's Rule.

That shown in the figure has a pointed swinging arm, and also a curved scale and pointed index, so that the instrument may serve the purposes of a level, spuare, and bevel, any angle of inclination being noted by the pointer npon said scale.

Car'pen-ter's Square. An L-shaped steel rule having twe arms meeting at a right angle, and graduated to feet, inches, and fractions. It is used by carpenters and other mechanics for laying off perpendiculars to a line or smfface, and setting of the distances thereon at the same time. See Try-squatie.

Car'pen-ter's Tools. In the reign of Henry 11. of England, the whole stock of it carpenter's

Fig. 1122.

tools was valned at one shilling, and consisted of a broadaxe, an anlze, a stluare, and a sloke-shave. The number has largely increased since. Sce spucific index, W uodworkisg.

Fig. 1122 shows a variety of old Roman implements of this kind, as represented on existing monuments.

111 , compasses and calipers.
2 2, plumb-bobs.
335 , templet and squares.
4 4, single and jointed rules.
66 , mallets.
7, adze.
88 , scriber and soldering-tool. 99 , chisels.
10, hatchet.
Car'pen-ter's Vise. A device with a stationary jaw attached to the bench, and a movable jaw operated by a screw, used for clanpling a board or timber while being operated on

Fig. 1123.

Carpenter's Vise.
by the plane or chisel.
Car'pen-try. See under the following leads:-

Abat-jour.
Abat-voix.
Abutment.
Accouplement.
Ajambe.
Anibe.
Angle-bar.
Angle-tier.
Ante-venno.
Apron.
Apron-piece.
Arched-bean roof.

Architrave.
Arris.
Arris-fillet.
Arris-gutter.
Ashlering.
Astragal.
Atlic.
Awning.
Badigeon.
Balk.
Paluster.
Barge-board.

CARPENTRY.

Barge-couple.	Corbel.	Half timbered.	Plumb.
Base.	Cornice.	Halving.	Plummet.
Batten.	Conples.	Hammer beam-roof.	Pole-plate.
Bay.	Coved-ceiling.	Hand-rail.	Post.
Bead.	Cradle.	Hatchet.	Prick-jost.
Lead and butt work.	Crenelated molding.	Healing-course.	Principal.
Bead and quirk.	Cribling.	Heading-joint.	Pugging.
Bead, butt, and square	Cripple-timbers.	Heel-prost.	Punch. Puucheon
Beaking-joint.	Crown-nost.	High roof.	Purlin.
Beam.	Culver-tail.	$\mathrm{Hij}^{1}{ }^{\text {P }}$	Quarters.
Bearer.	Curb-beam.	Hip-knob.	Queen-rost.
Bench-vise.	Curb-plate.	Ilij-rafter.	Quirk.
Bent.	Curb-roof.	Hip-roof.	liablet.
Bevel.	Curtail-step.	Hoarding.	Rafter.
Binder.	Current.	llollow newel.	Raising-plate.
Binding-joist.	Cushion-rafter.	IIousing.	Ram].
Binding-rafter.	Dado.	Imprages.	Reason-piece.
Bird's-moutl.	Dais.	Inter-ties.	Reglet.
Blind.	Deadening.	Interligneum.	Relish.
Blocking.	Deal.	Jack-timber.	Reveal.
Bolection.	Dental cut.	Jalousie.	Riser.
Bolster.	Diagonal.	Jamb.	lioll and fillet.
Box-liame.	Dimension-lumber.	Jib-door.	Roof.
Box-girder.	Dished-ont.	Joggle-post.	Rule.
Boxing.	Dog.leg stairs.	Joist.	Run.
Brace.	Dome.	Jut-window.	Sarking.
Bracket.	Door.	Key.	Saslı.
Breast-summer.	Door-case.	King-post.	Sash-frame.
Britge-board.	Duor-ster.	ling-truss.	Scaflold.
Bridging-joist.	Door-strip.	Kiner.	Scallold-bracket.
Brilging-piece.	Dorman-tree.	Ladiler.	Scautling.
Brob.	Iormer.	Lagging.	Scarf.
Brog.	Dovetail.	Laminated-rib.	Scrapre.
Brow-post.	Dragon-beam.	Landing.	Scribe.
Built-beam.	Drav-bore.	Lath:	Screry.
Built-rib.	Dwarf-rafter.	Lathing-clamp.	Shaker.
Butment-cheeks.	Eave.	Lattice.	Shutter.
Buttou.	Eave-hoard.	Leat.	Shutting-post.
Cage.	Eave-trough,	Lean-to.	Slrear-legs.
Caisson.	Estrade.	Leelge.	Side-plane.
Camber-beam.	False rail.	Leelger.	Shingle.
Camp-ceiling.	False roof.	Level.	Shook.
Cantilever.	Faying out.	Line-winder.	Shooting-board.
Carcass.	Feither-edged.	Lining.	Share.
Careass-roofing.	Femerell.	Lintel.	Side-plane.
Carpenter's clamp.	Fender-heam.	Listing.	Sill.
Carpenter's sintare.	Filling-in pieces.	Lufler (Louvre).	Sinking.
Carpenter's tools.	Fishing.	Limber.	Skirting.
Carriage.	Flap.	Main-couple.	skylight.
Camage-piece.	Flight.	Mallet.	Slab.
Cartouch.	Flitch.	Mansard-roof.	Sleeper.
Case-bay.	Floor.	Matcli-boarding.	Soflit.
Casemate.	Floor-clamp.	Mitered border.	Sound boarding.
Casement.	Fox-tail wedging.	Molding.	Span-roof.
Cavetto.	Frame.	Mopboard.	Splice.
Ceiling.	Franking.	Mortise.	Spring-bean.
Ceiling-joist.	Frenelı-roof.	M-root.	Staging.
Chain-timber.	French-window.	Mlud-sill.	Stairease.
Chalk-line.	Fret-work.	Muntin.	Stair:
Chantlate.	Fuor.	Needle-beam.	Standard.
Cherron-molding.	Furring.	Newel.	Sticking.
Clamp.	Gable.	Nogging.	Stile.
Clamp-screw.	Gage.	Norma.	Stirmp.
Clapboard.	Gain.	Nosing.	Stock.
Cleading.	Gambrel-roof.	Notel-board.	Stor-post.
Clear-stuff.	Garret.	Notchiug.	Story-rod.
Coak.	Geometric staircase.	Pale.	Straining-beam.
Cocket-centering.	Girler.	Pamel.	Straining-sill.
Cocking.	Grafting.	Partition.	Strap.
Coekle-stairs.	Ground-plate.	litch.	Striking-plate.
Coffer.	Grounds.	Pitching-piece. Plaue.	String-board. Stringer.
Compass-window.	Gutter.	Plugging.	Strut.

Stub-tenon.
Summer.
Surk coak.
Sunk-panel ceiling.
Surbase.
Swing-beam.
Syphering.
Tabling.
Templet.
Timon.
Tension-rod.
Tie.
Tie-beanı.
Tilting-fillet.
Tongue.
Tools. Carpenter's and joiners (see Woodworkisg Tools)
Torsal.
Trap-loor.
Trellis.
Car'pet. A cloth or rug to cover a floor.
The use of rugs is of great antiquity in Egypt, lndia, and China; later, those of Persia and Turkey have been the more celebrated. They were anciently spread upon the ground or floor, in the tents or in apartments, and in the Orient are still small, used for sitting or reclining upon, or beneath the couches; as the sardinian carpets, anentioned by a Greciau poet, "Beurath the ivory feet of purple-cushioned couches."
"Phoonicis sends us dates across the billows,
Anu Carthage, carpets rich, and well-stuffed pillows." Hervappos, quotal by Athenæus (A. d. 220).
At the supper of 1 phicrates, purple carpets were spread on the fluor; and at the magnificent banquet of Ptolemy Philadelphus, an acconnt of which is given by Callixenus of Rhodes, we learn that underveath 200 golden couches "were strewed purple carpets of the finest wool, with the carpet pattern on both sides; and there were handsomely embroidered rugs, rery heautifully elaborated with figures. Besides this," he adds, "thin Persian cloths corered all the center space where the guests walked, having the most accurate representations of animals embroidered on them."

The Bahylonians were very skillful in weaving cloths of divers colors; we reall of "a goodly Bahylonish garment" as long ago as the time of Joshua, B. c. 1451 , as among the spoils of di. The Babylonish carpets had representations of human fignres and composite animals, such as ringed bulls with human heads, griffins and dragons. These were numbered among the luxuries of Heliogabalus. On the tomb of Crrus was spread a purple Babylonian carpet, and another covered the bed whereon his body was placed. These carpets rere exported in consilerable quantities to Greece and lione. Researches in Pompeii show that they were used in that city in the time of limperial Rome.

Sir J. Gardner Wilkinson gires an account of one carpet rug of Egrptian nianufacture. "It is made like many cloths of the present day, with woolen threads, on linen strings. In the center is the figure of a hor in white, with a goose above, the hieroglyphic of a 'child,' upon a green ground, aronnd which is a border contposed of red and blue lines." He also mentions some line specimens of worked worstell upon hinen, now in the Turin Mnseum, in which the linen threads of the weft have been picked out and colored morsted sewed on the warp. These are specimens of tapestry-wearing, and renemble the present work of Persia and Turkey. The tajestry consists of wowlen threads sewed on the strings of
the warp by means of small shuttle-needles. The Persian carpet is formed by knotting into the warp tuft after tuft of woolen yarn, over each row of which a woof-shot is passed, the fingers being here employed instead of the shuttle-needles, as the fabric is of a coarser description. Such carpets are formed in looms of rery sinple construction; the warpthreads are arranged in parallpl order, whether upright or horizoutal, and the fabric and pattern are produced by colored threads, hand-isrought upon the warp. This may be designated the hand-wrought or needlework method, which only makes one stitch or loop at a time, in contradistinction to the machinewrought process, the result of mechanical appliances, "hereby a thousand stitches are effected at once. Herein lies the ensential difference between the ancient and modern, the simple and complex, carpetmanufacture.
In Persia there are entire tribes and families whose only occupation is that of carpet-weaving. These disjose of their productions at the bazars to native merchants, who remore them to Smyma or Constantinople, where they meet with European purchasers. The trade in real Persian carpets is, howerer, rery linited, owing to their small size. They are scldom larger tham hearth-rugs, long and narrow: Felted car'ets, or nurmuds, are also made in Persia, but are not considered worth exporting. One specimen of carpet from Persia had tufts of worsted inserted in a felt back.

Carpets are manufactured in many of the provinces of Asiatic Turkey. - In none of these places, however, does any large manufactory exist ; the carpets are the work of fimilies and bouseholds. They are woven in one piece, and there is this notable peculiarity in their manufacture, that the same 1attern is never again exactly reproduced; no two carpets are quite alike. The patterns are very remarkable, and their origin is unknown even to Jlussulmans. The Turkey carpet pattem represents inlaid jeweled work, which accords with Eastern tales of jewels and diamonds.

In British India the carpet manufacture is carried on extensively. At Benares and Jloorsheclabad are produced velvet carpets with gold embroidery. A very elaborate carpet sent from Cashmere to the London exhibition by Maharajalı Goolah Singh was composed entirely of silk, and excited great admiration. In every square foot of this carpet, we are informed, there were at least 10,000 ties or knots. Silk embroidered hookah carpets, cutton carpets, or sutiunjecs, $p^{\text {rinted }}$ cotton caprets, printed floorcloth, woolen carpets, are made in ditferent districts of British India. Of late years, linen warp has been introduced instead of cotton, and the fabric is thereby much improsed. The designs of the Indian carpets hare more regularity them those of Turker, and the colors are mostly warn negatives, enlivened with brilliant hnes interspersed.

Carpets were introduced into England at the time of the Crusades.

In the times of Edward VI. and Elizabeth of England the floors of palaces were strewn deity with rushes. This frequent clange of rushes was considered to betoken an effeminacy which augured but poorly for the stability of the dynasty and the ruling families.

The walls were hung with tapestry and cloths long before the floors were carpeted. In Hampton Court Palace, built by Cardinal Wolsey, the beautiful Hoors are yet bure and the walls corered with talestry.

In the Middle Ages carpets were nsed before the high altar and in certain parts of the chapter.

Bedside carnets are noticed in 1301, and carpets for the royal thrones in the fifteenth century

Turkey carpets before the communion-table were used in the reigns of Edward VI., Elizabeth, and the Stuarts.
The manufacture of carpets was introduced into France from Persia, in the reign of Henry IV., about 1606°; a manufactory being established at Chaillot, near Paris.

Workmen from France introduced carpet-making into England about 1750. A carpet-factory was established at Axminster, 1755, the year of the Lisbon earthquake.

There are several characteristic processes in the manufacture of carpets.

1. The whb is formed of a warp and weft of flax, and the wool or worsted is inserted in tufts which are twisted aromb each of the warp-threads, the color of the tuft being determined by its position in the pattern. The tufts are locked in position by a shoot of the weft, the crossing of the warp, and the beating of the batten or lathe. The Persion, Turkcy, and Aicminster carpets are thus formed.
2. The wel) is formed of a warp and weft, as stated above, and the colored worsted yarns are laid along with the linen warp, and drawn into loops which project above the surface. Each yarn passes through an eyelet which deprends from a cord, whereby it is drawn up to form a loop at the point where its color is required. This is the Rorly-Brussels carpet. They are usually 27 inches wide, with two threads of linen for the shoot, one above and the other below the worsted.

Scotch carpet. Two-ply carpet.
'Tapestry carpet.
Three-ply carpet.
Triple-ingrain carpet.
Turkey carpet.
Car'pet-bag Frame. The iron frame which distends the cloth covering of a traveling-bag or satchel. The two jaws are piroted to the hinge-rod

and shut beneath the cap-piece of the frame, which is 1 -shaped in cross-section. The varieties and shapes are numerous.

Car'pet-beat'er. A marhine in which carpets are beaten and brished. The breadth of carpet

When the loops thus made are cut to form a nap, the carpet is known as a pile or Witton carpet.
3. Tapestry Brussels diflers from regular or body Brussels in being woven in a common loom and printed in the warp.
4. Taplestry velvet or patent velvet differs only liom tapestry in being cut like Wilton.
5. The caryet is formed by an amplification of the ordinary weaving-] rocesses; two or three webs being woven at the same time, the warps being interelangeable and being brought to the surface according to the color requirest, and forming two-ply carpet or three-ply earpet, respectively. The carpet is woven by a figure-u:ork or ordinary loom, with some peculiarities, such as the exposure of the weft (Ingruin), the warp (I'cuctien), or a peculiar weft (Chenille).
6. The carpet is formed of a body of fibers felted together with a fabric without spinning or weaving. The product is generally printed, and forms drugyct.
7. The carpet is woven in phan colors and afterwards printed.
8. The carpet is dyed in party-colors, nicely adjusted so as to fall into their right places when woven into a fabric.
9. A pile is cemented to a backing-fabric. See Cemented-back carpet.

For the varieties of carpets see the following : -

Axminster carpet.	Ingrain carpet.
Brussels carpet.	Riditerminster carpet.
Cemented-back carpet.	C'ersian carpet.
Chenille carpet.	Pile carpet.
Damask carpet.	Printed carpet.
Drugget.	Rag carpet.
Felt carpet.	Rug.

Axminster carpet.
Cemented-back carpet.
Chenille carpet.
Drugget.
Felt carpet.

Ingrain carpet.
Kidlerminster carpet.
Tersian carpet.
Printed carpet.
Rag carpet.
Kug.

Carpet-Beater.
is wound on the roller B, passed over an inclined bed formed of a stean-coil $G G$, and sulgjected to the action of the beaters $I I H$, which are tripped by the tappets $n n$ on the wheel F. The carpet is stretched on the rollers c c, thence passes under a, is exposed to a revolving brush-cylinder J, and is rewound on the roller B^{\prime}.

Car'pet-clean'ing Ma-chine'. A brushing. machine for carpets, which is unvolled from the beam L, and re-rolled on the beam at the other side of the machine, passing on its way the varions clean-ing-devices. These are the cords B, which whip it on the outside; the canes j, which whip it on the inside; a succession of revolving brushes, which sweep it, and a revolving fan, which blows away the dust. (Fig. 1126.)

Carpot-Cleaning Machine
Car'pet-fast'en-er. A screw-knob and screw.

Fig. 112\%.

Carpet-Eastraer. socket inserted in the floor with the carpet between them.

Car'pet-lin'ing. A material for placing beneath a carpet, to increase its elasticity and decrease the wear. lt usually consists of a thickness of felt between two layers of paper, lut there are many kinds. In the machine represented, the tibrous material from the roller b is formed into a Hecey mass by the carding-eylinder C, and collects

Carpet-Lining Machine.
the gauze as a bat on the ganze-covered cylinder n : a doffer takes it from this cylinder ; it is caught between the thicknesses and pressed beneath the roller o. The lower sheet of praper is the wider, and is gummed on one surface by the gum-roller R; the edges of the wide strip are bent over the narrow one and stuck fast. The fabric is delivered into the box s.

In Fig. 1129 the paper is contained on two rolls $D D^{\prime}$, and the webs are fed beneath the roller B,

Fig. 1129.

Carpet-Lining Machine
with an intervening thickness of felt shown as coming orer the roller B^{\prime}. From the smoothing-plate the fabric passes through a series of sewing-machines, by which it is quilted previously to passing between the measuring-rolls, and is pressed and delivered by rollers $C C^{\prime}$.

Car'pet-loom. One for weaving carpets. See Pile-fabric; bhesnels-carpet Loom; Jacquard, etc.
Car'pet-rag Loop'er. A stabbing-tool with a large eye, to carry one end of a carpet-strip through the end of the strip preceding, when one is looped over the other, to sare the trouble of sewing.
Car'pet-stretch er. A toggle-jointel frame to stretch carpets on floors preliminary to tacking down.

Fig. 1130.

Carpet-Stretcher.
The serrated bar at one end of the jointed staff engages the carpet, and the point at the other end extends through to the floor. A ratchetbar is piroted to one leg, and, passing through a staple upon the other, engages oue side thereof, to keep the legs spread.

Car'pet-

 sweep'er. ACarpet-Sweeper.

mechanical
broom for sweeping carpets and collecting the dust and dirt in trays. The brosh-shaft is rotated by a corrugated pulley driveu ly contact with the rubber periphery of one of the sustaining wheels.

Car-quaise'. (Gluss.) The ammealing arch of the plati--glass manufacture, heated by a fireplace called at tisar.

Car-reg'is-ter. (Iailway.) A device for keejring account of all persons eutering a car, so as to form a check on the receipt of fare by the conductor. It has various forms, none of which are in much fivor.

1. A turnstile at the entering side of a platform, the revolutions being transmitted by a train of gearing to an indicator.
2. A similar train actuated by the opening of the door.
3. A train actuated by the pressure of the foot on a step at the monnting and entering side of the patiorm.

Car-re-plac'er. (Railway.) An instrument or means for restoring to the rails a car which has run ofl the track.

This operation is frequently accomplished by the jack-serew, aided by such things as handspikes and timbers which may be convenient. A full assortment belongs to the appendages of a "wrecking" car, whose use is to remove olstructions on the track, replace cars, and lift the debris of an accident on to the phatform-ears, which bear them to the shop for repuirs or for use as material.

A number of devices have been patented for the purpose of enabling a car to ascend to its position on the rails when drawn or driven by the locomotive. The geueral feature in which these agree cousists of

two inclined planes, one forming a bridge with a plate D, to let the outer wheel cross the rail and drop into place; the grooved plate A forming a hridge $u p$ to the other rail. C is a bar to lead the wheel towards the bridge-piece.

Car'riage. 1. A wheeled vehicle especially for the conveyance of passengers. The velicles of the nomals of Asia were carts and wagons, two and four wheeled, in aucient times. (See Cart; Wagon.) The war-vehicle of the ancients is considered under Chariot (which see).

The wagons sent by Joseph from Egypt to Canaan, to feteh his fither, were no doubt pleustra; that is, carts lrawn by yokes of oxen. Horses were not used for draft, except in chariots, and the velicles of Egypt were two-whepled. This form of carriage is known to have been in use as long ago as 2000 B. c., amel its origin is lost in the obscurity of the remote past. The Greek tradition that wheeled vehicles weve invented by Erectorius, the fourth king of Athens, about $1400 \mathrm{~B} . \mathrm{c}$., is due to the vanity of a nation who considerell themiselves ne plus ultire, in willful forgetfuhtess of their great instructor, Egypt,
from whose fugitives they reeeived so much. Witness Cecrop,s and Danans, and the fact that Thales, l'ythagoras, Aristotle, I'lato, Solon, Herolotus, and others of their sages, were indebted to the land of the Nils for their eminence in science and arts. It is also quite evident that they improved upon their instructors in both.
The natives of China and India used carts from an early date, which cannot now be determined; the modern hadian cart is a good deal like its predecessol: So clnmsy are they that the paiampin is likely to maintain its hold for a while yet.

The wandering Seythians from time immemorial covered thair wigons with felt and with lather. (See Cabr ; Wagon.) Athemeus, in the Drimosnphists, refers to "Polemo, in liis treatise on the wicker-carriage mentioned by Xenophon."

The lemaice ('ama axion, of two axles) was a fourwheeled covered wagon of l'ersia and Grecee, similar to the curpoutum of the Romans. The body of Alexamber was transported in a homaxa.
The lomans had vehicles with one wheel, adapted to be dhawn by slaves, and also had two and four wheeled vehicles. They also had carriages adapted for two, three, and four lorses.
The use of pleasure-carriages in the city of Tome was forbidden during the republic.
Carts ulisposed as a ciremmvallation were the ordinary field and camp fortifications of many nations of antiquity, - the Scythians, Cimbni, Heivetii, Goths, Gauls, Britons, etc. The name is from the Celtic, appearing with its Latin termination as carmes or carra.

Such a fortifieation was known to the Romans as a carrago.
The lioman arcence, of which mention is made in the Twelve Tables, was a covered carriage nsel by the sick and infirm.

The curpentum, seen on antique coins, was a twowheeled car with an arched covering.

The carruce, mentioned ly Pliny, lad four wheels, and was gorgronsly trimmed. No springs.

When lome fell, carriagiss and that peculiar form of luxury fell into disuse, and eventually into disrpute.

Smith's "Dictionary of Greek and Roman Anticquities" will emable the student to pursue the matter. See in that work, in addition to the above, Pilcntum, Rheda, Cisium, Corinus, Essedum, Currus, Plaustrum, Serrucum, Pctorrituan.

Down to the sixteenth century, kings, popes, ministers, and magistrates made their progresses aml journeys on the backs of animals. During the fifteenth and sixteenth centuries covered carriages were used by women of rank, but it was considered disgraceful effeminacy for men to use them. In 1545 we read of a certain duke who was permittel, as a favor on account of his sickness, to ride to the baths in a covered carriage.

In 1550, three coaches were used by three of the dignitaries of the city.
During the sixtcenth century carriages rere introduced into Spain, Portugal, England, and other countries.

The practice gradually became more general, and in 1613 we find that ambassadors appeared in coaches at a publie solemnity at Erfurth.
The carriage of Henry IV. of France had no springs or suspension-straps. The roads were neither graded nor graveled, amd were almost impassable in bail weather. Horseback and pack-horses were the order of the day for passengers and freight. The magnificent Ronan paved roads were forgotten.

The moden coach is clamed by the Hungarians,
who sny that it derivel its name from lotsec, and that their king, Matthias Cervinus, was the first who rode in one. An edict of Philip the Fair, 1244 , refers to their use, and forbils them to the wives of citizens. They were for a while restricted to the sick, to royalty, and to ambassadors.

A number of instances are cited in English history where they were used, bnt the roads were so execrable that the hack and prack-horse were nsed in England until about 1700. The making of roads pre ceded the extensive use of carriages, ind rendered it possible. The Romans knew how important an agent in civilization were the roads, and the memorials of their gemius yet remain in Europe. Facility of transportation is necessary to progress, and the early nations were either maritime or dependent upon some great niver which was the artery of the empire. WitMess the Mediterranean, the Nile, Euphrates, and Tigris; these waters washed all the lands of historic interest from Noah to Constantine. We must except "far Cathay," - Chima.
Stowe dates the making of coaches in England from 1555 , and credits Wralter Kippin with the making of the same. The canopies of these coaches were supported by pillars on the bolies, surromded by curtains of cloth or leather, which were folded up when so desired. They were heavy, clumsy, and destitute of springs. They were driven by a postilion, and where four hors's were used, the man who rode the near wheel-horse drove the leaders with reins. The driver's seat was added at a later periorl. Glass windurs were adkled in 1631 in the carriage of Nary of spain, the queen of the Emperor Ferdinand 1II. If the carriage of Hemry IV. at Frauce bad been fumished with mindows in 1610, Ravaillac would have been obliged to choose another mode of assassinating hin. The carriage of Louis XIV. of France, 1643 , was suspendel from springs. The first state coach in Englaud was that of Elizabeth. See Coach.
Stage wagons were introduced into England in 1564, and coaches for hire plied in London in 1625. stage coaches were introduced into England by Jethro Tull, about 1750, and were employed to carry the mail in 1784 . Before this time it was carried on horseback. See Coacn.
See Temictes for list of devices for lamd locomotion, which are treatel under their respective heads.
For trater locomotion, see Vesifls.
Vehicles are now proposed to be made of indiarubber, all but the axles and tires.
The mood in England differs from our own. While both countries possess oak, beech, ash, and elm, the two latter differ considerably from our timber having the same mames, and the English forests are destitute of many varieties whirh are useful to us in making the wheels, hounds, borlies, tongues, panels, etc. of carriages. Such are hickory, black and white walnut, cherry, maple, yellow 1mplar, locust, gum, etc.
In England, ash is used for the skeleton of the body of superior camjagen, and brech for inferior ; clm is usel for strong planking aml homs; onk for spokes; mahogreny or ccolar for panels; pinc and fir for floor and roofing ; fustic, luncezcood, birch, sycamore, chestinut, and planc-wood are also used.
In Australia the naves are made of blue gum, the spokes of the iron-bark tree.
2. (Carpentry.) The timber frame supporting the steps of a wooden stair. A rough-string; a car-riage-picce.
3. The pendants from which a sword is suspended from the belt. Sling; sworl-sling.
4. (Printing.) a. The frame on rollers by which
the bed, canying the form, with the tympan and friskict, is rum in and out from under the plater.
b. The frame which carries the inking-rollers.
5. (Machizery.) A portion of a machine which moves and carries an object ; as, -
a. The log-carringe ot a sawing-machine.

The bit-carriage of a boring-machine, which carries the bit and is allvanced to the work.
b. The carriage of a mule-spinaer, which travels towards and from the creel on which the bobbins are skewered.
c. Of a horizontal shaft : the bearings in which it turns.
Car'riage-bolt. A screw-bolt, usually with a chamfered head, square neck, and threaled shank, for use in carringe-making. See Bult, Fig. 767.
Car'riage-brake. A retarding arrangement for carriages wheu descending a hill, to preveat horses

Fig 1133.

CARRIAGE-SPRING.

from starting too readily or moving too fast. It usually consists of a loot-lever connecting by rods to the brake-bar, which applies the shoes to the wheels.

Car'riage-bridge. A roller-bridge to be noved up a glacis and lom a bridge from counterseary to scarp, for the passage of the attacking column.

It has beans and uprights. The latter act as posts, to rest on the bottom of the ditch, and are shiftable to adapt them to the depth of the diteh or fosse.

Car'riage-coup'ling. 1. The conpling of a carriage unites the fore and hind carriages. It is called the perch or recuch in carriages that possess it, but in many modern carriages is dispensed with, the bed resting on the fore and hind carriages, loming the the only coupling.

111 wagons, the coupling is a pole, whose forward end is leld by the king-bolt in the fore-carriage; the hind end passes through an opening between the hind axle and bolster, and the honds of the hind axle are fastened to the pole by a pin.
2. A means of uniting the bed to the fore-carriage. It usually cousists of a king-bolt, which forms the pintle on which the fore-carriage tums, and the fifth wheel, which is bolted to keep the protions from boumcing apart.

Car'riage-guard. A plate on the bed of a carriage where the fore-wheel rubs in turning short.

Car'riage-jack. A lever-jack, made in various ways, designed to lift an axle, so as to raise a wheel above the ground, in order that it may be removed from the spindle for greasing or repair. The illustrations are self-explaining. (Fig. 1133.)

Car'riage-lock. (Vchicle.) A fastening for a carriage-wheel, to restrain its rotation or impede its freedom of movement in descending a hill. A brakc.

Carriage-Luthrictior.

Car'riage-lu'bri-cator. A means for lubricat. ing a carnage-whel hox and spindle withont removing the wheel from the axle; a self-feeding derice, which will supply the wheel for a considerable time.

Fig. 1134 shows five different forms of the deviec. The upper one on the left las a movatble serew-stopper ; alongsile ol it is one which lats a resprvoir and rotton wick to supply oil ; another has a spring lid to the oil-sinmily hole; the luwer two are reached by unserewing the stopper-lids of the reservoirs.

Car'riage-piece. (Corpouliy.) One of the slant. ing pieces win which the steps of a wooden stairease are inposed. A rough-string. The ulpue end rest. against the apron-picec or pitching-picce, which is secured to the joists of the landing.

Car'riage-

shack'le. The

 har (', which connects the axle-elip to the thill or shaft;
d is the pintle.
Car'riage-spring. An elastic device interposed between the bed of a carriage and its ruming-gears, to lessen the jar incident to inequalities in the road,

Fig. 1136.

and the saltatory and rolling motion of the bed itself. Several examples are shown, of which a has semi-elliptienl spriugs hung upon the ends of C-springs attached to the axles.
b has the nsual elliptical springs between the bolster and axle.
c has elastic wooden springs which comect the axles and also support the betl.
d has semi-elliptical springs which also couple the axles.
c has a bolster hung upon C-springs.
f has a system of curvell springs with three points of connection to the bed and two to the axles.

Car'riage-step. A step, usually on a jointed dependent fiame, to afford means for mounting into a carriage.

A carriage-step to be let down and raised ly the opening and closing of the carriage-door was patented in England by Thomason in 1799.

Car'riage-top. I. The cover of a carriage. Permanent in coaches; double calash in bavouches and landans ; calash in some grigs, burgies, plaetous, etc. ; curtained in ambulances and spring-wagons.
2. A shifting-rail on the back and ends of a bnggy-seat, to make a high-back, or, by removal, a low-back bugry.

Car'riage-wheel. This has usually a hub or

Fig. 113\%.

Suspension Carriage-Thieels. nave, spokes, fellies, and tire. A box fitted in the hub runs in contact with the spindle or arm of the axle, and the wheel is held on the spindle by a linch-pin, nut, or other device.

Carriage. wheels are variously constructed. In the usual form the radial spokes are planted in the lub and distend the rim. In the suspen-sion-wheel, so called, the castiron hab and wrought-iron rim are connected by rods tiylitened by nuts.

The illustration gives sereral forms of the suspension-wheel. The upper figure has curved stecl spakes, which provide in the whects the spring or elasticity necessary for the vehicle.
The other figures show modes of securing the rims to the hubs by curved, crossed, or broad-hased spokes. The run of improvement now is in the hubs and the modes of securing the spokes therein. See Hub; Spoke; Felly:
Car'rick-bend. (Nantical.) A knot formed on a bight by putting the end of a rope over its standing part, so as to form a cross; reeve the cul of the other rope through the birght, up and over the cross and down through the higlit acain, on the oplposite side from the other enel. See Pexd.
Car'rick-bitts. (Shipbuilding.) The vertical
posts or cheeks which support the barrel of the windlass.
Car'rier. (Turning.) 1. A driver in a lathe, to impel the object which is supported on the front and back spindles, otherwise called the live and deced spindles. It is attached by a set-screw to the shaft to he turned, or to a mandrel on which a round olject is driven for the purpose of being turned. The carrier is driven around by a projection on the center-chuck or facc-plate. A lathe-dog.
2. A distributing-roller in a carding-machine.
3. A roller between the drum and the feedingrollers of a seribbling-machine for spiming wool.
4. A spool or bobbin-holider in a braiding-machine which follows in the currel patla which intersects the paths of other bobbins, and thus lays up the threads into a braid. See Bratid-1NG-machne.

Car'ron-ade'. A short, light species of canmon intended for firing solid shot at short ranges, with coniparatively small charges.
It has no trimnions, bit is secured to its carriage by a bolt passing through a ling or' "navel" east on its under side. This form of gun was formerly much used on shipboard, but is now nearly obsolete.
So named from the foundry on the river Carron, Stirlingshire, Scotland, where they were first cast in 1779.

Car'ry-all. (Vehicle.) A light, four-wheeled family vehicle drawn by one horse.

Car-seat. A seat in a railway-car. The back is
usually reversible, so as to adint it for passengers in either direction of motion of the car, the preference being to "face the horses," as it is called. The facility for reversing is, moreover, useful in throwing two seats into a "section" for a party.
Car-seats are also made reclining, for night travel; such are termed "sleep-ing-chairs."
The occupant of the clair can adjust the back to any desired angle by means of a hand-lever c, which, on being released,

Reversible Car-Seat.
the plate D, and hold the ano pawl ce to 1 seat stationa. rily in the desired position.

For this purpose, back, seat, and arm are pivoted together, the stationary point on which they oscillate being at the apex of the A-shaped sulport. As the seat slides to the rear, the back reclines, and the lenboarl is projected in front.

Other car-

Fig. 1139.

CAR-SPRING.
seats are capable, by aldition of parts, of being transformed into conches.

Car-seat Arm-lock. (Railuray.) A lock attached to the bar of a seat-back, to prevent its being reversed by unathonized persons. The bolt is witl. dmwn ly a key.

Car-spit'toon. A spittoon inserted in the floor
Fig 1140 .

of a car and discharging beneath. It has a value, operatexl by a trigger under the control of the foot.

Car-spring. A resilient or yielding stmeture or material, interposed between the car and the axle to prevent the jar of the wheel being communicated to the ear ; or to moderate the effect of the rolling or pitching motion of the car.

Car-springs are of varions forms and materials, and are variously placed. In railway passenger-cars there are several sets, usually of different kinds, at different places between the point of jar and the car-bed. A good instance may be seen in CarTRUCK, where the varions parts are exhibited, and the transference of the jar from one point to another is explained. See Car-rnuck.

Car-sirings may be classed as :-

Elliptical.
Tuemmatic.
Torsional.
linbler.
Rubber and steel.
Kubber, steel, and air.
In the series of illustrations the parts and structire are so evident that a short description only will be given.

Cur-Springs.

Fig. 1141, a is a dotble elliptic spring, the bearings of whose eud-leares are so shaped, that, as the spring bends beneath its load, additional leaves receive a bearing upon the ovoid bars.
b is an elliptic spring whose prineipal leares are made of a continuons phate wonnel romed and round. Auxiliary plates above and beneath extend the area of bearing of the boxes or bars.
c is an elliptic spring made of a single plate wound aroume a mandel of the shape indicated. It is designed to be used with upper und lower bars as at b, or in a box, as at d.
a shows an elliptic spring in a box, and a follower alove, upon which the weight is inposed. The position of the spring, in the box, is maintainel by holts, and the upward motion of the follower is reo sirained by two long lolts as shown. These keep the followers from louncing out of the box.
e shows a series of plates which assume the ellip. tical form c^{\prime} when the weight hears unon them heavily. The box above the spring has a series of steps beneath, adaited to the lengths of the leares of the spring, so that as the weight increases additional laves obtain bearings in the box. The ob-

Fig. 1142.

ject is to give elasticity with light loads and strength for heavy loads, by bringing alditional plates into work as the load increases. This feature of cumnlative parts is found in several other forms of springs, which will be noticed in turn.
f is one form of preumatic spriug, in which the weight is imposed unon a box whose central phunger bears upon the surface of the water in the lower box. A bouly of air is imprisoned in the annular portion of the lower box, and is compressed by the pressure on the water, the latter serving merely as an interposed material to transfer the pressure, as in the air-compressing machines (Figs. 71 and $72, \mathrm{p}$. 32). The central rod has a lisk on its lower end, which is tightenel by a screw against the lower end of the plunger, to compact the packing.
ln Fig. $1142, g$ is a torsional spring, in which the weiglit of the truck-frame a is thrown upon spring-lods, which are placed transtersoly beneath
the truck. The ends of these rolls are shown at $c c$, and firmly attached to them are arms $b b$, whose ends rest on bearing-blocks above the axles. As the truck-frame sinks with its superincumbent load, a torsional pressure is brought upon the rods and by then tmansferred to the axle-hoxes.
h is a pnemmatic spring in which the air is comtained in an india-rubber bag in the box, forming an air-cushion beneath the follower.
i is a hollow india-rubber ball in a box with a polished intenior.
j has a number of disks of india-rubber or cork in the box, beneath the follower.
k has a combination of steel elliptic springs, with auxiliary rubber blocks at the ends.
l has concavo-convex plates fitted upon a spindle, with interposed vulcanized india-rubluer disks. The plates are cruciform in plau.

In Fig. 1143, m is a compound spring, having a cylinder of vilcanized subber, with an interior coil

Car-Springs.
to keep it from binding agninst the spindle, and an exterior spiml coil to keep, it from spreading too far. The illustmation shows it in its compressed condition. n is a spring of combined steel, rubber, and air. The air is inclosed in the rubber tube, and the latter yields with the spiral envelope to the imposed weight.
o has an india-rubber cylinder inclosing a spimal steel spring, and having a holt, to limit the extent of upward movement of the cover. The flanged rim of the cover affords a bell-mouth, into which the rubler expands.
p has the spiral steel spring contained in an annular case.
q has a pair of concentric spiral springs on the respective sides of a dividing cylinder. In the ilins-
tration, the spring is shown as extended, in which position the follower is not in contact with the rabber cylinder, so that the latter comes in as anxiliary to the spiral screws when they have attained a certain point of depression.
r is a combination of spiral and rubber springs, with telescopic tubes whicl form walls.
s is a concenticic arrangement of several spimal springs coiled in diverse directions altemately.
t shows a closer coil of the same general construction, but different proportions.
u is a congeries of spiral springs, one in the center, six in a hexagonal arrangement around the cenltral oue. Each set has a pair of spirals concentrically arranged, diversely coiled, and inclosed in its cylindrical sheatl.
v consists of a steel plate folded and then bent into a spiral form around a nondrel.
w is a yolute or helical spring, in which, differing from the spiral, the plate is wound on itself, and does not preserve the same dianeter. The imuer fold of the rolute, being projected in the line of its axis, is made to sustain the loud.
x is another helical spring, shorrin in clevatiou.

In Fig. 1144, $y y^{\prime}$ are respectively a sectiomal riew in isometrical projection and in simple elevation of a car-spring formed of a number of circular plates, of which those in each series are of graduated diame-

CAR'T.
ters. In y the spring
Fig. 1146.
is a pair of such series; in y^{\prime} two pairs of such are allied.
z has amular dishshaped disks arrangel in pairs and united by means of a rod passing through them.
a has plates formed of scgments of spheres, and alternating with
flat plates in groups ; the whole placed in a box in which it is subjected to the pressure of a follower.
In b, the spring is composed of a pile of circular plates corrugated radially and arranged round a stem.
ln c, the spring-plates are of gradually ducreasing lengths upward and downward from the middle diaphragn, and are inclosed in a case whose top and bottom plates are movable and have bearings on the ends of the longer and outer spring-plates. Rubber springs are interposed between the movable plates of the case and the spring-plates.
d has several pars of coneavo-convex radially corrugated plates; between the two plates of a pair is an interposed disk of vulcanized rubber. $\quad d$ is a sectional view of the same.
e shows a box having several metallic plates, compressed from opposite directions and shortening between bearings as they are bent. This has the effect of making then less pliable as they recede before the weight.
f has square or rectangular plates cursed diagonally and fistened together at the corners, thus forming alternate pairs, which bear mpon each other at the corners and diagonally through the centers; the bearing-points of the plates are changed by being lengthened and shortened when the spring vibrates.
g has square, rhombic, oval, or cricular plates, heut bow-shaped, and interposed between the bolsters.
h has a plate or plates so disposed between the beariug-surfaces that with a light load it rests upon its ends and has its weight at the mid-length. When the weight increases, the load is transferred to points on the upper block nearer to the ends of the spring, and the rest of the latter is transferred to points nearer the mid-length, so as to shorten the portion of spring involved in the support.

Numerous modifications and apllications of the foregoing examples might be shown. The trouble is, not that matter fails for more copions illustration, but that there is not room.

Car-stake. (Ruilway.) A Fig. 1145. standard set up in iron loops
 or sackets on the side of a platform-car, to hold a loose load, such as lumber or the like.

Car-start'er. (Iailway.) A device to assist in starting a street-car from the dead-stop. These are of $t w o$ kinds:-

1. Those in which the momentum of the car when the motion is arrested is made to accumulate a starting force.
In Fig. 1146 the pressure on the brake-treadle G causes a frictional contact between the driving-wheels B and the fric-
Car-Stake. tion-wheels D on the same
asle, which retards the motion of the drivers and condenses the spiral spring. When the pressure of the foot is withdrawn, the strength of the spring is permitted to actuate the ratchet on the whee B and assist in giving the initial in pulse, after which the parts assume their normal position, leaving the driv-ing-wheels free. There are numerous modifications of the general intea.
2. A device in which the power of the team is temporarily applied to give a direct impulse uron the wheel, so as to start the latter rolling, and then transfer the power to the car as usual.

In Fig. 1147 this form of car-starter is shown. The dratt-pole is comeeted to a lever and pawl, and the latter engages a ratchet-wheel as the axle.

Fig. 1147.

Car-Starter.

After say a sixth of a revolution of the wheel, the pawl is disengaged and the usual draft condition of the car is resumed.

Car-stove. (Railway.) One specifically adapted for railway cars, having certain means for securing in place, prevention of scattering of fire in case of upsetting, or arrangements for the induction of outside air, and transmission of the warmed air to the interior of the ear.

Stoves are fastened by sockets in the floor, an-chor-bolts, aud guys.

Fig. 1148 shows a stove which has an air-induction pipe surrounding the flue-pipe of the stove. Hoods above the car-top catch the air, which passes down and occupies the air-jacket around the stove, and from whence it is discharged into the car throngh registers.

Cart. Carts and wagons were nsed by the Scythians in the time of Herodotus (450 B. c.), and are mentioned a century later hy Hippocra-

Scyrtian Carls.
tes. The latter describes them as cither four or six wheeled.
"Their wagons are the only houses they possess." - HerodoTUS, IV. 46.

These vehicles are drawn by oxen, as represented in the cut at $a b c$. The bodies of these carts are permanent or detaclabble; in the latter case constituting a tent-frame with a felt covering, which was readily placed on or off the running-gear of the vehicle. These are yet in use amongry some of the Tartar tribes, while others use carts like the gypsy habitations, unfortunately so common in England and the United States. See Wagon.
Hesiod's cart had low wheels, and was ten spans, about $7 \frac{1}{2}$ feet, in width.
" In default of camels, merchandise is generally transported through the deserts of Tartary by means of little two-wheeled carts. A few spars of rouglı timbers are all the material employed in their construction ; and they are so light that a child can raise then with ease. The oxen which draw them have a small ring of iron passed through their nostrils, to which a cord is attached that links the ox to the cart which precedes him; thus all the carts are held together, and form an uninterrupted file." -Huc's Travels in Tartary, 1844-46.

As Strabo (19 B. c.) says: "The rest of the countries of Asia are pincipally inhabited by Scenites (inhabitants of tents; Scythians) and nomads (ha. mexaeci, duellers in wagons), who dwell at a great distance."

Sometimes a ware breaks orer the boundary, and the West sees an irruption of Huns, Turcs, or Tartars ;

Fig. 1100.

sometimes the head of the horde becomes a conqueror, as when Genglis the Khan conquered China, Persia, and Central Asia, A. D. 1206 ; or Timour (Tamerlane) conquered Persia, founded a dynasty in India 1402-1749, and broke the jower of the Tures in Asia Minor.

The Chilian cart d is a good illustration of the primitive vehicle on wheels. Its wheel consists of disks sawn or chopped from a log and bored for the axle. The tongric or pole is secured to the axle and forms the frame of the bed, somewhat like a city dray.

Enlargements on the centers of the wheels outside form hubs, to prevent the wobbling of the wheels on the spindles. The lub and spindles, being of wood, and having a plentiful lack of grease, make music, - such as it is.

The French Eugineer Perronet, who executed so many heary public improvements during the last century (b. 1708 ; d. 1794), seems to have been capable of great projects, original derices, fanciful ornamentation, graceful designs, and etlective details.
His ingenuity was manifested in the centering of his arclies, coffer-dams, lydraulic and hoisting ma-

Fig. 1151.

chines, and in many other departments which we have had occasion to refer to in their proper places.

For removing the earth excarated in constructing the foundations of his numerous bridges, he used carts in pairs, coupled together.

Each cart had a bed carable of holding half a cubic yard of earth, and so suspended from the axle that a part of the contents was below the same, near1y balancing the load, so that the earth was easily dumped. In the rear of the forward cart-frame was a shackle, by which another cart was attached. Each cart conld, therefore, be separately loaded and drawn into the regular track along which it was conreved.
The sbafts and frame were of timber, and the axle of iron. The wheels were large, and were placed far apart, to aroid upsetting. The rear carts had poles, the forward ones shafts.

The modern cart in England is adapted for many uses. With wide-spreading ruecs it is much used on the farms, especially in some parts of the country. The carts of the various trades, as coal-merchants, butchers, market-nien, and others, camot be nore than referred to here. The cart Fig. 1152 is a low

Fig. 1152.

bonly adapted for freight or express boxes, night-soil, or city drayage. The hind axke is bent, and the fore-end of the cart rests on a fore-carriage, constituting it a waydon, or very nearly so.
Dumping-carts for removing earth have a bed linged to the axle, and adapted to tilt up and discharge the load when so desired.
Manure-carts are made in Britain specially adapted for distributing lipuid or partially liguid manure rither broadeast or in drills. They are fittel with [umps so as to be loaled from the tanks, and the distribution is made by perforated pipes or travel-iug-buckets.

Manure dumping-carts are also used, the barre\}shaped reservoir turning on its axis to discharge its contents.
A manure-cart is also sold in England, having a rotating spiked roller which distributes the barnyard manure from a cart or wagon as the velicle passes over the giound.

Car'thoun. (Ordnance.) The old eannou-royal, carrying a tit-pound ball. It was 12 leet long, and land a caliber of $8 \frac{1}{3}$ inches.
Cart-lad'der. (Vchicle.) A rack thrown out at the head or tail of a cart, to increase its carrying capacity. Callel raves in some places.
Car'ton. Pastebourd for paper-boxes.
Car'ton-pi-erre'. 1. A species of papier-maché, imitating stone or bronze sculpture. It is composed of paper-pulp mixed with whiting and ghue. This is pressed into plaster piece-molds, backed with paper, and when sulti:irntly set, removed to a dry. ing-roon to harlen. It is used for picture-frames, statuettes, and nrchitectural omaments.
2. Very hard pasteboard.

Car-toon'. A sketch in chalk made on rough paper, to be thansferred by pricking through on to a f.e ihly plastered wall to be painted in fresco. Among the most celebrated are those of Raffarlle.

Car-touch'. 1. (Archilecture.) A modillion or console supporting the eave of a house.
2. (Firc-times.) a. A cartridge ; a roll of paper containing a charge.
b. A case filled with shot to be fired from a canno:1. (Obsolete.)

Car-touch'-box. A portable case in which cartridges are carried. A cartridge-box. See Accoltrinamexs.

Car'tridge. A "round" of ammunition, including the ball with the sabot, if any, ind its projecting charge, enveloped in a single casc.

This is a modern institution, it having been originally customary to employ loose powder and ball.

Then followed a cartridge containing a measured quantity of powder, the bullets being carried separately in a bag. The end of the paper cylinder was bitten off and the paper used as a wad. Gustavus Adolphus (killed at Lutzen, 1632) is said to have been the first to have made up the cartridge with a measured quantity of powder and a ball fastened thereto.

Sir James Turner, in the time of Charles 11. of England, speaks of cartridges employed by horsemen, carried in a "patron" which answered to the modern cartridge-box. After this time it appears that eartridges were carried in cases suspended from bandoliers, equivalent to the more modem bayonet scabbard-belt.

Soon afterward the great improvement - the cartridge-box - was adopted, which still, under various modifications, contimes in use. See Accoutermests.

Plain, round ball, and buck and ball cartridges
fig. 1153.

are now practically obsolete. These were formed of a paper cylinder, which was partially filled with powder and choked ncar its mid-length by twine, the powder occupying one emel and the ball the other. Other substances than prier, as animal intestines prepared in a peruliar way, were sometinnes employed. Colt covered his cartridges with tinfoil, and afterwards a paper saturated with nitrate of potassa was introduced. This might be placed in the gun as it was, the corering facilitating, rather than retard ing, the imistion of the powder. In Fig. 1153, a is a buck and ball car tridge, b one having buckshot only, c the Prussian needle-gun cartridge (sce FideARM). In this the bullet E has a sabot A, separating it from the powder D, and having at its base a cavity C, for the reception of fulminate. The case of this cartridge is mate of paper.
d, Sniter's, for the muzzle-loading Enfield rifle converted into breechloating (see FireARM), is mate up of a sheet-brass cylinder A, into which is inserted the bullet B, laving at its base a recess k, which contains a plog ol clay. Back of this is the porder-chanber, having at its base a sabot G, into a eavity of which lulminate is insert. ed and explopled tlirongh the action of the firing-plunger

Metallic C'rvtridge-Cases on a cap C.

It may be remarked that the American process of drawing out the blanks for metallic cartridge-cases into tubes is now generally adopted into the European services.

This style of cartritges is divided into two classes
-rim fire and center fire, - the first laving the fulminate arranged within a cavity around the interior of the flange, and the latter having it arranged at the center of the heal or base of the cartridge. Each kind requires the lammer or firing-pin of the gun to be specially arranged, in order to strike the cartridge at the proper point, though cartridges have been devised in the United States to be both rim and center fire, and gums have also been made to tire either or both kinds of cartridges.

The idea of using sheet metal for this purpose seems to have originated with the French.

In 1826, Cazalat patented a cartridge of this kind (a, Fig. 1154), having a receptacle with a covering patch of water-proof paper for fulminate at its base. A hole in the bottom of the cup admitted fire to the charge. This appears to have been in advance of

Fig. 1155.
 the age, being drawn from a single piece of copper, and being centerfire. b and c represent two forms of the Lefaucheux eartridge, - one of the earliest of this kind. In b, the cap is secured to an anvil-block ; in c, a plunger, struck by the hanumer, explodes a fulminate placed in a clamber at the base.
d, c, show molifications of this, the anvi] and cap principle, in which the pin is dispensed with.
f. One of the earliestknown cartridges is that of Roberts, of Paris, 1834, in which an annulus was formed at the lase to contain fulminate.
g is the Flobert eartridge, in which is a ball with a charge of fulminate at the base, which does the duty at once ol qriming and propelling, adapted for tar-get-practice at short ranges.
h, i, Smith and Wesson patents, $1854,1860$. In the first of these the fulminate was contained in a capsule at the base, and in the latter in an annuhs within the flange surrounding the base of the cartridge, and secured in place by a pasteboard disk.
j, j, j, show some other forms of metallie cartriuge as now commonly used.
k is the Berdan cartridge; this has an pxtcrior central recess, a hottom to receive the cap, which is explorled upon an anvil turned up on an interior metallic lining. The case is adapted to fit a chamber larger in thameter than the bore of the barrel.

The mode now generally adopted for forming metallic cartridges is to punch the blank out from a sheet of brass, and to draw it between successive rolls and punches until it assumes the required shape. The shape which the cartridge-case assumes
during the different stages of the process is shown in the figures l to r.

Cammon-eartridges for 6 and 12 pounder smoothbored field-guns, the former of which may now he considered obsolete, have the powder-charge, contained in a woolen or silken bag, and the projectile united tagether by twine. For larger smooth-bored and all rilled gnns, the powder is put up in a sejarate bag, still, however, retaining the name of cartridge.

Car'tridge-bag. (Ordnance.) A flannel bag holding a charge of powder for a cannon.

Car'tridge-belt. A belt for the waist or to go over the shoalder,
having pockets for fixedammunition.

Car'tridgebox. Gustarus Adolphus (killed at Lutzen, 1632) reduced the weight of the musket from fifteen pounds to ten. He also introduced the paper cartridge, which
 at first only contained the powder, the bullets being kept in a bag. Cartridge-boxes at first were very small, but the Germans soon enlarged them so as to contain forty rounds. Nevertheless, for a long time after, priming was done with a powder-horn, Fig. 1157. until at length the plan of using some of the powler of the cartridge was hit ирол.
C'artrilge-boxes are made to contain such number of rounds as may suit the service. Some are specially adapted to certain kinds of

Cartridge-Box. ammunition, as the Spencer, for instance. (See Accouterments.) Some are designed to give each cartritge a pocket, to prevent their jumbling about. One of them is eircular, having radial prockets; another has flaps and loops, like a homœopathic dispensary.
Car'tridge Fill'er. A device forelarging eartridge-
Fig, $11: 58$.

cases with the proper quantity of powder. In that shown, the two filling-tubes a a are partially rotated by the lever b, so as to bring each of them alternately under the funnel c, and over the diseharge-aperture d; while one is being filled, the other is discharging its coutents into a cartridge-case through the pije c.

Car'tridge-pa'per. A strong paper of which cartridges are made. It is of various sizes and thicknesses, according to the kind of cartridge to be made, ranging from a quality similar to bank-not" proer, employed for small-arm cartridges, to that used for camon cartridges, which is about the thickness of thin pasteboard, but rougher and more flexible. The latter is, however, now seldom or never used. The different qualities are in the United States service numbered from 1 to 6 , the latter being the coarsest and thickest.

Car'tridge-prim'ing Ma-chine'. A machine by which the fulminate is placed in the copper-capsule of the metalic cartridge. The fulminate is differently disposed for center-fire and for rim-fire cartridges; in the latter the cartridge-case is rotated on its longitudinal axis, to dispose by the centrifugal action the fuminate at and about the flange.

Car'tridge-re-tract'or. That part of a breechloading fire-arm which catches the empty cartridgecapsule by its flange, and draws it rearwardly from the bore of the gun.

Car'tridge-wire. 1. (Blesting.) The pimingwire wherely the cartrible is comected to the con-ducting-wire of the voltaie battery.
2. (Orduance.) The needle whereloy the cartridgeenvelope is pierced, in order that the priming may connect with the powder of the eartridge.

Car-truck. (Railway.) A wheeled carriage beneath a railway car. The first railway cars had whecls on axles, arranged similarly to those of a war. on. It was afterwards found more convenient and eflicient to sluink the wheels on to the axle, so that they might revolve together ; but even then the jedestals of the axle-boxes were attached to the bed of the car, as is yet the case generally in Europe.

The American practice las long been to support the car on two fonr-wheeled trucks, and latterly six-wheeled trucks have been used under a superiot class of passenger-cars. The capacity, duty, and endurance of car-wheds is alluded to under CAbwheel; but it may be here stated that the addition of the two whecls to the truck increases by one half the number of parts involvell in the duty of supporting the loid.

There are many kincls of trucks, but they agree in the feature of swiveling beneath the ear-bed as the car rounds a curve, and in having a certain freedom of motion which is not as necessarily transmitted to the car as it would be, on a truck of a giv-

en quality, were the axle-boxes on pedestals attached to the car-hed directly.

In the illustration, a a are the longitudinal timbers of the frame of a passpnger-car truck, such as may be found on some of the best of our railways. l is one of the transverse timbers of the frame. Within this frame is suspended the swinging-bolster c, having at its millength the centcr-casting d, which forms the bushing for the king-liolt, and also what may be ealled the "fifth wheed," on which the car-end oscillates as it swerves, rolls, and piteles. The car-frame " l, while supporting the car-end through the medium of the swinging-holster' as deseribed, is itself supported through the medimm of the gum-springs ec ,
a pair on each side of the truck upon the equalizing bar f, whose ends rest upon the upper boxes of the axde-bearing. This is the accomet in short, but there are several other parts involved, as will appear by tracing the sequence of the impositions from the car to the rail.
The car-cod rests upon the center-casting d, which is in a position mid-length of the swinging-bolster c; this rests upon the uprer members of the elliptin springs y g, which are foumded mon the suspensionlur h, which comects the two points of imposition of the sjrings ! g g, making each a brace for the other. The suspension-har h is suspendel by yokes $i x$, from hanyers $k k$, which are bolted to the transverse-tim-
bers $b b$ of the truck-jrame, of which they form a part. The lonstudinal timbers a a of the frame, on each side of the truck, rest upon the grom-springs $e \ell$, and these upon the cqualizing-bar f, whose ends are upon the upper boxes $m \mathrm{~m}$ of the axle, outside of the wheel p. For the detail of this pertion see Axle-box.
The upper illnstration of Fig. 1159 is a side eleration, and the lower one is a section, the respective halves of the view being taken on different sectionlines. $\quad r$ is a tension-bar or tic to strengthen the frame; s s are safcty-stirrups, to catch the suspen-sion-bar \dot{n}, if anything should give way; t is a bracerod between the two podistuls $u \quad u$, in which the axle-box works up and down as the gum-springs eontract or expand. $w w$ are the brake-shocs, on the end of the brake-bars $x x$, which are moved by a rod and lever arrangement. (See Cah-blake.) y y are
axle-boxes ascend and descend, as the springs give way and recover themselves. Within the side trusses are bolted the ends of the transverse frames $A B B^{\prime}$. P is the center-casting, which rents on a post J, and this upon the elliptic springs in the frame $A B$, as shown in the upper portion of Fig. 11 u0, and on an enlarged scale in the lower left-hand comer of the same figure. The springs rest on the bar L, and the weight is transferred ly hangers M / I to the main frame and tinsses, which, as has been sail, rest on the axle-boxes. The mechanism for operating the brake-shoes need not be particularly described.

Fig. 1161 represents a vertical longitudinal section and side elevation of a six-wheeled truck. This has a rigid frame, maintaining the wheels in the same line at all times, but allowing them to run over curres in the track by having the llange removed from the mildle wheel of each trio. The truck is so supported that the weight is equally distributed upon all the wheels, by resting it upon a support over, but not upon, the middle axle, said surport being sustained by springs placed on each side of and equidistant from the middle axle, and the whole weight being transferred to the axles through a rigid frame.

The weight of the car-end, in this case as in the previous examples, is taken upon the central beam, and is then transferred to swinging-bolsters $H H$, whieh rest on gumsprings, and these upon transterse bars,

diagonal-brace rods for the pedestals. $\approx z$ are the relicuing-springs which throw the shoes away from the wheel when the tension on the brake-mechanism is withdrawn. $v \quad v$ are the safety-stirrups, to catch the brake-bars if the sxing-bars $j j$ should give way.

Thus it will be seen that two sets of springs intervene between the car and the rail; the car-end rests upon a swingingbolster which has elliptical springs bencath it, and these are suspended from a frame Which itself rests rpon gum-springs on the equalizing. bar which rests on the axle-boxes.
There are many modifications of the general form shown in Fig. 1159, but the feature of a spring-supported holster "swinging" within a frame-spring suplorted on the wheel-axles is generally maintainel.

In Fig. 1160 is shown one modification, in which the sides of the frame are iron trusses, each composed of a plate F, tie $H H$, and braces $G G$, having
guides $D D$, which act as pedestals in which the

Car-Thuck.
platform A, which is supported upon and connected by pirots to laterally swinging bolsters D on each sulb-truck (one only shown). The end of the coach is supported on the middle transrerse swingingbolster K of the framie A, and the swinging-bolsters in the middle of the sul-trucks abut upon rubber blocks at their ends, and rest upon rubber blocks whose supports are swung from the sub-truck frames $b b^{\prime} c$, and $b y$ them transferred to the elliptie sidesprings f, which rest upon saddles over the axle-boxes. $J J$ are truss-rods which strengthen the main frame.

po:ted, on each side, at fonr joints, by means of four peelestals, as many rods, and two semi-ellijutic springs.

Car-truck Frame. The strong wooden frame which rests upon the wheels by intermediate springs and parts, and which by other intermediate springs supports the swinging-bolster upon which the car directly rests. Sce Cab-thuek.

Car-truss. That combination of sills, plates, braces, and tie-rods which forms the skeleton of the ear, and npon which, as a frame, the Hoor, sides, roof, etc., are fastened.

Cart-sad'dle. The saddle mpon which rests the chain which goes over the horse's back, and whereby the shafts of a cart are supported.

Car'vel - built. (S'hipbuildiny.) a. A mode of buikling in which the timbers are cut ont of the solicl, as in ships and the larger description of boats, sueh as lameles, long-boats, and barges. (Sce Boar.) The planks make tlush seams insteal of lajping, as in the cliucher-built. The seams are calked. The frame of a carvelWith lighter cars, such as those of street railways, built boat generally consists of a floor and two futthis combination of great strength and elasticity is not required.

In Fig. 1163 is shown a car whose bed is sup- which the edges of the plates are brouglit flush to-
Fig. 1163.

Car-Truck.

gether and riveted to a lap or welt in the rear. \ln | clinclucr-buitt iron vessels the plates overlap, and are secureal together by one longitudinal row of rivets.

Car'vel-joint. A flush joint ; said of ship's timbers or plates, in contradistinction to cluncher. See Carvel-buil.t.

Car-ven'ti-la'tor. (Railioay.) i device for' hringing fresh air into a car and removing noxions air therefrom. Fig. 1165 is one form, in which a cowl or hood D on the roof eatches the air, which is filtered through a gauze serecen and led down through the roof of the car. Crescent-shaped openings e deflect the air into the car,

and other openings leal up the fonl air, which is discharged throngh the vertical pipes E. The mouths of the dampers D are juesented fore and aft respectively, and one of the dampers a is moved, to close the pipe, according to the direction in which the car is moving.

The device shown in Fig. 1166 is designed to open or close simultancously all the altermating shonters

Fig. 1165.

on one side of the turret of "monitor cars." All the shutters may be closed at once, yet it is the

Flg. 1166.

Car-Ventilator.
practice to have one half of the shutters open while the carriage is moving in one direction, and to reverse the position of the shutters - i. e. open those which are closed and close the open ones - when the carriage moves in the opposite direction.
The mechanism for operating the shonters consists of the slide-bar H and its operative lever I, and a series of slotted and bent levers F, and their connecting links. The slide-bar H runs the length of the car-turret. In the upper figure, which is a horizontal section, the rear shutter B is shown open, and A closed. In the lower figure, which is in elevation, the lever is clearly shown by which the series of ventilating-shutters are operated.
In Fig. 1167 is shown an adjunct, consisting of a means of removing the dust from the air entering the induction-oprenings D.
The paddles a on the rotating shaft dip into a water-bath at the bottom of the rentilator when

Fig. 1167.

Car-Ventilator.
actuated by the draft on the fans. The dust in the eutering air is collected in the water. The air passes through a screen E before admittance to the car. See Air-filitfis.
Carv'er. A large, pointed knife for cutting up meat and joultry. See Canving-kNife.

Carv'ing. The art of cutting wool, etc., to orna-
mental forms by means of chisels, gravers, scorpers, ete. With metals, it becomes chasing; with plastic material, molding.

It is a very ancient art, having been employed in Assyria, Babylon, Persepolis, Egypt, and Greece upon chariots, furniture, weapons, and many other oljects.
lt was about 1491 B. c. that Bezaleel, of the tribe of Judah, was specially selected for his skill as a workman in gold, silver, brass, gem entting and setting, and carving in uood, and was commissioned to execute the work upon the Tabernacle and its furniture. Aholiab, of the tribe of Dan, was his first assistant, and he had other coadjutors not mentioned by vame. The Egyptians, among whom Moses, Bezaleel, and others, had been educated, were justly renowned for their skill and taste in carving, as is abundantly shown by their chairs, biers, conches, arms, chariats, musical instruments, and other articles cited moder their respective heads in this work. To mention one specially, their ehairs left little to be desired or attempted either in comfort, beauty, or upholstering. See C'uair.

The ornamentation of the Temple of Solomon, and its furniture, about 1605 b. c., called for the skill of a workman who was of a mixed Tyrian and lsraelitish descent. His skill in carving and casting was derived from his father, who followed the business of a pattern-maker and bronze-founder in Tyre.

The ornamentation of the day consisted of conies of natural objects, formally associated, resembling that which, frozen into conrentional forms, gave a severe grace to the Grecian architecture. The capitals of the bronze columms erected by Hiram A biff were ornamented by "nets of checker work, and wreaths of chain woiks," lilies and pomegranates being strung upon the pillars and their capitals.
"Hiram made the lavers, and the shovels, and the basins. The two pillars, and the bowls of the chapiters on the top of the two pillars, and the two networks to cover the two bowls of the two chapiters, - and four lmodred pomegranates for the two networks, even two rows of pomegranates for one network, - and the ten bases, and ten lavers on the bases; and one sea, and twelve oxen under the sea; - all these vessels were of bright brass" (bronze), and were cast in the plain of Jordan, "in the clay ground between Succoth and Zere. dathah."

These utensils, together with the great sea of bronze which held 2,000 baths, required great skill in carving and casting, and are deemed very remarkable for the time at which they were executed. The surprise expressed arises from our own vanity and depreciation of the skill of those who preceded ns a few thousands of years. The bath, as estimated by Josephus, was equal to $8 \frac{8}{3}$ gallons (8.6696) ; according to the Rabbinical writers, $4 \frac{3}{2}$ gallons nearly (4.4286) ; S mith estimates it at $9 \frac{1}{2}$ gallons. Taking the lowest estimate, the brazen (bronze) sea of the temple court held over 9,000 gallons. The Chaldees broke it in jlieces to remove it to Babylon, about 590 в. c. They estimated it only as so much metal ; they "carried the brass [oronze] of them to Rabylon."
This was a large vessel, and may well be believed of the time when works of art were estimated by their colossal proportions. The stones of Egypt and Baathee are yet unrivalled in modern times. Sce Stnie-cutting.

The doors of Solomon's Temple were of olive-tree wood, and on them were carved "cherubim and
palm-trecs and open Howers." The carving was overtaid with gold. Other doors were of fir, similarly carved and phated.
The cloors of the temple of the Tndian idol Somnauth were of sandil-wool elaborately carved. They were taken by Mahmond of Glizni, A. D. 1024, and were made the entrance-doors to his tomb in Afghanistan. They were retaken by the British in 1842, and the Governor-General, after a pæan in their praise worthy of a fukir, ordered them to be restored "with all honor" to the obscene idol, "avenging the insult of 800 years." Good sense stepred in and comntermanded the absurd order. See Dool.
Carv'ing-chis'el. A chisel having an oblique edre and a lasil on both sides. A skero chisel.
Carv'ing-knife. A large-sized kuife used for cotting meat at table. It is usnally handsomely monated. The carving-knives of two centuries since were a part of the state service of the refectory.

Fig. 1168.

Grace-Kinives

Those represented hat the grace before meat and that after meat, with the music of the intonation.
Achilles carved for his visitors, and each was expectel to eat his mess without grumbling. Joseph sent to Bunjamin a larger mess than to either of the other brothers.

As to behavior at table, we learn from Plutarel and others that praing the mails at table was the height of vulgarity; speaking loud, spitting and coughing, were unregarded trittes. As the guests had no torks, they wiped their greasy fingers on soft bread, which they then threw to the dogs. "The dogs eat of the crumbs." Napkins eame into fashion later.

In after ages each man grasped the joint and carved for himself. (See Cast-KNifi.) Table-forks are a much later thought; they eame from Italy to England in the time of the Stuarts. See Fork.

Breal, meat, and beer formed the usual feed of our ancestors in Eugland down to anl during the reign of Elizabeth, and the peophe busied themselves curiously in the morles of carving, inventing a whole category of technicals. Juhiana Berners, lady mioress of the nunnery of Sopewell in the fifteenth century, the reputed anthor of the " Book of St. Allaus," gives the following as the terms applied to carving the respective animals:-
"A dere was broken, a gose reryd, chekyn frusshed, a cony mulaced, a crane dysplayed, a cnrlewe mioynted, a quayle wygged, a swanne lyfte, a lambe shohlered, a heron dysmembryd, a peacock dysfygured, a samon clynyd, a hadoke syndyd, a sole loynyd, amb a breme splayed."

Carv'ing-ma-chine'. One for earring wood, or roughing it out preparatory to the chisels, gouges, and scorpers of the carver.

As early as 1800 , a Mr. Watt, of London, built a machine that carved medallions and figures in ivory and elony, producing some very handsome work with great rapidity; in $181 \pm$ and 1815 , Mr. John Tsaac Hawkias, of the same city, produced a similen machiue for the sane purposes; in 1828, a Mr.

Cheverton built a machine for similar purposes, the operations of whiels attracted considerable attention throughout Eurole.
hialituwartes carving process (English), November, 1840. This process is not dependent upon cat-ting-tools, but the wood is burned away, or rather converted into charcoal. The wood is steeped in water for about two honrs, and the cast-iron die, or mold contaning the device, is lieated to redness or sometimes to a white heat, and applied against the wood, either by a handle, as a branding-iron, by a lever, or by a screw-press, according to circumstances.
The molds are cast from plaster easts of the original models or carvings.
The saturation of the wood with water prevents its ignition. lt gives oll volumes of smoke, but no thame, the wood being charred. Alter a short time, the iton is retumsed to the furnace to be reheated, the blackened wood is well rubbed with a hard brnsh to remove the charcoal-powder, which, being a bad conductor of heat, saves the wood from material discoloration. Before the reapplication of the iron the wood is again soaked in water, but for a shorter time, as the wood now absorhs water with greater facility.
The rotation of burning, brushing, and wetting is repeated 10 or 20 times, or more, until, in lact, the

Fig. 1169.

Carting-Machine.
wood fills every cavity in the mold, the process being materially influenced by the character and condition of the wood itself, and the degrees in which the moisture and heat are applied. The water so far checks the destruction of the wood, or even its change of any kind, that the burned surface, simply cleansed ly brnshing, is often employed, as it may be left either of a very pale or deep brown, accorling to the tone of color required, so as to match old carvings of any age ; or a little scraping removes the discolored surface.

Perforated earvings are burned upon thick blocks of woond and cut off witly a circular saw.

Th the machine (Fig. 1169) several copies are carved at once, the pattern being placed midway between them. The model and the wood for the copies arep placed, say, 8 or 10 inches apart, on a rectilinear slicle, free to move in one direction upon a carriage, which is free to more in a direction at right angles to the former. This forms what is called the floating-teble, as by a combination of the two motions unydirection may baattained. The two movements of the table
are under the control of the two hands of the workman while he controls a thirdslide with his foot. The thind slide, which is rertical to the other two, carries in the center a tracer of globular lom, and also, at $\$$ or 10 inches on the right and left of the tracer, cutters of the same globular form, which latter are set to make about 6,000 revolntions per minute. The third slide, which, together with the tracer and side-cutters, forms one entire mass, descends upon the wood with a molerate pressure, that sends the silecutters into the two blocks' of wool until the central thaeer rests in contact with the model ; the cutting then ceases, and the slite is raised from the work by the treadle.

In this manner, by a multitude of vertical incivions at different parts, the whole surface of the blocks beneath the cutter is removed to a depth corresponding to the exact shape of the model. For expedition, a horizontal motion is imparted to the hel-plate moving the wood against the cutters; the depth at any point being determined by the contact of the tracer with the model. The necessary conditions are, that the tracer and cutters be alike in form and size, and that the distance between them, and also the distance between the model and copies, whether 5 or 10 inches, or any other measure, be preserved throughout the one process.

The above case, in which the work lies horizontally, is that most usually required; but when the work has to be carved on all three siles, - as, for example, in brackets or consoles projecting from a wall, - although the armangement of the central tracer and the cutters parallel therewith, partaking of a vertical motion in common, be preserved, the model and copies are all three adjusted so as at one time. all to lie on their backs, at other times on their right and left sides, with the progress of the work. sometimes this change is effected simultaneously by mounting them on platfoms that are situated on fixed parallel amd equilistant axes, and shfting all three at one movement, by a simple amangement derived from the ordinary parallel rule with radiusbars.
In case of figures carred in the round, or on every side, the central model and two copies are built above one wide bar, upon three circulating perlestals or turnplates, with graduations or detents, by which the three objects may be alike twisted round to face any point of the compass; and as the witle bar upon which the three circulating pedestals are built has a tilting motion by which the three pedestals may be all alike placed either horizontally, or inclined to the right or left, in any degree, mutil nearly vertical, it is clear that these two directions of motion constitute universal joints, and enable any and every similar part, of all three objects, to be presented to the tracer and cutters respectively.
The machines are used for mood, soft stone, marble, and alabaster.
The Blanchard machine for turning irregular forms las been nsed for turning lasts, spokes, axe. handles, gun-stocks, busts, etc., and in some of its applications may be termed a carving-maehine. It differs from those just described in the cireumstance that the object to be tumed is rotated, constituting the machine a true lathe, while the revolving cutter is drawn out or in by means of a revolving pattern. The variations of detail will be mentioned under Lathe (which sec).
Carv'ing-ta'ble. A table heated with hot water, in which are depressions forming pans to hold joints of meat.
Car-wheel. One adropted for the uses of cars, or the trucks of railway cars.

They were ongimally like those in ordinary use, and were gnided ly flunges me the rails, as in the case of the Sheffield Colliery Railroad, 1707. At this time the rails were of cast-iron.
In 1789, car-wheels were made with flanges, to mun on the cilge-rail, which was finst made of castiron and used at Longhborough, Englaud.
In Stephenson and Losh's patent, 1816, car-wheels were made with wronght-iron spokes, the hub and rim being cast on to them. A wronght-iron tire was shrunk on to the rim, and secured in its seat by a dovetailed depression.
ln Fig. 1170 are shown a few examples of the numerous inventions of this class.
a a^{0} represent the famous Washburn wheel so familiar to us all. It bas an arch at the ceutral

Fig $11: 0$.

portion adjacent to the hul, and the apex of the arch is connected by a curved web with the rim, the junction of the web and rim heing strengthened by ribs or brackets. a is a side elevation, and a^{\prime} a diametric section.
$b b^{\prime}$ are perspective and sectional views of a wherl whose hub is connected br spokes with the rim. Such was Stephenson and Losh's, already mentioned ; indeed, this is quite an antiquated form.
c is one of the Woulbury wheels, which has a compressed ammar elastic packing between the cylindrical faces of the horly and sinn; the packing being first compressed on the periphery of the borly, and the rim then adjusted npon the latter. The body is sectional, haviner two welis bolted together ; one belongs with the hub, and the other is fitted in a rabbet thereon. Each prortion has a flanged rim,
the combination of the two forming an ammlar seat for the tire. The interposed packing is intended to absorb the jar.
d is a wheel cast in three seprate pieces, consisting of a rim and two portions, each of which latter has a hulb and a web, between which the inner Hange of the rint is gripped and bolted.

The wheel e has sile-plates cast in one piece with the luub and cross-pieces, which connect the peripherics of the side-plates. The encircling tire is secured by rivets.

In the wheel f, the tire las pins upon its inner side, which enter slots in the rim of the wheel, to hold the tire from shifting. The flange-picee has a shoulder projecting on the inside, that fits in a circular groove in the body of the wheel, to which it is bolted.

The wheel g has a circular recess to receive a collar on the axle, over which is bolted a covering aunular disk. This device is to allow the revolution of one of the wheels upon the axle in curves of the track.
h is a car-wheel constructed in two parts: first, a rim with two flanges forming an inner recess; and, second, a hub with a web, and flange upon the web,

Fig. 1171.

Car-Wheel.
flaring slightly outward. Slots in this flange (the circumference of which is slightly larger than that of the inner edge of the rim) permit it to spring past the llange of the rim into the inner recess. This device dispenses with the use of bolts, and gives clasticity to the wheel.
i and j are two forms of wheel, in each of which the cast hob and rim are connected by coriugated wroughtmetal disks.
k is the Raddin wheel, in which the entire web and rin are cast in one piece, and the inner edge of the web rests upou the hub. The hub is formed with supporting flanges or binding rings, which are bolted to each other throngh cularged holes in the web, with interposed packing-rings of indiarubler to lessen tremor and jar.
$l l^{\prime}$ are two views of the Watson wheel, in which the space betwecn the
hub and the rim is occupied by a skeleton metallic frame, whose openings are filled with panels of wood compressed therein.

In the wheel m (Fig. 1171), wedges of wood are driven between the rim and the tire. The purjose of these, also, is to absorb jar.
$n u^{\prime}$ are views of a compound wheel in which segments of wood form a web hetween the hub and the rim, being secured and strengthened by metallic plates.
$a 0^{\prime}$ are views of a wheel in which the hub and rim are of east-iron united by wronght-iron spokes, rach alternate spoke leaning at an angle from opplosite sides of the central circumerence of the hub to the central line of the rim.
q is a wheel somewhat similar to k, in which the web of the wheel is inclosed between binding-plates, and has a yacking. between itself and the plates, and also on its inner edge.

Paper also enter's into the composition of some car-wheels. The paper is tightly pressed in as a packing between the steel tires and the cast-iron hubs, so as to form a compact, strong, and yet somewhat resilient, material, which deadens sound and diminishes the force of concussion.
"There are in daily use, on the 37,000 miles of railway in the United States, not less than 1,250,000 truck and car wheels, under 8,500 locomotives, 6,500 passenger-cars, 2,700 baggage and express cars, and 160,000 freight-cars.
"The available statistics show that passenger-cars make an annual mileage of 28,400 miles, or $887^{3}{ }^{3}$ miles per day of 320 day's per annum; the average load borne on each car-wheel to be $3 \frac{1}{3}$ tons. With this lond the average life of a wheel is 45,000 miles, or $1{ }^{3}$ 名 years. On trains rumning at express speeds, the average life does not exceed 10 months' service, While wheels under tender-tracks have a life of 18 months. Under freight service in the State of New York, with nn annual train-mileage of $11,483,123$ miles, transporting 75.5 tons of freight per train, the annual mileage per car was 14,649 miles, each wheel bearing an average load of 1.47 tons, which gives 3.05 years as the life of a freight-wheel, corresponding with the experience of one of the principal roals in the State.
"But, assuming the average life of car-wrheels, under all kinds of service, to be fire years, the total number of wheels worn out ammally in the United States will not be less than 250,000.
" 1 t an average cost of eighteen dollars per wheel, allowing about one half for the value of the old whecl, the amnual loss may be stated at two and a quarter millions of dollars." - W. G. Hamiltos.

Car-wheel Fur'nace. One in which cast-iron car-wheels are heated, and then cooled slowly, so as

Fig. $117 \overline{2}$.

Car- Wheel Lathe.
to anneal them，and render them less brittle．See Anvealing－furnace．
Car－wheel Lathe．One which is adapted for turning off the rims of two driving－wheels alter they have been pressed on to the axle；or for turning off the wheels separately．$a b$ are the face－plates， 8 feet 6 inches apart，and forming head－stocks separ－ ately geared and indepentently driven，if desired． $c d$ are the toals mounted in the slide－rests e f ， which are adjustahle on the bed g ．

Car－win＇dow．（Railway．）Car－windows are uşually arranged to lift，and，being light，have no counterpoises．

Ventilating car－windows are made to open at the side towards，for the time being，the rear of the car，

Fig． $11: 3$.

Car－Window．
so as to canse an induced draft from the interior by the rushing past of the air when the car is in mo－ tion．
The frame of the window projects sufficiently far from the body of the car to admit of there being ap－ plied to it，on each side，a valve or side window C ， which can be npened or closed as desired，and retained in either position for the purpose of ventilatiog the car．

The side windows C ribrate on hinges at b ，and are retained in position by the spring c ，either open or closed against the firnt window B ．

Car－win＇dow Fast＇en－ing．A spring－bolt which holds a car－window sash at any required elevation， according to provision of holes in the casiug for the reception of the bolt．

A cam or snail－shaped piece secured to the face of the sash，and binding by the weight of the same against the beading，to hold the sash at any eleva－ tion．

Car＇y－at＇i－des．（Architccture．）Female fignres placed as columns to support an entablature．Male figures in this position and relation are called Atlan－ tes，Tclemoncs，or Pcrsiens．

Cas＇ca－bel．（Ordnance．）The rear portion of a gnn，embracing the knob，base，and basc－ring．The cascetels of ships＇guns have breeching－loops in place of knobs，intended for the breeching，whose ends pass to ring－bolts on each side of the port，and whose duty is to limit the recoil．

Cas－cade＇．A pyrotechnic derice to imitate sheets or jets of water．Chinese fire is used．

Case．1．（Printing．）Types are arranged in a casc，which is a tray with compartments for the let－ ters．Two pairs of cases are allowed to a compositor， and constitute a frome；one pair contains Roman letters，and the other italics．

The sizes of the compartments are nnequally pro－ portioned，as some letters occur more frequently than others．It is also designed to place those compart－ ments most frequently resorted to nearest to the or－ dinary position of the hand，so that expedition may be secured．The proportion of English letters in a case is as follows ：－－
a， 8,500
e， 12,000
b，1，600
f，2，500
c， 3,000
g，1，700
i， 8,000
m，3，000
d，4，400
h，6，400
k， 800
n，8，000
－，8，000

q,	500	$\mathrm{t}, 9,000$	w， 2,000	z， 200
$\mathrm{r}, 6,200$	$\mathrm{u}, 3,400$	x，	400	See Fost．
s， 8,000	$\mathrm{v}, 1,200$	$\mathrm{y}, 2,000$		

The lower case，as arranged for an ordinary work in Euglish，has 54 boxes of different sizes；these contain the various small letters（hence styled＂low－ er－case letters＂），the marks of punctuation，the fig－

ures，and spaces and＂quadrats＂of different sizes． The upper case has 98 boxes of uniform size．These contain the capitals，small capitals，and varions char－ acters which are in frequent nise，such as parentheses， stars，and other sigus of reference，dashes，dollar and pound marks，and so on．
In the upper case the letters are arranged in al－ phabetical order in the lower rows，the capitals on the left，the small capitals on the right．In the lower case the letters are not arranged in alphabetical or－ der，but in such a way as to bring those most fre－

Fig． 1175

－	＋	：	\＄	1	F	20	11	\％	（1）	\％	\％		
4	$1 / 2$	＊	1／1	＊	尔	㗽	＊	Σ	： 210	3 mm	－	\sim	\square
\％		＊	无	モ	x	∞	－	－	＝em	3 em	＊	－	α ．
A	I	c	D	E	F	G	＊	＂	c	D	I	7	0
H	1	K	工	M	x	0	3	I	\times	2.	\cdots	\times	0
I	Q	R	8	T	T	π	r	9	π	\cdots	T	\checkmark	w
x	1	7.	J	v	］	3	X	\pm	I	Ј	v	An．e	H1

Unper and Lower Cuse．
gnently used directly in front of the conpositor． To get a j or z the hand of the compositor must pass over a space of nearly three feet，while to get a t or e it traverses only three or four inches．If the letters were arranged in alphabetical order，the work of composition would be at least doubled．

Besides these usual sorts，there are many others not mufrequently employed，such as accented vowels，
superior figures (${ }^{1} 23$ etc.), superior letters (${ }^{\circ}$ o etc.), frictions, and many otleers, about a hundred in all. These are usmally kept in a separate case.
2. (Bookbinding.) A cover male ready for its contents, - the book.
3. (Masonry.) An ontsitle facincr of a building, of material superior to that of the backing.
4. (Joincry.) a. An inclosing finme; as, the sashcasine ; a hollow how on the sides of the frame, in which the wrights work.
b. The frame in whichadoor is hung. e. The inclosme of a stails.
5. (Weating.) The pulley-box of a button-loom.
6. (Iyrotechaics.) The paper eylincler or capsille of a firework.
7. (.17ining.) A small fissure which lets water into the worlinigs.

Case-bay. (Carpontry.) The space between a pair of exirders or two principals of a roof or ceiling.

Case-hard'en-ing I'ron. A process of cementation which converts the smface of iron to stee]. It ditlers mainly from the mambacture of true steel in the elitferent bongths of time employen, and in the deptl to which it extems. Case-hardening is effected by packing the article to be latedened in a box with elarcoal, gromal or b;oken bones, parrticles of horns, rawhide, or tanned leather. The closed box with its contents is placed in an enveloping lire in a furnace. Tlue fuel is mreferably charcoal. The longer the beat is kept up, the deeper will he the attion of the emmenting materials. This pocess is lengthy, and not always convenient. Frequently all the meehanic repuires is a thim coating of induratel metal on the outside of the artiele, which will not be sulyject to ordinary abrasion or the action of a tile.

A simple method of ease-hardening small cast-iron work is to make a mixture of equal parts of pulveri\%ed prussiate of potash, saltpetre, and sal-annmoniac. The articles mist he heated to a dinll red. then rolled in this powder, and afterwards planged into at bath of 4 ounces of sal-ammoniac and 2 ounces of the prussiate of potash dissolved in a gial. lun of water.

Shee!an packs a layer of limestone in the bottom of the box, and then layers of a composition altermating with and melosing the iron to be steclified. The composition is, - charcoal saturated with water, 200 ; chlorite sodium, 30 : sal soula, 12 ; pulv. rosin, 5 ; back ox. manganese, 5 ; mixed. Lute on the top, heat, remove while hot, and plunge into cold water.

Case-knife. A large table-knife. It was fornerly kept in a case of sheath, and the mame is a remembrance of the good (?) old times when every gruest carried his own linife to the feast, lef ped himself from the joint, was innocent of forks or najkins, and finished by using it for pieking his teetly or settling accounts with his ncighbor after picking a yratrel.
"Dany were the tables [at the Joudon Lord Miyor's feast, 1663], but none in the lall but the Maror's and the Lords of the Priry Council that hat napkins or knives. " - Prevs.
"Tlle food of the Celtee consists of Joaves of breat and meat floating in the broth, broiled on the coals or roasted on spits. They grasp the ment in hoth lands, but in a cleanly manner, and gnaw at it like lions; if any part is too tongh to lee torn, they draw their case-knives, with which each is provided." - Posinosil's; quoted in the "Deipmosophists" (1. D. 220).
"Thwir platters are of ealthenware, silyer, brass, wood, or basket-work." - lbid.

Case-lock. A box-lock serewed on to the face of a door.

Case'mate. 1. (Fortificution.) A vault of mason's work in the flank of a bastion or elsewhere in a tortilication.

Casemates with embrasures are defensible cascmates. Barrack and slore casemates are bomb-proofs for shelter and supplies.
2. (Joinery.) A small hollow molding or cove, equal to about $\frac{1}{}$ to $\frac{1}{6}$ of a circle. See Moldisg.

Case'mate-gun. A sum is mounterl in casemate when it is placed in a protected chamber and fies

Fig. 1176

Casemate-Carriage.
throngh an embrasime. The monstruction of the carriage clifiers somewhat from that of the barlertes.

Case'mate-truck. (lekiclc.) A truck for tiansjorting guns, etc., in casemate galleries or thongh postems. The bed consints of two longitmelinal rails forming the stiles of the borly, mited by three transoms. The whole rests on tour wheels or rollers of cast-iron, and is guided by means of a tongnc.

Case'ment. A sash or glass frane opening on limeres and revolving upon one ol' the vertical celges. A Fucuch wintlow.

Case-pa'per. The outsitle quires of it ream.
Case-shot. Case-shol, or sheromel, as they are frequently temed, from the name of the English officer by whon they were introduced, about 1SOS, are a thin sluecies of shell filled with bullets, and having a fuse which is so cut or armaneed as to burst the ease about sixty yards in front of the olyect firml at, so as to scatter the lmbets over a considerable spee. This, moler favorable circumstances, is a very efficient projectile, and would be still more so were it possible to ent the finse to such exactness as to always explode just at the desired point. The shot are sometimes placed in a tin cylimeler with a woollen sabot, ank used without a fuse at ranges of 300 yarels. This is distinetively known as canister.

Case-wind'ing Watch. Theurer, of Switzerlamd (United States jatent, February 6, 1866), has a watel so construeted that the opening of the cover winds uj, the works. It camot be overwound.

Guizot, A pril 12, 1870, rotates the case on its pintle, to winl the watel.

Case-work. (Bookbinding.) A book glnewl on the luack and stuck into a cover previously prepared.

Cash'er-box. (Glass-mumufucturc.) a talile covered with coal cinders, on whiclı the globe of glass is rested while the blowing-tube is detached and a rod attached to the other pole of the giobe, preparatory to flrshing. Sce Crown-glass.

Cash'mere. (Fabric.) a. A fine shawl fabric formerly made only in the valley of Cashnere, but now made in many jalts of the Punjals. The best are yet made in Caslnnere. It is made of the downy wool of the Thibet goat, dyed in various colors before weaving.

Seveinl accounts have been given of the process alopted by the natives in weaving the shawls. It is sometimes woven in comparatively narrow strijs, Whicle are afterwards joined. The figures are put in by the slattle in those of superior yuality, and by the neadle in those of a lower description. It ajr peats that the waters of a camal Howing from the

Lake of Cashmere have something to do with imparting the peculiar softness to the fabric.

The process is extremely slow; one account states that a single shawl occupies three men for six months. Another account states that the plain shawls only are worked by the shuttle, and the colors are all inserted by needles through the shed of the warp, a separate needle being used for each color. The work is passed through a number of hands, as customary in that old country ; the merchants buying the yarn and employing weavers, who receive from 3 to 24 cents a day. The overseer of a shop receives the latter handsome amount, from which he boards himself. Eighty thousand shawls are supposed to be about the annual produce of the kingdon.

Cashmere shawls made from the imported wool of the goat are made in Paris, Lyons, and Nismes. The Jacquard loom is used, drawing the colored threads to the surface as required. The colored threads Hoating at the back of the shawl in the intervals of their appearance on the face are subsequently cut off, and the cut ends reveal the imitation.

A French loom has been invented for the purpose of aroiding this difficulty and making both sides alike. The yarns of the weft are not only equal in number to the colors of the pattern, but separate bobbins are provided for each repetition of a color across the shawl. Each bobbin or pirn stops at the end of the figure, and returns on its track after crassing the track of the adjoining bobbin. Thus the weft is made up of an interlocked series of threads, each occupying a short partion of the length of the weft, according to the linits of its figure in the general design.

The Hindoo shawl, so called, is made in France, of a silk chain, and cashmere-down filling.

In other rarieties, the weft is silk and down; and at Nismes, spun silk, Thibet down, and cotton are all worked up together.
b. A woolen and cotton figured dress-goods, named in imitation of the cashmere fabric.

Cash-me-rette'. (Fabric.) A lady's dress-goods, made with a soft and glossy surface in imitation of cashmere.

Cas'ing. 1. (Metal-working.) The middle wall of a blast-furnace. Beginning from the inside, we find, the lining, stuffing, casing, and mantle. See Blast-furnace.
2. (Shipbuilding.) The cylindrical curb around a steamboat funnel, protecting the deck from the heat.
3. (Blasting.) A wooden tunnel for powder hose in blasting. Hose-trough; auget.

Cask. 1. A large waaden vessel made of staves held together by hoops, and having heads retained by grooves in the interior perimeter of the cask, near the chines.

Casks are of various proportions and shapes. The larger are known by specitic names, as the vats and tuns of the brewer and distiller; smaller are the pipes, butts, puncheous, and hogsheads for wine, etc.; swaller still is the barrel, which has almost superseded in the United States all other kinds of casks for the commercial transportation of liquids, such as whiskey, petroleum, vinegar, etc. Least are kegs and drums. A cask knocked down, and the staves and headings bundled and hooped, is known as a shook.

The wood for casks is sawn into lengths, and these into narrower pieces, called codlings. These are listed or hewed to give them a taper towards each end. They are then cleft into staves by a frow and manel. They are then dressed to give the convex exterior, concare interior surface. Then
jointed, which gives the shape to the edges, so that, when drawn in at the chines, the staves shall fit closely against each other.

A splayed cask is one having a flaring or conical form.

A bulgod cask is one swelling at the middle.
In the dry climate and with the linited timber of Egypt, casks for liquids were but little used, but some of their dry measures were made of staves and hooped wood or metal.
"The chief freight [of the boats on the Euphrates] is wine, stored in casks made of the wood of the palni-tree." - Herodotis, 1. 194.
2. (Dyeing.) One form of steam-apparatus for steaming cloths which have been printed with a mixture of dye-extracts and mordants, in order to fix the colors. It is a hollow cylinder, within which the cloths are suspended for the application of the steam admitted to the interior of the drum.

Cas'se-gra'ni-an Tel'e-scope. A form of the reflecting-telescope in which the great speculum is perforated like the Gregorian, but the rays converging from the surface of the mirror are reflected back by a small convex mirror in the axis of the telescope, and come to a focus at a point near the aperture in the speculum, where they form an inverted image, which is viewed by the eye-piece screwed into the tube behind the speculum. See Telescope.

Cas'si-mere. (Fabric.) A single-width men's woolen goods, twilled and oil-finished. Kcrseymere is probably a corruption. Kcrsey is a local name for a coarse rorsted cloth of Scotland and Ireland.

Cas'si-nette. (Fabric.) A cloth made of a cotton warp and a weft of fine wool or wool and silk.

Cast. Warped. Said of sprung timber.
Cas'ta-net. A clapping instrument, composed of two little saucer-shaped disks held in the hand and beaten with the niddle finger, generally as an accompaniment to the dancing of the player.

These were used by the virgins in the ancient hymns to Diana.
"They make a noise like castanets."
Hermippts.
"Strikes witb nimble hand
The well-gilt, brazen-sounding castanets."
Song to Diana, qnoted by Dicearchus.
The Phæacians, in Homer, had a dance in which their figures were accompanied by the hystanders, who made a clapping noise with their forefingers. - Athenets.

The crotala, or wooden clappers, were common in Egyptian musical processions, as were also clapping of hands, cymbals, tambourines, and tani-tams.

The little cymbals played with the finger and thumb in the manner of castanets are shown in the paintings of Herculaneum, and are used in the Almeh dance of modern Egypt.

The modern boncs, which give so much vivacity to the negro minstrelsy, especially the factitious article on the stage, have their ancient and modern analogues in regions and times far remote. Roundheaded pegs are seen in the hands of some of the dancing figures in the paintings of Herculaneum, and similar instruments of wood are used by the Japanese. In ancient Egypt a similar effect, without the rapidity of execution, was attained by the maces, which were hollow, metallic, and sonorous, and in the illustration, from which the accompanying cut is derived (a tomb in Thebes), the player is beating time for a group of professional dancers.

The castanets are used in many of the national dances of the countries bordering on the Mediterianean, and the use extends east of this district as far as China. They are used by the bayadeers in lndia,

Fig. 11%.

Eqyptian Maces (from Theies).

and the professional dancing.girls of Java, who are painted entirely white, and whose performances are rather attitudiazing than dancing; undulatory motions of the boily, arms, and head taking the place of the agility of the legs and feet.

The first suggestion of the castamets may lave been the practice of snapping the fingers in keeping time, wooden pins being afterwards substituted its being more effective, the players striking their little maces together as they met or crossed in the evolutions of the dance. The castanet, thus originating, became of a festive and votive character, while the Jeroic cymbal seems to have originated in warlike dances such as the Pyrrhic, Corybantian, and Persian, where swords and shields were struck and clashed in furions imitation of the scenes of war. See Cymbal.

The mural sculptures of Nineveh show large bodies of men welcoming the king by advancing in military orler, clapping their hands in time to the rhythm of the paean. The attitude of the men forming the platoon reminds one of the modern Shakers.

Dancing was originally of a religions charater, and has been introduced into the religious services of all nations and nearly all times. In many countries it is practiced, as a part of the temple services, by professionals only, as the bayadecr's of India; or by fanatics, as the dervishes of Moslem lands. In Oriental countries, as also in ancient Rome, it is considered unbecoming the gravity of men, and they regard it absurd for persons who can afford to hire dancers to give themselves so much trouble.

The idea of dancing as a festive entertainment practiced by the guests seems to be European, though some of the pictures of ancient Egypt indicate that the guests danced at their assemblies.

Miriam and her troupe of females danced as a votive exercise in celebration of the deliverance at the lied Sea, and used as accompraments the musical instruments of Egypt.

Without occupying space by citing the saltatorial and posturing pexercises of the nations of antiguity, it may be briefly mentioned that in the early centuries of the Christian Church the dance was combined with the hymu. This was, no doubt, a concession to the lagan labits of the people. Scaliger says that the bishops led the dance, and daucing in churches was common till the twelfth century, and in some Catholic countries till the seventeentli century.

The Mohammedan religion forbade dancing in mosques 1,000 years before it was discontinued in churches. Tle Koran promises no dancing in Para-
dise, nor any other active employment. "Hepose yourself" for a moment," said Derar to Caled; "you are fatigned with fighting with this Christian dog." "O Derar," said the indelatigalle Saracen, "we shall rest in the world to come. He that labors to-day shall rest to-morrow." So they fought on by the walls of Dumascus.

Cast'er. 1. A small wheel attachel to the leg of a table, chair, or other piece of furniture, in order to facilitate its being moved about without lilting.

It turns on a vertical pivot as well as on its axis. It is not casy to determine whether the circular objects lieneath the feet of the chair of Rameses 111. are casters or merely balls in the grasp of the claws which form the chair-feet. It is in the tomb of the kings of Thebes, and the great Sesostris is represented in lis private, apartments. The chair is a foldin: one, the X-legs luing pivoted on a horizontal bar at their intersections.

The illustration shows several kinds: a pianoleg caster, having a lall B with trunuions; a sew-

Fig. 11 is.

ing-machine caster, in which the wheel D is attacherl by a domed bracket C to the leg; a tahle-leg caster having anti-friction rollers $c c$; a caster with a pair of wheels a a.
2. A stand to hold cruets.

Cast'er-wheel. This wheel is adapted to rotate on its axis in the stock in which it is journaled, and the stock itself rotates on a vertical axis, according to the direction of propulsion of the carriage or article to which it is attached. The caster-wheel is used as a support to the front parts of machines, suclr as harvesters, gang-plows, spading, digging, excavating, and plowing maehines, to chable them to be steered or to turn short around at the end of the

not mention any use for east-iton ; castings in bronze and hrass had beell known and used for certainly forty centuries. The early mode of making cannon was by fitting iron bars together and hooping them, but they were subserguently east of bronze. British iron was cast by Ralph Page and Peter Baude in Sussen in the year 1543.

In 1612, 1613, and 1619, patents were granted in England for the use of coal in iron-casting. The first two were unsuceessful, and the last would appear to have been successful, as it provolied the nsual results, - a molitore down the establishment. The writer does not recolleet any account of the
row. The illustration shows the caster-wheel X at the forwarl end of a harvester.

Cas-til'ian Fur'nace. (Mctallurqy.) A leadsnelting limace invented by Goundry (English), but first used in Spain. Its chiet neculiarity is the arrangement for rumuing off a constant stream of slag lor future treatment, the slag running into castiron wagons, which succeed each other as their predecessors hecome filled. - U1ie, Vol. 111. Pp. 689692 (dm. edl.).
Cast'ing. Scattering references to the casting of metals are found in the Greek writers. The paintings and sculptures of the Egyptian tombs have failed to throw any light upon the subject of the process. A multitnde of cast bronze figures are in the European collections, and in the Abbott Collec. tion of the N. Y. Ilistorical Society, New lork City. It is probable that the slaping of metal by the hammer, chisel, and graver preceded that ol easting into molds of specific form. Pansanias deelares that statues beyond the reach of the smith's art were made piecemeal and the portions fastened together: Ile supposes the statue erected by Ulysses to Neptune to have been thins constructerl. He ascribes the art to Rhoecus and Theodorus, of Samos, in the time of Polycrates (555 B. c.), the patron of Pythagoras and Amacreon.

Bronze castings of Egyputian and Etruscan workmanship, and of great anticquity, are found, but are not identilied with any date. The bronze statues ol both nations, in all probability, antedate the foundation of Rome, 753 е. с.

The casting of the bronze vessels and ornaments for the service of the Tenyle at Jerusalem was about 1004 B . C., and tonk place in the elay ground between Succoth and Zeredatha. This is far more aneient than the Grecian ammals, and the calf-idol cast by Aaron was five hundred years earlier still. It was an old art in Egypt.

With the exception of the statues of cast-iron referrell to as mentionell by Pausanias (ahout A. D. 120), and regarded as curiosities, the ancients seem to have had no knowledge of the uses of cast-iron. It was regarded as in a transition stage, and was destined to be made malleable by continuons processes of heating and hammering. Pausanias says: "The temple of the Great Mother at Sparta is said to have beenl huilt by Theotorus the Sannian, who first discovered the art of casting irou and makiug statues of it." "At Delphi is ledicated a Hercules and Hydra, both of iron. To make statues of iron is most difficult and lahorious, but the work of Tisagoras, whower he was, is really admirable. In Pergamus are the heads of a lion and a boar, hoth of iron." Theodorus is understood to have lived in Samos before it was merged into the Greek Empire, which took place when it was conquered ly Athens, 440 B. c. A work on iron and steel written in 1550 does
tearing down of a shop where a supposed perpetualmotion engine was domiciled.

Emmanuel Swedenborg, in his "Regmum Subterraneum" (1734), credits the English workmen with the first sucerssful castiug of iron cammon at varions foundries in kient and sussex. Workmen from these parts carried the art to Perigoral in France. The only use for iron castings at that time was for ordnance.

Memhers of the Society of Friends started ironworks at Coalbrookdate, in Shropshire, Eugland, early in the eighteenth century. Their religious principles forbade their casting cannon, and they devoted their metal to peacuful nsages and equipments; casting fire-grates, hoilers, and numerous articles of medimm size. Many difficulties seem to have beset the workmen, in regard to the making of Hasks, the selection of a suitable loanı and parting; and the eventual snceess is eomected with a pleasing episode in the listory of meelanical industry, Which is sulstantially as iollows:-

About 1709, Abralian Darby, of Fristol, har a Welsh hoy in his serviee named John Thomas. The master had been endeavoring to east iron with but indifferent success, and the boy stated that he saw through the difficulty. They stayed alter the workmen had left, and cast an iron pot in a mold of tine sand with a two-part flask, and with air-hokes for the eseape of steam, etc. From 1709 to 1828 a business partnership, was maintained in the persons of themselves and their descemlants, and the process is stated to lave been kept secret at Coalbrookdale till about 1800. From the terms of the account, it would seem to have been hollow-ware that particularly bothered them; and no one who is acyuainted with the art of casting iron-ware of that description will wonder at the difficulties that attended the first attempt, or withhold the meed of praise due to the success of the man and his bny.

An Ahraham Darby erected the first iron bridge in 1777; it spanned the Suvern near Coalbrookdale with a single arch. It is believed that at these works cake and coal were first successfilly used in smelting iron.

Very small iron eastings are made at Berlin, Germany, known as the Berlin iron ornaments and chains. One exhibited in London was 4 feet 10 inches long, had 180 links, and weighed 1% ounces.

Professor Elirenberg, the renowned mieroseopist, states that the iron of which they are composed is made from a bog iron-ore, and that the sand is a kinil of tripoli, also containing iron. Both are composed of the remains of animalcules.

The origin of these interesting works of art was duriug the struggle latween Prussia and France unter Napoleon 1. The generous ladies gave up their jewels to purchase the necessary armaments, and reeeived in return iron ornaments which bore the
inseription, Ich gab Gold um Eiscn,-"I gave gold for iron."

An anvil block weighing 250,000 pounds, to be used with a 44,800 -pound double-action forge-hammer was east at Newcastle-upon-Tyne.

To obtain the best result in eompact metal-eastings, destitute of porosity and with sharp definition on the angles and ornaments, casting under pressure has been devised. See Hollingrake's English patent, 1819.

Fig. 1180.

Casting-Mfrchine.

In one ease the molds are so arranged that the top part serves as the follower of a press, and is operated upon by serews. The top fits closely into the matrix, and is provided with ingates for the metal, which are elosed by slides when the mold is full. The pressure is applied to the metal while in a melted state, by means of the screws, with sulticient force to expel the air and gas from and solidify the metal.

In Smith's process of compressive casting, the thing to be copied, say a page of type, is placed face upwards on a Hat brass plate, and then coated all over with a preparation of potter's elay worked iu with a brush. When the whole face of the article to be molded has been eovered, the plate earrying it is placed on the bed of a serew-press. A brass box is locked round it, and this box is filled up for about two inehes with pottery elay, sifted in and slightly rammed down. The whole is then put under the tympan of the press, and squeezed hard by two men operating the handles of the serew. The box is then opened, and ont comes a flat tile with the model still fixed in it. The model is withdrawn by a little suction apparatns of india-rubber, and we have an exact facsimile of the model, ready, when dried, to be east from. Nothing ean exceed the beauty of the result produeed by the casting of the metal under pressure in the mold thus prepared. Screws and nuts which never had a tool put on them leave nothing to be desired in the way of aeenracy and completeness.

In the English patent (No. 3,197, Jannary 28, 1809), the molds for easting are upright and made to revolve on pivats or spindles while the metal is poured in. The centrifugal force eauses the metal to fill up all the parts of the mold.

In an Anterican patent of 1857, the ear-wheels are revolved so that the first metal poured in is made to form the tread of the wheel, and a second portion to form the body of the wheel.

In Bessemer's patent the metal is poured into a revolving cylinder whose rapid rotation eanses it to collect on the inside of the same, when it is allowed to eool. It is then split open and rolled flat.

Castings of great delicaey are produeed by insing models of wax. These are imbedded in molds made of tine ground earth, which are then heated red-hot.

The mold is baked, the wax disappears, and the metal, when poured in, exactly takes its place. The wax model is often made in a gelatine mold, which, being very elastic, will slip oll the original object which is to be copied into metal.

With large hollow eastings, such as the cylinders of the larger class of low-pressure steam-engines, both the corc and the cope are built up.

For specific index of terms, processes, and appliances in casting, see Founding.

Cast'ing-box. (Founding.) A flask containing the mold. See Flask.

Cast/ing Clay-ware. (Pottery.) Delicate objeets, which cannot be readily inolded by pressing the clay into the mold; are cast by the following process.
The plaster mold being elosed, the stip or creany elay is ponred in, and the portion nearest to the mold becomes hardened by the absorption of the water by the mold. The fluid portion is then pomed out, and the mold partially dried. A second filling of slip yields another coating, and the process is repeated as often as may be necessary to give the required thiekness to the easting.

Cast'ing-la'dle. (Founding.) An iron vessel with handles for conveying molten metal from the cupola and pouring it into the mold.

Cast'ing-press. One in which metal is cast under pressnre, as in the car-wheel press (Fig. 1100, Casting).

Cast'ing-slab. (Glass-manufacture.) The flat piece on which the metal is porred in making plateglass. The casting-table.

Cast'ing-ta'ble. (Glass-manufacture.) The table in a plate-glass factory upon which the molten glass is poured from the cuvette, and rolled to a thickness by a roller which rests upon the marginal ledges of the table, whose hight determines the thickness of the plate. See Plate-glass.

The table T is of east-iron, perfectly level and smooth, and placed or mounted so that the plate may be delivered into the mouth of an annealingoven at the same elevation.

The cuvette C containing the molten glass is con-

Casting-Table.
veyed by a traversing crane from the oven, where its contents have been set.tling for several hours, and, being lifought over the table, is tipped by means of the tongs, so as to spill its contents upon the table. The roller R is then set in motion, so as to flatten out the mass of glass. At the sides of the table are ledges, which elevate the roller to a given distance above the table, and thus determine the thiekness of the glass. The standing position of the roller is at the far end of the table, as represcuted; and as it
passes forward, it compresses the glass in a wave before it, driving any surplus over the end of the table, where it falls into water. A washer W is passed immediately in front of the glass, to clear the table of all impurities. The roller theu rests in the grooves $u n$.

The plate is then shifted into the oven, where it remains fire days to anneal.

Cast-i'ron. 1. A compound of iron and carbon.
2. Iron run from the smelting-furnace. Pig-iron.
3. Iron melted and run into molds. See CastING.

Cas'tor. (Fabric.) A heary milled cloth for orercoats.

Cas-trat'ing-clamp. Used in confining the chords and vessels in the operating of orchotomy by

Castrating-Clamp. excision of the parts, as in the case of the horse.
" It is a custom pecuLiar to all the Scythian and Sarmatian tribes to castrate their horses, in orler to render them more tractable." Strabu, VII. v. 1.

The metallic tourni-quet-clanıp is furnished with set screws and a peculiar pair of lips or guides.

- The mactice of castrating calres and pigs was usual in Greece.

Atheuæus, in the "Deipnosophists," says : -
"And how much better a paunch of a castrated animal is, Hipparchus tells us:-
" ' But above all I do delight in dishes
Of paunches and of tripe from gelled beasts, And love a fragrant pig within the oven.'
"Sopater says in lis 'Hippolytus' : -
" ' But like a beauteous paunch of gelded pig,
Cast-steel. Blister steel which las been broken up, fused in a crucible, cast into ingots, and rolled.

The blocks of steel are melted in crucibles of refractory clay, and the molten metal is poured into ingot-molds of cast-iron. These are opened, to let out the red-hot ingot, which is then passed to the rolls. See Crucible ; İgut-Mold.

The process of making cast-steel was invented by Benjamin Huntsman, of Atterclitf, near Shetfield, England, in 1770.

Cast-steel Fur'nace. The furnace has a strong wind-draft, and is lined with a very refractory comFig. 1183. position. Each furnace is adapted to contain two crucibles, eacll of which is about 2 feet high, and holds a charge of 30 pounds of blis-ter-steel. The crucihles stand on short cylinders of clay, and have a lid of the same material, which is luted to the top of the crucible, a lit-

Cast-Steel Furnace. tle glass being sprinkled on the joint for that purpose. The fuel is coke, and the time occupied in melting is fout hours. The heat generated in the caststpel furnace is said to be greater than in any other manufacture. For some purposes the ingots are made much larger than the weight stated, even as high as 200 pounds. For the
heavy forgings, such as the Krupp guns, some hondreds of crucibles are used. Four or five tons of coke ars used in melting one ton of steel. Wootz is a cast-steel made from magnetic ore, in crucibles.

The crucibles are withdrawn by tongs and grasped by other tongs, lifted, tipped, and emptied into the ingot-mold. The pouring is called tcaming. The mold is opened while the ingot is yet red-lot, and the steel is passed to the rolling-mill. The ingot-mold separates longitudinally, and the parts are leeld together by collar-clamps and wedges. See Cementation Furxace.

Cat. (Nautical.) The tackle by which the anchor is raised to the cat-hcad. The block is the catblock; the rope, the cat-fall.

Cat'a-di-op'tric Light. A mode of illumination for lighthouses in which reflection and refraction are unitedly employed. Suggested by Allan Stevenson in 1834 . From their subjecting the whole of
the available light to the correctire action of the instrument, they have been called holophotal lights.

The accompanving figures illustrate in brief the main mechanical features of this apparatus.
A is a central section, in which the anterior cone of rays is made parallel by the lens at c, and the remaining zone by the paraboloid surfaces $p p$. The posterior hemisphere of rays is received on the hemispherical mirror m $n o$, and by it is sent back to the focus f, whence, passing onward, it is in part reflected by the lens e and partly by the paraboloid surfaces p, and finally emerges horizontally in unison with the light from the anterior hemisphere. s represents one of the struts for supporting the re-flecting-plates $p p$.
B is another form of the ajparatus, consisting of a hemispherical minror m and a lens c, laving totally reflecting zones $=$ zetween

Catadioptric Light. them, instead of the paraboloid surfaces $p p$ of the other figure.
C is another form, in which the hemispherical metallic refiector is replaced by a polyzonal hemisuhere, of which each concentric zone a has a cata. dioptric action, like that which is exerted upon rays falling at right angles on the longest side of a rightangled triangular prism. A ray proceeding from the focus falls on the concave or first surface, enters without refraction, is totally reflected at the second surface in a direction tangential to the splere at the apex of each zone, and, passing on, is again reflected at the third surface, and finally emerges from the opposite end of the inner or concave surface without
refraction; whence, passing on through the center of the hemisphere, it becones a portion of the anterior cone of lays, and, being refracted through the lens e or reflected ly the eatadioptrie rings $c c$, finatly emerges in the paths shown by the cerroues, and adds its power to the effect of the pencils of rays.

Cat'a-drome. A macline for hoisting heavy weights.

Cat'a-graph. The first draft of a picture.
Cat'a-lan-furnace. A blast-furuace for reducing iron ores, "xtensively used in the North of Spain, particularly in the province of Catatonia,

Fig. 1185.

Catalan-Furnace.

from whence it derives its nome, ant whence it was probably introduced into Southwestern Europe.

It consists of a four-sided cavity or hearth, which is alway's placed within a buikling and sepmated from the main wall thereof by a thinmer interior wall, which in part constitutes one sile of the furmace.

The blast-pipe comes through the wall, and enters the fire through a tuyere which slants downward. The bottom is formed of a reflactory stone, which is renewable.
The liurnace has no chinneys.
The blast is produced by muans of a fall of water, usually from 22 to 27 feet high, through a rectangular tube, into a rectangular cistern below, to whose upper part the blast-pipe is comnected, the water escaping through a pipe below.

This apparatus is exterior to the buidding, and is said to allord a contimuous blast of great regularity ; the air, when it passes into the furnace, is, however, saturated with moisture.

This apparatus is called a trompe. A longitudinal vertical section of the farmace, and of the lower part of the trompe, by which the blast is regulated, is shown in Fig. 1185.

Cata-lys'o-type. (Photography.) A calotype process in which the paper is first prepared with a syrup of iodide of iron, insteal of the iodide of potassium. I'he name was given to the process to indicate the suppospd fact that the gralual self-development of the picture is the result of a catalytic action. The trne chennical reaction is now understood.
Cat'a-ma-ran'. (Nuticul.) a. It is formed of logs usually three in number, the mitdle one the largest, and all secured by threc lashings. The logs are slanted for cutwaters, and the raft - for such it is is sometimes from 20 to 25 feet long aut $2 \frac{1}{2}$ to $3 \frac{1}{2}$ feet wide. They land and pushof through surfs, on the Malras const, which would swamipeven the country boats. In moderate weather they carry matting sails by means of an outrigger.
They may be seen on the west coast of South America many miles out at sea, carrying Indians employed in fisling.
b. The incendiary rafts prepared by Sir Silney Smith for destroying the French Hotilla at Bologne, 1804, were called catamarans. The tlotilta was con-
structed for the invasion of England by l3onaparte ; the floating eareasses were a fialure; but for his own

reasons the general broke up his ramp and transported his troops to the lhine. The capitulation of Ulm and the lattle of Austerlitz soon lollowed.

Cat'a-me'ni-al-sack. A receptacle for the catamenia.

Cat'a-pult. An ancient engine for hurling stones or darts. It is usually rejresented as a cross-bow on a large scale.

Cat'a-ract. (Stcam-cngine.) A regulator invented by Smeaton for single-acting steam-engines.

The plug-tree in its ascent draws upon a cord, and lifts a piston in a vertical pump-harrel whose foot is submerged in water; a valve at the foot of the barrel almits the water thereto. The u-stroke having ceased, the piston rests upon the water, and a discharge-valve opens. The rate of discharge is regulated by the load on the piston or the size of the aperture. When the plunger passes a certain point, it makes the clanges which readmit the steam, the plug-rod having no eflect in so doing, as its comnection is flexille. By the means of this device, called a cutaract, the time of admitting steam is regulated by the flow of a certain quantity of water through an opening, and is entirely intependent of the engmeer, of the pressure of the steam aml other contingeneies, proviled that sufficient pressure is maintained to rim the engine at all.

If the boiler steam be at an unusual tension, the stroke may he made faster, but the interval het ween strokes depends upon the hydraulic device described. See Cohnish Steam-engine.

A modification of this is introluced into marine engines for softening the fall of the expansionvalves. A brass cylinder is filled with water or oil, and fittell with a solid piston conneeted by a crosshead with the valve-spindle. The fall of the valve is checked and regulated by the escape of the water or oil through a small hole bored for that purpose in the side of the cylinder, the piston of the cataract lescending according as the liquid is forced out from before it by the pressure due to the weight of the expansion-valve. See Cur-off.

Cat'a-ract-knife: (Surgical.) A small keenedged knife used in the opreration of removing cataracts ly extracting the crystalline lens entirely.

When the opaque body is removed and lighit ad. mitted for the first time to the organ, the retina receives a new senwation, but men time elapses before the ferson is able to appreciate form or distance ; this is a matter of practice and experience.

Cheselden the oculist gives an intcresting account of a person blind from birth and brought to light at a mature age. An account is given in Mark viii. $22-26$, of a blind person upon whom a miracle was performed by which he became for the first time sensible of light. Being asked "if he saw aught," he replied, "I see men as trees, walking"; that is, he saw something moving, but hal no perception of relative form or distance, whether the olyeet was a man or a tree, near or distant. A seeond and more wonderfin miracle (5.25) gave the eyes their functional prower, the newes and brain the true perception of the image on the retina. This was beyond the skill of the oculist.
A suecessful operatiou for catanact was performed, in the 25tl Nivose (January 14), 1799, in the Hospice des Villards, Paris, on a man aged twenty-four, born blind. The operator was Citizen Fortenze, according to the affected style of the day.

Cat'a-ract-nee'dle. (Suryict.) A pointed instrument used for depressing the crystalliue lens in the operation of couching.

Ca-tarrh'al-syr'inge. A nasal irrigator or donche as a remelly for or alleviator of catarth.

Cat-beam. (Shipbuilding.) The longest beam in a ship. The bcak-lucad beam.

Cat-block. (Nentical.) A two or three fold hlock, iron-bound, with a large iron
Fig. 11si.
 the anchor up to the cat-head. On the forward side of the shell of this bloek are two small eye-holts, for the purpose of fitting a small rope, called the backrope bridle, used in hooking the cat.

Catch. A spring bolt for hinged doors or lids.

Catch-bar. (Kuittiny-machinc.) A bar employed to depress the jacks.

Catch-ba'sin. A eistern at the point of diselarge into a sewer, to cateh
Cat-LYock. heavy and bulky matters whieh would not readily pass througl the sewers, but which are removed from time to time. The eatehbasin in the example has sereral receptacles, which combine to fill the space, and are separately removable, to assist in the discharge. The central cylinder is shown in the position of being raised.

Catch-bolt. A cupboard or door bolt which vields to the pressure in closing and then springs into the keeper in the jamb. Usually retracted by a small knob.
atch-fe a^{\prime} 'er. (Hydraulic Enginecring.) Au irrigating ditch.

Catch'ing-hook. A crochet-hook.
A crook or animal-catching hook.
Catch-mo'tion. (1rachinery.) A motion in a lathe by which speed is changed.

Catch-wa'ter Drain. A drain to intercept waters lrom high lands, to prevent their accumulation upon lower levels.
Water thus intercepted and carried off may have an effective and rapid fall to the ontlet, whereas, if it were allowed to find a lower level, it might require the aid of machinery to lift it to get rid of it.

This plan of intereepting water also lessens the extent of av inundation.

Fig. 1183.

Catrh-Basin.
In the illustration, $E F G$ is the catch-vater drain. $H I J$ is a parallel main drain. K a main drain, into which the smaller ones empty. $A B$ the river.

Fig. 1189.

Catch-Water Drain.
Catch-work. (Hydraulic Engincering.) A ma-ter-way for floorling artifieial meadows.

Cat'e-lec'trode. The negative pole of a voltaic battery.

Cat'e-na-ry. The curve assumed by a cord, wire, or chain, langing freely between two joints of susnension.
Galileo suggested that it was the proper figure for an arch of equilibrium. In this the great Florentine, as usual, was correct.

It is now universally adopted in suspension-bringes. Each wire assumes its own catemary curve, and the cable is formed of bunches of aggregated strands.
Formerly they were made to form ares of circles.
Cat-fall. (Nauticre.) The tackle by which the anchor (by its ring) is suspendel from the cat-head in hauling up.

Cat'gut. Twisted intestines of animals. Those of the poor Italian sheep, are preferred to those of better-fed animals of other countries.
The guts, taken warin from the animal, are cleaned, freed from adherent fat, and rinsed in pure water: They are then soaked for two days, seraped with a copper plate having a semicircular noteh, beginning at the smaller end. This removes the mucons and peritoneal membranes. The guts are then soaked, again serapeet, washed, steeped in weak lye (two ounces to the gallon), passed through a polished hole in a piece of brass, to equalize the surface, twisted, dried, and sorted. They may then be dyed or sulphured, and rubbed with olive-oil.
Catgut is used for violin and harp strings, as whip-cord, bow-strings, clock-cords, lathe-cords, etc.
Other guts are used for coarse purposes. Horse giuts are split into four, cleaned, twisted, ete., for lathe-bands.

Strong catgut is made of a number of strips of gut twisted together. By another process the elean gut is blown, dried in the open air or under sheds, and then compressed, moistened, sulphured, and twisted.
Cath/a-rine-wheel. (Pyrotcchnics.) A form of firework having a spiral tnbe which rotates as the fire issues from the aperture. A pin-wheel.

Cat-harp'ing. (Nantical.) One of the ropes by which the shrouds are drawn towards the mast below the tops, to allow the yards to swing clear when close-hanled.
Iron cramps are now usually employed, still, however, retaining the name.

Cat-head. (Shipbuitding.) u. An inclined timber projecting from the bow of a ship, forming a cranearm from which the bouer anchor is suspended when raised from the water.
The tackle used in hauling-up is called the catfall, and is looked to the ring of the anchor.

In prequang to let-go, the anchor is suspended from the cut-hend by means of a rope called the cutheal stopper. See Ànchor-TRIPper.
The immer end of the cat-head is made fast to a beam or frame, and is termed the cut's tcit.
The sleaves for the cat-forl run in mortises in or near the outer end of the cat-head.
b. (Mining.) A miner's name for a small capstan.

Cat-head Stop'per. (Nautical.) The rope or chain by which the ring of an anchor is secmed to the cat-head. A device for casting it loose and thereby freeing the anchor is an Anchor-tripper (which see).

Cath'e-ter. A tube which is introduced through the urethra, to evacuate the contents of the bladeler.
They are specifically adapted (a, b) for male and female patients.
Some are alapted for the introduction of eaustic, constituting a portc-caustic.

Catheters are also employed to enter the canal which comnects a cavity in the ear with the back part of the mouth, and called the Eustachian tube, after its discoverer, a learned ltalian physician who died at Rome, 1574.
A double catheter (c) is one whose outer tube has a long eye and an inner tube of smaller size, which discharges about the middle of the length of the eye of the larger one. If water be injected through

the inner tube, it enters the cavity of the uterus or bladder, as the case may be, and passes out through the outer canal.
d is Sims's sigmoid catheter of hard rubber.
Male and female catheters are described particularly by Celsus, first century A. D., and have heen disinterred at Pompeii. One is of the modern sigmoid form; and one is shorter, and has a single curve.

Cath'e-ter-gage. A plate with perforations of a grailuated size, forming measures for diantetric sizes of catheters.

Cath'e-tom'e-ter. From Greek words meaning a measurer of vertical hight. A telescopic level-ing-apparatus which slides up, and down a perpendicular, graduated, metallic standard. As the column of liquid rises or falls in the tube, the telescope partakes of the motion, and the differences of higlat are shown on the graduated standard.

Cath'ode. That pole of the battery by which the electricity passes ont of the substance undergoing decomposition. The negative or - (minus) pole. (Professor Faraday's term.)

Cat-hole. (Shipbuilding.) One of the holes above the gun-room ports, for passing out a hawser.

Cat-hook. (Nautical.) A large look on the eat-block, for attaching to the ring of the anchor in catting.

Ca-top'ter. A reflecting optical instrument.
Ca-top'tric Cis'tu-la. A box with several sides, lined with looking-glasses, so as to multiply images of any object phaced in the box.

Ca-top'tric Di'al. A dial which shows the hour by means of a piece of looking-glass, adjusted to reHect the solar rays unward to the ceiling of a room on which the hour-lines are delineated. A reflectingdim?.

Ca-top'tric Light. A mirror, or series of concave mirrors, preferably parabolic, by which the rays from one or more lamps are reflected in a parallell beam, so as to render the light visible at a great distance.

This was the arrangemeut universally employed in lighthouses previons to the invention of the Fresnel lens. See Dioptric Ligit; Lighthouse.

Cutoptric lights are susecptible of nine scparate distinctions, whiels are called fixed, revolving white, revolving red cend white, revolving red with two whitce, revolving white uith two reds, flashing, intermittent, doublc fived lights, and double rerolving white lights.
The illustration shows a revolving apparatus on the catoptric principle. The upper figure is a side elevation ; the lower figure a horizontal section.
$n \leadsto$ shows the reflector-frame or chandelier ; oo the reflectors with their oil-fountains $p \quad p$. The whole is attached to the revolving axis or shaft q. The copper tubes $r r$ convey the smoke from the lamps ; $s s$ are cross-bars which support the shaft at $t \ell ; u u$ is a copper pan, for receiving any moisture which may accidentally enter at the central ventilator in the roof of the light-room; l is a cast-iron bracket, supporting the cup in which the pivot of

Catoptric Light.
the shafu urns; $m m$ are beveled wheels, which convey motion from the machine to the shaft. The machinery does not require any particular notice, being that of common clock-work, moved by the descent of a weiglit.

The lorizontal sectional view shows a plan of one tier of reflectors arranged in the mamer employed in a fixed catoptric light ; $n n$ shows the chandelier, q the fixed shaft in the center which supports the whole, oo the reflectors, and $p p$ the forntains of their lamps. In this figure (in order to prevent confusion) only one tier of reflectors is shown; the other tiers are so arranged that their axes divide into
eqnal angles the arcs intercepted between the axes of the adjoining reflectors on the first tier, thereby prodncing the nearest approach to an equal distribution of the light which is attainable by this arrangement.

Cat-rake. A name for a ratchet-drill.
Cat's'paw. (Nautical.) A hitch in a rope for the attachment of a tackle.

Cat-ship. A ship on the Norwegian model, having a narrow stern, projecting quarters, and a deep waist.

Cat-tack'le. (Nautical.) A tackle to raise the anchor to the cat-head.

Cat'tle-feed'er. An arrangement in a cattlestable for snpplying the feed in regulated quantities to the rack or manger.

Cat'tle-guard. (Railway Engineering.) A ditch alongside a public road, and crossing beneath the railroad way, to prevent the straying of cattle on to the track.

Cat'tle-lead'er. A nose-ring or gripper for the septum of the nose, whereby dangerous cattle may be fastened or led.

Cat'tle-mark'ing Shears. A kind of scissors adapted for making marks on cattle ly cuttiug off the hairs in such lines as to form letters or figures constituting initials or private marks of the proprietors.

Also, scissors adapted for cutting slits or notches in the ears of cattle, sheep, or hogs, as a means of identification, familiarly kuown as car-marks. The shears has sonetimes a punch attached for making holes in the ears, for the same purpose. Time was when they marked men so.

In all pasturing countries some means are necessary for the identification of cattle rnming at large. On the tombs of ancient Egypt we see the cattle being branded. This is yet the practice in Texas, South America, and elsewhere. The swans in the Thames are marked by nicks on their bills. Sir John Perrot (in 1584) ordered the hrish to mark all their cattle with pitch or ear-marks, on pain of forfeiture.

Cat'tle-pump. A pump which is operated by the cattle coming to drink, either by their weight upon a platform or by pressing against a lar which

Cattle-Pump. piston. the bottom-board of the pumpchamber B, discharging water at the spout l. When the animal leaves the platform, the weight I helps the descent of the hottomboard, and the water passes upward throngh valve u.

Cat'tle-stall. A means for fastening cattle at
their mangers or racks, other than by halter or tie. It usually consists of a pair of parallel vertical stanchions, at such distance apart as to admit the neck of the amimal. One stanchion is movable, to allow the head of the animal to pass, and is then replaced and heh by a lateh or pin.
The improvements in cattle-stalls refer to the floors, divisions, mangers, racks, troughs, feeding devices, ties; also to devices to prevent crib-biting, for slinging sick or refiactory animals, preventing kicking.

The feeders are made in various ways: Opening antomatically at regulated periods ; closing, to prevent access in the intervals of feeding; arrangements for deposition in the manger of regulated quantities of feed at certain times.

Cat'tle-tie. A lastening for securing cattle at the rack or manger. The varieties are numerous. Some refer to means for releasing all the animals simultaneously in ease of fire.

Different kinds of fastenings for the rope, halter, or collar-strap, by which the animal is secured; such are loops, snap-looks, euphroes.

Means for taking up the slack of the halter-rope, to prevent the animal becoming tangled in it and being thrown; such are falling weights and spmings.

Means for fastening the hitching cud of the rope to the manger, stall, past, or stanchion; such are hooks, rings, clamping-cams, latches, etc.

Other similar devices may be found under Hitcning; Halter; Tether.

Cat'ty. The bill-hook or machete of Ceylon.
Cauf. 1. A chest with holes to keep fish alive in the water.
2. Λ large basket, used for raising coals from the bottom of a mine. A corve.

Cauk'ing. (Joinery.) A dovetail, tenon, and mortise-joint by which crosstimbers are secured together. lt is used for fitting down tiebeams or other timbers upon wall-plates.

Caul. A heated board used in laying down large veneers. Its heat keeps up the fluidity of the glue until all that is superfluous has been pressed out at the edges.

Caunt'er-lode. (Mining.) A lode which inclines at a considerable angle to the other contigueus veins.

Cause'way. (Civil Engineering.) A rond across a marsh of watel, supported by an embankinent or by a retaining wall. In coutradistinction to a viaduct, which is supported by trestle-work, or by arches or trusses resting on piers. See Embankment.

Caus'son. A nose-band or witch for breaking horses. See Cavesson; Barvacles.

Cau'ter. A scaring-iron.
Burning with a red-hot ison was practiced by the Libyans, in the time of Herodotus ($450 \mathrm{n} . \mathrm{c}$.), as a cure for salt-rheum. The practice is still in vogue there. Cautery, we learn from Denham, is "the sovereign Arab remedy for almost ceery disorder." We read of it in Hippocrates. Layard noticed the use in Dlesupotamia; Burton among the Egyptians.

The cautcry was a favorite surgical instrument with ancient chirurgeons. One of iron, shaped like a spade, was found by Dr. Savenko, of St. Petersburg, 1819, in the honse of a Roman surgeon in the Via Consularis, Pompeii.

The cauter is used by farriers in veterinary operations.

Cau'thee. (Fubric.) A coarse East India cotton cloth.

Cau'ting-i'ron. A searing-iron. See Cauter.
Cav'a-lier'. (Forlificution.) An elevated work on the terreplein of a lastion serving to command the work or same other prosition, and also serving as a trarcrse to protect the neighboing curtains from entilade fire.

Cav'a-lot'. A cannon carrying a ball of 1 pound.
Cave. The ash-pit of a glass furnace.
Caves-son. Λ nose-hand for breaking-in horses. Otherwise spilt causson, cavcion. It resembles the twitch or barmacles, being a grip by which the nosa is wrung and twisted, to subdue the refractory' spinit of the animal.

Ca-vet'to. (Architecturc.) A form of hollow molding whose profile is the quadrant of a circle. Sec Molding; Scotia.

A rampant cavetto is perpendicular.
Cav'il. 1. (Nauticul.) A large cleat. Sce Kevel.
2. A small stone axe with a flat face and a pointed peen. Ressmbles a jedding-axe.

Cav'in. (Furtification.) 1 hollow way from a jrotected approach to a defendet work.
Cav'ing-rake. A rake for separating the chaff (Eng. cavings) from grain, when spread on the barnfloar.
Cax'on. (Mchullurgy.) A chest of ores, calcinerl, ground, and washed, ready for the refiningfurnace. From the Spanish caxon, cajon, a large chest.

Ca'zo. (Metallurgy.) A vessel with a copper bottom in which ores of silver are treated in the hot process.

Cec'o-graph. The French writing-apparatus for
the blind. A chiragon.
Ceil'ing. 1. (Arehitecture.) The upper surface of a romm.

Plane ceilings are flat.
Doincel, cylindric, or groined are terms which explain themselves.

Coved ceiling has a hollow of about a guarter-circle running round the room, situated above the cornice and dying into the llat central portion.

Coffer-work ceiling is arched, and has omamental panels separated by belts.
Gothic ceilings have groined work with spandrel framing and paneling; the framing of the rool is exposed.

Sunk-pancl ceiling has recessed compartments, with roses in the midule and bolection-moldings around them.

Comp ceiling has the marginal portion slanting, following the slope of the rafters, while the middle portion is tlat.

Fig. 1194.

Firc-proof ceilings are of incombustible materials B supported on iron joists A, as in Fig. 1194.
2. (Shipbuilding.) That portion of the inside skin of a vessel between the deck-beams and the limber-strakes on each side of the kcelson. Also called the foot-waling. The strakes of the ceiling immediately below the shelf-picces which support the deckbeams are called clamps. The outside planking is distinctively called the skin.

Ceil'ing-joist. (Building.) One of the joists spiked to a binder, and serving as a point of attachment for the plastering laths of the ceiling.

Cel'a-ture. The art of engraving, chasing, or embossing metals.

Cell. 1. (Architecturc.) a. The space between two ribs of a vault.
b. The space inclosed within the walls of an ancient temple.
2. (Electricity.) A single jar, bath, or division of a compound vessel, containing a couple of plates, - say copper and zinc, - united to their opposites or to each other, usually by a wire. See Galvanic Battery.
3. An underground room for storage.
4. A small room for a prisoner.
5. A structure in a wrought-irou heam or girder ;

Fig. 1195.

Cell-Door Loch. a tube consisting of four wroughtiron p lates riveted to angle-iron at the corners. See Angle-tron.

Cell-door Lock. A prisondoor lock, to whose bolt no access is possible from the inside, and which may fit, as in the example, in a rabbet in the door-jamb.

The secondary bolt is supported in the inclosing shell by brackets, and is connected to the main working parts of the lock by bracelars, so that the key gives it a movement parallel with that of the common bolt. The inclosing rase has a hinged, right-angled cover, the inner fastening of which is covered by the door when closed.

Celt. The stone hammer or axe of a bygone age. afterwards made of bronze. See Hammer; Hatchet.

Ce-ment'. 1. A muiting composition which is plastic when applied, but bardens in place. The ingredients and character vary with the place, purpose, materials to be united, and the expostre.

Alabaster. a. Plaster-of-paris, 1 ; yellow resin, 2 ; mix and apply hot, warming the faces of the fracture or joint.
b. Sulphur or shellac, melted with plaster-ofparis. Simple plaster-of-paris.

Arciutectural. Paper pulp, sifted whiting, and size. This is a sort of papier-maché, and must be varnished or painted if exposed to the weather.

Armentan. See Jeweler's, d.

Bortle. Rosin, 4 ; tallow or suct, 1 ; melt together and stir in the required coloring-matter, whiting, ochre, or ivory-black. Use hot.
Chemical. See Glass.
Chinesf. a. Shellac, 1; alcohol, 2 ; digest in a corkell bottle in warm water.
b. Borax, 1; water, 12 ; shellac, 3 ; evaporate to the requiret consistence.

Coppeli. (To lity upon the rivets and lapping ellges of copper-sheets.) Puwdered quick lime, bullock's blood.

Cutlen's. (Fur fixing kmives in handles.) Black rosin, 4 ; beeswax, 1 ; brick-dust, 1.
Dextrine. Torrefied starch.
Diamond. See Jeweler's, d.
E.arthenwale, a. (Coarse.) Yellow rosin and brick-dust melted together.
b. (Finer; for certain purposes.) Brimstone.
c. Grated cheese, 2 ; quicklime, 1 ; white of egg sufficient to form a paste.
d. White of egg and quicklime.
e. Driell and ground milk-curds triturated with ten per cent of powdered quicklime. Keep from the air, mix with water for use, and apply immeliately.

Elastic. Caoutchouc dissolved in chlorolorm, with or without powdered gum-nastic.
Electile Apparatus. Beeswax, 1 lb . ; rosin, 5 lbs.; red ochre, 1 lb. ; plaster-of-paris, 2 oz.
Fine-pioof. Fine rivel-sand, 20; litharge, 2; quicklime, 1 ; linseed-oil to form a paste. Applied to walls, it becomes stony-hard.
Gas-fitting. Rosin and brick-dust.
Glass. a. Dissolve gum-mastic, 1 ounce, in alcohol ; soak 1 ounce of isinglass in water ; add alcohol to dissolve it to a strong glue, and arld $\frac{1}{4}$ ounce of sal-ammoniac. Put the two solutions into a pipkin; heat, and stir. Put in a stoppered vial, and warm in a water-bath when about to use it.
b. (For chemical glasses.) Flour, 1 ounce ; pulv. glass, 1 ounce; pulv. chalk, 1 ounce; fine brickilust, $\frac{1}{2}$ ounce ; scraped hint ; white of egis. Spread on a linern cloth, and apply to the crack of the glass.
c. (For a temporary stopping or lute.) Yellow wax, 4 ; turpentine, 2 ; Venetian-red, 1.
d. White of egg and quicklime. It does not long resist moisture unless exposed to the heat.
e. (For lens-grinders, ete.) Melt together, pitch, 5 ; wool-ashes, 1 ; hard tallow, 1.
Or, Black rosin, 4 ; beeswax, 1 ; heated whiting, 16.
Or, Shellac, melted.
Or, Rosin and plaster-of-paris.
f. To unite lenses, Canada balsam.
g. (To attach metallic letters to plate-glass windows.) Copal varnish, 16 ; drying-oil, 6 ; turpentine (Venice), 3 ; oil of turpentine, 3 ; liquificl gluc, 5 ; melt, and add quicklime, in powder, 10.
h. (For necks of bottles.) Linseed-meal in boiled oil. Paraffine.
Glue. a. A strong glue, sold as a cement, may be made by infusing glue and isindlass in alcohol, heat gently, and arld powdered chalk.
b. Ure's glue (dissolverl), 8; linseed-oil, boiled to varuish with litharge, 4.
c. Dissolved glue, 4; Yenice turpentine, 1.
d. (Waterproof:) Dissolve isinglass, 2 ounces, in a pint of milk, aud boil to a consistence.
c. Glue swelled in cold water and digested in linseed-oil is tenacious, and acquires the quality of resisting moisture. Red lead may be added.
f. Marine glue ; shellac and caoutchone dissolved in separate portions of naphtha, and mixed.
g. Spolding's liquid glue; ghe and acetic acid.

Grantre. Gum-dammar, marble-dust, felspar.
The nineral ingredients are reduced to an impalpa-
ble powder, and the mass is incorporated by gradual heating. It is applied warn to the warmed faces of the tractured portions. The black felspar is preferably used, to prevent the detection of the joint.

Hard. a. Dried and pulverized clay, 8 ; clean iron-filings, 4 ; peroxyde of manganese, 2 ; sea-salt, 1 ; borax, 1. Triturate, reluce to paste with water, use immediately; heat after using.
b. Peroxyde manganese, zinc-wbite, silicate of soda, to form a paste.

Hydhaulic. a. The ancient hydranlic cement is the pozzuolana, a volcanic earth obtainet near Baiz, in Italy. See Pozzuolana.
b. Hydraulic mortar or cement is made from argillaceous limestones, the presence of the alumina conferring the power of hardening under water. Hydraulic limes were known to and understood by the Romans. Attention was directed to the subject by Smeaton, when he experimented for a cement capable of hardening under water, in order to form his foundation courses for the Eldystone lighthouse.
c. The French ecment made at Mendon, near Paris, is marle of chalk 4 parts, clay 1 part, ground in water, settled, molded, dried, and calcined.
d. The Portland cement of England is made of chalk and clay from the valley of the Medway. The septaria and lias rocks also yield an hydraulic cement.

Artificial pozzuolana is also made from lime and clay.
c. Gad's patent (English) ; dried clay in powder, 3 ; oxide of iron, 1. Make into a paste with bouled oil. Will harden under water.
f. Mix clay, broken pottery, Hint and bottle glass, into a frit; grind, sift, and mix with one third its weight of quicklime; keep from the air. In using, mix into a mortar, and apply like jezznolana.

Ifon. a. (For steam-boilers, cracked ovens, etc.) Litharge, 2; fine sand, 1; slaked lime, 1. Mix, and keep dry.
b. Iron-borings, powdered earthenware, pipe-clay, salt, water.
c. Steam and water tight joints, in permanent cast-iron works, are made by an iron cement componnded as follows: Cast-iron filings or borings, 112; sal-ammoniae, 1 ; sulphur, 1 , whitening, 4.

Small quantities are mixed with a little water just before using.

For minute cracks the cement is laid on externally as a thin seam. For larger fissures it is driven in with a calking-iron. The edges of the metal and the cement are involved in one common mass of rust, which is impermeable to steam or water.
d. Clean iron-filings, 16 ; sal-ammoniac, 3 ; flour of sulplur, 2. Mix, and keep stoppered.

In use, take 1 part of the mixture, 12 parts of new fitings, atd a few dropls of sulphuric acid, and fill the crack or the joint which requires it.
e. Mix boiled linseed-oil, litharge, red and white lead. Apply on each side of a piece of flannel or paper, and lay the same between two pieces before they are bolted together.
f. (For fire-joints and llues.) Iron-filings, sal-ammoniac, and borax.

Jewelers'. (For uniting the pieces of a broken gem.) a. Warn the parts, aml place gum-mastic between them. It will melt by the heat, and will be scarcely olservable.
b. (For' temporarily holling a glass, set, or a piece of metal, while being shajed or chased.) liosin, 4 ; wax, 1 ; whiting, 4 . Mix and heat.
c. Take pitch, rosin, a small quantity of tallow, and thicken with brick-dust. Stir in a pipkin over a fire.
d. (Ammenian cement for uniting metals.) Dissolve gur-mastic in alcohol and isinglass (freviously
softened in water) in brandy, adding a little gumgalbanm, or gum-ammoniac, previonsly rubbed tine. Mix under heat; keep in stoppered vial, which is placed in hot water when the cement is to be nsed. This is diamond coment.
The Armenian artificers set the jewel in a metallic setting whose lower surface corresponds to the shape of the article on which it is to be placed. The two are then united by the cement.

Leathen. (For leather and clath.) a. Guttapercha, 3 ; caontchouc, 1 ; digested in bi-sulpharet of carbon, 8 .
b. Gutta-percha, 16 ; caoutchouc, 4 ; pitch, 2 ; shellac, 1 ; linseed-oil, 2.
Marble. Plaster-of-paris steeped in a saturated solution of alum and re-calcined. Mix with water, and apply as plaster-of-paris. This cement or stucco is susceptible of a high polish, and may be colored to imitate marbles.
See also Stone; Granite; infra.
Mastic (Bottger's). Sand, limestone in powder, litharge, combined, 100 parts; boiled linseed-oil, 7 [arts. Mix. Similar to Loriat's French mastic, invented 1750 .
Mortali. a. Sharp, clean sand, 3; freshly slacked lime, l. See Beton; Stone, artificial; Mostals.
b. Pirlier's cement, known as Roman, patented in England in 1796, is made by adding a quantity of calcined and powdered argillaceous stone to the usual constitnents of mortar, namely, sharp sand, lime, and water.

Cements from sulphate of lime :-
c. K'ene's coment is made from plaster-of-paris mixed with a saturated solution of alma, dried, bakel, powdered, and sifted.
d. Pariun cement, same as above, with the subbstitution of borax for alum.
c. Murtin's cencent, same as above, with the addition of pearl-ash to the alum.
f. Stuceo is a combination of plaster-of-paris with gelatine solution.
g. S'cayliola is made of plaster-of-paris powdered, mixed into a paste with alum, isinglass, and coloring matter, and is incorporated with fragments of marble. Optriclans'. See Glass.
Pareli. a. Rice digested in water, applied hot.
b. Flonr paste. A little powdered alum is said to improve its quality, and a little corrosive-sublimate or creosote to prevent its becoming moldy.
c. Mucilage of gum-arabic, thickened with starch. Used by French makers of artificial flowers and ornamental boxes. Also by naturalists in mounting specimens.

d. Staling-wax.

c. (For postage stamps.) Dextrine and size.

Photomapiner's. Dextrine, paste, and ghe.
Plumbers'. Rosin and brick-dust melted together.

Roman. See Mortar, h; supra.
Seal-Engrayers'. Rosin and brick-dust. Melted together, and used to temporarily fasten an object to a chuck while engraving or chasing.
Slate. (For the joints of slate-work on roofs or in tanks.) Boiled linseed-oil, white lead, chalk, intimately compounded, and used in a fluid condition.

SToxe. Fine sand, 20 ; litharge, 2 ; yuick-lime, 1 ; linsued-oil to form a paste.

See also cements, alabaster, glass, earthen, granite, diamond, Armenian, Chinese, etc., supra.

STove. (For cracks in stovesand other iron-ware.) Finely pulverized hinoxide of manganese, mixed with a strong solution of silicate of soda, to form a thick paste. Fill the crack, and heat slowly.

Another: Dry clay, 4 ; borax, in solution, 1.
Turner's. (For chucking articles.) Rosin and brick-dust, melted together.
Waterproof. a. (For covering of bungs, etc.) India-rubber (digested), beeswax, tallow, and quicklime.
b. (For joining rubbergoods.) Caontchouc in naplstha or turpentine.
Wood. 1. a. (For attaching a piece of wood to a chuck for turning, and for other purposes.) Rosin, 1 pound ; pitch, 4 ounces ; brick-dust or red ochre, to give consistence; add tallow in winter.
b. Shellac, 1 ; alcohol, 2. Digest in a corked bottle, in warm water;
2. (Miniug.) The gravel cemented by clay, which lies next to the bed-lock of the ancient stream, but is now buried beneath a mass of lava and gravel-drift, sometimes many handreds of feet in depth. This auriferous stratum is reached by timbering, draining, and hoisting, as in other underground operations, or the overlying deposits by hydrazlic mining, which consists in wasking away the superincumbent mass. This system is principally practiced in Sierra Nevada and Placer Counties, Califormia. The ccment of these "deep placers" is crushed by stamps, and the free gold collected by sluices or other means. See Professor Raymond's "Mines, Mills, and Furnaces."
3. (Metallurgy.) a. The brown deposit in the precipitation tank, wherein the soluble chloride of gold, obtained by the chlorination, process, is deposited by the addition of sulphate of iron to the solntion.
b. The material in which the metal is imbedded in the Cementing.furnace (which see).

Cem'en-ta'tion. (Mctallurgy.) The process of infusing a solid body with the constituents of another body in which it is buried, by the application of heat; as the conversion of iron into steel ly adding to it a certain proportion of carbon. See Ce-menting-furnace.

Ce-ment'ed-back Car'pet. In forming ce-mented-back carpet a number of warp-threads a a

Fig. 1196

Cemented-Back Carpet. are arrangedin a frame, and are brought into a convolnted form by means of metallic plates $b b$, which are laid strictly parallel. The under side of the warps thus doubled or folded are then dressed to raise a nap, and this surface is then smeared with cement and backed by a canvas or coarse cloth. When dry, the metallic strips $b \quad b$ are removed by cutting the loops, and leaving a pile surface, as in the Witton carpets.

Another mode is to wind the colored yarns around wires, which are then laid parallel; one surface treated with cementand backed with canvas; the other cut like a Wilton carpet when the backing is dry.

Another mode is to fill a square box with parallel yarns laid according to a design, so that a transverse section across the yarn will show the pattern. The ends of the box being open, a piston is introdnced at one to expel the yarns at the other. At the dis-charge-end, the surface, being cut fair, is cemented, and a cloth applied to it. A quantity of the yarn, equal to the length of the pile, is then cut off, and adheres to the backing. The surface is again cemented, the yarn protruded, the backing applied, the pile cnt off, and so on.
Ce-ment'ing-fur'nace. A furnace in which
an article is packed in the powder of another substance, and therewith subjected to a continned heat below the fusing-point. The article is changed by a chemical reaction with the powder.

Bar-iron, packed in charcoal and heated in a cementing-furnace, becomes steel, the iron absorbing some of the carbon.

Cast-iron, packed in powdered hematite and similarly heated, becomes mallcable ; the oxygen of the hematite absorbing some of the carbon of the iron.

The tronglis C are so sup-

Fig. 1197.

Cementing-Furnace. ported beneath the arch M of the furnace, that the fire has free access to their whole exterior surfaces. The bar-iron is imbedded in charcoal in the tronghs C, being arranged in tiers with interposed layers of charcoal, no two hars being in contact. The tops of the tronghs are covered in with fire-tiles, or the upper layer with refractory sand, and the heat is increased for several days, and then maintained for a period depending upon the kind of steel required. The finer varieties of steel are produced by a prolonged process, anl the bars are sometimes exposed again and again to the process of cementation.

In Fig. 1198 is an oven for converting iron into steel. The converting - chamber A is surrounded at bottom and on the sides by the fire-spaces $H S$ The furnaces and grates extend along each side of the base of the converting-chamber, and fromend to end of the oven, leaving an opening at each end for the admission of fuel. A longitudinal line of tire-brick prevents the draft from passing from one furnace to the other. Above the boshes the walls are made

Fig. 1198.
 to incline inwards, in order to confine the heat more closely to the sides of the converting-clamber. At the top the spaces communicate with the interior of the converting-chamber by means of holes, which are made smaller towards the center of the chamber than at the ends.

Ce-ment'-mill. A mill for grinding the septaria or stony concretions from which cement is derived.

The machinery is driven by a steam-engine, slown to the left in the illustration, and the motion is communicated by a horizontal through-shaft to all the machinery in the mill. The operations exhibited are threefold. The cement-stone is crushed between a pair of rollers on horizontal shafts beneath the hopper to the right hand. Falling to the floor, it is elevated to the upper story and domped into a hopper, from whence it passes into the eye of the runner mill-stone and is finely pulverized. The stones
have a face dressing like those for grinding grain, the oblique channels being laid over in sections. From the mill the powder passes to a pair of sieves, wh ch receive a rapid lorizontal reciprocation by a

Fig. 1199.

Cement-Mill.
rod and crank attached to the small spur-wheel, which is turned by the large spur-wheel on the spindle beneath the bel-stone.

To the right is shown a mortar-mill, which consists of an ellge-wheel traveling in a cireular bed, like that of a Chilian ore-mill. This stone has an axle which projects ralially from a vertical post which is rotated ly spur-gearing from the main horizontal shaft of the mill. A scraper on the stone eleans the face of the elge-stone.

Ce-ment'-spread'er. A machine for coating and saturating felt or praper with liquid cement, for roofing purposes. The cloth or praper I passes under

roller I and over the roller σ into the liquid-eement loopper B, and passes out between the roller and the aljustable gate C, which giages the quantity of cement which passes out with the eloth.

Cen'dré a de Tour'nay. A hydraulic cement of aluminous yuicklime and coal-ashes.

The ash's and lime from the bottom of the kiln are sifted, to remove lumps. The dust is slacked a bushel at a time till the mortar-box is filled. Themortar is then well incorporated by a pestle suspended at the emb of an elastic pole. It is then partially dried, again beaten, and this is repeated from six to ten times, no more water being alded. It acheres very firmly to hricks or stone, and hardens under water.

Cen'ser. A brazier or pan for burning aromatic woods and spices.

Cen'ter. (Lalkc.) One of the points on the lathe-
spindles on which the work is placed. The frout or lire couter is on the spindle of the head-stock. The buch or tead center is on the tail-stock.
The centers of a planer are on stocks temporarily attachell to the bed of the planer, so that the ohject may lie turned on its axis in the course of the work thereon.
Cen'ter-bit. A wood-boring tool which has a central jivot and two wings; one of these is a scriber and the other a router. See Bit.
Cen'ter-board. (Nautical.) A board placed amilship, in a well which extends longitudinally and vertically through the keel, and is adanted to be lowered to give a deeper draft, in order to avoid lee-way and to give the vessel greater stahility under]ress of canvas. It is the old Dutch lee-board in a central position. A sliding-heel.

Cen'ter-chis'el. A chisel used to make a dent at the exact center, to form a starting point for the drill, in drilling holes in metal. A pointed cold-chisel.

Cen'ter-chuck.
(Turning.) A chuck which lur screwed on the mandrel of a tathe, and has a lardened steel cone or center fixed in it ; also a projecting arm or driver.

Cen'ter Dis-charge'-wheel. A form of turbine, in which the water is admitted from a chute N

Center Discharge-Wheel.
to the periphery of the buckets a a, passes towards the center of the wheel, and thence downward around the axis D.

Cen'ter-drill. A small irill used for making a short hole in the ends of a shaft about to be turned, for the entrance of the lathe-centers.

Cen'ter-fire Car'tridge. One in which the fulminate occupies an axial position, instead of being around the periphery of the flangel capsule.

In the illustration the fulminate is in a cap, and

Fig. 1203.

Center-Fire Cartridge.
timber. The centering is, in fact, a patters, in wood, of the intrados of the finished arch, and is, in large structures, such as first-class stone bridges, an expensive erection of itself, requiring a large amount of scientific knowledge and practical skill to thoroughly fulfill the required conditions.

The essential features of a centoring are the ribs which span the space between the piers; the bolsters, or boarding, which lie transversely and support the voussoirs; the keys, or strikiuy-plates, beneath the ribs, which are struck to lower the centering; and
is struck by a firing-pin g, when the hammer descends upon the end of the bolt. D. See Calitridge.

Cen'ter-gage. A gage for showing the angle to which alathe-centershonld be turned, and also for accurately grinding and setting screw-chtting tnols.

The annexed cut shows the tool, and illustrates its uses.

At A is shown the manner of gaging the angle to which a lathe-center should be tumed. At B, the angle to which a screw-thread entting-tool should be ground, and at C, the correctness of the angle of a screw-thread alrealy cut.

In the lower figure, the shaft with a sciew-thrrad is supposed to be held on the center of a lathe. By applying the gage as shown at D or E, the thread-tool ean be set at right angles to the shaft, and then fastened in place by the screw in the tool-post, thereby avoiling imperfect or leaning threads.

In the right-hand figure, the manner of setting the tool for cutting insirle threads is illustraterl. The angles used in this gage are sixty degrees. The tour divisions upon the gage of $14,20,24$, and 32 parts

Fig. 1204.

to the inch are useful in measuring the number of threads to the inch of taps and screws.

The following parts to the inch can be determined hy them: namely, $2,3,4,5,6,7,8,10,14,16,20$, 24, ant 32 .
Cen'ter-ing. (Masonry.) A temporary suplort, serving at the same time as a guide to the workmen, placed minder an arch during the progress ol its construction. Its duty is to support the areh until it has been finally closed by the insertion of the key-stone, and is able to maintain itself in position without extraneous help.
The oljeet is to allord the largest possible amount of support to all the parts; to arrange the timbers so that each part shall be equally supported in proportion to its actual pressure, and to economize - or at least such should be the engineer's aim -

Bradge-Centers.
a sufficient amount of framing to hold the ribs and bolsters securely.

A cocket-centering is one in which head-room is left beneath the arch above the springing-line, upon which the temporary supports of the centering may have to rest.

The most elementary form may be seen in the common sewer or culvert, where a simple structure answers the purpose; but iu large structures, which may lave to support a pressure of many hundreds of tons, carefnl calculations are required, involving a knowledge of the strengtl of materials and resolution of thrust. Enginerring skill is also necessary in securing proper foundations under the widely varying circumstances of the soil aml substrata.

Fig. 1205, a is a center used at Westminster Bridge, an improvement on Purronet's system. Two timbers resting on the abutments incline and meet at the top, forming a large triangle ; this is crossed and braced in difierent directions, constitnting seren compartments, and affording considerable strength.

Centers of 130 feet span have been formed by the arrangement represented in Fig. 1205, b, composed of vertical and horizontal timbers with diagonal braces; the upper portion is contrived to rest upon wedges, and can be lowered without disturbing the rest ; by striking the inclineal supports at bottom, their position can he altered when desired. These centers have the advantage of simplicity, and can be easily put together and taken down.

Smeaton's center for Coldstream Bridge resembled a roof-truss in its general arrangement, consisting of a frame with a tie-beam united by a system of braces; on each side were struts supporting the ribs, on which was laid the planking for turning the arch.

The centers devised by Renuie for the arehes of Waterloo Bridge have been often cited as admirably arranged structures ol their kind. Inclined "piles," which carried the weight of the ribs of the center, had their bearings on the offsets of the stone piers, which afforded an excellent abutment. The ribs were laid upon whole timbers capping the piles, and under each set of ribs wedges were introduced, which were made to extend across the whole wilth; when it was required to ease the center, the wedges were driven along each other, and slid down the inclined plane into larger spaces than they had formerly occupied. The whole center could by this means be made to descend very gently,

Fig. $120 \overline{7}$.

Center Waterioo Brilge.
and be retained at any required position during the pragress of the work.

An elevation of the framing is shown in Fig. 1207. This center is said to have had remarkable strength, and when struek, the arch settled hut a very few inches.
Cen'ter-ing-ma-chine'. A form of machinedill for centering shafts, bolts, ete. The purposes are various, but especially to make such a depression at the exact center that the object may be phaced in a lathe for turning. Two illustrations are shown. In the upper one the end of the shaft a rests in the crutch, and is held between the three sliding-dogs of the chuck b, so that the exact center of end-face is presented to the drill, which is rotated by a band on pulley c, and advanced to its work by the tailscrew d. The lever e is the means of rotating that portion of the chuck which carries the rack or smail by which the dogs are radially adjusted, so as to
grasp or release the shaft. spindle, and around it is a sleeve supporting a center-ing-cup, which is driven forward by a spiral spring. gitudinal, vertical section of the hnll. ter is adjustable.

The lower figure has the dogs h on the face of the chnck g, and these are made to embrace the shaft, bolt, or rod near the end, so as to hold it for the advance of the drill, which, in this case, is moved to its work by the lever-handle k, but rotated by the band on the pulley.

Cen'ter-ingtool. One having a trumpet mouth, into which the end of a shaft may be pushed while the tool occupying the axis may be driven forward, to drill or punc. a hole in the exact axial center of the rod. The shaft A is attached to the lathe-

Cen'ter-line. (Shipbuilding.) A central, lon-
Cen'ter-lathe. 1. A lathe in which the work is supported upon centers at each end; one on the end of the mandrel in the head-stock, and the other, the back-center, on the axis in the tail-stock. The lat-
2. A lathe in which the work is held by centers projecting from two posts, and is driven by a band
which passes two or three times around it . The I center-rail whose upper flanges prevented the rising band is fastened at its respective ends to a treadle of the guide-rollers to such an extent as to become
beneath the lathe and a spring-bar above it. A disengaged. beneath the lathe and a spring-bar above it. A pole-lathe.
Cen'ter-pin. The pirot on trhich the compassneedle oscillates. See Mariner's Compass; DipCOMPASS.

Cen'ter-punch. A punch for making an indentation, as a mark for the center of a hole to be drilled, a circie to be struck, or as a center of revolution in the lathe.
Cen'ter-rail. (Railway Engincering.) A third, or middle, rail placed between the ordinary rails of a track, and used on inclined planes in connection with wheels on the locomotive in asceuding or descending the grade.
The first of these was Bleskinsoy's patent of 1811. The middle rail was a rack, and was engaged by a cogged wheel on the locomotive by which the ascent was secured.

No particular provision was made for descent. The derice was primarily intended as an aid to traction, as it was supposed at that time the hite of the drivers on the rail would be insufficient.

Ssowdes (English), in 1824, had a center-rack and what he called a mechenical horsc. A berel cogwheel on the locomotive acted non gearing on the horse, and the latter had a wheel engaging the centerrack, so the horse was advanced and drew the train.

Eastos (English patent, 1825) specifies a central rack placed between the two rails, and a spur gear on the locomotive. In addition to this, the smooth sides of the rail form guides, lateral wheels running in a liorizontal plane beneath the engine or carriage,

Fig. 1210.

Vignoles and Ericsson's Central Rail. rail. bearno apon the sides of the rail and preventing the strerving of the rehicle from the line or rails. No positive motion was imparted by the engine to the said guidewheels.

Kollyax's English patent of 1836 has a central guide-

A central friction -
rril was pratented by Vignoles and Ericssox in England, 1830.
This friction-rail consists of a flat piece of iron fixed in a vertical position in chairs a, occupying a median position between the tracks. On each side of the friction-rail is a horizontal friction-roller, as shown at $c d$; the roller c being made considerably longer than d, and fixed upon its vertical shaft c, while d is permitted to turn freely on its vertical shaft f. On the driving-axis g is fitted a berelwheel h, which turns another bevel-wheel i, fixed upon the rertical shaft e of the driving-roller c. The bearings of this driving-roller and its shaft are firmly fixed to the under side of the locomotive-carriage by a block to which the hearings of the friction-roller d are hinged, that the latter may at pleasnre be jressed against the friction-rail a by the lever m. This lever is brought within reach of the engineer. The driving-wheels n o may be released from the power of the engine by disengaging the clntches $p q$, so as to throw the thole force of the engine upon the gripping rollers $c d$ when ascending a grade.

Kollan's Locomotive Guide, English patent, 1836, had a pair of rollers acting upon the sides of a

Sellers's United States patent, 1835, embraced a central rail, clamped between two horizontally rotating rollers diven by the power of the locomotive.
A device similar to that described in Vignoles and Ericsson's English patent, 1S30, was adopted by Fell in the Mount Washington Railway, whose steep gradients could not be ascended by the ordinary means.

Mr. Fell adopted the same means in ascending the inclined planes on Mont Cenis.
Another form of center-rail railway las hut a single rail in the middle of the track, and a pair of smooth tramways, one on each side, traversed by ordinary wheels.

Cen'ter-saw. A machine for splitting ronnd timber into bolts, instead of riving it, for axe and pick handles, heary spokes, etc. It has a sliding carriage, furnished with center head-blocks, upon which the \log is placed; and is provided with a dial-plate and stops, by which the log can be spaced

Fig 1211.

into stuff the desired size. The centers can be adjusted up or down, to suit the work. Is capable of splitting timber up to 20 inches in diameter, $3 \frac{1}{2}$ feet long; cuts invariably toward the center, and is calculated for a sar 22 inches or less in diameter.
Cen'ter-sec'ond. A tern applied to a watch or clock in which the sccond-hand is mounted on the central arhor and completes its revolution in one minute. It is more easily read than the ordinary second-hand traversing in its own small dial.
The beat of the sceond-hand may be seconds, or fractions of a second. In the original form it beat with the balance, a third of a second at a beat.

The largest center-second clock known to the writer is the turret-clock for the Bonshay Harbor Board, which indicates hours, minutes, and seconds npona dial $8 \frac{1}{2}$ feet in diameter. The center-second hand measures $6 \frac{1}{2}$ feet in length, and its end has a motion of 5 inches per second, acquining. a momentum which has been overcome by a series of sixty levers, so arranged that the second-hand rests in one of them at each beat; the point of the hand being so contrived that when it rests upon a lever it is detained there, and can get meither backwanls nor forwards until the clock-work remores the lever ont of the way. This prevents the swaying hack and forth of the hand, and gives it a dearl motion.

Cen'ter-valve. A device in gas-works whose duty is to distribute the coal-gas to the purfiers. In the example annexed, the seat of the valves is a casting A, having four pairs of mouths $d c$. The ralre itself has a port which may, by rotation, be made to connect with and distribute the coal-gas to auy one of the four sets of purifiers.

Fig. 1212.

Center-Valze.
Cen'ter-wheel. The "third wheel" of a wateh, in some kints of movements.

Cen'ti-grade Ther-mom'e-ter. The thermometer of Celsins. The zero is at the freezing-point of water, and the boiling-point is at 100°. See Therimometer.

Cen-trif'u-gal Drill. A drill having a fly-wheel upon the stock, to maintain and steally the motion against the effect of temporary impediments. In some cases there is a click movement, so that the Hy-wheel may constantly mantain the same direetion of motion, notwithstanding the vibratory character of the prinary motion.

Cen-trif'n-gal Fil'ter. The centrifugal sugarfilter was matented in the United States by Hurd in 1844, and in England by Finzè in 1849.

Its cylinder has a porous or foraminous periphery, and is very rapidly rotated on its ver-

tical axis, so as to drive off by centrifugal foree the liguid with which the substance contained in the cylinder is saturated. In the illustration annexed, the syrup is introduced by pipe J into the
distributor E, which disperses it to all parts of the chanber G, which is tilled with bone-black and is rotated rapidly on its shaft A by a bevel-pinion driven by the bevel-wheel $B . C$ is the wheel of the tram-lever, oll which the shaft is stepped. The liquid driven out of the eylinder G is collected in the envelope-chamber, and disclarged by the pipe I. Sugar is freed of molasses in the same kind of machine. See Centhifugal Machine.

Cen-trif/u-gal Gun. A form of machine-camon in which balls are ilriven tangentially from a chambered disk rotating at great speed.

Cen-trif'u-gal Ma-chine ${ }^{\prime}$. A machine fordrying yarn, eloth, clothes, sugar, etc., by centrifugal action. The fiber or other material is plaeed in a hollow cylinder with a reticulated periphery of wive graze, and, being rotated at a rate of from 1,000 to 2,000

revolutions per minute, the water flies off by the centrifugal action, and is colleceted by the enclosing cylinder, down which it trickles to a discharge-pipe. it is also found uselin in removing the must from the grape after crashing.

The illustration shows a machine with an imper cyinder m, and an outer one, both revolving in concert and driving ontwarlly to the chamber A the molasses in the sugar, which surrounds the cone B.

Cen-trif'u-gal Pump. A rotary pump in which the Huid is chrival outwardly from the center at which it is received, and diverted into an upward direction.

Le Demour's centrifugal pmp (Fig. 1215) is supposed tolave heen the first of itskiml. It is but a clumsy contrivanee, viewed in the light of the more recent inventions, which are generally forms derived from the turbine.

They ilo for water what some forms of fan-blowers do for air, and are also mueh like many rotary engines in the construction of the parts, only the vanes of the rotary steam-engines are pressed hy steam, while

Fig. 1215.

Centrifugal Pump. those of the centrifugal nump move against the water, and drive $i t$. Sue also Rotaisy lump.

In the Konal en Letterbotte, Haarlem, Holland, April 19, 1S 41 , occurs a suggestion of P. H. Yan der Weyde, for the use of a turbine-shaped wheel as a centrifugal pump, the process being inverted so

"that, in place of obtaining porter by means of descending water, we may raise water by applying a given power." The centrifugal punip known as the "Grryme" pump was used by Andrews and Brother in New York in 1844.

In Fig. 1216 are shown several forms of the centrifugal pump, differing more in detail and froportion than in [rinciple.
A shows Gwyme's centrifugal pump, which has six equidistant paliets inclined backwardly toward their outcr extremities. Three of these extend from the axis, and the remainder only from the margin of the amular induction-space aromn the axis. The wheel rotates in a shell in the direction of the arrow, and delivers the water upwarl into the eduction-pipe L.

Girard's turbine elevator resembles five distinct turbines on a vertical axis, one above another, each taking the water from the one below it, and delivering it in tuin to the one above it.
$\angle C$ ' shows the Coignard centrifugal pump, as shown at the French Exposition, 1862 A vertical nection across the axis of one of these pumps is shown at B (Fig. 1216) and another section, also vertieal, through the axis, at C (same figure). Here there are two recolving-drums, y a, $g a$, both attached to the same axis d. They revolve in water-tight loxes, but the emtrance of the water takes phace from the slace on hetween the shrums; the oprenings for atmission bring at f. The discharge takes place through an annular lateral space e ee e , into an annular eavity $2 n$ an, which couducts it to the rising tube n. The tube of aspiration is l, which communicates with the space between the drums o. The form given to the pallets in this machine is spiral; they are unly two in munber in each drum. As in the other pumps, the fom of the helices is pufurssedly such as to make the section of gassage inverely mopmonal to the velocity of the water at different distances from the center.
Andrew's centrifugal pump (D, Fig. 1216) resembles a helix or snail's shell, which forms the base of a double cone placed with its axis in a horizontal prosition, the space between the inner and outer cones being the chamber of the jumple and occupied by a kind of turhine-wheel shown in the detached riew E (same figure). F is the stationary boss with spiral Hlanges ?, which give the water is twist just as it enters upon the action of the wheel, which has six vanes, as seen in the riew E. "is the base of the punpp, cast in one pisece with the case c, to which is attached by flanges the conduct-ing-case, comprosed of two parts d d, forming a spital discharge-passage y and e; gradually enlarging to the outlet f is the stuthing-box, throngh which passes the driving-shaft g; this having thmed in its surface at j, a series of grooves, whech are acemately fitted in a Babbitt metal-box in the standal h, couniteracting any tendency to end-thrust on vhation. i is the bed-plate, having cast uron it the stambard h, and brackets to which the promp is secured by the flanges and hase. When required to he run rerticaily, no bed-plate is used, That the pump is secured by the base. The base also forms a llange, to which

Fig. 1217.

CHAFER.
is lolted the bend q of the suction-pipe, whieh has a foot-valve at its lower end. Motion is communicated by a belt upon the polley p.

Fig. 1217 gives au exterior view of a centrifugal pump.

Fig. 1218 shows the centrifugal pump, with portable engine connected, as arranged for pumping out
a pond, or pumping from a river with a shelving bink, the dotted lines showing it as alapited for pumping ont of a eistern or well. The pump is placed upon a two-wheeled carriage fimly attached to the "ugine when working, and driven by a band from the Hy-wheel of the engine.
Cen-trip'e-tal Press. A mechanical contrivance for pressing inwardly on a radial line from all directions in the common plane.
Cell-trip'e-tal Pump. A pump in whieh the water is gathered by sevolving blades or arms, and drawn to the axis from whence the dis-charge-tube rises.
ln one form it is the exact converse of the Barker mull. See hotary Pump.

Cen'tro-lin'e-ad. An iustru-

Centrifugal Draining-Engine.
ment for drawing lines towards a distant center, as towards a distant ranishing point.

Ceph'a-lom'e-ter. An instrument for mensuring the size of the fetal head during parturition.

Ceph'a-lo-tome. An instrument for cutting into the fetal head, to assist its forcible contraction and facilitate delivery.

Ceph'a-lo-tribe. An instrument of the nature of an expansive foreeps, intended to compress the

Fig. 1219

Lusk's Cephalotribe.
tetal head and facilitate delivery. It has to a considerable extent sulpersedel the crochct and perforator.
The instrument depicterl has blades with a cephalie eurve, which gives it power as a compressor, and grasp as a tractor.

Ce-ram'ics. All varipties of work formerl of clay, in whole or in part, and baked, are included under this nane. See Butck; The; Evamel. See also specific list under Potteny asd Clay.

It is distinguished from vitrics, in which silex predominates, the result being glass.

Ce'ra-to-tome. A knife used in diviling the cornea.

Ce-rau'no-scope. An instrument to imitate lightning and thunder.

Cere-cloth. Waxed cloth; formerly used as a shroul in embalming. Hence ecrements. See Emf.acming.

Cer'iph. (Printing.) The fine lines of a type or letter at the top and bottom, projecting heyond the heary strokes. The terminal cross-lines of a letter. Also called hair-lines.

Ce'ri-um. A heavy, grayish-white metal, but little known or used.

Ce'ro-graph. A writing on wax.

Cer'vix-di-Ia'tor. An instrument which is used for cliating the eervix uteri when contractel, particularly the internal os. After the point is thrust in,

the handles are pressed together, which expands the blades.

Cess-pipe. A pipe for carrying off waste water, etc., froni a sink or cessprool.

Cess-pool. 1. A privy-vault.
2. A eistern to collect sedimentary matter passing into drains.
The washings of the streets contain mueh gravelly and sandy dibris, and during rain-stoms other articles are earried through the open or gratell entrance g to the sewers. Such things are eollected in the cistern or cesspool, and the water Hows olf beneath the trap-wall, which prevents the upward passage of mephitic air and gases. See CatchBASIS.

Chaf'er. A small portable furnace. Chuffer; chauffer.

Chaf'er-y. A forge in an iron-mill, wherein the iron is wrought into bars.

Chaff-cut'ter. A machine for chopping or cutting long feed, such as hay, straw, or stalks, into chaff, in which condition it may be fed in a box or bag, dusted with bran or meal. An economical and compact mode of feeding. See Straw-cutter.

Chaff-halt'er. A lady's bridle with double reins.
Chaf'ing-dish. 1. A pan of coals to heat a dish.
2. A dish heated by lamp or jet beneath.

Chaf'ing-gear. A'autical.) Purculing or scriing on ropes, to keep them from being chaled by running rigging.

Chain. 1. A device consisting of several associated liuks, joined endways so as to string ont iu line.

The varieties of chains are numerous, and their names are lerived from their (a) material, (b) structure, or (c) purpose, as, -
a. Gold, steel, galvanized iron, etc.
b. Twisted link, flat link, etc.
c. Tup-chain, curb-chain, surveyor's chain, moor-ing-chain, etc.

Chains in olden times had three purposes.
(1.) They were worn as emblems of investiture or badges of office, as in the cases of Joseph and Damiel, in Egypt and Babylon. The idea was preserved in Persia, and blossoms yearly in the civic ceremonies wherein London rejoices that sle has found another mayor.
(2.) For ornament. Necklaces, cirlles, and anklechains were used by various nations of antiguity. Jewels were workel into the links or strung upon cords. To the chains which hung from the neck, fancy or fashion suspented cowries, mirrors," round tires like the moon," trinkets, amulets, emblems, and scent-lottles. The Midianites, who invaded Palestine in the time of Gideon, ormamented with chains the necks of their camels. The modern uses of ornamental chains are numerous and familiar.
(3.) For confining prisoners. Before and after the time when poor samson was blinded and then bound with fetters of brass, when Davil lamented Abner, and the fugitive Jedehiah, after delending his capital for two years, became a fugitire, was captured, blinded, bound with chains of brass, and carried to Babylon, chains, letters, and manacles were the lot of captives and criminals. Peter slept "between two soldiers bound with two chains," being, no doubt, handenffed to his gards on cither side. Herorl, of course, had the soldiers killed, which was the ordinary punishment of a Roman guard who allowed his prisoners to escape.

The Romans used chains with liuks of various patterns; circular, oval, figure-8, horse-shoe, bars with eves, etc. These were principally of a small size and ornamental character. Their cable was of rope, as it was with us until a few decades since. Xerxes thrashed the Hellespont with clains, and then threw chains into the strait as a reminder; but the bridge he built was of rope, supported by ships, and sustaining the planks on which the host crossed.

Twisted chains are mentioned by the Greek authors.
lron for chains is cut off with a plain chamferer; each piece is then bent, introluced, and welded. In common chains the weld is made at the small end, called the croun.

In chain cables the weld is at the side of the oval, the scarf being flatways of the link. The parts and consecutive forms are shown at i, j, k (Fig. 122.2).

Curbed or twisted chains are welded in the ordinary manner and twisted afterwards; each link as
it is welded, or a few made hot at a tinue and twisted.

Chains with flat links are made in the fly-press. The links are cut out, of the form shown at \dot{h}. The holes are afterwards punched as in washers, one at a time, esery blank being so held that its circular extremity touches the stops on the bed or die, which insure the centrality of the blank and punch. The two holes are thus made equidistant in all the links, and are afterwards strung together by inserting wire rivets throngh the holes.

The pins or rivets for the links are cut off from the length of wire in the fly-press, by a pair of cutters like wide chisels with square edges, assisted by a stop to keep the pins of ont length; or by one straight cutter and an angular cutter hollowed to about 60°, or by two cutters, each hollowed to 90°. In the three cases, the wire is respectively cut from two, three, or four equidistant parts of its circumference.
Sometimes the succession of the links of the chain is one and two links alternately, as at x; of three and

Fig. 1220.

two, or four and three, as at z, up to eight and nine links, which is sometimes used. The wires when inserted are slightly riveted at the ends.
Chains inteuded to eatch on pins or projections on the periphery of a wheel are made two and two, as in the other figure, leaving an opening which slins over the cog.
Mr. Oldham, the engineer to the Pauk of England, contrived a curved link-chain f, f, adapted to work in comnection with a cog-wheel g, with epricycloidal teeth.

Chains for watches, timepieces, and small machinery are too minute to be made as the ordinary that-link chain. The slip of steel is first puncheid through with the rivet-holes for a number of links, by means of a puncl in which two steel wires are inserted; the distance between the intended links is obtained (somewhat as in file-cutting) by resting the
burrs of the two previons holes against the sharp edge of the bolster. The links are afterwards cut out by a punch and bolster of' a minute size. The punch has two pins inserted at the distance of the firet-holes; the slip, of steel being every time fitted by twe of the holes to these pins, all the links are therely cut centrally around these rivet-holes.

The tools are carried in a thick block having a perpendicular spuare hole, fitted with a stout symare bar ; the latter is driven with a hammer, which is supported by pivots raised by a spring and worked by a pedal. When the links measure from $\frac{1}{4}$ to $\frac{1}{2}$ inel in length, the press is workel hy a screw.
The punches are fitted to the side of the square bar, in a mojecting loop or mortise, and are secured lyy a wedge. They are drilled with holes for pins, and across each puneh there is a deep, notch to expme the raverse ends of the pins, in order that, when broken, they may be driven out and replaed. The pins are taper-pointend, that they may raise burs, instead of cutting the metal clean ont ; and, being tilner, no proller-oll is remuired, and the bedtools are fitted in chamfer-grooves in the base of the instrument.

A bocket chronometer-ehain If inches in length, containing in wery ineh of its length 22 rivets and 33 links, in 3 rows, has 770 pieces, and weighs $9 \frac{1}{2}$ grains.

A elain for a small pooket-watel measures 6 inches in length, has 42 rivets and 63 links in every inch, in all 630 pieces; and the whole chain weighs $1 \frac{3}{4}$ grains:

Chains for jewelry are cut with punches. The exterior and interios of each is fredumbly rectangular: eaeh alternate link is slit with a fine saw for the introluction of two contiguons links, and the slit is soldreved up.

Riygriuy-chain is ustally of the open-linked kinul, with oval links. It is deseribed by stating the diameter of the rod of which the links are made.
The outside brealth of a chain is abont 3.2 times the diameter of the rod of which it is made.
a \quad (Fig. 12:2) is an open-linked chain with thimbles for the engagement of the pins of a sprocketwheel in water-elevators.
$b b$ are the links of a chain of bent loops male without cutting or welding.
$c c$ are the links of an elastie chain, in which blocks of india-rubber are so placed as to be compressed by a pull on the clain.
in n na are forms of Acraman's chain, 1820, in which the bar is rolled with protuberances which form by mutnal contact an actual stay, or form sockets for stay-pins.
p. p are links of Sowerby's clmin-cable, I822, which are bent invard at the midulle, where they are stayed by a block s, seeured by a riveted pin. The projections $c c$ are to prevent entanglement of the links.
Hawks's English patent, 1828, has links made of fron rolled with eulargements whieh correspund to the ends of the links where the greatest amount of friction occurs.
The illustration sbows-
A link-blenk, t, the edges cut off with a scorf.
The link bent, 4 .
Wellecl, r. Stayed, u.
2. The surveyor's chain (Gunter's) has 100 links, each of which is 7 in inches in length; the whole measuring 4 mods, equal to 66 feet. See Surveyoh's Chain.
3. (Hecuring.) The warp-threads of a woll. Also known as the chain, filling, or twist; and in silk as orgenzinc.

Chain-belt. A chain forming a band or belt for the conveyance of power.

Fig 1203.

Chain-Belt.
A chain covered with piping or overlaid with strips to form a round belt.
Chain-boat. A smbstantial boat used in harbors in recevering clain-ealles and anchors.
Chain-bolt. 1. (Shipbuilding.) A holt to secure the clains of the drad-eyes throngh the toe-link as a fastening for the slurouls.

Ore of the bolts fastening the chamel-plate to the slip's side.
2. One having an attaclued ehain by which it may be drawn back, falling by its own gravity or phshed into place ly a spring. Used with high doors of rooms or hook-eases.
Chain-bridge. 1. A form of fery-britge in which the paassage is made liy chains laid neross the river and anchored on each side, and moving over chain-wheels on board, driven by engines. such a fery-bridge used to cross the Itchen liver, Hampslire, England. The chain pier of Brighton was erected in 1822. The elains of Hungerfont Britge, London, were moved to Cliften, near lbristol, and now sjan the Aron. The span is 720 feet ; licht above water, 260 fert. See fishiv-bhidie.
2. An ealy (for Europe) fom of the suspensionbridge in whish catenary chains supported the floor. Thu• first was erected over the Tees, in England, in 1: 41 . Rods with eyes and connecting-links were Used by Telford on the Mtnai Suspension litilge, 1829 ; ster ${ }^{2}$ wires laid up (not twisted) into cables are now insed. See Susplension-bridge; FhostisPie't.
Chain-bond. The tying together of parts of a stone-wall hy a chain or iron bar built in.
Chain-ca'ble. (Sunticul.) A chain adapted to use as a eable in holding a ship, to its mearings or anchor.
The ancient Greeks used rushes; the Carthaginians the spurtium or broom of spain and Libya (Af1ica) ; the Egyptians, papyrus.
The anciont maritime prople, the Yeneti, used iron chan-cable for their ship's in the time of Julius Cresar.

In the tenth century the nations of the Baltic used ropes of twisted rawhite thongs. The latter were used in Britain till the third emtury, and are yet used in Western Scotland for boats anil dralt.
Chain-cahles were used hy the Britons. (Cesam.) They were common long ago in small sizes, but were only lately mate for leasy craft.
They have shackles at every 15 fathoms, sometimes swivels at $7 \frac{1}{2}$ fathoms.
Chain-cables were made in England by maehinery in 1792, and introducel into the British merchantservice by Captain Brown of the "Penelope," West lndia merchantman, 400 tons burden, 1811. The cable had twisterl links.
Buunton patented the stay in the middle of the link. See Cinas.
The ehain-cable was introluced into the British nary in 1812.

In making chain-cables, the bar of $1,1 \frac{1}{2}$, or 2 inch irom is heated, and the scarf is made by a cutting.

machine ; an oblique ent on the end of the roll, criving a chamfer or lap to the cut surfaces, brings a larser surface of the iron into welding contact. The link is formed by inserting the end of the heated bar within a loop in the edge of an oval lisk, which may be comparel to a chuck, fixed on the end of a lathemandec. The disk is rotated by stean-power, and makes exactly one revolution, when it throws itself out of gear. The heated end of the iron rod thus receives an oval loon, which is detached from the rod by a chamfered or oblique cut, making the second scall for the link and the first searf for the next link. The link is now concatenated, closed together, and transferred to the fire, the loose end loeing carried by a traverse chain. When properly heated, it is thansferred to the anvil, welded and dressed off between top and bottom tools, after which the castiron transverse stay is inserted and the link closed thereupon.

Chain-cables are generally made in lengths of from $12 \frac{1}{2}$ to 25 fathoms; each length is usually provided with a swivel. The lengths are joined together by shackles (which see).

A cable's-length is 100 fathoms of 6.08 feet each, and is one tenth of a nautical mile.

Chain-cables are stowed in chain-lockers, generally near the mainmast, or just before the engine and boiler compartment. The locker-space required may be found by the following rite: Mul.
tiply the syuare of the diameter of the cable-iron in inches by 35 . The product is the space required in cubic feet, nearly.

Four kinds of apparatus are used for regulating or checking the motion of the calle as it runs towards the hawse-holes; and for holding on by the cable after the anchor has taken hold.

These are Contholleus; Bitts; Storpers; Compressons (which see).

Chain-coup'ling. (Ricilroad Engincering.) 1. A supplementary coupling between cars, as a safety-lerice in case of accidental uncoupling of the prime connector.
2. A shackle for a chain whereby lengtlis are united as in a chain-cable, or a slackle or clevis to mite a chain with an object.

Chain-fast'en-ing. A sailar's bend, or cable mooring. The npper figure shows the double clainfastening: the lower one the single chain-fastening.

Chaiu-gear. A form of cog-gearing in which an open linked chain catches up the cogs or sprockets of the wheel, and is the means of motion thereof, orconversely. See ChatiWhFFL.

Chain - guard. (Horulogy.) A mechanism in watches provided with a fusce, to prevent the watch being overwound.
Chain. Gun'ter's. The surveyor's chain, having 100 links, eath 7 落 inches in length; total length 4 rods, equal to 66 feet. See Surveyon's Chais.

Chain-hook. (Nuutical.) 1. An iron rad with

Fig. 1205

Chain-Hook.
a handling eye at one end and a hook at the other for handling the chain-cable.
2. A cable-stopper which clamps the link of a clain between two other links, as in Fig. 1225.

Chain-incli-nom'e-ter. A form of level in which the inclination of the surveyor's chain is in-

Choin-Inclinometer.
dicated on a scale by the pointer on the end of the level.

Chain-knot. 1. A succession of loops on a cord, each loop in snccession locking the one abore it, and the last one locked by passing through it the rad of the cord.
2. A kind of knot used in splicing. See livot.
3. The loop-stitch of some sewing-machines. See Stitch.

Chain-lift'er. (Nautical.) A cast-iton grooved rim, with projections, situated at the foot of the capstan-barrel, and forming the drum aromed which the chain-cable is wound in weighing anchor.

Chain-lock'er Pipe. (Jintical.) The ironbound opening or section of pipe passing through the deck, anul through which the chain-cable jasses to or from the locker in which it is stowed.

Chain of Locks. (Hydruntic Engincering.) A succession of lock-chambers, the lower pair of gates of each of which (except the lowest) forms the ${ }^{1} 1$ per pair of gates for the chamber below. See Casal-lock.

Chain-pin. (Surreying.) The wire pin, having a loop at one end am pointed at the other, employed by surveyors for marking the termination of cach chain in measuring distances.

Chain-plate. (Shiphuilding.) One of the plates of iron bolted below the channcls, and serving for the attachment of the deadeyes to which the shrouds and back-stays are secured.

Chain-pul'ley. One having poockets or depressions in its periphery, in which lie the links, or altermate links, of a chain which passes over it and gives motion thereto, or conversely:

Chain-pump. One form of the chain-pump consists of an endless chain passing aronnd a wheel above and descending into the water below.

Fig. 122\%

Chain-Pul?ey.

In its upward course it passes through a vertical tube whose lower end is sulmerged, and at whase upler end the water is elischarged. Along the chain are romed disks or buttons, which tit in the bore of the tube, and form pistons which elevate the water as the chain ascends in the tube. The cellular pumps are ol this kind, and when packed pistons are used, they are termed pulcrooster panns, from the resemblance of the chain and buttons to the rasary.
The chain-pump, is a common irrigating-levice in chaua. The barrel is turned ly men by means of a treadmill, or by a buffalo, which rotates a large hori-

CTruese Chain-Pirmp.
zontal wheel comected ly cogs with the axis of the roller over which the chain runs. The chute is inclined, and the buckets are square boarls attached at intervals along the ehain. Small machines are turned by hand in the mamner of a grindstone, a plan so familiar in our ordinary chain-jumps.
The chain-pump is sometimes called the Spronish aroriu, but improper1y. The Sppanish xorice has a pair of chains or ropes between which buckets or pots are secured, dipping water at the bottom and discharging at the top. They have no pintons or ascension-tulx, but are like one very common form of the noria of Palestine. The rope of the latter, howerer, owing to the poverty of the people, is made of withes of myrtle branches.

The familiar domestic claain-punp (a, Fig. 1230) acts ly continuons rotation of a crauk. The disks on the elain
stream. In practice, these disks are like buttons, and form links in the chain, which is gabsanized to prevent rusting. The tubing is mate of some light

Fig. 1230.

CInin-Pumps.
wood and in two longitnelinal pieces, the hollow heing cut half in each piece, and the sections nailed or hound together.
The axis of one wheel is supported on the curb, and the other an a post in the botton of the welt, or on a scantling lowered from above.
The chain-pmnjp b was first used in the British nary on loard the "Flora," in 1787. As now used in the English navy, it is formed of a long clain which earios disks at intervals, and passes over sprocket-wheeds ahove and helow; the chain passes down a tube callal the lack-easing, lipis into the limber where the bilge-water collects, and up through another tube at whose summit is a cinterm. The upper sprocket is turned ly a crank, and the tube is made of wood lined with hrass. The links are of iron, and each piston consists of two cirmarar bass plates inclosing disks of leather. The upper delivery is into a pump-dale, which conducts the water orer the side of the ship.

The chain-mumps (chupelets) used by the arehitect Perronet, to drain the cofter-tams of his lridges at Orleans and elsewhere, were worked by mamal, horse, and water power, and are described in Cresy's Encyclopedia of (ivil Engineering. The lucketwheel he nsed at the Invige of Nenilly is deseribed under Nolia.
The tule of the hamd-worked chapelet e was vertimal, 12 to 18 fiet in length, 6 inches in dimmeter: Four men womed the winches, aml were reliewd very two hours. They male from twenty to thirty turus in a mimute, aecording to the depth; 500 enlic feet of water were raised per hour, 41 feet of | the chain being wound round at each revolution.

Another of Perronet's chain-pumps (d), used at the brilge of Orleans, was worked by horse-power, twelve at a time being employed, and making 140

turns per hour. The pallets acted as buckets, and passed at the rate of 9,660 per honr.
The sume master-wheel drove tiro separate chapelets, mith the porrer abore stated; the duty referred to being accomplished by each.
c is a section, and f an eleration, of another of Perronet's chapelets driven by a water-wheel.
Chains. (Nautical.) lron bars bolted to the sides of the ressel and holding the dead-cyes, to which the lower ends of the shrouds are connected.

Top-chrins are sling-chains for the lower yards.
Chain-saw. 1. (Surgery.) it saw whose teeth are jointed links, used in making sections in deep-

Chain-sisu Carrier seated places by passing the saw around the bone and then back again, so as to gire command of both ends to the operator, who draws the ends back and forth.
2. One form of hand-saw or scroll-saw is also made of separate teeth pivoted or hooked torether.

Chain-saw Car'rier. (Surgery.) A hinger and hooked instrument whereby the end of the chain-saw, or a ligature, by which the saw may be drawn, is passed beneath a deep-seated bone, and so far up on the other sile as to be grasped by a forceps.

Chain-shot. A shot formed of two hemispheres or spheres connected by a chain. Inrented ly Admiral DeWitt, 1660°. Formerly much employed for carrying away rigging in naral actions. They were sometimes fired from a camon with two slightly direrging barrels, united at the breech, forming a single chamber, and discharged through a single rent.
Chain-stitch. 1. An ornamental stitch resembling a chain.
2. (In sewing-machines.) A loop-stitch in contradistinction to a lock-stiteh. It consists in looping the upper thread into itself, on the under side of the goods; or using a second thread to engrge the loop of the upper thread.

The double-chuin stitrh of the Grover and Bakrr machine is made by a lower thread which engages two loops of the upper thread.

One form of the Wilcox and Gibbs machine makes a donble-loop engagement with but a single thread. See Stitcin.

Chain-stop'per. (Vautical.) A clamp or compressor to keep a cable from reering away too fast, or to lock it.

Chain-tim'ber. 1. A timber of large dimensions placed in the middle of the hight of a story, for imparting strength.
2. A bond timber in a wall.

Chain-tow'ing. A plan for canal-boat propulsion. A chain or wire rope, fire eighths of an inch in diameter, is laid on the hottom of the watercourse, but passes longitudinally orer the deek of the boat to be drawn. It there winds upon or around a wheel, or clip-drum, five feet in diameter, the resolutions of which draw the boat by a jull upon the chain, this being lifted at the bow and let down at the stern of the ressel as the latter progresses. The free movement of the chain is provided for by making the two ends of the boat quite low, sloping mearly to the water, while the center, where the drum is situated, is elevated to a considerable hight. The motire-power is supplied by a steam-engine moving its crank-shaft, connected with the axle of the drum by suitable spur-gearing.

The chain system is now in use on the Danube, on the Charleroi Canal, in Prlginm, the Bereland Canal, in Holland, and the Termengen Canal, connecting Ghent with the Schellt. It is about to be adopted on the Rhine, to facilitate the passage of Lingen Rapids, and on the E pper Elbe.

The chain-towing system was first thed in France in 1732 by Jarshal Saxe, in transporting war-material. One end of the rope was fastemed at a point in adrance, and the other passed round the drum of a lourse-windlass on board the lioat. When the fast end of the rope was reached, the loat was moored until the rope was adjusted for another pill. Searly a century after this - in 1820 - a mollification of the plan nas put in regular use on the Rhone. The boat carried a steam-capstan arranced to wind alternately two ropes. Two tenders were provided to accompany the boat. The capstan, winding one rope as in the former case, drew the hoat forward and at the same time unwound the other rope upon one of the steamers, which, moring in advance, fixed it for being wound in its tmm as soon as the end of the other was reached.

The grand points to be reached by this levice are to arail steam as a motor and sare the necessity of tow-paths. Modifications of the system have long been in use on our western rivers, and they are narigated successfully by a wire rope which passes orer a drum, and is payed out orer the stern, as just stated. See Towisg.

Chain-wales. (Shipbuilding.) One of the zoales
or thick planks bolted to the ship's sides and serving for the attachnent of the chains to which the shrouds are comected. Chanucl.

Chain-wheel. "fhe sprockets on the wheel are adapted to reccive the links of the chain successively.

Fig. 1233.

Chain-Wheel.
The power may be communicated by the wheel to the chain, or conversely. The former is shown in the familiar elain-pump, and the

Fig. 1234.

Chain-Wheel. latter in machines where the operation is inverted; the column of water pressing mon the buttons attached to the chain and cansing them to descend in the tube, thereby rotating the wheel.

De Vancanson's chinin-pulley was notched on its perimeter and worked in comection with a clain having toothed links.

Another form (b) is an openlinked chain acting in connection with a pit-wheed or sprocket-rhecl.

Fig. 1234 shows the application of a chain to driving several whecls in different directions.

Cluain-work. A style of textile febric consisting of it succession of loops, and including hosiery and tan-bour-work.

Chair. 1. A movable seat provided with a back and adapted for one person.

The names of clairs depend upon structure, milterial, and purpose : -

Barber's-chair.
Bath-clair.
Camp-chair.
Dentist's-chair.
Enema-chair.
Folding-ehair.
Invalid-chair.
Locomotion-chair.
Metallic-chair.
Nursery-chair.
Olstetrical-chair.
Office-chair.

Pew-chair. Photographic-chair. Raihway-chair. heclining-chair. Revolving-chair.
Rocking-chair.
Sedan-chair.
Sleeping-chair.
Surgeon's-chair.
Tailor's-chair.
Travelling-chair.
Wire-chair.

Several of which are considered umler their alphabetical heads.

The Egyptians were probably among the first people to make chairs. The miginality and taste of this grand nation were stupendons and glorions. On the tombs at Thebes, Alabastron, aml elsewhere, bat especially the former, are loumel chairs of almost all kinds which modern ingenuity has revived. Thrones, couches, sociables, folling, reclining, lazyback; leather-sieated, cane-sented, split-bottom, made of chony, inlaid with metals and irory, with carved backs, sides, and legs; with claw-feet and
foot-pads, and upholstered with gorgeous coverings resembling the rich stulf's of modern luxury.

Fig. 1235 shows how little in the way of luxury was left to be desired in the chair line. The back consisted of a firme, receding gradually and terminating at its summit in a graceful curve supported from without by perpendicular bars. Over the chair was phaced a handsome pillow of colored linen or wool, 1 ninted leather, or gold and silver tissue. The upper figure has an elaborately carved frame, the legs of which are formed of crossed swords, to which are tied captive figures of different nation. alities. The brutal mode of tying was conmon among this prople, as may be seen by looking at the drawings in Champollion, Roselline, Lepsins, and the "Description de l'Esypte." The original colors of the chair-frames are blue and gold and red and gold respectively; of the 1 p holstery, red and gold and blne and gold.
Du Chaillu describes the easychair of Obindji, a clicftain of the Ovenga River, in the Graboon country, Africa. The Orenga is the name given to the river Fermand Vas, above Goomli, and was Egyptian Fautenils (from the Tombs of Coomli, and was the Kings), Thebes, Africh, 1500 E C. traversed by the
"utreprising traveler Pan] 13. Du Chaillu, who walked in the land of the Gorillas a distance of 8,000

Fig 1:3j.

Obutje in his Eirsy-Chuir; Gaºon, Africa. A. D. 1873.
miles ; shot, stuffed, and brought home 2,000 birds, killed 1,000 quatrupeds, bringing home 80 skeletons and 200 stuffed skins. As an interesting item having no relevance to the subject ol chairs, it may be mentioned that he took over fourteen ounces of quinine in curing himself of fifty attacks of African fever.

The Egyptians were an Asiatic race, and it may be assumed, both from the probabilities of the case and from the frepuency of the squatting posture in their paintings and bas-reliefs, that the introduction of the chair came in the progress of refinement.

In Fig. 1237, a гергеsents a chair now in the museum of Leyden. The back and legs are of wood, the seat has a woolen frame and iuterlacing leathem thongs. The seat is only 13 inches high. In some, the interlaced material is corl. Beneath the feet are blucks or pads, probably to prevent noise in moving the chair on a marble thoor:
b is a stool made on the principle of our campstools. It is in the collection of Mr. Salt, and probably hat a leather or Ieopard-skin cover. The same collection has an ebony stool, inlaid with
Egyptian Chair and Stool. ivory. The cushion is of leather, and is ormamented Many other illustrations might be given, did room permit ; but we must be content with referring the realer to Wilkinson's "Customs of the Ancient Egyptians," and to the magnificent work on Egypt, on which the labor and enthusiasm of the French savans was so liberally bestowed early in the present century. A cojy is in the Congressional library in Washington, and other copies are probably to be seen in some of the libraries in the large cities. It is an inmense and voluminous work.

The elaborate chairs referred to are on plate $\$ 9$, Vul. 11. of the plates, "Description le l'Egypte."

In a tomb of the time of Thothmes MI., the Pharaoh of the Exodus, 1490 B. C., is a painting showing a couple of carpenters at work making

Egumtian Chair-Makers (from Thebes).
clairs. One of them is using a bow-drill to bare holes in the seat for the braces of the back-posts, and the other is engaged finishing a leg, scraping it with a plate or shapp instrument in a delicate manner, as the artist is careful to inforn us by showing three fingers of the man's hand in a raised position. The tenon on the upper end of the chair-leg is
clearly shown in the one he is holding, and also in the two against the wall and that leaning against the post. The artist has also introduced two alzes and a square. The blades of the adzes are lashed to the helve, as was usual with them. None of their axes, hatchets, or alzes hat eyes, but the blades were secmred by being partially inserted into the helve or stock, and fastened by pins or thongs, or both. In most cases the meta] was bronze ; in some it is shown to be iron or steel, being colored blue to indicate that metal, red representing bronze.
The Egyptian chairs and stools were from $10 \frac{3}{4}$ to
28 inches ligh, - quite a range, but probably some were intended for the children, others to be used with footstools.
A four-lerged stool, with a seat revolving on a bronze pivat, is jreserved in the lhritish Musemm. The chair is inlaid with ivory, and the scat is of ma-roon-colored leather.
"Cambyses, in consequence of the venality of the julge, slew and flayed Sisammes, and, cutting his skin into strips, stretched them across the seat of the throne whereon he was wont to sit when he heard canses. He then appointed Otanes, the son of sisamnes, to be judge in his father's room, and bade him never forget in what way his seat was cushioned." - Herodotus, T. 25.
"The lieroes of Homer sit at their banquets, and do not lie down. And this was the case at the feasts of Alexander the liing, as Dures says. For he once, when giving a feast to lis captains, to the number of 6,000 , marle them sit upon silrer chairs and couches, having covered them with purple covers. And Hegesander says that it was not the custom for any one to lie down at a banyuet, muless he hat slain a boar which had escajed beyond the line of nets." - Athexats.

The fashion of reclining at banquets came from Persia.

And what can for tired imbs conspare

 With the soft and yielding Thessalian chnir?"Critis, quoted by athenzus (A. D 220.)
Fig. 1239 shows the chair of that "every inel a king" who was "Defender of the Faith " 350 years ago, and "Head of the Church" about thirteen years afterward. He did not suit everyboly in either capacity. He was a better king than some better men have been.
2. (Pailway.) A foot-piece or baseplate for a railwayrail, by which it is secured to the sleeper or cross-tie. The edge-rail, as at first constructed, needed such a support to give it stalility ; the T-rail with a broad foot-flange may be spiked directly to the sleeper. See Pulwat-chair. 3. (Vehicle.) A kind of carriage. Originally a sedan ; now a small carriage for a single jerson, an invalid. A Buth-chair.

Chair-back Ma-chine'. These machines may be band or jig-saws, which cnt out the curred backpiece which is placed on the top of the pillars of the chair-back. Molding or rounding machines for chairbacks have a holder for the stuff, which is moved
against a rotary cutter of peculiar shape, the stuff traveling in a prescribed path, so as to receive the conformation desired.

Scraning, dressing, and polishing machines for chair-lacks are similar in their mode of presentation of the stuff, but differ in the character of the tool or appliance to which the work is presented.

Chair-bolt. A screw-bolt for fastening down rail-chairs to the sleepers.

Chair-mak'er's Saw. 1. Adiminutive form of the ordinary frame-pit saw, in which the blade is

Chair-Stuff Sawing-Machine.
strained by bucklesand wedges. The work is clamped to the bench while sawing.
2. A scroll-saw espuecially adapted for getting out chair-stutf, such as backs and legs which hatre curves which cannot be readily bent, or of stuff which cannot be readily bent to shape.

Chair-or'gan. (Music.) A choir-organ placed in a separate case in front of the great organ and at the back of the performer.

Chair-seat Bor'ing-ma-chine ${ }^{\prime}$. Machine for the systematic and rapid boring of the small vertical holes in a chair-seat frame, to be occupied by the strips of cane or rattan, or the larger holes for the pillars and spindles of the back.

Chair-seat Ma-chine'. These include the planing-machines, by which the wooden bottoms of chairs are rounded out. The depth of penetration is governed by side guides, which raise and lower the bed relatively to the revolving cutter, or the latter relatively to the bed which carries the chair-seat. Lenman's machines for holluwing chair-seats have a pattern seat over which a goveming ball is moved, determining the depth of penetration of the rotary cutter beneath, as it passes over the chair-seat stuff.

Machines are also constructed for cutting grooves in chair-seat frames for upholstering purposes, or to receive the chair-seat which is pressed into the frame.

Chair-spring. A spring underneath the hinged seat of a ehair, which gives it a certain resilience, and encourages a tilting or rocking motion.

Springs are sometmes placed beneath the front legrs to give a tilting motion.

Chair-web. A kind of saw. A scroll-saw.

Chaise. A rehicle with shafts and two high wheels, and a calash top. The body is supported by thorongh-braces, and the elasticity resides in the long shafts and the bed-supporting bars which extend upwardly and backwardly therefrom. It is said that Augustus hmperator contrived this mode of hanging a carriage-body, and so was the inventor of the chaise. It is all the spring yet known to several kinds of ltalian vehicles.
Chaise-cart. A light cart with springs, used in varions light employment, where goods and parcels are to be expeditionsly conveyed.
Chal'co-graph. An engraving on copper or brass.
Chal'ice. A cup. The drinking-vessel which holds the wine of the commumion service.
Chalk-line. A cord rubbed with chalk or similar material, used by artiticers for laving down straight lines on the material as a guide for a cutting instrument.
The Japanese nse a wooden cup with a sponge saturated with india-iuk, and having holes back and frout through which the line passes. At one end of

Fig. 1241

the line is a small awl, and this he sticks in the work at one end of the proposed line, then steps back and lets the line pay otl the ree], passing throngl the ink in the cup. He then snaps the line, and walks back reeling up the line.
Somewhat similar is our chalk-lineholder, in which the cord passes from the reel C, through the block of chalk H, and is automatically rewound by the spring in the barrel G and the train of gearing $E D$.

Chalk-line Reel. A spindle or barrel on which a chalk-line is woud. See Chalk-line.
Chal'lis. (Fubric.) An elegrant dress article of silk warp and worsted yarn; iutroduced in 1832. It is made on a principle similar to the Norwich crape; only thinner and softer, and having a pliable and clothy dress instead of a glossy surface.

Cham'ber. 1. The place where a charge of powder is lodged in a fire-arm, camon, mine. or blasthole. Howitzers and mortars have sub-caliber chambers.
2. (Hydraulic Enginecring.) The space between the gates of a camal-lock.
3. (Vchicles.) An indentation on the inner surface of an axle-hox, to hold grease.
4. Au apartment where sublimed oljects are depositel, as sulphur, lamp-black, arsenic, zinc-white, mercury, and other condensible fumes.
5. (I)ycing.) A form of apparatus for steaming printed eloths, to fix the colors. (See Steam-colons.) It is about 12×9 feet, and 9 feet high, the interior furnished with frames which run in and out upon rollers when the front door is open. The frames have cross-rods provided with tenter-hooks for suspending the clotlis.
6. (Fornding.) a. The portions of a mold which contain the exterior form, and which are closed over the core in casting hollow-ware.
b. An inclosed space, as the firc-chamber of a furnace.
7. A short piece of ordnance for making a noise at celebrations.
8. The part of a pump in which the bucket or plunger works.

Chamber-Closet.
9. A urinal for the bedroom.
Cham'ber-clos'et. A commode or nightchair for invalids and the infirm. The seat has a funnel which enters the urinal, and india-rubber packing prevents the escape of efthusia. See Earthcloset.

Cham'ber - gage (Ordarnce.) One used in rerifying the size of a howitzer or mortarchamber.
Cham-bray'. (Fabric.) A kind of gingham ; plain colors, linen finish, ladies' dress-goods.

Cham'fer. A

Cnampots
berel or slope conferred upon an edge which was originally rectangular.
a, chamfered hole to receive a screw-head.
b, a chamfered pin.
c, a chamfered rod, ready for welding into a link.
d, harness maker'schamfer-ing-tool.

Cham'fer
ing-bit. A bor-ing-tool with a conical cutter adapted to chamfer the edge of a hole to enable it to receive the head of a screw. See Bir
Cham'fer-ing-tool. (Suldller!.) A tool (d, Fig. 1243) for paring down the thickness of a leathern strap near the edge, making a chamler.

It is called thinming the edge, and is sometimes preliminary to sewing, and at other times to fitting the edge into its place in the harmess.

Cham'fret. 1. (Carpeutry.) A groove or furrow.
2. A bend produced by cutting off the edge of a right angle. Sce Chayper.

Cham'fret-ing. (Euilding.) The splay of a window, etc.

Cham'ois. (Shammy; chamois-leather.) The name indicates that this leather is made from the skin of the chamois (Rupicapra tragus), but the skins of sheep, goats, deer, calres, and the split hides of other animals, are used for the naking of this kind of leather ; the superior kinds of which are called chamois, and the inferior, urnsh-lcather.

The skins are unhaired in a lime-vat, and scraped on a bean in the ordinary way. The lime is re-
mored in a bath by lactic or acetic acid, and the skins are then fri=ed.

This process consists in rubbing the skins with pumice or the blunt end of a round knile, until the grain is removel, the skin softened, and reduced to an even thickness throughont.

The skins are then pressed to expel water, fulled by wooden hammers, spread, treated with oil, - fishoil being preferable, - rolled up and again fullet, to distribute the oil throughout the bundle. They are then taken out, nnfolded, dried, re-oiled, and again rolled and fulled. These processes are repeated till the effect is fully accomplishel, heat being appliesl during the latter portion, by means of suspending the skins in a store-room.

Superthous oil is remosed by a short steeping in a dilute alkaline lye; the skins are then wiung, dried, suppled by stretching, and poished by rolling.

Cham-pign'on - rail (Ancilroed Enginecriag.) One laving a counded upper sufface.

Chan'cel. That part of the choir, or eastern part of a church, between the altar or comanunion-table and the mil that incloses it.

Chan-de-lier'. A frame with hramches to hold candle-sockets. The worl now includes a fmome with gas branches, thongh the latter is technically a gasalier.

A chandelier in the palace of the Khalif of Cor* dora, A. D. 1100 , contained $1,08 \frac{1}{2}$ lamıs. Cordova was then the intellectual center of Europe, and the royal dwellings of Gemmany, Fiance, and England were like stables.
2. An obsolete term for a movable frame of fascines to corer a working party.

Change'a-ble Gage-truck. A means of at justing wheels to different gages of tracks, by making the wheels adjustable on the axles. The armange-

Fig. 124

Changenble Gage-Truck:
ment is shown in Fig. 1244; one wheel in section, the other in elevation. The two views below the truck are sections transversely of the axle. The wheels are cast with an elongated hub or sleeve b projecting inwards, in which there are two slots, and in the axle there are corresponding recesses which admit of the wheels being firmly fixell to the axle by means of V-shaped wedges or blocks $d d$. Two in-dia-rubber bands or rings $f f$, fitting tightly, are placed over the openings in the sleeve, thus holding the wedges in position ; and ther are farther secured by a split-pin with cursell ends, which is passed lengthwise throngh the sleeve and wedges, and expands at the inner end in an enlaryel opening. As an additional security, also, there is a set-screw g passing through the sleeve, which is made to press upon the split-pin, thus preventing the possibility of the latter ever being jerked or shaken out whilst
running. The gage is changed by merely removing the weelges, and then $\mathrm{p}^{\text {nassing the wagons over a }}$ converging or diverging track, as the case may be, and the usual time oecupied in elanging is from five to ten minutes for each car.

Change-pump. A pump introluced by the suecessors of Boulton and Watt in connection with the boilers of sea-going vessels, in order to keep a continual change in the body of water, removing the super-salted water and substituting sea water.

The change-pump has been superseded by the blow-ofl cock, which, being tumed at intervals, allows a portion of the super-salted water to escape overbard. Extemal condensation and fresh-water boiler-supply are now the mode.

Change-wheel. (1Fuchinery.) Chango-urhcels, laving varying numbers of cogs of the same pitch, are used to connect the main arbor of the lathe with the feecl-serew, so as to vary the relative rates of rotation and eonsequently the piteh of the serew to be cut.
The first application of change-velecels to a lathe is supposed to have been in a fusee-cntting lathe, deseribed in a work, 1741. The change-wheels are intermediate, and journaled in a bracket, whieh permits them to be bronght into engagement with the rotative and feed wheels mapectively. See Scame:cting Lathe; Exgine-lathe.
Chan'nel. 1. (Shipbreilding.) Chain-wale. A flat ledge of wood or iron projecting outward from the ship's side, for spreading the shronds or standing rigging at each side of the masts, and protecting the chain-plates. The chaunels are at the level of the deek beams.
2. (Tautical.) The rope track in a tackle-block.
3. (Boot-making.) The ent in the sole of a boot to hold the thread and allow the stitches to sink below the surface of the sole.
4. A long groove cut in a stone on a line where it is to be split.
5. (Mining.) An air conduit or pipe, to conduct air into a mine.
6. (Founeliny.) A trough to conduct melted metal to the pig-bed or mold.

Chan'nel-ing. (Architecturc.) Perpendicular chanurls, or cavities, cut along the shaft of a colum or pilaster.

Chan'nel-ing-ma-chine'. 1. (Boot-making.)

Sole Channeling-Machene.

One for cutting the chanuels in boot-soles, to allow the thread to bury itself in the leather and be protected from immediate wear. It consists of a knife, whieh makes an oblique cut in the sole, to a gaged depth and regulated as to distance from the suleedge by a guile.

In the example, the sole rests upon the roller B and its rdgeagainst the guicle; it is then Pressed
of the latter is

Channeling-Tool.

hide the sewing. Userl in making round work, such as rmning reins, whips; also in siuking groaves in shoe-soles, to hide the stitching. The cutter is adjustable on the shank, for penetration, and the guide at the end to gage the distance of the chamel from the edge of the leather.

Chan'nel-i'ron. 1. A form of angle-iron having a web with two flanges extending only on one side of the web.
2. (Building.) A brace or hook to support the guttering.

Chan'nel-wale. (Shipbuilling.) One of the strakes between the ports of the grn-deck and upper drek of large vessels.

Chant'er. (Music.) The tenor or treble pipe of a hagpipe.

Chant'late. (Building.) A projecting part of the roof-sheathing at the eave, to carry the drip clear of the wall.

Chap. A check of a vise. One of the jaues. Chop.
Chape. 1. The eatch or piece by which an ohject is attachel, - to a belt, for instance; as the piece of leather known specifically as the froy, to which a bayonet-seabbard is attaclied, and whieh slides on the belt ; or a piece used to fasten a buckle to a strap or other piece of leather.
2. A plate on the back of a huckle, or the bar of a bnckle, by which it is attached to a belt.
3. The look of a scabbard.
4. The plate at the point of a scabbard. The tip.

Chap'el-et. 1. (Hydraulic Engincering.) a. A irelging or water-raising machine, consisting of a chain provided with scoops or seuttles, or with pa]. lets traversing in a trough; the chain moving over rollers or wheels, of which the npper one is driven by power, and the lower one is vertically adjustable so as to regulate the position of the scoops or pallets, to bring them against the mud to be lifted, or to submerge them in the water to be raised. See Chatnlump; Dredging-machine.
b. A Freuch name for the chain-pump in which the cnshions or buttons which occur at intervals on the chain are comprared to the beads of the rosary. Hance also known as paternoster pumps.
2 . (Sicddlery.) A pair of straps with stirrups, joined at the middle and secured to the frame of the saddle.

Chap'let. (Architccture.) A small molding decorated with round or oblong beads or other similar forms.
Char'coal. Charcoal consists of wood burned with but little access of air. Billets of wood are bnilt into a heap, which is corered with carth or sand. The heap is fired at openings left near the bottom of the pile, and the gases escape at small openings ahove.

For making fine charcoal, such as that of willow, used in the manufacture of gunpowder, the wood is burned iu iron cylinders, or rather retorts, in which a process of destructive distillation removes the volatile hydrocarbons, pyroligneous acid, etc. By this more perfect means the process is accurately regulated.

Charcoal is used in the arts as -
A fuel. A polishing powiler.
A table on which pieces of metal are secured in position to be soldered by the blow-pipe.
A filtering material.
A defecator and clecolorizer of solutions and water.
An alisorbent of gases and aqueous vapors.
A non-condacting packing in ice-houses, safes, and refrizerators.
An ingredient in gunpowder and fire-works.
In the galvanic battery and the elcetric light.
Char'coal, An'i-mal. (Sugar-icfining.) Animal charcoal is prepared by calcining bones in closed ressels. These are either retorts, smilar to those in which coal is distilled for the production of illuminating gas, or they are earthenware pots piled up in kilus and fired. Charges of fifty pounds ol bones to a not will reruire, say, sirteen hours of tiring. The bones are then ground between fluted rollers, the dust remored, and the granulated material used for charging the filters of the sugar-refiner. The material is used for remoring color, feculencies, and fermenting ingredients from the syrup. See Boseblack Fursace.

Char'coal-cool'er. A wire crlinder in which animal charcoal is agitated and cooled, after rerivifring, while a current of air carries off the noxious gases.

Char'coal-fil'ter. A filter charged with ordinary or animal charcoal for domestic use, or with animal charcoal for use in the sugar-house or refinery.

The filter for the removal of feculent and other matters lield in suspension in the clarified cane-juice is a high cylindrical ressel charged with bone-black. Ulon the perforated bottom a filter-cloth is spreat, and upon this a layer of lione-black is tightly packed; over this the main body of animal charcoal C is $p^{1 i l e d}$ in loosely. Another cloth and a perforated plate
 the clarifying, mineral salts, and particles in a fermenting stage.

Char'coal-fur'nace. A furnace for producing charcoal ly the dry distillation of wool, and for the collection of the tar and pyroligneous acid resulting thereIroun.

The air nasses in between the bars of the grate, and is regulated as to
 quantity by a closely fitting asls-pit door. The wool is built in at the orenings a b, and the charcoal extracted at a. When sufficient heat has been obtainel, the access of air is wereuted, and the carboniza-

Charcoal-Furnace. tion proceeds, the rolatile matters passing off at the neck abore, to be collected and seprarated. The lower ligure shows the mode of building a charcoal-heap. A is the central post, B an earthen covering.
Char'coal-point. A pencil of carbon ${ }^{\text {rep }}$ pared for use in the electric-light apparatus.

Charge. 1. The body of ore, metal, fuel, or other matter introduced into a furnace at one time, for one leat, or one run, as the case may be.
The churge of a pudfling-furnace is about 500 pounds of pig-iron, and this forms 4 blooms.

The charge of a gas-retort is 220 pounds, introduced in two scoopfuls of 110 pounds each.

The charge of a tumbling-box is as many eastings
or other matters as it will conveniently contain and give room for mutual attrition.

The churye of an amalgamating pan is aceording to size. They vary from $4 \frac{1}{2}$ to 6 feet in diameter; some work off two tons in twenty-four hours, others a charge of 1,400 pounds in three or four hours.

And so on.
2. The amount required to furnish an implement or machine for a single operation ; as, -

The cherge of a gun. The sevviec-charge for smooth-boverl gams may be $\frac{1}{3}$ to $\frac{1}{4}$ the wei ht of the projectites. For hot-shot and ricochet tiring these charges are reduced, liitled guns, avoiding wimlage, relnire a smaller charge than smooth-bores. The service-charge of the Armstrong gun is one eighth the weight of the projectile.

In the navy three eharges are used: distant, full, andl reduced.

The weight of a gun ranges in smooth-bores from 500 to 700 times, and in rifled grus from 600 to 800 timses, the weight of the service-charge of powder.

The weight of the carriage (shiphoard) is about one fifth that of the gun. The weight of the spherical shot is about four times that of its service-charge ; and of cylindrical shot, eight times. The weight of the cast-iron sphere, in pommels, is equal to the cube of the lianeter, in inches, multipliad by 0.134 nearly. Weight of a steel sphere, in pounds, is equal to enbe of dianeter, in inches, multiplied by 0.148 nearly.

The explosive energy of gunpowder completely bumed is estimated at from 240,000 to 300,000 foot ponnds, per pound of powder. Owing to incomplete combustion, and other causes of loss, its energy commmicater! to cannon-shot is considered to be from 144,000 to 192,000 foot pounds, per pound.

The velocity is thus oblculated :-
"Divide the energy due to the powder by the weight of the shot; the guotient is a hight in feet which is to be multiplied hy 64.4 ; the spluare root of the product will be the initial velocity of the shot in fiet per second." - Rankine.

Fir. 1250

Gun-Charger.

Char'ger. 1. (Mining.) A spinal instrmment for charging horizontal blast-loles.
2. A device for dropping into the bore of a fowling-piee from a shot-belt or pouch a gaged quantity of shot. By foreing lown the planger the commmnication with the pouch is closed, and the charge is allowed to pass to the tube, which conducts it to the gun. The piston-head is adjustahle, to vary the capacity of the charge-chamber.

Char'i-ot. 1. An ancient twowheeled vehiele, drawn by horses attached to a pole, and used in state processions, in warfare, and for racing,
The Egyptian chariot was light, made prineipally of wood, and rested on an axle upon which the wheels were secured by linch-pins. In many eases, however, it would appear that the wheels were fixed to the axke, which turned with them. The fioor of the car was sometimes made of latticel thongs, to give it a certain amount of elasticity to the rider, Who always stood, unless he sat on the erfge, as the car haul no seat. The body was strengthened with leather and metallic bands. The pole was inserten] into the midulle of the axle, and rested in front npon saddles which bore upon the withers of the horses and were secured in place by collars and belly-bands.

The chariots had invariably two wheels, which were strengthened at the junctions of the fellies by bronze bands and bound with metallic tires. In some cases

Fig. 1251.

Egyptian Chariol (Irilkinson).
the fellies appear to have been made by bending a single strip around a former. The pole, aceording to Homer, was about $13 \frac{1}{2}$ feet long, and the yoke was attached to it by a strap and a pin, and nometimes was connected by a single trace to a part nearer to the chariot. No donble traces are noticenl.
The accompanying cut shows the war-chariot with all its rigging, boweases, ynivers, and maces. The arrangements are graceful, and the ornamentation is fiorid. Chariots represented on the ruins at Persepolis are the same in essential points of construction. The horses are hitched by a yoke to the carriage-pole, the saddles resting on the withers, as before statel in regard to the Egyptian mode.

Fig. 1252.

A four - wheeled
 hearse ocuurs on
several of the tomb-paintings in Egypt. See Heabse.
Fig. 1253, from Wilkiuson, represents an aucient Scythian car actually found in Egypt and preserved in the Florentine Nluseum. It is believed to have

heen taken as a spoil from Scythia by the Egyptian conqueror.

War-clariots do not appear in any Egyptian mununents prior to the eighternth dynasty.
The price of an Egyptian chariot in the time of Solomon was 600 shekels of silver, about $\$ 300$; an immense price, ennsideriug the then value of moncy.
The first horses and chariots are representel at Eileithyias at the time of Anes or Anosis, about

1510 Br c. They do not appear to have been useal in Egyt during the time of the Osirtasens.

Herolotus sars that "the (ireeks learnt from the libyans to voke lour horses to a chariot" (15. lisi). It is, howerer, mentionel by Jlomer (Ifigal, viii. 185 ; Ollyssery, xiii. S1).

In the Assyrian chariof a spare horse was sometimes attached be a single inside trace to the chariot. The Lydians, it is sail, hatl sometimes several poles to their chariots and homes betwern each. This resembles the mudurn shafts. The orisin of shats, howerer, must be looked for in another direction. lu the primitive form, slatto consisted of a pair of poles attached by girth amil hreast-hand to the sides of a horse and dragring behind. The toad was lail unon the rear end. Thus the North American lndiatas move their lodges.
lat the trimuphal procession of Ptolemy Philaten[1)us were :

24 chariots drawn by 4 elephants each.
60 charints dman ly - goats each.
12 chariots drawn liy anteloper.
7 chariots drawn by oryxes.
15 chamets drawn by buttatoes.
8 chariots drawn liy 2 ustriches each.

- clanints drawn by glus.

4 chariats drawn by 2 zelnas each.
4 chariots drawn by 4 zebras each.
On all these animals rote hoys wearing wideawake hats (pelasi).

The chariot of the Greeks aml Fomans had two

Roman Chariot. wheels, and hat one fole usually, although some of the Lytian chariots hat two or even three proles.

The horly hand an elevated forward portion, answering to our dush-bourd, and called the centifx. The annexpd cut a is from an ancient charot preserved in the Vaticin. The body was sommtimes of liglat openwork. or even of wicker.

The pole was the sole means of draft, and was mortiserl into the axhe. Two horses were always usell. If more were adderd, eath was attached by a trace on the sile towarls the pole-horses. The yoke was attached hy a pin to the pole, and rested just in front of the withers of the horses. They pullod hy the yoke, which was secured by beast-bands and sucingles to the animals. See Hansess.

This mode of drawing was miversal. The lateral horse hat a collar, from whence the trace passed to the rim of the car.

One exception, perhaps, most hre made. It is nossible that the Roman cisium, a kind of gig, had shafts, and was drawn by one home.

The axle was usually of oak, lut sometimes of ilpx, ash, or elm. The boty was secured thereto, and to the prole, which was mortised into the axle and liraced or strengthened by irons. The spindles or arms of the axle were of wood : no stecins, so far as we are informed.

The wheels revolverd on, not with, the axles, and were secured hy linch-pins. They consisted of mate, spokes, fellies, and tire, all usually of wonl. We: real of bronze tires, but they were exceptional. The fellies were inntr.

The ancient Britoms were relehatem for their skill and prowes in chariotwarlare. Their eharots were open in front insteal of hehind; the poles were wile, and the chariotere man out upon the pole and discharged his javelin (cuti in), even standing mpon the poke, and then retwatiser to the car.

The skill of the ancient britons in thariot-driving filled Julius Cusar with astonishment. See Caf:-

thariot-wheels of bronze are preserved in the Berlin Musenm, and one of woul of ancient Egypt is in the Ablont Collection, ŇいW Fork Histerical sincirty.
2. The umbern charot is a stately four-wheded pheasire-ralaiage having one seat.

Chari-o-tee'. A four-whented $1^{\text {theasure-carriage }}$ having two spats covered by a calash-top".

Char-kan'a (Fulmic.) A checked Dueca muslin.
Char-ov'en. A furnave for carbonizing turf.
Char'ring-chis'el. A liroad nigging-chisel, used in charring on hewing stone.

Chart. 1. A pepresentation of a prortion of the earth's surface projected on a $\mathrm{i}^{\prime l}$ ane. The term is commonly restricted to those intended for navigators nse. on which murely the outlines of coasts, islands, etc., are represented.
2. A sheet exhiliting a statement of facts in tabular form, so arranged that any particular may be malily relemed to.

Ilipharchus, of Alexandria ($160-195$ в. c.), reducet grography to a scipluce, detemining the latitnde and longitude of places by celestial observations.

The geograplyy of Ptolemy was translated into Aralic by the command of the lihalif 11 Maimoun, between s 13 and 833 A . D .
('latsts were introluced into the narine service by Itenry, son of Johm l. of Portugal, abont A. U. 1400 ; honght to England by Bartholowew Colon in 1459.

Mereator's elart is a projection of the surface of the earth in the plane, with the meridians parallel to eacls other, the degrees of !ongitude all mqual, and the degrees of latitule increasing in a corresponding ratio towards the poles. It was introduced by Cerald Mercator in 1556.
The jrinciple of its constmetion hat, howeser, been previously explained by Elwarl Wright.
The first computation of longituele from the meridian of Greenwich Ohservatory was in 1679 .
The first magmetic: chart was constructed hy Dr. llalley, in 1701. It was limited to the Atlantic and lindian Oceans.

Char-tom'e-ter. In instrument for measuring mans and charts.
Chase. 1. (Printing.) A rectangular iron frame (a, Fig. 1255) which reseives the matter from a galle?, and in which it is arranged in columns or pages, and lucked up in order for printing. Rules (if necessary) and furniture for spacing the pages are placed between the pages, and all locked firmly in the chese by wedges cec, called quoins.
The furailure, ob b, consists of slips of woud or metal, half an inch in thickness, and of any required length.
Those at the head, font, and side are called hecul-stiches, fortstieks, sift-sticks. Those between Fig. 12:5

the pages are ealled gutlers.
Gutenherg used screws to lock up his form in the chase. Quoins came later.
2. (Ordurtnce.) a. The portion of a gun forward of the trientions to the swell of the muzzle. In nodern guns, the sucll is suplressed, and the chase extends to the muz=le.
6. A chuse-gun is one monnted at the bow to fire at a vessel being chased. It is fired from a chuseport.
3. (Masonry.) A groove eut in the face of a wall.
4. (Shipbuilding.) A kind of joint by which an overlap-joint grimbally bevomes a flush-joint, as at the hooding-end of clinker-buill boats. A gradually deeprening tabbet is taken ont of each edge at the lands, so that the projection ol earh strake beyond the next below it grandually diminishes, and they lit tlush with each other into the rabbets of the stem and steru post.
5. A groove, trench, or passage of a given width and depel to fit an object which traverses or fits therein; as, -
The cluese or curvel water-way, or brenst in which a brectst-whed or sroop-whecl, rotates. The sides of the chuse fit as nearly as possible to the wheel, to prevent waste of water.

The trench mate by spades or machines for the reception of drain-tile.

Chas'er. 1. (Ifachinery.) A tool for cutting threals in the hand-lathe; sometimes called a comlr, from its having a row of projecting teeth ($c \in$ c, Fig. 1256).

It is made of steel, amd the teeth filed by hand or by a cutting lub. It is first lorged in blank in the form of a for au outside ehaser, or in the form of g

Fig 1256.

for an inside chaser. The teeth are then filed or made by a tub (which see). The latter is a ster] mandrel rotated on the centers of a lathe and having a section of serew-thread cut upon it. The thread is notcled in places, so as to make cutting ellges.

By holding the edge of the chaser-blank against the heb the teeth are cut in the former, anil it is ready for temprering. It may then he used in eutting or finishing screw-threals on a boit or rol, or in a socket or compling, as the case nay be, or may be
used in making a hub on a mandrel of softencd steel turned down to the right size and shape.

The chaser is dispensed with in power-lathes, which are proviled with trains of cons for rarying bitel, and with automatic leed, the work being rotated slowly, the elaser supported in a rest, and sliding therewith at a rate detemminal by the pitch of the feed-screw and the rate of rotation of the work.

In the chasing-engime (Fig. 1256), the cutter α is made as a ring of stcel, which is screwed internally to the dianetre of the bolt l which is to be threaded, and turned externally with an under-cut groove, for the small serww n and mit o, by which it is ludd in an iron stock s formed of a correspunding sweep; for listinctness, the catter k and serew are also shown letached. The center ol curvature of the tool is placed a little below the center of the lathe, to give the angle of separation or penetration. After the tool has been gromal away, in the act of being sharpeued, it is raised upuntil its points touch a strught edge applied on the line $m m$ of the stock. This denotes the proper hight of center, and also the angle to which the tool is intended to be looked, namely, 10°. Each ring makes four or tive cutters, and one stock may be used for several diameters of thread.
In Shanks's arrangement for cutting serews in a lathe, a front and a back chaser are cmployed, so that one may cut while the slide traverses in one direction, and the other during the return-movement. prepresents the front and t the back tool, which are monnted on one slide $c c$, and all tluee are moved as one piece by the hamile x. In the first adjustment, the wedge u is thmst to the botton of the correspontling angular notch in the slide c, and the two tools are placed i_{n} contact with the eylinder to be threaded. For the tirst ent, the werlgre w is slightly withdrawn, to allow the tool p to be alvanced toward the work; and for the return-stroke, the welge is again shifted muler the observation of its divisions, and the slide c is lyrought forward towards the workman, up to the wedge; this relieves the tool p and projects t, which is then in adjustment for the second cnt ; and so on alternately. Tle command of the two tools is accurately given by the weige, which is moved a small quantity by its screw and micrometer, between every alternation of the gair of tools, by the screw y operated by the hamdle x.

Punches or gravers are used for embossing or engraving the surfaces of netal, the design being in low relief or cut in intaglio. See also ExcuAsivg.
ln the embossing by pmonehes, the olject is filled with lead or pitch, and laid on a sibul-lage a, or in a pitch-bloch, while the chasing-tool b is hehl vertically and driven by a hammer. Sompe portions of the metal are thus driven inward, while those around rise uj) from the displacement and reaction of the pitch.

The chasing-tools are of various kiuds, with flat, rounited faces and curved edges, so as to follow a patterm. Other tools have faces ormamented with designs in cameo or intaglio, which are confermed mon the metal hy the action of the punch and hammer.

Chasing by the graver may he merely engraving in lines, but is usually in the form of relief; parts of the metal being cut away, leaving protuberant portions of orwate form, and which are farther beantified by graver-lines, frosting, milling, etc. The sund-bag supports the work while being rhasell ly the graver.

The art of chasing was much particed anong the Grecks. Two celebrated examples of chasiug in iron are: -

The iron base of the vase nate by Glancus of Chios, and delicated to the Delphic oracle by Alyattes, king of Lydia. This had small figures of animals, insects, and plants.

The iron helmut of Alexander, the work of Theophilus

The principal chasing of antiquity was unon weapons, armor, shichls, chariots, tripods, quoits, candelabra, chairs, throues, mirrors, goblets, dishes.

The art arrived at great perfection in Etruria.

> "But none the golden bowl can chase, Or give to brass such raried grace, As that reuowned, hardy race
> That dwells by Arno"s tide."

CRITIAs, quoted by Atheneus (A. D. 220).
2. (Matallurgy.) One of the edge-wheels which revolves in a trough, to grind substuces to powder. (See Cullac mble; Mohtahemile; Ole-mile.) Ahoo used in grinding ore for juddlins-furnaces, etc.

Chas'ing-ohis'el. A punch used in unchasing. The mallet hy which it is driven is the chasing-hemmer, and the operation is performed on a slukic. See Chasel.

Chas'ing-ham'mer. The mallet of the chaser in the operation of enchasing by embossing by punches. (See a b, Fig. 1256.)

Chas'ing-lathe. A serew-cutting lathe. So called from the name of the tool wherewith screws were ent by hand in the old form of lathe, before the slide-rest and feed-serew were invented.

In the illustration, which shows Sellers's improred

Chasse'pot-gun. The breech-loading, center-fire needle-gun of the French service. It was designed as an improvement on the l'russian meedle-gun, or zundnadelycuechr, to which it was opposed in the

Fig 1258.

Chassepot Rife.
Franco-Prussian war of 1871 , and derives its name from the inventor. A paper cartridge is employed in the sun as originally constructed in $180 \mathbf{T}$, but in 1869 M . Chassepot patented an inproved arrangement, embracing a cartridge-retractor for use with a central-fire metallic eartridge; the construction of the gum is, howerer, essentially the same.

An oprening on the right of the chamber A permits the insertion of the cartridge, which is effected hy resting the butt ol the gun, held in the left hand, against the left hip, turning the lever c from right to keft and drawing it hack, thes retracting the hollow eylinder or hreech-block B; the eartriege is phaced in the ojuming thus made, and is pushed bome to its seat liy a forward movement of the lever, which is then turned back to its original prosition, locking the brecch-block in place. The shaft C, contained within the cylineler B, earries the needle e, and is drawn back by means of the knob D, compressing the spring which surrounds the shaft, mintil a detent thereon engiges with the tumbler of the lock, holding the latter in eocked position. Pressure on the trigger allows the spring to act, driving the
fomn of lathe for bmss work, a is the live-heat, which is hack-geared. The spindle c, for holding the chas-ing-hobs, is so arranged as to accommodate two different fitchles at the same time or to cut with a single prointed tool either single, double, triple, or quadruple the cads. The slide-rest d for the chaser is camied by a bar c at the back of the lathe; the counter-weight to chasing-bar presses either to or from the face-plate f; a poppet-head with square spindle and detachable serew for quick motion can be adjusted to any taper when used to carry turning-tools, and is provided with slide-rest novement. b is the hand-tool rest.

Chas'ing-tools. Those used by the chaser in the operation of embossing by punches. The work is laid on a chasing stake or cushion, and the pumeh strack by hammerormallet. (Seeab, Fig. 1256.)

Chassis.

CHECK-HOOK.

a barbette or censmate grm is rum in and out of hattery. The chassis is capmble of a certain amome of latiral sweep, called triverse, so as to aljust the ghn horizontally in pointing. This is fregucntly by oscillating in an are, a fintle in front of the chassis being the center of oscillation. (See GuN-Carbitage.) In thes example, the gnn-rariage is moved on the chassis ly a system of gears opmated by a crank; a lateral fiction-tompresor within the principal spurwhe 1 being employed to partially resist the recoil of the carriage. A windlass, operating on a toothel har of rack attachell to the chassis, controls the traversing or directing movement.

Chat'e-laine. I lady's waist ormament, with suspumblul harms, keys, ete.

Chat-roll'er. (J/ining.) An ore crushing mat chine, consisting of a pair of cast-iron tollers, for grimeng roasted ore.

Chats. (Nining.) The central prortion or stratum of a mass of ore in the process of washing.

Chat'ty. A prons rarthen water-pot, usel in India in refrigerating.

Chauf'fer. A sonall table-furnace. It may be of iron or of a hack-lead irucible, litted with ait-holes ami a grate.

Che-bec'. (Nineticul.) A kinel of vessel employed in the Newfondand hisheries. Nand from Chebacco (now Essex), a town in Massachusetts. Also callevia piak-stera.

Check. 1. (Fubric.) A pattom proluced by crossing stripes in the warp and the welt. The stripes may be of varying colors, of varying thickness, or both.
2. An East-Indian screen or sun-shade made of narrow strips of hamhon, four to six feet long, with connecting cords, and hung before doors or windows of aparthents.
3. A cand, plate, or tag in duplicate, used to idenlify artilles plated promiscuonsly with others. see Bageacercheck.
4. (Musiu.) A pailm post on the back end of a piano-forte key, used to "ateh the head of the hannnere in its deseent and prevent whomang, which might eanse it again to strike the strint. It is a feature of the greand uction.

Check-bar. (Music.) A bar which limits the hackward play of the jacks. See Pusumanemfst:

Check-bridge. (Stern Enginc.) The fire-hrilge of a steam-hoiker furmace; so called as it was supposed to check the too great frectom of daft which was carrying otl the heat.

Check'er-ing-file. A compomul file, consisting of two files riveted together, and whose culges project unerually, so that one acts as a specer in chackworking the sinull of gum-stocks, itc. Sie Dotizle Fine.

Check'ers. A game flayed with pieces of two colons on a board of sixty four squares, whose altermating colons have given the mame of a checkerboard. Also called inaughts.

Liamesies 111 ., the grat Scsostris of Herodotus, is represented, in his palaue at Melinet Aboo and in a number of instances, phaing at draghts; sencrally: with one of the ladies of his harem. The still olden tombs of Beni llassan (say ahout 2000 rs. c.) have sinular representations. The nature of the moves cannot be well hetermined ; the pieces of the respective ghayers are diversoly woloted. They took each other, For in one figure of Raneses he has a hambul of cap)tives from the homed. His lady is ervinutly losing, and is playtully holding a flower to his mose to divert his attentim. They are both moving thair pieces at once, however.

The pleces were of ivny, bone, or wool, and of the
stme general form ; but some had hmman heads differing for' the respective sides of the board. The largest pieeces are abont $1 \frac{1}{6}$ inches high and $1 \frac{1}{8}$ in diancter.

The eheckers of the Greeks and Lomans was a gane phayd with pieces, the sets laing of differrut colors and sometime's assuming fanciful shapers. They

brandits of Sematris (Thiber).
Were sometimes poblides (colculi), nsed as comenters om the ahacus, ant were called ly the withets " thic ves," " marauders" (lutrunculi), " soldiess" (civitis), "fors" (hosles), pti.., indiuating that the game represcated a miniature combat.
There are indirations among the Roman writers, that, in one form of the game, some of the men moved in a certain divection (mrliumria), while othars had more liberty of movernent and were termal veryi. This resmbies chers. A man inclosed brotween two others was in decel (ulligeths) and was tak'm from the hoarl.
The aburens, in which it was played, was markem with lines or divided into spares. There were, no doubt, several mondifiations of the game. (Siee Abaces.) Sometinus the moves were determined by dice (fesseret), like our hackgammon and tric-trac. Soe Duer.

Check-hook. 1. A device in losisting and lowering appuatme, liesigned to stop, the motion of thus where ower which the roper rums, if the machinery luecomes mmanagrahle. On the pulley are hooks which tly out by the centrifugal forer when the speed beromess excessive, and mgage storihins which arrest the rotation of the pulley and the descent of the cage.
2. (Suctllery.) A hook ons a gigsadille for the attachment of a bearing-

Fig. 1 1s61.
 rein.

Chech-Hook.

Check－line．（Soudtlery．）Theline which branches off from the principal rein．See CuEn－RERS．

Check－lock．I lock so applied to the door as to check or hold the bolts．The bolts of the check－ lock to not themselves hold the door，but are the means of detaining the bolts which do．

Check－nut．I secondary nut，serewing down upon the former to secmre it．A jom－hut，lock－aut， or pinching－nut．

Check－rein．（Sadllery．）The hranch rein which connects the driving－rein of one horse to the bit of the other．In donlije liues，the left rein passes to the near side bit－ring of the neat holse，and a cluck－line proceeds from the saill lit rein to the near bit－ring of the off horse．The night driving－rein passes directly to the off bit－ring of the off horse，aut has a rheck－rein Which connects with the off bit－ring of the mear horse．

The lorses of the Egyptian chariots had check－ reins．

Check－rein Hook．See Check－Honis．
Check－string．A cord hy which the oceupant of a carriage simmals the chiver．

Check－valve．A valre placed betwern the feed－ pipe and the boilm，to prevent the return of the feed－water．Sce Alativ Check－vabe；Back－ hafsiche V゙hlre．

Cheek．One of the corresponding side－plates or parts of a frame or machiue ；more frequently used in the plural，as－

1．The side－pieces of a gun－carriage on which the trunuions immeriately rest；also called brackets．

2．The shears or bel－lars of a lathe on which the puppets rest．

3．The projections on the side of a mast on which the trastic－frues rest．

4．The side－pieces of a window－frame．
5．The solid part of a timber ou the side of the mortise．

6．（Founding．）The midule part of a thres－part flask．

7．The branches of a bridle－bit．

8．The standards or supports，arranged in pairs，of such machines as the Stanlope or copper－plate priut－ ing－1ress，the rolling－mill，and many varieties of presses．

9．The sides of an embrasure．
10．The jaws of a rise．
11．The sides of a pillow－block which hold the boxing．

12．The miter－sill of a lack－mate．
Cheek－block．（Nituticitl．）A block，one side of which is formed by a cheek－piece secured to an objeet which forms the other sile，as in the cheek－ hooks near the ends ol the yards for the sheets of the sumare saits．See Bomm－mos．

Cheek－straps．（Sieddlro！！）Straps passing down each side of the horse＇s head and connected to the bit－rings．

Cheese．Milk－curd pressed into a shane and ri－ pened．

Hipporrates（ $460 \mathrm{~B} . \mathrm{C}_{\text {．}}$ ）states that the mode of preparing this food from milk was discovered hy the Scythians at a very early date．There can be little douht that it was a common article of food among the pastoral nations of Uz，Camaan and Asin Dinor， as well as among the Scyllisus．The Egyptians， also，had immense herds of kine，goats，and sheep， and the curds of milk，soured naturally or artificially， must have been used．Curds are pressed to remove the buttermilk，and then heconse cheese．The ri－ pening of cheese develops ats flavor．Virgil describes cheese as the commou thod of the loman shepherds．

Strabo records a difficulty experienced in former times by the Iberians in the vicinity of Gades（Ca－
（liz）：＂The excellpuce of the pasturage is such that the milk of the cattle there led does not yield any whey，and they are obliged to mix it with large quantities of water on account of its richmess．Af－ ter fifty diys pasturing，it is necessary to bleed the cows to keep them from choking．The plasturage is dry，but it fattens wonderfully．＂So it would ap－ 1 ear．

Cheese is mentioned three times in the Old Testa－ ment sicriptures，but rach time under a diflerent Hebrew name．It was some coagulated and hard－ ened production of milk．Burckhardt describes it as coagulated and dried hutternilk，grouud，and eaten by the Arahs with butter．

Among a pastoral people great are the uses of milk．Cheree foms a staple article of diet to mil－ lious who know but little of agriculture．Jesse sent ten cleeeses by the hands of Darid to the captain of the thousand in which the becthren of the latter served（1 samuel xrii．1s）：and＂cheese of kine＂ were brought to David at Dlahnaim（2 Eamuel xrii． $29), 1023 \mathrm{~B} . \mathrm{c}$ ．Job complains，in his anguish，of his distemper：＂Hast thou not poured we out like milk and curdled me like cheese！＂

Cheese－cut＇ter．A device for breaking the curd iuto small pieces，that the whey may more readily exnde．

Cheese－hoop．An open－ended cylinder，usually of wood，in which curds are pressed，to expel the whey and acynire a form．

Cheese－knife．$\quad 1$ large spatula，used in daries to hreak down the curd．

Cheese－press．

The cheese－press （ A ，Fig．1262）is constructed of iron．The hoop coutaining the curd is placed on the hattom－plate A ，and the upper plate B is made to descemal upan it．There are two waysof doing this； one quich and ensy，until the re－ sistance become＇s great，and the other slower and more pawerful， and used for the conclusion of the operation．
On the axis C of the wheel D there is a jinion of eight teeth， which works in the rack R ．On the axis E there is another pinion of eight teeth， whichacts in the Whect D of twen－ ty－four teeth． This axis E may be turned by the crank－handle $I I$ ， three turns of which will make the rack deseend through a space equal to eight of

its teeth. In this way, the plate B may be lowered to tonch the cherss, and to commence the pressure ; but when the pressure beromes considerable, the sccomd methorl of actiur uron the rack is resorted to. On the axis E, besides the pinion bufore mentioned, there is a fixed ratchet-whed F; the lever I, which embaners F, is also phaced on this axis, but turns frecly ronnd it. A pawl or click, tuming on a pin, may be mate to engage in the notches of the ratchet-whel F. By means of this arangement, when I is raisul un, and the click engaged in F, the wis E and its phinion will be turned dound with great power on depressing the enel I of the lever; and by alternately raising and depressing I, any degrer of pressure refuired may he given to the checse. The weight If may lee suspended to continne the pressure.

The Puctunatic Checse-press B, shown in the lower part of the same figure, consists of a stand about three feet high, on the top of which is a metallic vessel a, forming a hump for the curd. This vessel has a lonse, corrugated bottom covered with wire-cloth. The bottom of the vessel communieates hy a lipe c with a receiver d, which is exhansted of air by means of an ait-pump b and pipe c.
The curd being salted and placed in a cloth in the vessel a, the pump is worked and the pressure of the atmosphere drives the whey down through the curd, and it collects in the receiver, from whance it is diselarged, as occasion inay require, ly means of the lipe and fancet f. The curd is then subjected to pressure in the usual manner.
Another form of press involves the use of the toggle, as the leveragi increases is the platen descends. The wight is suspended ly a chain which runs over the pulley on the end of the long arm of the toggle. A hand lever operates the screw for quick movements.
Cheese-shelf. Onc ronstructed for holding cherses during the process of ripening. Ingenuity has heen exercised in saving the time in turning the cherses singly day by day, hy inverting the whole shelf with its row of cheeses.
Cheese-turn'er. A shelf capable of being inverted, so as to turn over the cheesess laid upon it, a daily duty during the progress of the ripening of thu ehepse.
Cheese-vat. The necessity for 1 reserving a certain tumprature in chrese-vats has given rise to numurons devices, among which may be cited that illustrated at A in the accompanying ent. The vat A is semi-cylinilrical ami donble-walled, water buing contained botwen the shells. Under the vat is a limace D, for heating the water, the smoke from which escapes by the pipes C. The Ilegree of luat alluitted to the water is regulated by a sliding damper D. A coil of cireulating pipes is affixed to the outer shell of the vat, comneeting with the water space at center and ends of the vat, thons equalizing the luat in the water space. Spouts are attarlued for drawing olf the whey, the water from the water space, and discharging the curd. To aid in this,
one chd of the machine is set on eccentrics k : The wire frame cuts the curds into suall blocks, and swerpis it from the inner surface of the vat.
The vat used on the plains of the ro, where the lamesan cluese is made, is slown in the lower fighre. It is a copper calldron, slang from a crane over a conical fireplace, in which wood is burned. In this vat the milk is leenterd aml coagulated, anl without removing is broken by a stick having cross wires. The curd is then again heated, taken ont, dmined, salted, pressel, and in forty diass is moved to the cheese-loft.
lit Fig. 1265 the pan is hingel to the vat and rests upon

(\%ecse-Vots. pins within it ; the contents are warmed by a furnace beneath; the whey drawn ofl hy a strainer ; adjustable legs permit the inclination of the vat.

Fig. 1265.

Cheese-Vat.
Chek'mak. (Fabric.) A Turkish fabric of silk and cold thead mixed with cotton.

Chem'i-cal Ap'pa-ra'tus. The name chemistry indicates litcrally "Eayptian art," the art of the Hack land; for Plutarch knew that the Egyptians called theil' conntry X $q u \in i a$, from the black earth. The insuription on the liosetta stone has Chmi. See Still, Balance, Hydiometer, etc., in their syecifie al phabetical pliners.

Chem'i-cal Fur'nace. A small furnace for laboratory uses. See Stupes anir Heating Appliances.
Chem'i-cal Print'ing-tel'e-graph. An apparatus for printing symbols unon prepared paper by means of electro-chemical action; as, for instance, by an iron stylus on preper prepared with a solution of yellow cyanide of potassimm. In the example, the paper strip, just hefore passing under the recorl-ing-needle, is moistened by contact with a whel revolving in a reservoir of suitable liquid. See Elec-tro-chemhal Telegrapit. (Fig. 1266.)

Chem'ick-ing. (Blrathing.) The process of stepping gnools in a clilute solution of chloride of lime in stone vats, the liquor being continuonsly pumped upand straining through the goods until the

Chemica! Printing-Telegraph
action is complete. This precedes the souring which sets free the chlorine. See Buckivg; Kien.
Che-min' des Rondes. (Forlificutim.) A beam at the foot of the exterior slope, sometimes masked.
Che-mise'. 1. (Musonry.) A wall that lines the face of a bank. A brcast-zoall.
2. A French name for an under-garment ; from the Spanish camisa, a shirt; this from the Arabic homis, which is from the Sanscrit hschauma, linen. The garmeut, its name, and the cotton from which it is now made, were introduced into Eurole by the Symish Saracens.
Chem'i-type. (Engraving.) A somewhat general term which includes a number of relief processes by which a drawing or impression from an engraved phate is obtained in reliet, so as to be printed on au ordinary printing-press.
Cover a zinc plate with ground, and etch the design; bite in in ; remove the gromed; fill the lines with fusible metal, and scrape down to the zinc surface. Bite the plate with aqua-fortis, which will cut away the zinc and leave the fusible metal salient to he printell from by the ordinary press.
Che-nille'. A round fabric or trimming, made hy miting with two or more sets of warps, either by weaving or twisting, a fure filling or weft, which is allowed to project beyond the warps. This filling is cut at its outer enges, and the falmie is then twisted, assuming a cylindrical shape with weft projecting radially from the central line of warps.
Che-nille' Car'pet. The chenille carpet is soft and heautiful, but costly. In making it, the warpthrearls are stretched out horizontally, as in a common loom, and the weft is thrown in by a shattle: but this weft consists of cheville, instead of mere yarn, and when the weaving is completed, the loose, colored threads of the chenille are combed up and made to aplear at the surface, where they are cut and sheared to a state of velvetr softness. The pattem is dyed in the chenille itself, nothing appearing at the surface of the carpet except the ends of the chemille fringe.
Che-nille'-ma-chine'. In one form of French machine, the material is constantly reflexed upon itself, so that the article in the first instance presents a series of close loons, which must be cut, to give it a finish. Martin's machine, invented in 1851, produces in this way $2 \frac{1}{2}$ yards per minute.

In Canter's machine the silk is confined between two strands, which are twisted together in the act of manufacture, and a rotatury knife is let down as may be required, to cut the pile, or silk, worsted, or other material which forms the ornamental surface of the chenille ; or, by holding the knife aloft, to leave the pile uncut, to vary the effect.

Chep. A piece of timber forming the sole of a turn-urest plow.
Cher'ry. A spherical bur. Used especially in reaning ont the cavities of bullet-molds. See Bur.

Cher'ry-ston'er. A domestic implement which works by introducing a forked prong, which pushes the cheny-stone out of the pulp. In Fig. 1267, the cherries fall from the hopper B, and are thence pushed

in a gang by a plunger providet with a series of faces e, separated by plates and acting upon the cherries individually. Each stone is detained by a cruciform plate 0 , whose single post traverses a slot in the amular face of the plunger, which expels the flesly prortion.
ln Fig. 1268, the cherries pass from the hopper C down imclined chutes to the carities, where they are ennsecutively operated ujon by the lescending forked plangers i, which push the stone, through the elas-

Fig 1268.

Chemry-Stoner.
tie diaphragms g and retum with the impaled fruit, which is stripped from them by phate H, and falls into an inclined diselarging-trougly $G . A B$ is the clample which the cherry-stoner is attached to the table-leaf.

Chess. 1. A hoard-game which originated at an early date in India. The chuturasgu, or primeval Indian game, was played by four persons, and the piece to be moved was indicated by throwing dice.

This was the gane down to the sixth century A. D. From thence to the sixteenth century the midieval game (the shatranj) was praticed. In this two persons only played, and the element of clance was discarded.

Morem ehess extends from the sixteenth eentury to the present time, the change from the mealieval consisting in the increase of the power of bishops and thaen, and the introduction of eastling.

The Emperor Akbar ($15+3-160.1$), mmamed Jalal-ud-din, "'l'he Crlory of the l'aith," had a \cdot hess conrt in his palare at Futtehpore, nimeteen milers from Agra on the Ganges. He was the greatest and the wisest of the monarehs of Hindostan, and, like Alfred of the West saxoms, seems to have bren as versatile as he was giand. On the tesselated pavement of one of the court-yards of this splendid palace, the prince set his battle in array, with the mimic kinge, quenns, priests, and men-at-arms; his vizier and he marsmaling the forces, and ordering the moves of the living pieces. With pretty girls for pawns, and heardless beings of epicene genclel for priests and eavaliers, he probably came as mear enjoying hinself as any one can who las all he wants.
2. A flooring hoard of a military brisge. The chesses lie upon the bulhs, which are longitudinat timbers resting upon the butertes or ponturs. Chessex.

Ches'sel. The perforated woorlen moll or vat in which cheree is pressed. Chessect. Sur C'HESS.

Chess-tree. (I'rulical.) I piece of oak fastened on the top-side of the vessel, for securing the main-tack to, or hauling home the clne of the main-sail.

Chest-bellows. The piston hellows.
Chest-lock. A mortise lock, inserel vertically into the looly of a chest or loox, the plate, which freguently has two staples, being let into the under sitles of the lid. The bolt has a horizontal movement.

Chest-rope. (Fautical.) A long boat-rope, or warl.
Chest-saw. A species of hand-saw withont a bark.

Che-val'-de-frise. A bar trarersed by rows of pointed stakes, and nsed to harricade an approach or close a breath. Called a Frisshud horse hecause first used at the siage of (froningent, in that province, in 16.5 s .
Che-val'-glass. I lnoking-rrlass of such size and so mountell as to exhilit the full figure.

Chev'er-il. Leather of kil-skin.
Che-ville'. The pegr of a violin or similar stringed instrument.
Chev-rette'. (Oithonce.) A machine for raising leavy guas on to their cambages.
Cheviron. 1. A bent lar, rafter-shaped, in herallly, and the form alopted for a distinguishing bunk on the coat-sleeres of non-commissioned oltivers.

2. A zigzag moliling.

Chi-a'ro-os-cu'ro. 1. A drawing made in two colors, hlack and white.
2. (Printing.) A system of minting by snecessive blocks of wood which carry respectively the outlines, lightor and darker sharles, rete. Fracticem in Germany and ltaly in the fifteenth and sixteenth eenturies.
3. A term usel by artists to describe the effect of light amd shade in a pucture.

Chick'en-coop. A house or inclosnre for fowls, of more or less pretensions. In the example the coop is porided with a metallie open-work endpiece, provided with sliding loors connected to-
gether so as to be opencal simmltaseously. The broods are protected by alosing thene slidingdoors at nisht.

Chick'en-rais' ing Ap'pa-ra'tus. An incubutor (which see).

Child's Car'riage. A small car. riagu adapred for children's uses, heing drawn or pusherl by an at-
 tendant.

Chilli-an Mill. From time immemorial the ares of Dexieo, C'mitral America, and Jern lave leen workel, and the processes yet usel in some of the more remote districts an rude and wasteful or exceeding slow. The Chilian mill and arrastra are specinens of the latter. A in the accompanying cut sliows the adaptation of water-power as a nutor for the primitive mill of Centait America, the ar-

rangements being of a massive aml rule description. B shows a more modern torm of the same device.

The moklen form of the Chilian mill in its application to the grimding of oldaginoms someds, nuts, kernels and fruits, is shown in Fig. 12.7.

Lach stome las a rotation on its horizontal axis - ' $^{\prime}$, and also a rotation around the common, vertical axis A. The latter is driven by the pinion S aml

CHIME.

bevel cog-wheel. A certain latitule of motion is allowed to the stomes on their horizontal axis, and this passes througli an oval apreture in the shaft A, no as to a low the shatit to rise and fall according to the guantity of naterial under the stones; the freedom of motion allowing the stone to pass over heals of the material without straining. The bel-stone is supported on a foundation of masonry, and has raised inner and outer borders to keep the material from falling off. The grain is collected in the paths of the stones hy scrapers, which partake of the motion of the cintral post, one scraper gathering the magma from the ontlying parts and placing it in the track of one stone while the other scraper draws it so as to be cru-hed by the other stone. The stones are placed at diflerent distances from the vertical shaft, so as to give theru a wider track of usefuluens. The inner one is two thirds of its width

Fig. 1271.

Oit-Mill.
nearer to the shaft, so that their tracks lap a little. Whan the crushing is completed, another adjustment of the scrapers transforms them into clearers, and they carry outwarls the material, which then falls throngh an open part of the hoop, and is collectel in a receptacle whence it is shoveled into bags really for the press.
The Chilizn mill, so called (also known as the "Trapiche"), is as old as Herodotus, at least. It was nsed hy the Phenicians for mashing olives. See Oil-mill.

Chill. A piece of iron introlucell into a mold so as to rapidly cool the surface of molten iron which comes in cuntact therewith. Cast-iron, like steel, is hardened by rapid cooling, and softened by the
prolongation of the cooling process. The extreme in the former direction gives chelldel iron the haviness of harmened steel ; the extreane in the direction of softness is obtained hy pr lunging the heat, ahstracting the carbon frou the cast-iron, reducing it to a nearly pure crystalline iron. Sec Malefabie hion.

The chilled cast-ivon plowshare has a hard undersurface, and the top wears away, leaving a comparatively thin edge of hardened metal. This resembles the natural protision in the teeth of rabbits, squirrels, and other rodents, whereby the enamel remains in alsance of the softer portion of the tooth, keeping a sharp edge.

Chilled castings are nsed for axle-boxes, iron wheelhubs, rolls for iron-rolling mills, plowshares, and mohl-boards, stamp-heads, heary hammers, and anvils for some kinds of work, and in many other instancus.

Chill-hard'en-ing. A mote of tempring steelcutting instruments, by exposing the red-hot metal to a lilast of eold air.

Chime. 1. A mumber of bells attumed to each other in diatonic succession. A peul consists of three or more bells in harmonic succession, which mav he rung successively or simultanconsly, but will not aulmit of a tune bring played upon them. Thus as set embracing the eight note's of the com. mon smate will constitute a chime, while a set mpon the first, thirel. fifth, and cigheth of the scale woukl be a preal. Thersmatlest number of bells that can be said to constitute a chime is fire, but the number may he increased inclefinitely. The nsual number is at least nine, which numher embraces the
 eight notes of the natural seale, with the addition of a flat seventl.

The illustration sbows a cbime in a Philarlelphia churelk; nime bells, key of D , weight 12, 998 pounds.
A set of three small bells mounted in a stand for rincring by hand, used in the Roman Catholic church service, is also callod a chime, or altar chime.

A new carillon of bells manufactured in France and mountel in Bullalo, is 43 in number. Theyare workell hy a ker. board, and

discourse beantiln\} music. Attached to the carillon, and indeperndent of the key-hand, is a clock, which, by delicate machinery, is made: to play any armanged tume on the bells by means of 123 hammers adjusted on the outside of the hells. The clock also strikes the hours, half-hours, and quarters.
Apparatus for ringing chimes is said to have been first manle at Alost, in the Netherlauts, in 1457. Schepren of Louvain is celebrated is a chime-player, and pertormed violin musie. Pothorit, the chimephayer of Amsterdam, 100 years since, played pianoforte music with facility. Each key required a force equal to two pounds' weight.
Chimes on a small scale, rather as toys ant scientifie instruments, lave been rung by clectricity; a clapper or suspended ball being made to rotate around a central axis, striking in succession the bells which are arranged in a circle beneath.
2. An arrangenent of balls and strikers in an organ or musical box, operated in harmony with the reeds, piphes, or tong:les, as the calse may be.
3. (Cooperiny.) The rim of a cask or tub, formed by the euls of the staves, which project beyond the heat.
Chime-bar'rel. (Horology.) A prolongation of the ran of in striking-wheel, which is furnished with pins, like the barrel of a musical box, the pin lifting the tails of the hammers, which are set on one axis and strike their respective bells when set in motion.

Chim'mins. (Metullurg\%) The operation of agitating ore in a kecue or tub, by mems of a stirrer, the kecve being inclinel at an angle of 45°. The ore and water being placed in the tub, the whole mass is violently stirred until it all partakes of the gyration, when the stirring is stopped and the heavier particles first reash the buttom. The different strata of purticles are theu sorted according to quality. See keme.

Chim'ney. The open hole for the emission of smoke is referred to in H rolotus, V111. 137:"Now it happenel that the sun was shining down the chimney into the room where they were; the boy who had a knife in his hand male a mark with it round the sunshine on the floor of the romm."
The passages from the Greek anthors, which have been citell as showing the use of chimners, do not poye their existence, but gemerally reler to a mere oprening at whith the smoke escuped.

Here, however, is one fair notice of a chimney :-

> " B Boys, bring the kid.

Boys, bring th
A. There is
E. There
Don't cut me, cut the meat, -
Is there a kitehen near?
For this you do not say.
E It has a chiumey.
A. The if it snokes, it will he worse thinn none.
B. The min will kill me with his endless questions"

From "The Woman sitting up all Night," a play by Alexis; quated by Athexeeds in the "Deipuosuphists," A. D. $2=0$.
One mode of warming is noticed by Seneca and Pliny, and consisted in an arrangement of pipes to convey hot air from an undergrond apartment into which red-hot coals were occasionally thrown. The intention was to avoill the smoke incident to the burning of the fuel before it attained the red-hot condition. In the greater mumber of honsts the fuel was burnt in the room and the smoke escapell as it could, at the nearest door, window, or an opening in the rool. In the hot-air armagement alescribed, the calorie current was conveyed by pipes to the room, anel dissharget at a month whieh was often ornamented with a dohphin's or a lion's head, according
to fancy, and which could be opened or shut at pleasure.

The Emperor Julian, when at Paris, complained of the rigor of the climate and the ineflicient means for mitigating it, even in the best apartments. He disliked the lraziers, ant it would seem that no arrangements, such as described by Soneca, and suggested by the hyporaust of the baths, was at hand. See Hyrocaust; Heating arpabates.

Vitruvius does not mention chimmeys. Winckelmann states that no traces of them are found in Herculaneum, where the people warmed themselves ly fires in braziers placed on the thoor of the apartment, as did Alpxamer the Great - accorling to l'lutareh.

In Pompeii, chimmeys are seem in connertion with bath-roons and bake-houses, but none in private awellings.

Palladio only mentions two chimneys, which stood in the middle of the rooms, and consisted of columns, supporting architraves whereon were placed the pyranids or fumels through which the smoke was conveyed. Scamozzi mentions only three in his time, placed similarly.

We learn from Fletcher - "Notes from Nine-veln"-that the houses in Mosul, on the Tigris, are not always provided with chimneys, althongh the weather is oceasionally very severe. They use a round brazen wessel, with two rings attached to the sides, by which it is conveged from one room to anotleer. Mosul is termed by travelers the "Morlern Nineveh," and the aparturnts of the old palace which once stood in the vicinity were no doubt similarly heated. Hosea xiii. 3, speaks of the smoke escaping from the chimney (a hole in the roof), and makes it an emblem of instability:

There are no climneys or fire places in the houses of the Japanese. In the center of the common sit-ting-room there is a square hole lined with tiles and filled with sand, in which a charcoal fire is kept burning, and a teakettle is supported above by a tripod. A superior class of honses are warmed by braziers placed on lacquered stands. Holes in the roof and walls allow the smoke to escape. Wood, in its natural state, is but little used as fuel.
Travelers tell ns that evell now in Rome, which has a humid and raw atmosphere at times, the mode of warming is by chafing pans and portable charcoal furnaces, rather than by the generous tire of a grate or lurnace.
Down to the thirteenth century, the people seem to have been generally destitute of mimmeys. In the Middle Ages people made fires in their louse in a hole or pit in the center of the floor, under an opening formed in the roof ; and when the family laid down for the night, - for it can hardly be said they went to led, - the hole was closed by a cover of wood. The laws of the feudal ages (coure-feu of the French; curfew-bell of the English), ordered that such fires should be extinguished at a certain time in the evening. William I, introducell this law into England in 1068, and fixed the dipnitegium at seven in the evening. The law was abolished by Henry I. in 1100.
The curfew-hell also answered as a vesper-bell, calling the people to prayers. Pope John XX111. ordered three Ace-Maricus to be repeated at the hearing of the ignitegium. Pope Calixtus 111. ordered the hell to be rung at noon also, to drive away a drealful comet and the Turks. In due time the comet left, by which the faith of the people in bells was much strengthened, no donlot. The Turks, under Mahomet II., who had captured Constantinople a few years previously, were, however, long the banc of that corner of Europe, and are yet.

We find distinct notices of chimneys abont the middle of the fourteenth century, at Venice, Florence, and Pidua.

Francesco de Carraro, lord of Padua, came to Rome in 1305, and finding no chimneys in the inn where he lodged, because at that time fire was kindled in a lowle in the middle of the floor, he cansed two chimmers, like those which had been long nsed in Padua, to be constrncted and arched by masons and carpenters whom he had brought along with him. Over these chimneys, the first ever seen in Rome, he affixed his amms, which were remaining in the time of Gataro (the narrator), who died of the plague in 1405 .

Among the earliest English chimneys of which we have any knowledge is that of the large firehearth in the great gratal-room of Conisborough

Fireplace and Chimney in Conisborough Castle.
Castle, erected in or near the Anglo-Saxon period. The mantel is supported by a wide arch, with two transom stones muning under it; the back of the fireplace, where it joins the hearth, is in a line with the walls of the room, and the recess at the mantel is formed by the back of the fireplace sloping outwards, as it rises into the thickness of the wall, until it reaches a loophole on the ontside, where the smoke finds an exit. The cut shows an elevation and a section of this fireplace, in which A is the Hoor of the roon, E the niantel, and C the loop-hole.

In other castles erected abont the same period, the hearth was formed in the thickness of the wall, and the conimal stmoke-tumel ended in a loop-hole, as at Conislorough Castle.

Winwall Honse, in Norfolk, England, is of the

Anglo-Norman priod, has reeessed heartlis and flues rising from them, carried op in the external and internal walls. It was built in the twelfth century. Rochester, Kenilworth, and Conway Castles, Great Mritain, show chimneys similar to that in Conisborongh Castle.

A chimney in Bolton Castle, erected in the reign of Richard 11., 1377-1399, has a chimney thus described by Leland : -
"One thynge I muche notyd in the hawle of Bolton, finicheil or kynge Richard the 2 dyed, how chimeneys were conveved by tunnels made on the syds of the walls betwyxt the lights in the hawle, and by this means, and by no coters, is the smoke of the harthe in the hawle wonder strangely conveyed."
In the old palace at Caen, which was inhabited by the Conqueror while he was Dnke of Normandy, the great guard-chamber contains two spacious recessed fire-hearths in the north wall, still in good preservation, from which the smoke was carried away in the same manner as in the above examples.
The opening into the room is the firrplace.
The floor of the firenlace is the kearth.
The pased portion in front of the hearth is the slab.

At the hack of the fireplace is the firc-back.
The Haring sides of the fireplace are the corings.
The vertical sides of the onening, a part of the wall of the apartment, are the jumbs.
The chimncy-picce is the ornamental dressing around the jambs and mankel.
The entablature resting on the latter is the mantel.
The montel-shelf, or mantcl-piece rests therempon.
The whole hollow space from the fireplace to the top of the wall is the fiuncl, or chimney-hood.

The contracting portion of the funnel is the gathering.

The narrowest part is the throat. The throat is closed (at tives) by a damper.

Above this is the fluc.
The wall abore the mantel against the flue is the brcast.

The chinney above the roof is the shaft.
This, in England, is usually surmountel by a chimney-pot. And that frequently by a hool, cuene, or cow.
A chuster of chinneys is a stack.
A chimney-board closes the fireplace in summer.
A ciper-tumel is a false chimney placed on a house
as an ormament or to balance things.
Fig. $12 \overline{5}$ illustrates the various parts of a fireplace and chimney.
a, wall.
b, back.
c, breast.
d, flue.
e, hearth.
f, slab.
g, floor.
h, mitered border.
i, brick-trimmer.
j, ceiling.
h, joists.
f, mantel-shelf.
m, reveal or coring.
n, throat.
o, mantel.
p, jamb.
q, plinth.
Fig. 12 亿ō.
r, brilging.
The chimney at the Port Dundas Works, Glasgow, is the tallest chimmey and one of the highest masonry structures in existence. In Europe there
are mily two elourelu sterples, those of the Strashurg Cathedral and of st. Stephen's Churelo, in Viema, which, by a few feet, exceed the hight of this chinney, aml the grat lymmin of Ghizh was - hut is not now - the only other hanan rection exewe ling this great chamey in light. The dimemsions of this chimney are :- 'rotal hight from fommation, 468 feet ; hight above gromml, 4ist fret; outside diameter at the level of ground, 32 fore ; ontside dianueter at the top, 12 feet 8 inelues; thickness at ground level, 7 bricks; thickness at the top, $1 \frac{1}{2}$ Tricks. The internal diancter at the base is 20 feet, inul it gradually contrants toward the tope to 10 fort t inches diancter. The section is cireular throughont. The batter is straight, and it has no eap.

During its erection it umberment the operation of straightening by sawing the montar joints. The mortar in the newly built portion of the work henge still solt and plastic, the pressure of the wind catused a lateral deflection of the columm, amomating to 7 feet 9 inches from the vertieal at the tup. The whole structure was thereby embangered, anl in order to restore its stalility, it was mecessaly to bring it hank to the rertical line. This was safely accomplished by satwing away the bortur on the bowing side at selectecl prints, so as to cause the chimuey to stette back again and resume the perlumbicular.
A wroughtion chimmey, 196 feet high and six feet seven inches in dianeter, has just been wrected in Pittsburg. Another is to he put 141275 fert high. The tirst was riveted together in a horizonta] position, and then lifted to the perpendicular by a erane. The other is made upright, the plates being riveted by means of a scallolding rumins up inside.

Chim'ney-cap. An abacus or comice forming a crowning temmation for a chinney.

A device to render more certain the expulsion of smoke, loy presentins the exit aprerture to leeward, or by a rotatory device. See Cowl.

Chim'ueycol'lar. Ade-

 vice to prevent the: leakage of rain aronn! a chimney - stack where it protruites through a roof. The slates or shingles lie upon the slanting plates, and upright plates lie closely against the bricks.Chim'ney-look. A hook suspended in a chimney firon which to hang pots over the fire.

Chim'ney-jack. A rotating chimney-head. A
Fig 12\%i.

Chimney-Jack.
form of cowt. In the example, the chimney-head has segmental sliding doors, within which are pivoted phates which deflect the currents passing throngh lhe side opernings of the ©hmmey.

Chim'ney-piece. The ornamental frame round a fireplace ; consisting of jambs and mantel.

Chim'ney-pot. A tube of pottery or sheet. metal to extend a the above the chimmer-shalt. They are sometimes ornamental, aml made to agnere in design with the character of the hinikling.

Chim'ney-shaft. The part of athimmeyabove the root.

swm'ney-

 sweepler.fivented in Lagland by Smart, 1805, to supersede the climbing boys, who were so ernelly treated. A brush of rattan is fixed on the end of a yol which eonsists of jointed sec-
 timhs of rane, witl a rope running down throughout the length of carh section.

Chim'ney Top. 1. A chimney-capr or a cowl. Sue Conl.
2. (Music.) In organ huilding: a metallic monthpipe whose otherwise elosed upyer end has an open tube ol'small dimension, whicle allows a part of the air to escaper and has the effect of sharping the note. Ste Nowrit-purs.
Chim'ney-valve. A device of Dr. Franklin for withdraviag the fond air from an aparment by means of the ugward draft in the chimmey. In its simplest form it consists merely of a metallic fiame fitted in an aperture in the chimney and having a suspended flap opening inwardly to the chimmey which allows a carrent to jrass in that direction, but shiuts off a down-idialt into the room.

Chi'na. A line rarinty of pottery, now known as forelain, originally introduced from tha vountry whose name it hore for some centmos. The terin porcelain is !'ortuguese. See Pomralan.
Chi'na-blue Style. A mode of valico-printing in which indigo-bhurs are printed on the cloth and fixed hy bathe of salts of fron and of alkati.

Chi/na-grass Cloth. (Frbuic.) A fine falnic mate from the liber of an 1ndian nettle, the litteca or Iramic.

Cinin-chilla. (Fubric.) A heavy cloth for womon's winter cloaking, with a long-nappeal surface rolled into little tufts in imitation of chinchilla fur.

Cui'ue. (Fubric.) ". A larly's dress goods made with printed or dyed cotton of silk warps, afterwards woven. A mottled eflect is producel.
b. A fathin in whiclo a mixture of colors is produced $\mathrm{l} y$ a double thread formed of two smaller threals of different colons twisted together.

Chine'ing-ma-chine'. ('oopering.) A machine to chanfer the ends of staves on the inner surface, and form the chine.

Chi-nese'-bal'ance. A form of the steclyord having four points of suspension and as many yuadrated silles to the weight-arm of the lever. See Strelyalis.

Chi-nese'-cap'stan. A diflerential hoisting
or hauling device, having a vertical axis, and there. in only ditlering from the differential winellass (whịch see).

Chi-nese'-fire. A protechnit composition consisting of gampowler, 10 ; niter, 8 ; charcoal, 3 ; sulphur, 3 ; cast-iron borings (small), 10.

Chi-nese'-wind'lass. A differential windlass in which the cord winds off one part of the barrel and on to the other, the amount of absolute lift being governed by the difference in the diameters of the respective portions.

It is a gool contrivance in the respect that great power may be attained without making the axle so small as to be too weak tor its work. See Differential Whadlas.

Chin'ka. The single cable bridge of the East Indies, upon which traverses a seat in the shape of all ox-yoke.

Chinse. (Neutical.) To stop a seam temporarily by crowding in oakum with a knife or chisel. A slight ealking.

Chins'ing-i'ron. (Nautical.) A calker's ealgetool or ehisel for chinsing stams.

Chin-strap. (Siululery.) A strap eounecting the throat-strap and nuse-band of a halter.

Chintz. A cotton cloth gayly printel with designs of flowers, etc., in five or six different colors. It was a favorite in the time of Queen Anne, long before cotton prints became cheap.
-" let a charming chintz and Brussels lace
Wrap my cold limbs and shade my tifeless face."
The Eaglish, Parliament had prohibited the burial of corpses in cotton or linen goods, intending to improve the demand for woolens. The young laty is supposed by Pope to express her disgust at domning the unfastionalle falmic even for burial.
Swift silys:-"Chintzes are gandy and engage our eyes."
The name, being highly respretable, has since beon applied to gools lacking the graceful and artistic character of the genuine article.
The chintzes of the coromandel coast were celebrated in the time of Mareo Polo, thirteenth eentury. They are mentioned also by Oloardo birrbosi, a Portuguese, who risited Intia soon after the passage of the Cape of Gool Hope by Vasco dia Grima:- "Great quantities of cotton cloths admirably painted, also some white and some striped, hell in the highest estimation.'

Chip. (Nruthicrl.) A piece of wood of the shape of a luadrant, of of inches radius, ant $\frac{1}{4}$ incl thick, placet on the end of a log-line. The chip is loaded at the cireular cdge so as to float upright, about two thirls leeing immersed in water. The knotted logr -line is wound on a reel, and the chip or log being thrown overboard catches in the water and remains about stationary there, while the cord unwinls as the vessel proceeds. The number of knots passing the seaman's hand while the sand in the half-minute glass is ruming out, indiates the munher of knots or matical miles pur hour of the vessel's spueel. See Lons.
Chip-ax. A small, single-hanterl ax used in chipping or listing a block or scantling to a shape approxinating that to which it is to be dressed.
Chip'ping-chis'el. A colld :hisel with a slightly convex face and an angle of about 80°; used in removing a scale of iron, hardenel by contact with the dimp mold in casting. The removal is a preparation for finsishing with the file or other tool, the chillell iron being very lestructive of files.
Chip'ping-ma-chine'. A planing-machine for cutting dye-woods into ehips. See Bark-cutcing Machine.

Chip'ping-piece. (Foundiny.) a. An elevated cast (or lorged) surface, allording surphos metal for rerluction by the tools.
b. The projecting piece of iron east on the face of a piece of iron-fiaming, where it is intended to be fitted against another.
Chi'ra-gon. A writing-machine for the blind. A cecorfraph.

Chi ro-plast. An instrument, or lernd-director, as its name indicates, for training and exercising the hames, for giving them fiacility and command in playing music. It was insented by Professor John Bemard Logier, a natire of Germany, and resident of London, England, who tied about 1852. Patented in England abont 1812.

It consists of the position-freme, to keep the hands from wamlering; the finger-yuides, two movable hass frames each having five divisions; and the wristguile, to preserve the proper position of the wrist.

The gremut-borrd was also a portion of the apparatus, its use being to indicate the notes, it being fitted closely to the finger-hoard.

The inventor was a clistinguished contrapmentist and thoorist, - a musical luminary.

Chis'el. An eflged tool for cutting wool, iron, or stone. It is operated by striking its upper end with a hammer or mallet or by pressure.

Mr. Burton found at Thebe's, and leposited in the British Mnseum, a carpenter's basket and a kit of tools which have survivel their owner some thirty centuries. The art of joining boards by dovetailing and by doweling was practicel in Erypt as long ago ats Osirtasen, $1706 \mathrm{~B} . \mathrm{c}$. The dowels were pinmel in place by thin wooden legs. Glue was also employeul hy them. See Vexeening.
The chisels of early Egypt (e a, Fig. 1279) were of bronze, the handles of tamarisk. In some cases the blades were attached by thongs to the handes.

One of the commonest tools or weapons in the museums is the coll. This term is beld to include

Fig. $12: 9$.

numerous cutting-tools; it is derived from the word crltes, an old Latin term for a chiscl. Axes, hatchets, chisels, skin-serapers, and other tools are assembled in these collections unler the one name.

In the accompanying cut, b is a hronze socketchisel, 6 inches long, found at Kumbre, Cornwall, England. The ear or loop may have been for carrying it suspended liom the girdle, but was probably for lashing it to a helve. See Hatchet, Figs. ce.
c and d are bronze chisels in the Britisli Museum.
e has a roumd handle. It is 9 incles long, is of bronze, weiflis 2 pounds 5 ounces.
f, g, and h are smaller tools, alapted to be used with the mallet or otherwise.
The chisels and googes of the Tahitians when first discovered were of bone, generally that of a man's
urn between the wrist and elbow. The bone tools lisilpered in a few years alter the advent of the white inath.

Stone cirisels, pointed and wide bitted, also mallets ol the moder'in formi, are shown in the paintings of ancient Thebes. Theywere probably of hard honze, though it is not to be doubten] but that steel was known to the artificers of that wonderful nation. lron and steel have jerished with rust while bronze has survived, and artieles of that metal abound in all the minseums.

The Japanese chisels are light and small. The cutting parts of some are the size and shape of a section of hall a dollar, the spuare side being the cutting eilgr, and a round metallic shatt connecting the convex side witl a wooden handle.

The knife must be regarded as the primary tool, and the chisel is a strong knife sharpened and presented endways.

Holtzaptfel, in generalizing on the subject, regards the chisel as a keen wedge, sonutimes employed with yuiet pressure, and at other times with percussion, the formpr including the plane bit, and the latter the ax ant adze.

The chisel used as a turning-tool introduced the circulatory process, and the reversal of comlitions eonstitutes the entting-tool the mover and introduces the boring-tool.

Siws lie regards as a multiplication of serapingchisels, and the file as a suggestion from the saw.

The blades of shears and scissors act as cliisels from opposite sides of the material, and the punch is a chisel with a circular elge, whose connterpart, if it have one, is an aperture whose margin answers as the opposing shear.

This is ingroious and somewhat satisfartory, and is to be expreted of a man who makes the lathe and its cutting-tools the primary central chaster of the mechanical limmanont. "It is goon to be zealously allerted in a grood thing," satid an able unechanic of yore.

James Watt, no mean julge, sail that "the true inventor of the crouk rotative motion was the man - who unfortunately hes not bren deified - who first invented the common loot-lathe."
See under the following lieads:-

Astragal tool.
Bent gouge.
Blacksmith's chisel.
Blind-slat chisel.
Boasting-chisel.
Bolt-chisel.
Bons-chisel.
Bur-chisel.
Cilking-chisel.
Chat-chisel.
Carpenter's chisel.
Carving-chisel.

Center-chisel.

Chasing-chisel.
Chipping-chisel.
Chisel in marteline.
Cold elisel.
Cope-chisel.
Corner-chisel.
Cross-cutting ehisel.
Cross-mouth chisel.
Tental chisel.
Diamond-point chisel.
Dog-legr clisel.

Double-chisel.
Drove-chisel.
Eutering-chisel.
File-chisel.
Firmer-chisel.
Flat-chisel.
Flogging-chisel.
Framing-chisel.
Gouge.
Gralting-chisel.
llardy.
Heading-chisel,
Hooked tool,
lce-chisel.
Indented chisel.
Joiner's chisel.
Making-iron.
Marteline-chisel.
Mortise-lock chisel.
Mortising-chisel.

Paring-chisel.
Parting-tool.
Point.
Pruning-chisel,
Rod-chisel.
Round chisel.
Round-nose chisel.
Sasli-chisel.
S-chisel.
Skew-chisel.
Slick.
Small ehisel.
Socket-chisel.
Splitting-chisel.
Spoon-chisel.
Tang-chisel.
T'uruing-gonge.
'lemoning-chisel.
Tongued-chisel.
Turning-chisel.

Besides those mentioned in the list are several varieties peculiarly adapted to the needs of certain trades; such as: -

Blunt chisels.
Coachmaker's chisels.
Millwright's chisels.
Mortise-lock chisels.
long-paring chisels.
Chis'el-draft. (Masonry.) In squaring the end of a stone block, one edge is chisel-ilressed to a straight edge and forms a base lor the determination of the other silles.

Chis'el in Mar'tel-ine. A boasting-chisel used by marble-workers. It is furnished with steel points at the end. See Marteline.

Chit. A small frow used in eleaving laths.
Chi-tar'ah. (Fubric.) A cotton and silk siuff made in Turkey.

Chlo'ri-na'tion. A process for the extraction of gold by exposure of the auriferous material to chlorine gas.

The process was first introduced by Plattner, a professor in the School of Mines, Freiberg, Saxony.
"The principle involved is the transformation of metallic gold, by meaus of ehlorine gas, into soluble clidoride of gold (the aurum potabile of the ancients), which can be dissolved in cold water, and precipitated in the metallic state by sulphate of iron, or as sulphide of gold hy sulphureted hydrogen gas. The precipitate may then be filtered, dried, and melted witl: suitable Huxes to olitain a regulus of malleable gold." - Raymund.

The following conditions are neeessary : -

1. The grold must be in a metallic state.
2. There must be no otlier sulostance in the charge which would combine with free chlorine,
3. The chlorine must have no impurities which would dissulve other metals or bases.
4. No reaction must be induced which would cause precipitation of the gold before the termination of the process.

The process with quartz and free gold does not involve roasting, hut the latter promess is necessary with ores containing sulphurets and arseniurets. In the chlorination moeess, the ore is sifted into a woolen vat lined with piteh, and having a false hottom beneath which the gas is armitted. The top is luted on and the gas almitted; when the gas begins to escape at a liole of observation in the lid, it is the signal that the air is ejected and the hole is then eloserl. The gas is continually prassed into the hass for say eighteen hours, wecording to the coarseness of the gold? the cover is removed and water introluced, and the solution drawn off into
the precipitation vat. The gold is precipitated by sulphate of iron, the supernatant liquor decanted. The sediment is a brown powder which is tiltered upon majur dried in an iron or porcelain vessel, smelted to a metallic regulus in clay crocibles, a little horax, silt, and nitrate of potash being used as thxes. See Raymond's "Mines, Mills, and Fnruaces," pp. 417-431.

Chlo-rom'e-ter. An instrument for testing the decolorizing or bleaching powers of samples of chlorite of lime.

Ure's process consists in adding liquor of ammonia of a known strength, tinged with litmus, to a solution of a given weight of the chloride under examination until the whole of the chlorine is nentralized, which is known by the color being lestroyed. From the quantity of ammonia consumed the strength of the sample is estimated.

The instrument is an inverted and graduated siphon-shaped tube with a closed long end, and a shorter open end. The tube being filled with mercury, a certain quantity is displaced by a wooden plug, say 10°. This space is filled with the solution of the chloride, which is then let up into the claserl end of the tulve by putting the finger over the open end and tipping the tube. Lipnor of ammonia is now let up, anl nitrogen is evolved equivalent to the chlorine present.

Chock. 1. (Shipbuilding.) a. A hlock, preferably wedge-shaped, driven behind the props of a cradle to prevent it from slipping on the ways before the ship is ready to launch.
b. A piece of timber, framed into the heads and heels of ship's timbers at their junctions to act as a lap to the joint, and make up the deficiency at the inner angle, as in the steru-pisce and the mainliece of the head; in the dead wood, etc. Sec Stem.
2. A wedge-shaped block placed beneath and against the bilge of a cask to kcep the latter from rolling.
3. A piece of wood by which the wheel of a carriage is prevented from moving forward or backward.

In the United States Ordnance Department two kinds are employed, the simplest form being triangular in section, while another description of choek is wedge-shaped and provided with a hanrlle.

Choc'o-late-mill. Chocolate is a paste male from the roastel kernels of the Theobroma cacuo

Fig. 1281.

Chucolate-Mill
(food for the gods), so called by Limaceus, who so much esteemed it. The beverage was advertised in London in 1657, as " "an excellent West India drink called 'chocolate.'"

The roasted and crushed seeds of the cacao-nut tree are ground between two horizontal millstones, which are kept at a temperature ol abont $200^{\circ} \mathrm{F}$., by means of a steam-jacket.

The nihs pass down from the hopper into the shoe, which is shaken by a tlamsel on the spindle of the runner so as to disclarge the nils into the eye which leads them to the space hetween the stones. The heat and friction liberates the oil, which is one third of the weight, and the cacao issues as a paste from the spont and is conducted to a second and sinilar mill where the stones are similarly heated but are closer set, so as to still farther reduce the paste. It is discharged from the second grinding in a liquid condition and is collected in a pan, where it hardens into a cake.

To enable it to form an emulsion with water, it receives additional substances. Sugar, honey, molasses, gum, starch, flour, rice, and arrow-root are adapted for this purpose. Spices and flavoring extracts are added for some markets.

Devinck's machine (English) is for wrapping chacolate in paper envelopes.

Choir-or'gan. (Music.) One of the three aggregated organs which are combined in an organ of large power. The other two are the great-organ and the succll. The great organ has its large pipes in front and its bank of keys occupies the middle position ; it contains the most important and powerful stops. The choir-organ has its key-loard below that of the grect-organ, and contains stops of a light character and solo stops. The suell has its hank of keys the highest of the three, and has lowre boards which may be opened and shut by means of a predal, so as to produce crescendo and diminuendo ellects.

Choke-strap. (Siddellery.) A strap lassing froms the luwer portion of the collar to the brlly-band, to keep the collar in place whell descending a hill or backing.

Chon-drom'e-ter. A steelyard for weigling grain.

Chon'dro-tome. (Surgical.) A knife specifically adapted to dividing cartilages.

Chop. The movable woolen visc-jaw of a carpenter's or cabinet-makcr's bench.

Chop-boat. A Chinese lighter for transporting mercliandise to and from vessels.

Chop-ham'mer. (Mcial.) A cutting-hammer. Chop'ness. A kind of spade (English).
Chop'per. An agricultural implement for thinning out plants in drills. It is used in England for turnips; in the United States, for cotton-plants. Cotton-seed is drilled in and comes up in a row; the cotton-chopper straddles the row and chnps wide gaps, leaving the plants in hills. These are thinned out by hand.

Chop'ping-knife. A knife lesigned for chopping meat, veretables, fruit, etc., upon a board, block, or in a bowl. Used on a domestic scale for cutting meat for mince, hash, sausage, etc. See Sautagemachine.

Chorl. The angle at the junction of the blade of a penknife with the square shauk which forms the joint.

Cho-rob'a-te. The Greck level. See Level.
Cho'ro-graph. An instrument contrived by Professor Wallace. of Edinburgh. "To determine the position of a station, having given the three angles made by it to three other stations in the same plane whose positions are known."

The problem oerurs frequently in maritime surreying, and is otherwise stated:-
"To construct two similar triangles on two given straight lines."

Chro-mat'ic Print'ing. The precursor of colorprinting was the illumbated missill with its initial letters and borders, lamel-panted in colors, and the phaying-ards uron which the art of printing was first executed in Enople. See Cand.
Koster's sjpculum If umunce Sulvetiones, printed at Ifarlem, 1440 , las chgravings on wood printed in dillement color from the hody of the work.

Fust and sthelfer's l'salter, 1457, had initial letters and flourishal lines printed in two eolors, red and hlue.
The art soon became common, and towards the end of the fifteenth century imitations of pren-andink sketches on a colored gromm were made by celcbrated arlists. This was followed by drawings on blocks in regular sets for separate colors. Albent Durer engraveal such hlocks; P'armigiano, Titian, and Kaftactle made designs on blocks for the purpose.
Jackson started a paper-hanging factory at Chrlsea, Eugland, 1720-175.4, the: designs being printed in oil by woolen blocks. He appears to have been unsuccessfal in some dotails and in the spectlation.
The art was adopted and improvel by a suecession of persons in England and elsewhere; Skippe and Savage of the fomer, and linbitz of Berlin, adding considerably to the eminence alrady attainem.

Savage ground the varions pigments of the painter into inks, and imitated water-color drawing shecessfully.
Whiting aud Branstou applied different colored inks to ormanemtal horders, and to notes, bonds, checks, ete., to prevent forgery.
Vizitelly and liranston, and sulsequently Baxter, attained considerable excelience. Sce Cumano-mithugrabhr.
'Ilhe invention patented some years ago by Mr. Chantes linight, of london, is a process whereby facosimiles of designs in four colors are produced on the same sheet hefore it leaves the press, hy means of a revelving carriage or bed, upon which the blocks are securen. A mode of printing in four colors by me:ns of turning the tympan with the slieet secured on it was somewhat less complieated than Mr. Kinight's. The processes, however, necessitated the application of the four colored inks at every revolntion and impression, and also involved consiberable outlay for machinery.
In Carpenter's buocess everything is carrime on in as staightorward a manmer as in ordinary black printing. It may be thus brienly describerl:-

A lorm is set up by the compositor; he then divides it into four seetions, and so imposes thern in one chase that the same relatise cormer of each (whichever may be chosen) shall point towards the midule of the chase. It is then really for the pressman. It requires muking rectly with points placed, according to the tact of the workman, in suelh position as may be demed expedient, fonn points heing sultiopent in all, and these so placed that the shacet may be pointed when turned either to the right or the left hand. Shomhd 1,000 copies be reatured, the 20, sherets are printed in the first color. They are then simply turned one quarter romel in cither direction and minted in the second colur. The operattion is reprated for the thind color, and agrain for the fourth color. This produces 1,000 pertect impressions of four varieties, in whish the colors are dillerently arranged.

Shoullit the whole possible number of combinations of four colors - namely, twenty-four - be rerfuired, nothing more is neressary than, while the slieets are being worked in the second collor, to thrm a portion of their number into the third and fourth positions, -which produces three kinals of sheets or twelve single varieties, - and while working the third color take half of each of the three kinds and work then respectively in the second, thinh, and fourth positions, proxlucing six kinds of sheets or twenty-four single varieties.

One inking apputatus is sufficient, and but one ink is spreat at a time, passing over all of the forms at once. This has no artistic merit, mhless mere blocks of color in givan juxtaposition give opportunity for the exertion of taste in hamony or agreeable tontrasts. $1 t$ is not very different lion printing in colored lounds or lines of type of different colors.

One press prints in several colors from one form and at one impression by making the inking cylin-

Fig. 1282.

der in prats and supplying the sections with the sejurate colors.

Allams, 1844 , had a roly-chromatie press by Which a monlor of colors were had at one impression hy a sircies of selarate inking lountains.
M'K゙mzic, 1846 : a series of sliding tymans and corresponding surlies of plates for the separate colors, which impressed the praper in succession, giving a varicolored result.
Weaver, 18.51; an ink trough with perforated side and movalle partitions, to give out inks of varyine colurs in lines or helts rorresponding to the lines of tupe.
1;abeock, 1854 ; a sheet carrich on a revolvingphaten to plates of surcessive colors.

Sweet, 1855 ; narrow distributing rollers carrying Farious inks and laying them in belts on the inkingroller.

Baker and Hill, 1863; a continuous sheet of paper is printed in two colors, by intermittent motion and successive exposure to two reciprocating platens carrying forms which receive their specific colors from their own set of inking-rollers.

In Baylies and Wood, 1S67, an oscillating frame carries a series of rolleis which are brought in contact with fountain rollers of a series of fountains, each carrying different colored ink ; and the ink is communicated by another series of rollers to the segazental rollers, which in turn communicate the ink to a set of rollers common to all, and by which the type is inked in strips of rarious colors.

Slater, 1568 ; adjustable parallel inking-tables, each carrying its own color and furnishing it to a belt of corresponding width on the inking-roller.

Hunt, 1865 ; two forms, two impressions, inkrollers with bands of colors.

In Dunk's press the sheet is beld by the nippers while it receives the colors consecutirely. There are two sectional cylinders revolring in unison, one

Fig 12\$3.

Chromatic Printing-Press.
of them carrying the required number of forms and the other a corresponding number of tympans, while a skeleton cylinder contains the nippers. The sheet is retained until fully printed, in the same nippers, which present it to the successire forms, from each of which it receives au impression in a different color.

The oipper shafts are journaled in wheels of larger diameter than the platen-cylinder, and the series of nippers outnumber the platen surfaces. The plateucylinder has longitudinal recesses in its periphery, into which the nipner-shafts enter when in proximity to the form-cylinder, and by the larger diameter of the nipper-wheels the sheets are carried to a fresh surface at each revolution to receire the portion put on in fresh color. The inking-rollers are mored ra. dially, to bring them to their proper type and to aroid the forms carrying another color, by camgrooves which gire the necessary motion to their journal-frames. The distributors have their reciprocation by the obliquity of their motire-wheel.

A valuable article on the colors and mixing of
colors for chromatic printing may be found in Ring. walt's "Encyclopædia of Printing," pp. 109-112.

Priuting in colors by a succession of colors superimposed as to those portions which are formed by the bleading of tints is now done by the lithographic process. See Chromo-Lithography.

Chro-mat'ic Ther-mom'e-ter. When tite edge of a rectangular plate of glass is applied to a piece of heated metal, or other substance haring a temperature different from that of the glass, and exposed to a beam of polarized light, colored fringes are dereloped. As the different tints depend on the different temperatures of the glass (which is supposed to be known), and that of the object to which it is applied, the color of the central fringe affords a means of inferring approximately the temperature of the substance. Biaside.

Chro-mat'ic Type. Type made in parts, which are inked of rarious colors and separately impressed, so as to unite into a variegated whole.

Chro'ma-scope. An instrument to exhibit the three optical effects of colors :-

1. The refraction of prisms and lenses.
2. The transmission of light through transparent media.
3. The reflection of speculums.

Chro'ma-trope. An arrangement in a magiclanteru similar in its effect to the kaleidoscope. The pictures are produced by brilliant designs being painted upon tro circular glasses, and the glasses bring made to rotate in different directions. An endless rariety of changes in the pattern are caused
 by turning the wheel, sometimes slowly, then quickly, backward and forward.

Chro'ma-type. (Photography.) A process in which the chromic acid is deoxidized. There are several modes of getting photographs by the chromine salts preferably the bichromate of potash.

Chro-meid'o-scope. The same as DERLSCOPE (which see)

Chromi-om'e-ter. An instrmment for determining the purity of water byits colorlessress. It consists of a glass tube of about a rard in length, closed at the end by a cork, and resting upon a white dish of porcelain. A green tinge is produced by minute algre, a white opacity often by fungoid growths; iron salts are indicated by a peculiar ochry color.

Chro'mi-um. Equiralent, 26.4; symhol, Cr. ; specific gravity, 6.81; is infusible except with an oxy.-pyd. blow-pipe. A grayish-white, brittle, hard metal, and combined with iron makes an alloy which resists all tools of steel, and is used for safes.

Compounds of chromium make beantiful pigments, and afforil colors for glass, poreelain, and enamels.

Chro'mo. A contraction of chromo-lithrosfaph adopted by Ir. Prang, of Boston, for reasons of brerity and as a trade-mark to indicate his jroductions. See Chromo-lithorgapht.

Chro'mo-li-thog'ra-phy. The art of colorstone draring as indicated by the three Greek words from which the name is derired. Colorprinting mas first alplied in Enrope to illuminating missals and printing playing-carls. (See Cnpomatic Phsstisg.) The priating in a numher of colors on mooden blocks or metallic plates was never success-
ful in an artistic point of view, inasmuch as the gradations of light and shade can only be expressed by lines of ditferent thickness and by isolated dots, and do not admit of the complete blending of tints necessary to imitate the effect of an oil-painting. This was accomplished when the art of litlography was brought in aid. Baxter, 1803-1861, in England, prodiced some really pretty work by a combination of metailie plates and wooden blocks.
Lithography was invented by Alois Senefelder, who was born at Prague, 1771. (Sre Lithugrapis.) ln short, it may be described as drawing upon stone with a material which, when treated with certain chemicals, will take up the printer's ink when rolled un. Senefelder, even at that early dite in the history of the art, spoke of the possibility of making fac-similes of oil-paintings. Storeh a un Krampr, of B relin, successfully reproduced oilpaintings by this process ($1840-1850$).

In making chromo-lithographs, an outline drawing is made by tracing, and this is transferred to all the stones (one for rach color), required to complete the picture; so as to secure exactuess in the corelation of all parts on each stone. Within these outlines, and upon these different stones, the artist draws the diflerent tints and colors. The number uf stones, or plates, needed to complete the chromo, varies of course with the character of the picture to be reproduced. The highest mumber of stones, each representing one tint or color, employed by l'rang upon the famous chromo called "Family scene in Pompeii," was 43. An artist must have not only a high degree of skill in drawing, but nust possess a fine feeling for and a thorough knowledge of color, and when a picture is presented to him he must be able to tell, approximately at least, what number of plates will be required to reprodace it, and in what order the tints and colors bust follow each other. Furthermore, when drawing a new stone for a chromo in process of printing, he must not only be able to calculate what effect the tint or color in which the plate is to be printed will have upon the preceding tints or colors, - which latter will partly, or perhaps wholly, anderlie the new color, - but he must also keep, in view the tints and color's still to be added, which again in their turn will tend to modify or alter all those already printed. Thus it will be seen that the accusation sometimes leveled against chromos - viz., that they are merely mechanical productions - is wholly unfounded.
To treat it more in detail, it may be said that the drawing is made upon the slab with a sort of colored soap, which adheres to the stone and enters into a chemical combination with it after the application of certain acids and gum. When the drawing is complete, the slab is put on the press, and carefinly dunpened with a sponge. The oil color is then ap. plind with a leathern roller. The parts of the slab which contain no drawing, being wet, resist the ink; while the drawing itself, being oily, repels the water, but retains the color applied.

In chromo, the first proof is a light ground-tint, covering nearly all the surface. It has only a faint, shalowy resemblance to the completed picture. It is in fact rather a shadow than an outline. The next proof, from the second stone, contains all the shades of another color. This process is repeated again and again; frequently, as often as thirty times. The number of impressions, howerer, does not necessarily indicate the number of colors in a painting, because the colors and tints are greatly multiplied by combinations created in the process of printing one over another. ln twenty-hive im-
pressions, it is sometimes necessary and possible to produce a hundred distinct shades.

The last impression is made by an engraved stone, which produces a resemblance to canvas. On proper registering, the entire possibility of producing a picture at every stage of its progress depends. "Registering" is that part of a pressman's work which consists in so arranging the paper in the press, that it shall receive the impression on exactly the same spot of every sheet.

Chro'mo-type. 1. A sheet printed in colors. The modes are various, but the usual plan is to prepare a block for each color, or a form for each color, and to place the paper upon each in succession, the exact place being preserved at eacli impression by meams of register juins or a similar device. See Chromatic Phinting; Chromo-lithoghaphy.
2. A photographic picture produced in the natural colors. This was long sought by Niepce de St. Victor, and he announced his success even with yellow, but no way has been discovered of fixing these heliochronic pictures.

Chro'mo-scy'lo-graph. A colored picture produced by a succession of wooden blocks, each bearing its separate color. See Chromatic Phist. ing.

Chro'no-graph. A time indicator.
Astronomical intervals are noted by pressing a key which makes one dot or puncture on a traveling strip of praper and another at the end of the observation. Such a time-paper becomes a record.

The racer's chronograph is one which deposits ink-snots on a traveling paper at the start and arrival of the horses.

Professor Glaesner, of the University of Liége, has a chronograph for the measurement of very minute particles of time by the application of electromagnetism. To measure the velocity of a cannonball, a series of targets, consisting of hoops intersected by wires, are placed at given distances apart. The wires of each hoop commmicate with a separate electro-magnetic apparatus, by whiel an iron pencilholder is kept in an unvarying position by attraction so long as the circuit is not interrupted. Opposite and close to this pencil-holder there is a cylinder turning on its axis at the rate of four revolutions in a second. Its surface, which is covered with paper, is divided into five liundred parts lyy lines drawn parallel to its axis, so that each part represents one two-thousandth of a second. Its motion is effected by clock-work. Now, whenever the electric current is interrupted, the nencil-holder ceases to be attracted, and falls on the surface of the cylinder, on which its pencil, therefore, describes a line. Whenever the circuit is completed the pencil-holder is reattracted and leaves the paper. Let us now suppose a cannon-ball to be fired through all these targets, so plared, of course, as to lie in the path of the curve described by the missile. Each time it passes through one of the hoops it snaps asunder one of the wires; the circuit is consequently interrupted, the pencil-holder falls and marks the precise time of the passage. And so on, firom target to target, each of which, as we have said, is conmected with a separate apparatus. In this way both the space and the time employed in going over it leing determined, the velocity, which is the ratio of time to space, is determined also to a fraction of one two-thousandth of a second.

Since 1848 , the idea of recording astronomical observations by galvanic electricity has been pint in successful operation by several individuals; Professor Hilgard of the coast survey, and Professor Hough of the Dudley Observatory, among the num-
ler. The chronograph of the latter prints with type the time of an obsersation. The professor thus descrihes it in brief. The plan is based upon the principle of using separate systems of mechanism for the fast moving type-wheel, and those recording the integer minutes and seconds, regulating each with electro-magnets controlled by the standard clock.

1. A system of clock-rork carrying a type-wheel with bifty numbers on its rim, revolring once every second; one, two, or parts of two numbers being always priated, so that hundredths of seconds may be indicated. This train is primarily regulated to move uniformly by the Frauenhoter triction balls, and secondarily by an electro-magnet acting on the fast moring type-mheel, and controlled by the standard clock. This train is entirely independent, and can be stopped at pleasure, without interfering with the other type-wheels.
2. A system of clock-work consisting of two or more shafts, carrying the type-wheels indicating the minutes and seconds. The motion of this train is also governed by an electro-magnet, controlled by the standard clock, operating an escapement, in a manner analogous to the action of an ordinary clock; every motion of the escapement adrancing the type one number. There are three type-wheels, indicating minutes, seconds, and hundredths of seconds. The integer seconds are advanced at erery oscillation of the standard pendulum, and the minute, at the end of each complete revolution of the seconls wheel. The type-wheels are constructed of brass disks, around the circumference of which is soldered a strip of electrotype copper, holding sixty nurahers.
The record is made by an armature hammer, the hamizer being raised by weight and gear. The types are inked by small rollers. The paper fillet, two inches in width, is wound on a small spool, holling abont forty feet, and drawn between two rollers, the same as a Morse register. Every time the hammer falls, the fillet is allranced about one quarter of an inch, by the action of an escapement driven by a weight. One spool of paper will hald about 1,200 ohservations, including the spacing for different objects. This same escapement is also operated br an electro-magnet, under the control of the obserrer, who, by pressing a key, is able to make spaces of any width between the prints.
The train carrying the minutes and integer seconls will run eight hours; the gear for elevating the hammer will deliver Sn0 blows; and the train for moving the paper fillet will go 1,200 times without winding. The fast moving train runs one hour and thirty-six minutes; bat since this train can be stoppel at pleasure, without changing the zero of the type, its comparatively brief running is not a serions inconvenience.

Chro-nom'e-ter. 1. A chronometer is a measnrer of time, and this general meaning would inclute clocks, watches of all kinds, clepsyilras, and some other levices, such as hour-glasses and the gradnated candles of the beloved King Alfred. The term is, howerer, applied in a restricted sense to those haring adjustments and compensations for the fluctuations of temperatur?. These hare been adapted to the clock and to the match : in the former the mercarial pendulum of Graham and the gridiron pendulum of Harrison may be cited ; and in the latter, the expanting and coutmacting balance-wheel, depending upon the une pual expansion under changes of temperature of two different metals. With the improrements as adapted to instruments having a balance-wheel this article has to do.

The proposition to determine longitude at sea by means of a timepiece and observation for moon was made by Gemma Frisius, in 1530. The attempt did not fail for want of suggestions; Alonzo de Santa Cruz suggested to determine it by the variation of the compass-needle, and by sand-and-water timelieces, wheel-work moved by weights, and by "wicks saturated with ail," which Tere supposed to burn equal lengths in given periods of time.

During the sixteenth and serenteenth centurips the Spanish, Dutch, French, aml English governments had offered rewards tor an instrument which should determine longitude within a certain sprecified degree of accuracy. Sir Isaac Newton suggested the discovery of the longitude by the dial of an accurate time-keeper, and the Parliament of Queen Anne in 1714 passel an act granting $£ 10,000$ if the method discovered the longitude to a degree of sixty geographical miles, $£ 15,000$ if to lorty miles, $£ 20,000$ if to thirty miles, to be determined by a voyage from England to some port in America.
John Harrison, hom in 1693 at Fanlby, near Poutefract, in England, undertook the task, and succeeded after repeated attempts, covering the period 172S-1761. His first timepiece was made in 1735 ; the second in 1739 ; the thinl in 1749 ; the fourth in 1555 , the year of the great earthquake at Lisbon. In 1758 his instrument was sent in a king's ship to Jamaica, which it reached $5^{\prime \prime}$ slow. On the retirn to Portsmouth, after a five months' a'sence, it was $1^{\prime} 5^{\prime \prime}$ wrong, showing an error of eighteen miles and within the limits of the act. He received the reward of forty years diligence in insta!ments. He died in 1776 .

Arnold made many improvements, and received government rewards amonnting to $£ 3,000$.

Mr. Denison states that Earnshaw brought the chronometer to its present perfection.

The principles of the compensation balance are explained under Compensstiox Balance (which see).
a a^{\prime}, box and its lild.
b, chronometer suspended in gimbals.
c, chronometer balance.
Chronoweters are knorn
 as ship's and pocket.

The rating of chronometers is usnally conducted at government observatories.

The instruments are sent from the different watch-makers and receired at stated periorls. They remain the greater part of a year, their rates being noted daily by two persons. The best receive prizes and are purchased for the nary; others receive certificates of excellence; others are unrewarded. On their arrival in January, they are left to the ordinary atmosyheric temperature for some months; their rates are taken under these conditions.

The apartment is then heated to a tropical temperature, and the rate taken.

They are then placed for a certain period in trays over the stove, and the rate taken.

They are then placed in a refrigerating chamber cooled by a freezing mixture, and the rate taken under this artificial arctic temperature.
Their capacity to stand these variations constitutes their value, and their actual range of exposure may be estimated at 180° - from the $+120^{\circ}$ of

Aden and Fernando Po to the -60° of the Arctic regions when frozen in the pack of ice and watching through the long, long night.

The two columns on which most reliance is placed in the schedule of performances are:-
a. "Difference between greatest and least rate."
b. "Greatest difference between one week and the next."
2. (Micsic.) An instrument to indicate musical time. A metronome.

Chro-nom'e-ter-es-cape'ment. The chronom-eter-escapement was invented by Berthoud, and improved by lharrison, Arnold, Earnshaw, and Dent. It is the most perfect, delicate, and satisfactory in its operation, of all the escapements. It is also kept more carelinlly, at least in marine chronometers, as the gimbal-joint langing enables it to maintain a constant position relatively to the horizon, and it is carefully guarded from jars.

There are several points which distinguish it from other escapements, and several which it bas in common with one or more of the others.

The piece carrying the detent-pallot is a suring, and its motion to free the tooth of the escape-whec is by the contact of a pin or tooth on the verge with a secondary spring attached to the former.

As the balance oscillates in the direction of the arrow, its tooth V comes in contact with the secondary spring a, and presses the lever, so that its tooth T is freed from the toath of the escape-wheel. A ruby pallet P on the verge receives the impact of another scape-tooth, and the balance receives its impulse thereby. As the balance returns, its verge-tooth V presses past the spring withont moving the lever which rests against a stop. The impulse is communicated from the scapewheel direct to the bal-

Chronometer-Escapement.

 ance-arlor, as it is also wheel direct to doplex movement, not as in the lever movement where a pivoted lever intervenes.Arnold's chronometer-escapement is substantially the same; a secondary spring attached to the spring-lever is made effective in vibrating the latter when moved in one direction, and in the other is so pliable as to allow the verge-tooth to pass freely. As just explained, the stroke which raises the spring. lever withlraws the detent from the tooth of the scaje-wheel, and at the same time that this tooth esconpes, another strikes a pallet on the arbor of the balance, and restores to the balance-wheel the force lost during a vibration.

The free movement of the balance is only opposed at one point during a complete oscillation.

Chro'no-met'ric Gov'ern-or. A device by which a time-measurer set to work at a prescribed and equable rate is made to regulate the motion of an engine. Invented by Wood and improved by Siemen.

Chron'o-scope. Inventel hy Professor Wheatstone in 1840, to measure small intervals of time. It has been applied to ascertaining the velocity of projectiles. In Pouillet's chronoscope, a galvanic current of very short duration makes a magneticneelle devinte, the duration of the current being measured by the amount of deviation; by this means as short a time as some thousandths of a seconil can be measured. Schntz's clironoscope was
employed by the Ordnance Department at the experimental firings at Fortress Monroe. The apparatus, operated by electricity; is described as fol-lows:- Two wire targets are placed, one about twenty yards from the gun, and the second about the same distance farther on. These are connected by a fine insulated wire with the instrument, whilh is about 400 yards in the rear of the ordnance. The instrument is adjusted on a plau similar to an electro-ballistic machine. When the shot is fired, it cuts the wire in the first target, and then in like manner cuts the wire in the second target, the instant each wire is severed being recorded by the instrument. The interval of time occupird by the ball in passing from one target to the other furnishes the data for obtaining the initial velocity of the shot.

Noble's chronoscope is used for measuring the velocity of the shot during its passage through the gun. The ball presses upon a series of disks which in moring break or make electric connections, which are recorded on a rapidly rotating disk which has a known rate.

Chrys'o-type. (Photography.) A process by Sir John Herschel in which a sheet of paper is satuated with a solution of ammonio-citrate of iron dried in the dark. Exposed in a camera or printing-frame, the faint picture is developed by brushing over with a neutral solution of chloride of gold washed in water repeatedly, fixed by a weak solution of iodide of $10-$ tassium, and then finally washed and dried.

Chrys-tal'Io-type. (Photography.) A name given to a kind ol picture on a translucent material. Opalotype.
Chuck. 1. Arappendage to a lathe. Being serewed on to the nose of the mandrel, it is made to grasp the work to be turned. There are several varieties, as -

Arbor.
Branch.
Centering.
Concentric.
Driver.
Eccentric.
Elastic.
Epicycloidal.
Expanding.
Universal.
An expansion or elastic chuck a, having a certain range of capacity, may be formed by giving a yuad-

Fig 1287.

rafid cleft to the end of a cylindrical tuhe, whose other end serews on to the threaded mandrel of the lathe-liead. The olject to be turned is thrust into the chuck, expanding the quadripartite socket.
b is Beach's patent drill-chuck.
c, center-drill chuck.
d, Warwick chuck.
e, Marse's adjustable chuck.
A circular saw of small liameter may be mounted on a lathe-cluck f, which las an axial tenon to fit the hole in the saw, and a central serew or nut to fix the same.

Opticians use this mode for the small, thin sars with which they cut the notches in the tubes serving as springs in procket-telescopes.
Carvers in ivory mount their saws in a similar mamer. The saws for cutting the nicks in screwlieads, and those for making slits in gas-burners, may be chucked or mounted on a mandrel.
The small, wooden mechanism for the interior of pianos is cut hy saws similarly mounted.
g is a seroll chuck with three radially adjustable dogs.
h is a planer chuck.
i is a screw chuck.
k is an independent jaw chuck.
The eccentric chuck is designed for changing the center of the work, and consists of two principal pieces; one attachable to the mandrel of the lathe and the other adjustable in a plane at right angles to the axis of motion, in a dovetail groove of the former piece. The sliding-piece is moved by a set screw.
The clliptic or oval chuck was invented by Abralian Sharp, and consists of three parts, the chuck, the slikler, and the eccentric circle. The chuck is sueured to and partakes of the circular motion of the mandrel. In front of the chuck is a dovetail glowe for the reception of a slider, from the center of which projects a screw to which the work is attached. As the work turns round, it has a sliding motion across the center which generates an ellipse. The sliding motion is prooluced by an eccentric circle or ring of brass fastened to the puppet of the lathe close to the collar in which the neck of the natadrel runs.

A straight-line clucck is used in a rose-enginc when the patterns are to be made to follow a straight instead of a circular direction.
A geometric chuck
 has a radial slider to which the work is attached, and this is so governed as to give a combined circular motion and radial oseillation to the work relatively to the tool. See Geometric-lathe; Rose-kngine.

Fig. 1288 shows three forms of lathe-chucks having jaws to grasp the tool or the work, as the case may be.
a. The stock of the chuck terminates in a conical, threaded head, which opens or closes the jaws, which are threaded, and slide in grooves in the conical shell.
b. The unt has a conical opening iu the end which operates against the inctined backs of the jaws, to clamp then upon the drill; when relieved they are expanded by springs.
c. This chuck belongs to that class which is constructed with serews for the purpose of operating the jaws. It is provided with a doulle screw, the pitch of one bellig just half that of the other, to operate the jaws sinultaneously in opposite directions so that they will approach or recele from the center at equal speed, therehy forming a self-centering mechanism.
2. (Nautical.) d is a varping chuce in which hawsers or ropes run. Friction rollers prevent the wearing of the roppe. It is used on the rail or other portion of a shij's side.

Chuck-lathe. A lathe in which the work is held by a socket or grasping device attached to the revolving mandrel of the head-stock. It is used for turning short work such as cups, sprools, balls, and a great variety of omamental and useful articles. See Chuck.
Churn. A vessel in which milk or cream is agitated to indnce the selaration of the oily globules from the other portions.
The aucient mode of making butter was prohably the same as practiced by the Bedouin Arabs and the Moors in Barbary at the present day. The cream is placed in a goat-skin and agitated by haud or by treading it with the feet.
The butter and honey mentioned by Isaiah vii. 15, is to this day an article of food in the East. The butter and honey are mixed and the bread dipped in it.
The word chamea, rendered butter in our translation of the Bible, seems to have referred to several forms of milk and its productions, such as sweet or sour milk, cream, thick milk, curd, or butter. The latter is perhaps the most infrequent form of its use, but is evidently intended in those passages where the article is used for anointing. It was "butter of kine and milk of sheep" that made Jeshurun "wax fat and kick." Abraham "took butter and milk and the calf which he had dressed and set lefore" three stranger visitors. Sisera "asked water, and" Jael the wife of Heber the Kenite " gave him milk ; she brought forthe butter in a lordly dish" hefore she mailed him to the ground with a tent-pin and a lammer. Job refers to the time when he anointed his feet, or as he expressed it, "washed my step's with butter, and the rock poured me out rivers of oil." "Surely the churning of milk bringeth forth butter." The reader can pick ont the various probalilities of each case for himself. It must be mentioned, however, that the word rendered churning uay be just as correctly rendered pressing, and may refer to the pressing of curd to rid it of the whey. Sweet milk occupied but a limited space in the Oriental econony, ancient or modern. It necessarily becarne soon sourerl, and they accepted the situation. The leban (coagulated nilk) of the Arabs was and is the usual form in which milk is used.
The Turks yet slow their Tartar origin in the preference for sour orer sweet milk.
We have a mention of butter in the description of the Scythinns by Herodotus (b. 484 в. c.). "These people," says he, "pour the milk of their mares into wooden vessels, cause it to be violently stirred or shaken by their blind slaves, and separate the part that arises to the surface, as they consider it more valuable and more delicious than that which is collected below it." This is evidently butter.
Hippocrates (460 B. c.) describes the process
more clearly, stating that the lighter portion (butter) rises to the top, and the other part was separated into a lipuid and solid portion (curd and whey), of which the former was pressed and dried (cheesc).
Ths butter is recommenled by this "father of medicine" as an ointment, and subsequently by Galen, A. D. 131.
The peet Anarandrides, describing the wedding of Iphicrates, who married the daughter of Cotys, king of Thrace, wondered that the latter people ate hutter:
The references to butter are occasional only; by Aristotle, who speaks of it as the oily part of milk; by Strabo, who speaks of its use by the Ethiopians; by Plutarch, who speaks of a Spartan lady anointed witk butter, an! sumelling so loudly that Berenice, her hostess, positively conld not stand it. Berenice on her part smelt so strongly of rancid oil, that the Spartan was happy to leave.

Dioscorides and Galen refer to the use of butter as a substitute for olive-oil as a dressing for table use or for leather. Lamp-black, obtained by the burning of butter, they reeonmend for an eye-salve.

Pliny describes the use of butter and cheese by the "barbarous" Germans. The Romans used butter for anointing, the Germans for a hair-dressing, the ligyptians for burning. None of them probably knew the taste of good, hard, elean butter.

The Christians of Egypht used butter instead of oil in their lamps in the third century. It was easier to raise cattle than olives, apmarently, in that land where it is said it now costs less than three dollars to raise a child to maturity.

The Arabidns and Turks have a preparation of curlled wilk, called lebon by the former aud yoourt by the latter, which they preserve in bars. In appearance it resembles pressed curds after they have been broken by the hand ; mixed with water it becomes a cooling drink, and is said to be wholesome and serviceable in febrile diseases. It probably formed the last meal of Sisera.

Fresh yourt is much used as food by the natives, and Europeans soon acquire a taste for it.

The butter received at Constantinople from the Crimea and Kuban is not salted. It is prepared by melting in large pans and skimming oft the impurities which rise to the surface. Butter thus prepared is called ghec in Iudia. It is used for food by some castes and lor auointing. Ghee is used to soak the wool on which the victim of the suttee is sacrificed.

The classes and varicties of churns are so numerous that justice cannot be done to the subject within almissible boumls. The following classification, with an example of each, will afford a glance at the distinctive kinds.

1. The plunyer churn. a represents the verficaldasher plunger churn. A spring assists in the recoil or lifting motion. Rotation of the dasher may be given by a spiral on the stem, or by giving a spiral set to the blades.
b is a horizoutally operatel dasher churn.
2. Berrel chum. chas a pair of dashers revolving in different directions by distinct cranks. In a nodifiel form, the barrel is mounted on trunnions and is itself rotated.
d has a stationary barrel and one rotated dasher.
3. Box churn. e has two dashers revolving at different speeds. The imer dasher is driven by the crank-axis direct; the outer one by an internally gearel wheel, a pinion, and a third wheel on the sleeve whith carries the dasher. The arrangenent of wheels is shown at e^{\prime}.
4. Tub churn. f has a vertical disher-shaft rotated by wheel and pinion from the crank-shatt.
g has two dashers rotating in different directions, one driven by the central axis and the other by the

sleeve axis. Each axis has its own pinion, driven by a common wheel.
h has a pair of parallel dashers driven in contrary directions by the master-wheel, which aets upon the respective pinions.
5. Almospheric churn. i; as the dasber rises, the valve on the upper end of its stem falls and admits air, the valve on the hollow guide-rod closing. As
the dasher descends, the action of the valve is re. versed, aud the air issues into the milk at the openings in the lower end of the hollow stem.
j has a bellows arrangeruent supplementary to the beating action of the dashers.
There are many other rarieties of atmospheric churns ; some have cup-shaped dashers, to carry air down into the milk; others operate by centrifugal action.
6. Compressor churns. z has a rubbing or grinding action on the cream in the upper chamber, the intention being to break the little sacs which contain the butyric particles.
7. The Rocker churn, l, Fig. 1290.
§. The Pendulum churn, m.
The churn rests in the swinging frame, the uprights of which are slotted for traverse of the axial

pin, and have segmental bars bearing npon the dasher crank-shaft, and causing its reciprocating rotation.
8. The Divided dasher churn, n, has a pair of dashers vertically reciprocating and operated by the respective cranks on the common shaft.
9. The Revolving and Reciprocating churn, 0 ; the shaft carries a rotary dasher whose wings act as slides for the arms of a reciprocating dasher. An inner sleeve carries the reciprocating dasher and passes through an outer sleeve carrying the pinion of the rotary arm.
10. The Oscillating churn, p; the crlinder is suspended on trumions and oscillated by the re-
ciprocating dasher-shaft, which is connected to the revolring crank.
11. The Oscillating dasher churn, represeuted at q.
12. The Thermometric churn, in which the box or the dasher-shaft has a thermometer to give constant indication of the temperature of the cream.

Numerous patents have been granted for matters of detail such as :-

Water-tanks for hot or cold water to temper the cream. I vory bushings to prevent the taint of brass, or the rust of iron. Materials, such as glass, stoneware, etc.

Anl artificial butter is made from suet, which is first finely divided by circular saws in a cylinder; then treatcd with water, carbonate of potassa, anil finely dirided fresh sheep's stomachs at a temperature of $45^{\circ} \mathrm{C}$. The pepsin and heat suparate the fat, which floats on the surface, whence it is decanted, and when cool, placed on an hydranlic press, which seprarates the stearine from the semi-fluid oleomargarine. which is emploved as follows in the preparation of the butter: 50 kilogrammes of the fat, 25 liters of milk, and 20 liters of water are placed in a churn; to this, 100 grammes of the soluble matter obtained from cows udders and milk-glands is added, together with a little annotto. The mixture is then chumed, when the butter separates in the usual manner.
ln connection with this sulject, we may he pardoned introducing a short account of how royalty churns by proxy and how nice a dairy may be inade. When "expense is no object."

Prince Albert's model farm is about a mile from Windsor Castle. The dairy is a beautiful cottage with a marble-pared and frescned vestibule. The interior is a ronm about thirty feet square, the roof supported by six octagonal columns of white marble, with richly carsed capitals. The floors are of white porcelain tiles, the windows stained glass, bordered with hawthorn blossoms, daisies, buttercups, and primroses. The floors are lined with tiles of porcelain of a delicate blue tint, with rich medallions inserted of the Queen, Prince Consort, and each of the cliidren. Shields, monograms of the royal family, and bas-reliefs of agricultural design, representing the seasons, complete the ornamentation of this exquisite model dairy. All around the walls runs a marble table, and through the center two long ones, supported by marble posts, resting on basins through which runs a perpetual strearn of spring water. By this means the slabs of table are always cold, and the temperature of the dainy is chill, while the white and gilt china milk and butter dishes resting on the tables are never placed in water. The delicious milk is brought in in bright metal buckets, lined with porcelain, the Queen's monogram and crest glittering on the brass plates on the covers. In the room where the butter is made, milk skimmed and strained, the eyes may be feasted on the rows of metallic porcelain-lined cans of every size, made to luck, and sent to the royal family even as far as Scotland; so they always hare good milk and butter. The churn was of metal also, and lined with porcelain, made in two cornpartments. The outside chamber surrounding the cylinder can have warm or cold water poured in to regulate the temperature. The lid is screwed on, and the stationary stand on which the whole is turned makes the work easy and rapid. But while over sixty cows are daily milked, and as many more are out grazing, the royal family are more than satisfied, and the loondoners growl that the overplus is sold and the money pocketed by their money-saving sovereign.

CHURN-DASHER.

CIGAR.
2. (Porecluin.) The block or chuck on a porceJuin turucr's lathe, on which the thrown and baked articles are thrned by thin iron tools to give truth and smoothness to circular articles.

Churn-dash'er. The moving agent in a churn, rotary or reciprocating, by which the milk or cream is agitated.
Churn-drill. A large drill used by miners. It is several feet long, and has a chisel-point at each encl.
Churn-pow'er. A motor for driving chmrus or churn-dishers to agitate the milk or eream.
Anim.ls, such as dogs, sheep, or goats, are employed in treadmills or slatted platfroms on endfess belts.

The power' of descending weights, springs, wind or water driven wheels, etc., are used.

Chute. An inclined troagh.
On a moderate scale it forms a leader, or feeder for materials or blanks, to machines.

On a large scale it leads water from a penstock to a water-whel, or an inclined plane down which $\log s$ are passed from a higher level to a lower one. These are sometimes in mountainous conntries for land transportation, and sometimes are the links of a slac:k-water system, as on the Ottawa; called slubes.

Ci-bo'ri-um. (Architecturc.) Aninsulatedarched vaılt resting on four pillars, as that over the high altur of a church.

Ci'der-mill. A grinder for apples generally, in practice, including the press in which the pomace is pressed.

The common cider-mill u, used in the Southwest of England, is on the prineiple of the Chilian mill, being a cylindrical stone weighing one or two tons, and rotating in an annular trough of masonry.

The axis of the stone is connected by arms to a sweep which is pivoted on a central post and revolved by a horse. In some cases the central space forms compartments for holding apples. The roller is firom $2 \frac{1}{2}$ to $4 \frac{1}{2}$ feet in diameter, and 9 or 10 inches wide at the face. The trough is somewhat wider at top hy the inclination of its onter side, to allow freedom of motion to the runner. The bed is from 9 to 12 feet in diameter.
Cider-mills in England are also made with hollow iron flutel rollers, working in pairs and meshing into each other.
In lrelame the ajple is crushed between wooden cylinders studded with iron teeth; the pomace is afterwinls pounded with wooden pestles.
The cider-press of the West of England is a modification of the common screw-press. The pomace is enclosed in a lag of haircloth about 4 feet square, and holding two or three bushels. These are heaped over each other in the press, to the extent of fifteen or eighteen bags. These yield from 100 to 200 gal lons of juice, according to number and the suceulency of the apples. The press-screw is manipulated by a lever.

The cider-mill (b) used in the South of France has a platform of hoards framed together and is traversed by a conical frustum of cast-iron whose axis is hookel to a rotating eye in the center of the platform and is swept around by manual power, crushing the fruit in its passage.
The mill c has a grinding-wheel and eoncave, and an apron which carries the pomace hetween two pressing rollers and a wire-screen cylinder throngh which the juice runs.
d has alternate grinding portions and a doubleheaded piston, which presses the pomace against the ends of the box alternately. One end of the box is filling while the other is pressing.

ε has a metallic grinder and a hoop with a screw. f has a grinder and presser, which may be acting simultaneously. A hoop filled with grindings is pushed from below the hopper to beneath the screw, and an empty hoop substituted beneath the former.

Ci-gar'. A roll of tobaceo-leaves for smoking. It
Fig 1292.

hes a pointed mouth-end and a square-butted lightingend. The word is derived from Spanish cigarro, a kind of tobacco grown in Cuba. Also spelt segar. The chcroot is the cigar of the Manillas, aud has a regular taper, but both ends are squarely cut off, one of course is smaller than the other.

Ci-gar'-bun'dler. A clamping-press having jaws of such shape and capacity as the size of the cigar and the number desired in a bundle may warrant. The required number being placed between the jaws, the latter are drawn together by the pressure of the foot on the stirrup and cord, and the jaws locked by an anm while the tie or band is placed around the cigars.

Ci'gar-ette'. A small package of cut tobacco done up in a rolled paper envelope. The envelope is made of rice, tobacco, or corn-husk. The latter is the best.

Ci'gar-ette'-fill'er. A little implement for introducing the finely cut tobacco into the Fig. 1293. paper envelope. It has two forms; a tube and a whapper. The former is shown in Fig. 1293. A roll of paper is wrapped around a tube, and its inner end clamped between two short tubes or collars; the tube is filled with tobacco aud withdrawn, leaving the tobacco in the paper envelope. A hollow piston maintains the position of the tobacco while the tube is withdrawn and forms a stem.

Ci'gar-ette'-ma-chine'. Adorno's ci-garette-machine uses an endless roll of paper. It cuts, wraps, and folds the paper around a regulated quantity of tobacco, which is supplied at one end of the machine, while the finished cigarettes emerge at the other end.

Ci-gar'-light'er. Alittle gas-jetsuspended by an elastic tube. It receives gas through

Fig. 1294.
its trunnions ; the jet is decreased as the handle langs suspended, and is increased as it is raised for lighting. The plug is clambered for half its lencth, and the gas-pipe is screwed into it. A perforation in the plug connects the interior with a channel on its periphery and in the socket, the chammel buing regulated by a screw.

Ci-gar-ma-chine'. For making fillers of cigars and wrapping them. The operations are generally conducted in a series of machines: one cuts wads of cigar length and quantity from a stream of cigarleaves packed and traversing in a chute whose width is equal to the length of a cigar ; the wad thus cut off is driven into a mold which gives it the cigar-shape, and in this it is left to dry, so that when removed it only requires the wrapper to complete it. This is put on in another machine in which the filler is laid bias upon the strip of leaf, and rolled thereon, a pad or apron simulating the action of the human
palm. The tip is finished separately, and then the stub-end cut ott squarely.

Another mode of procedure is to lay a suitable bunch of leaves in an aprou which is lapped around them so as to form them into a sutticiently tight roll ; or the rolling derice consists of a set of cylinders in a circular series, which opens to admit the bunch of leaves, and when closed forms a cylindrical space in which the bunch of leaves is rolled and pressed into a shape for the molds in which it is eventually pressed to the required shape for a filler. The latter is covered by hand or by a machine.

Ci-gar'-press. A press having a motion in two directions : one to compress the cigars in their rows, and the other to press them vertically.

The press has side-screws working horizontally, and a vertical screw so placed as to be over the stack

containing the cigars; the side press-board slides in the slotted sides of the horizontal boards. The cigars are arranged upon the boards with intervening slats.
Ci-gar-steam'er. A peculiar form of craft, shaped like a spindle, and constructed by Winans, of Baltimore.
The first was built in Baltimore - length, 635 feet; diameter, 16 feet.
Second, in St. Petersburg - length, 70 feet ; diameter, 9 feet.
Third, in Harre - length, 72 feet ; diameter, 9 feet.

Fourth, in Isle of Dogs - length 256 feet ; diameter, 16 feet.
'The propeller of the first was placed around the middle of the ressel ; the second hatl a propeller beneath her bottom; the third is fitted for trying propellers in varions positions; and the fourth has a propeller at each end.
Cim'e-ter ; Scim'e-ter. An Oriental caralry sword with a blade of great curvature.

Cinc'ture. (Architecture.) A fillet or ring dividing the capital from the shaft. Another cincture divides the latter from the base.

Cin'der. 1. A scale of oxide removed in forging.
2. Certain kinds of light slag in metallurgic operations.
Cin'der-frame. (Steam-mngine.) A wire-work frame in front of the tubes of a locomotive, to arrest the passage of large pieces of ignited fuel.

Cin'que-foil. (Architccture.) A five-leaved ornament used in the arches of the lights and tracery of windows, panelings, etc.

Ci-on'o-tome. Au instrument for excising a portion of the uvula.

Ci'per-tun'nel. A false chimney placed on a house for ornament or uniformity.

Cip'pus. A low colum, sometimes ronnd, but more frequently rectangular, used as a sepulelnal monument.
Cir-cas'si-enne. (Fabric.) A liglıt kind of cashmere.
Cir'ci-nus. The compass of the liomans, deserihed by Vitruvins.
Cir'cle. 1. This plane figure - comprehended by one line, every part of which is equally distant from the same point - gives a name to a number of instruments, anoong which are the following (whieh see) : -
Mural cirele.
Reflecting circle.

Cireumferentor.

Circular saw.
Circular shears, ete., ete.

2. The fifth wheel of a carriage.

Cir'cle-i'ron. 1. A hollow punch for eutting plauchets, wads, walers, and eircular blauks.
2. A fifih whecl.

Cir'cuit. A continnons electrical communieation between the poles of a battery.
(Telegroplyy.) The wires and instruments forming the road for the passage of the current. At its extremities are the terminals, where it joins the instrument.

A metallic cireuit is when a return wire is used instead of the earth.

A short circuit is one having as little resistance as possible; nothing lont the apparatus and the wire used to comnect it with the battery.
To short circuil a battery is to connect its poles by a wire.

A local circuit includes only the apparatus in the office, and is closed by a relay.
Cir'cuit-break'er. (Telegraphy.) An instrument which prioulically interrupts an electrie current. The name lihcotome was given to it by Wheatstane.

With the automatic apparatus, the cireuit is closed through the armature to and through the electro-magnet by which it is controlled. When thins elosed to the magnet, the latter attracts the armature, breaking the cireuit. The armature is then retracted, so that the eireuit is again completed, and so on.
The simplest and first form of rheotome or cireuitbreaker was a file conneeted to one wire of a battery, the other wire being rapidly drawn over the surface of the file alternately in contact with a tooth and kopping to the next one.

Another form is a spur-wheel moved by land or clock-work; this is common in telegraph instruments and in elsetro-magnetic maehines.

Cir'cuit-clos'er. (Telegraphy.) Primarily any device by which an electrical cirenit is closed. Usially a key; as the comnon telegraph key.
lu fire alarms and many antomatic telegraples, it is a plain metallie disk with insulated spaces on the rim or edge. A flat spring pressing upon the edge eloses the circuit when upon the metallie portion, intcrupts it when on the insulated portion. See Dial.

In place of metallic and insulated spaces, projec. tions or cogs are sometimes used, the interdental spaces answering the purpose of insulated spaces.

Cir'cu-lar Bolt. A machine enployed by the Nottingham, England, laec manufacturers in mak. ing net.

Cir'cu-lar File. A circular saw or serrated disk, adapted to run on a spindle or mandrel, and used in cuting tecth of cog-wheels.

Cir'cu-lar In'stru-ments. Astronomical, malltical, or surveying instruments which are gralluated to 360°, that is, around the whole eirele. Of this kind are altitudc, azimuth, mueral, reflecting, and reperating circles; circumforentor's (which see).

Cir'cu-lar Loom. A loom in whiel the shuttle moves in a circular race and continuously in one directiou through warps arranged in a cirele. The cut shows a loom of this class; the warps proceed from beams or creels near the floor, pass through a ring which brings them in a circle, then through cyes in horizontally reciproeating slides which form the shed, then through between the dents of the circular reed to the take-up mechanism. The shedding - slides are moved by cams on the main vertical shaft. The shutthe is sustained hy and noves on the dents of the reed, and is Jriven by means of an arm provided with a roller whieh presses against

Circular Loom. the head of the shuttle and allows the passage of the warp between them. The shuttle may be provided with a projection to beat up the filling, or comb-like arms made in sections may be made to beat the tilling between the warns.

A nother form is one in which the material is woven around a former which gives it size and proportion, as in Fig. 1297, which is a machine for weaving petticonts and hoop-skirts. The fabric is woven around a block suspencled between the warpcarriers and the track of the shuttles, said block being movable vertieally and laterally, in order that it may be adjusted centrally. The shuttles move on a circular or other endless track, and deposit their woof threads alternately ahove and below a warp thread around the block. The warp-1arriers reeeive an alternate vertical reciproeating motion from a cam on a revolving drum, from which the shuttles also derive their motion.

The warp-threads have to be spread, so as to have them equidistant from each otlier aromad the bluck. For that purpose the carriers have horizontal extensions, which are diverging, like spread fingers, so that the desired effeet is produced, and the desired distance between the warp-threads obtained, without requiring the spreading of the carriers, which are arranged in groups of six, more or less. To diminish friction in the operation of the carriers,

Circular Weaving-Loom.
vieh in 1740 , and was afterwards revived by Olbers in 1798. The principle is as follows:-
" If the field of a telescope 1 e perfectly circular, and its cliameter be determined by observation, the paths of two celestial bodirs actoss the field may be consillered as two parallel chords which are given in terms of a circle of known diameter. The differences of the times at which two stars arrive at the midlle of their paths will be their ascensional differences; and the distance between the chords, which is readily computed from their lengths, gives the difference of the declination of the two bodies." Beande.
The annular form devised hy Fraunhofer is the more convenipnt instrument, as it lermits the moment of ingress and egress to be determined more readily. It consists of an annular glass disk with a steel ring cemented on the inside to form the circular aperture as before described.
Cir'cu-lar Saw. The circular saw was introduced into England about 1790 , but its inventor is not known.
General Bentham contrived the bench, slit, parallel quide, and sliding bevel guide. He also invented making circular saws of segmental plates.
One was patented in England by Trotter, 1804. Brunel's veneer-saw, 1805-1808.
The double saw-mill shown in the illustration is of the Blandy pattern, selected from a multitude of others as a good specimen of its kind. a is the frame of the saw-mill proper, b the way's on which the log-carriage c traverses. g is the lower saw, which may have an average diameter of, say, 60 inches,

Fig 1298.

Doubie Sate-Mill.
and a rate of revolution of, say, 500 to 600 revolutions per minute, varying with the kind of wood and the dimmeter of the saw. d is the upper saw, whose arbor has its bearings in the inon frame $e \varepsilon$, which may le detached, with all its appendages, from the sill pieces $a a$, so that the machine then becomes a single suw-mill, the working radius of the saw being sulficient for the ron of logs of the locality. f is the band-pulley of the lower saw, and $h i$ are the pulleys ly which the motion of the lower saw-arbor is comminicated to the upper saw $d, j k$ are the conepulleys concerned in the fecd and gig-breck motions of the \log-carriage $e . \quad l$ is the lever by which the direction of motion of the carriage is regulated.
$p p$ are the knees of the head-blocks $r r$, on which the \log lies and is fastencl by the dogs $s s$. These head-blocks are adjustable longitudinally on the carriage, according to the length of the \log, and the knees of the head-block are set up closer to the saw after each cut of the saw, to a listance equal to the thickness of board required and the width of the kerf. The setting up of the knees is done simultaneously by the vibration of the lever t, which has a paw] acting upon each of the ratchets $u u^{\prime}$. When it is desired to saw a board thicker at one end than at the other, the knees on the respective head-blocks are moved independently by the levers $v w$ respectively, these levers having each a pawl to actuate that one of the ratchets u which belongs to the appropriate head-block.
The feed-motion of the carriage e consists of a friction-wheel x on the pulley y; on the arbor of the latter is a pinion z, which meshes with the rack on the under side of the log-carriage. The direction of rotation of the pinion z determines the feed or gig-back motion, which is controlled by the position of the lever l on the quadrant. m is a revolving wedge which enters the kerf and spreads the board from the log.

One form of circular saw for cross-cutting cordwood, or lutting framing-timber, is shown in the an-

Fig. 1299.

Butting-Saw.
nexed cut. The wood lies upon a sliding-frame and is pushed toward the saw and drawn back by hand.

Suws are made in Trenton, New Jersey, 88 inches in diameter, with 48 insertable teeth, and, allowing 6 inches for collars, are adapted to cut boards 41 inches wide. Such a saw is designed to make 375 to 400 revolutions per minute, to cut 6 inches to a revolution, and is dechared capable of cutting 50,000 feet of inch lumber in ten hours.

Cir'cu-lar Shears. A shears for sheet-metal consisting of two circular blades on parallel 1 ins.

Cir'cu-lar Shut'tle-box Loom. A loom having a box with a number of shuttles, six in the figure, and having means for actuating it so as to bring any one of the six shuttles into operation as required by the pattern. The circular shuttle-box is mounted on an axle at one end of the sley, and bas a positive revolving motion given to it, when required to change
a shuttle, by a chain H actuated by gearing G in connection with two racks, the amount of motion being regulated by tumblers connected to jacks or levers governed by Jacquard cards.
A is an eccentric connected to a lever B, for giving motion to the sliding bar C, furnished with projectious D, which act upon tumblers E when

Fig. 1300.

Circular Shuttle-Box Loom.
they are lifted by the cards connected to the jacks or levers F, which is whenever there is a blank in the part of the card opposite to the jack or lever. When these tomblers are lifted they fall into slots in the racks, and being canght by the projections D, the racks are carried forward and the pinion G turned; this gives motion to the upright shaft and bevel wheels, through them to the chain wheels $H H$, one of which is on the axle of the shuttle-box. Each jack or lever F, except the two end ones, is connected to two tumblers, one on each rack; and as the racks are on opposite sides of the pinion, the tumbler gives motion to the rack on one side, and the other tumbler aets as a stop, and regulates the exact distance that the opposite rack, and consequently the shuttle-box, moves.
Cir'cu-lat-ing-pump. (Stcam-cngine.) The cold-water pump by which condensation water is drawn from the sea, river, or well, and driven through the casing of a surface condenser,
Cir'cu-lus. (Glass-muking.) A tool for cutting off the necks of glass-ware.
Cir-cum'fer-en'tor. 1. A tire measurcr. A wheel, a, graduated on its periphery and axled in a holder. It has a cireumference of known length, and is passed around the outside of the rim of a wheel, b, to ascertain the length of the tire. The instrument having a perimeter, say 2 feet in circumference, the zero is brought to a marked spot on the periphery of the wheel

Fig. 1301.

CISTERN.
to be measured. The small wheel is then caused to travel around the larger, and imlicates the length by making so many revolutions and sucli a fraction, as the case may be. A tire-circle.
2. A surveying instrument; used commonly in mines, coal-pits, etc., in England, but a very common instrument in the United States for surveying. Dany of the old-fashioned surveyors yet use it, though it is disappearing as the theodolite becomes more and more commonly known.

It consists of a that har of brass $B B$ about 15 inches in length, with sights $C C$ at its opposite ends, and two narrow slits $b c$ for observations; in the middle of the bar is a circular hrass box A, containing a magnetic needle and covered with glass. The ends of the needle play over a brass circle g, which is divided into 30°, in such a namner that the two numbers of 90° are at right augles to the lnnes drawn througl the sights. The

instrument is supported by a ball and socket-joint on a stalf or tripod. When the magnetic needle is well balanced and moves freely in its horizontal position, the sights can be turned towarls the object to be surveyed, and the needle will retain its position of N . and S . The number of degrees which the angle contains after moving lrom one object to another can be counted off on the gradnated circle. The lower part of the figire shows the mode of reading and plotting the bearings.

Cir'cum-flex. The mark [" \wedge "] over a vowel, indi:ating a certain accent.
Cir'cum-val-la'tion. (Fortification.) An encirciing line of field-works.

Cir'cum-vent'or. A surveying instrument having a compass-box at top for taking angles. See Chicumferentor.
Cir'so-tome. (Surgical.) An instrument used in the extirpation of a varix ; that is, a varicose or dilated vein.

Cis'tern. 1. A tank or other form of artificial reservoir for containing a supply of water.
Cisterns have always heen very common in lands subject to occasional abundant supply with intervals
of drouth. In India cisterns are on a very large scale ; in Egypt they assumed the proportions of lakes; in Ceylon are the remains of many on a scale far beyond the ahility of the Cingalese population either to construct or utilize.

The change of domicile of the Israelites from a land of annual overflow to a land of rains, from a land of artificial irrigation to one of ruming waters, was cited as one of the peculiar advantages in their removal from Egypt to Palestine. "For the hand whither thou goest in to possess it is not as the land of Egypt from whence ye came out, where thon sowedst thy seed, and wateredst it with thy foot, as a garden of herbs; but the land whither ye go to possess it is a land of hills and valleys, and drinketh water of the rain of heaven." - Dent. xi. 10, 11.
Yet even in Palestine cisterns were a necessity, the rains falling only in spring and autumn. The pools of Solomon are near Bethlehem, and are 3 in number, on the slope of a hill, and one above another, so as to form a chain of pools. The brealth of each is from 80 to 90 paces; the upper pool is about 160 paces, the second 200 , the third 220 . The water was conducted to Jerusalem.
The Romans built magnificent and elahorate cisterns, many of them ou such a scale that they are called reservoirs. They made them every 20,000 feet in their aqueducts, to act as reserve and admit of repairing the conduit. Near the baths of Titus in old Rome are nine subterranean cisterns $17 \frac{1}{2}$ feet wide, 12 feet high, and about 137 feet long.

The baths were constructed with a number of separate lavatories, named according to the temperature, the frigidarium, the tcpidarium, the caldurium, or balneum. These were made of masonry or concrete.

The material was broken stone and the best of mortar. The mortar was made of pure, clean sand, 5 ; lime, 2 parts. The stone was tlint, of which no piece weighed over a pound.

Several divisions were made in the cisterns which were used for supply of water, which passed from one to another, depositing its impurities.

The reservoirs which received the water from the aqueducts, and from which the supply was distributed, had three pipes of equal diameter, so connected that when the water orerflowed at the extremities it was discharged into the middle one, which supplied the pipes for the fountains; a second pipe supplied the baths; a third one the private houses. The public supply was never deficient nor could it be direrted. A tax was levied on the private houses, which was expended in keeping the aqueduct in repair.

In Fig. 1288, a is the elevated cistern used for supplying locomotive-tenders. The jointed pipes

Fig. 1303.

Railway-Cistern.
$\varepsilon \in$ are maintained in elevated position by connterbalance weights when water is not being discharged. On pulling them down, as shown in the figure, by means of an attached cord, a valve at the joint allows water to How throngh them from the pipes $b b$, and into the rescrvoir of a tender standing on either of the tracks $d d$. This is also known as a wetercrane.
Fig. 1304 is the cistern used in houses when the water supply is internittent ; it has a main-service pipe provided with a ballvalve, a house-scrvice jije a, provided with a ball. cock b, and a rose to strain the water, a stumdiny waste-pipe c, to allow excess of water to rim off, and a wrastc-pipe d, which allows the cistern to be mptied for cleansing, when the standing-pipe is renoved.
Cupacity of Cisterns in Gallons for cach Ton Tuches in Depth.

Diam. in Feet.	Gallons.	Diam. in Feet.	Gallons.
2	19.5	8.5	353.72
2.5	30.6	9	396.50
3	44.6	9.5	461.4
3.5	59.97	10	459.6
4	78.33	11	592.4
4.5	99.14	12	705
5	122.4	13	827.4
5.5	148.1	14	959.6
6	170.25	15	$1,101.6$
6.5	206.85	20	$1,958.4$
7	239.88	25	$3,059.9$
7.5	275.4	30	$4,406.4$
8	313.33		

2. (.Mining.) A tank in a deep mine shaft, set upor a sarcement; it serves to receive the water of the pump below, and supply water to the pump above. The usual length for a set of mining pumps in 25 to 30 fathoms. At such intervals cisterns are liacel.
3. (Stcom-enginc.) The vessel inclosing the condensel of a condensing steam-engine, and containing the injection water.
4. (Glass.) The receptacle into which glass is lalled from the pots to be poured on the table in making plate-glass, or in casting glass. A cuvette.

Cis'tern-fil'ter. A cistern having a permanent chmber which has filtering material intervening

Piltering-Cistern. between the supply and discharge. In Fig. 1305 , the water passes through the filtering material down one side of the vertical axial division, and, after passing heneath it, rises unon the otlier side.

In Fig. 1306, the filter is at the lower end of the pumpr. stock. Two concentric cylinders are clamped between an upper and under disk, by means of an enlarged section of the
pump tube. The annulal space between the cylinders is filled with filtering material, and the cylinders are jerlorated on opposite sides, so that the water makes a partial circuit to reach the inner space which counects with the ןump tube.

Cis'tern-pump. A small pump, lift or force, for lumping water from the inoderate depth of a cistern.

Cit'a-del. (Fortifica-

Fig. 1306.
 tion.) An inner work

Cistern-Filter cayable of independent
defence, but joined to the other works of a place.
Cith'a-ra. (Music.) An old kind of harp. The cilherm is an Austrianstringell instrument. The citole is aninstrumentlike thednlcimer. Theeitecn is an ancient insirument resembling the lnte. See Cirtenin.

Cit'tern. (Music.) An old kind of guitar.
"My lord [Sandwich] called for the lieutenant's cittern, and with two candlesticks with money in them for symbols (rymbals), we made barber's music." - Peprs, 1660.

Civ'er-y. (Architecturc.) A bay or compartment of a vanlted ceiling. A sezery.

Civ'il En-gi-neer'ing. Sce under the following heads:-

Adobe.
Alignment. Anchor-gate. Anclior-suspension cable. Angle of repose. Aqucduct. Arch. Arched beam. Artesian well. Asphalte pavement.
Auger.
Baleine.
Ballast.
Pank protector.
Banquette.
Basalting.
Batter.
Battering plumb-rule.
Battery-head.
Bram.
Bearing-pile.
Beché.
Bed.
Bench.
Berme.
Béton.
Bevel plumb-rule.
Blasting.
Blasting-needle.
Blinding.
Bolt and spike extractor
Boring wells.
Bottouing.
Bowstring-girder.
Pox-beam.
Breakwater.
Breast-wall.
Brilge (varieties,
Bringe).
Bridge-stone.

Buckled piate.
Cable. Submariue.
Cable. Suspension-bridge
Caisson.
Camel.
Cimp-sheeting.
Canal.
Canal-lift.
Camal-lock.
Canal-lock grate.
Carpentry.
Canseway.
Cendreé de Tournay.
Ceutering.
Chemise.
Claw bar.
Cob wall.
Coffer dam.
Compo.
Concrete.
Conduit.
Construction way.
Corduroy road.
Comnter-fort.
Coursed masonry.
Cradle.
Crevasses. Stopping.
Crosette.
Crow-har.
Crow's foot.
Cuddy.
Culvert.
Curb.
Cutling.
Dam.
Dead-wall.
Detomating-primer.
see Digue.
Dike.
Ditching-machine.

Diring-bell.	Monkey.
Dock (varieties, see Dock). 1	Mortar.
Draining. N	Nitriue.
Drill. N	Nitro-glycerine.
Drum-curb.	Nitroleum.
Dualine.	Notching.
Dumping-bucket.	Oil-well.
Dynamite. P	Pannier.
Earth-boring auger. P	Paved way.
Earth-work. I	Parement.
Embankment.	Paving.
Excavator.	Paving-machine.
Expluter.	Paring-roller.
Extension ladder. P	Pebble paring.
False works.	Pick.
Fascine.	Tier.
Filling. I	Pierameter.
Finger-grip. I	Pierre perdue.
Fire-escape.	Pile (varieties, see Pile).
Fire-ladder.	Pile-drawer.
Floord-gate.	Pile-driver.
Fulminate.	Pile-sar.
Gabion.	Piséwork.
Gage-ladder.	Pitched work.
Gavelock.	Plauk-road.
Girder.	Polings.
Grab.	Pozzuolana.
Grade.	Praya.
Gradient.	Pricker.
Gravingr-post.	Profile.
Grafting tool.	Proneller (varieties, see
Grapnel.	Proreiler.).
Graving-dock.	Pump (varieties, see PUMP).
Grillage.	Quadrel.
Ground-mold.	Quarrying-machine.
Ground-plan.	Rail (varieties, see Ratl).
Ground-plot.	Railroad (varieties, see
Ground-work.	Railway-engineering).
Grout.	Raising sunken vessels.
Gulleting.	Ram.
Gunpowder.	Rammer.
Half-lattice girder.	Reamer.
Horse power.	Retaining wall.
Horse run.	Rising.
Honse moring.	Road.
Hydranlic engineering and derices.	Road-making machine. Road metal.
Hydraulic mortar.	Road roller.
lnclined plane.	Road scraper.
Jar. Boring.	Rock-crusher
Jetty.	Rock drill.
Juniper.	Roman cement.
Ladder.	Roofing composition.
Laminated rib.	Roofing machine.
Landing platform.	Foof staging.
Lattice girder.	Roof truss.
Lemytheuing rod.	Rounder.
Levee.	Punner.
Level(varieties, seeLevel).	Saddle.
Lewis.	Sand scoop.
Lift. Canal.	Sand pump.
Lift-lock.	Scaffold.
lisishthouse.	Scagliola.
Lithofracteur.	Scarcement.
Lo k. Caual.	Scraper.
Macadamizing.	Screw-pile.
Mavomry (see Masoss'	Sea wall.
avd Bricklayers'	Sewer.
Tuols, etc.).	shield.
Metal.	Shipwrighting (which see).
Mill-dam.	Shrinkage.
Mining (varieties, see	Side cutting.
Mising).	Signal-tower.
Hole.	Sinking.

Slack water navigation.	Temoine.
Slating.	Trpit.
Slip.	Torpedo for oil-wells.
Slope.	Track-layer.
Sludger.	Traction engine.
Snow-streeper.	Tramway for ferry-boats.
Spandrel.	Tram-road.
Spoil.	Trass.
Staging.	Trestle.
Staith.	Truss.
Stall-boards.	Tube-extractor.
Starling.	Tubular bridge.
Steam-engine (whichsee).	Tunuel.
Steining.	Tumnel-excavator.
Stone. Artificial.	Tault.
Street-railway.	Vault-corer.
Street-sprinkler.	Vault-light.
Street-sweeper.	Viaduct.
Street-matering.	Water-elevator (which
Subterranean railmay.	see).
Sub-way.	Water-wheel (which see).
Suspension bridge.	Well.
Suspension railway.	Well boring.
Swing bridge.	Well-drill.
Talus.	Well packing.
Tamping.	Well-tubes, driven.
Tamping-bar.	Well-tube filter.
Tamping-plug.	Wharf.
Teaming.	Wing wall.
Telo-dynamic cable.	W'ire way.

Telo-dynamic cable.

Trpit.
Torpedo for oil-wells.
Track-layer.
Tramway for ferry-boats.
Tram-road.
Trass.
Truss.
Tube-extractor.
Tubular bridge.
Tunnel-excavator.
Tault.
Tault-cover.
ult-light.
Viaduct.
see).
Well.
Well boring.
Ih ell-drill.
Well packing.
Well-tubes, drivea.
Well-tube filter.
Wing wall.
Wire way.

Clack. 1. (Milluerighting.) A device in grainmills for ringing a bell when more grain is required to be fed to the hopper. A mill-hopper alarm.
2. A valre.

Clack-box. 1. In a locomotive, a ball-valve chamber attached to the boiler, and preventing the retlux of water in the feed-pipe.
2. The chamber of a clack-valve. The illustration shows the parts of a bucket-lift of a Cornish

Fig. 1307.

Clack Box and Door.
pump, lying upon the ground. It shows the work-ing-barrel u, clack-box b, door c, and wind-bore.
Clack-door. (Mining.) The aperture through Which the clack is fixed or remored.
Clack-mill. A noisp clapper urged by the wind, and iutended to scare birds.

Clack-vaive. A valve hinged at one edge, opened by the passing current, and elacking back on its seat by gravity.
The bitterfly-valve has two leaves hinged to a bar crossing the passage-way,
The ralves of the feed-pump of a locomotive are technically called clacks, though they are frequently ball-valves.
a. valre ; b, hinge ; d, seat.

Clam'ming-ma-chine'

A machinein which anengrared and hardened dic (intaylio) is
 madeto rotate in contact with a soft steel mill, in order to deliver a cameo impression thereupon. The mill is used to indent copper rollers for calico printing. It

is the same system as that used in the American bank-note engraving, and was invented by Jacob Perkins.

The mill is cylindrical, and is jonrnaled in bearings attached to the beadstock B of the machine. The cylindrical die is joumaled in the sliding-piece C. The mill, having been aljusted in its bearings, is forcibly screwed up against the die, to which motion is imparted by the gears $D E$ operated by the winch F.
Clamp. 1. A pile of bricks built up together in order to be burned.
2. (Mcta'lurgy.) A pile of ore heaped for roasting, or of coal for coking.
3. (Joinery.) a. A frame with two tightening screws ly which two portions of an article are tightly compreised together, either while being formed, or while their glue joint is lrying. (b, Fig. 1310.)
b. A back batten insertel or attached crosswise to unite several boards and to keep them from warping. Otherwise called a key.
4. (Shipbuilding.) The internal planking of a ship under the sliclf on which the ends of the deekbeums rest. In vessels of war, the clamp is the planking above the ports, and the spirketing that below the ports. See Spirketing.
5. (Ordnrnee.) One of the hinged plates over the trunnions of a gun, usually called cop-squares.
6. (Mruchinery.) One of a pair of movable checks of lead or copper covering the jaws of a vise, and enabling it to grasp without bruising.
7. (Sudullery.) See Sewing-clayp; Stitchingclamp.
For varieties of clamps, see under the following heads:-

Axle-clamp.
Bencl-champ.
Book-clamp.
Castrating-clamp.
Claw for suspending tackle.
Clutch.
Flask-clamp.
Floor-clinnp.
Grinding-clamp.
H uness-clamp.
Hitching-clamp.
Holdfast-clamp.

Joiners' clamp.
Lathing-clamp.
Line-clamp.
Molders' clamp.
Newspaper-clamp.
Pipe-clamp.
Planking-clamp.
Rigring-clamp.
Rope-clamp.
Rope-clutch.
Saw-clamp.
Sial-chatch.
Screw-clamp.

Sewing-clamp.
Stiteling-clamp. Stopper. Cable. Strip-clamp.

Clamp'er. A metallic shoe for a boot-heel, hav. ing calks to prevent slipping on ice. An ice-erceper.

Clamp-nail. (Shipwrighting.) A large kint of nail used to secure the clanns to the ribs of a sinip.
Clamp-screw. A joiner's implement, on the bench, or to be attached to the work, for holding work to a table, or two pieces together.

Fig. 1310.

Clap'board. (Carpentry.) (Ger. klapp-bord.) A term irregularly used. It means :-

1. A weather-board on the side of a house, laid on, lapping the one beneath it, clinker fashion.
2. A roofing-board larger than a shingle and not usually shaved. A common size is a riven-board 48 inches long, and 8 inches broad. They are rived in the direction of the medullary rays, and the edge toward the heart is the thimer of the two.
3. In East England, a plank; a cask-stave.

Machines are constructed for riving, sawing, plauing, and gaging clapboards.

Clap'board-gage. A device used in putting on the weather-hoarding of a house so as to leave a uniform width of face to the weather. The gage takes its set from the lower edge of the board last nailed on, and has a stop for the lower edge of the board next above.
Clap-net. A net in hinged sections which close npon the game.

Clap'per. A part which strikes, as:-

1. The tongue of a bell.
2. (1Iill.) The clack which strikes the mill-hopper:
3. A piece of board to prat bricks to correct any warping when partially dried, in removing from the floor to the lack.
4. A clack-valve.

Clap'per-valve. (Steam-engine.) A valve sus. pended from a linge and operating on two opremings or seats alternately. In a modified form, it consists of a disk vibrating between two seats. A clack-valve.

Clap-sill. (Hydraulic Engincering.) The bottom part of the frame on which the lock-gates shut. The miter-sill: lock-sill.
Clar'ence. A close single-seated carriage with a driver's seat in front.
Clar'i-bel'la. (Music.) A stop in an organ.
Clar'i-fi-ca'tion. The clearing of liquids by chemical means, as opposed to filtration.

Clarifiers or finings act by:-

1. Embracing the feculent matter and subsiding with it to the bottonn of the vessel. Or :-
2. Byinducingachangein thecharacter of the liquid by which the feculencies are deposited as sediment.

The nsual clarifiers are:-
Albumen, gelatine, acids, salts, blood, lime, plas-ter-of-paris, alum, heat, or alcohol.

CLAVICHORD.

Clar'i-fi-er. (Sugar.) A metallic vessel in which Fig. 1311.

Clarifier. cane-juice is puritied by heating and treatment with lime.

It consists of a hemispherical copper pan P and a cast. iron jacket J, the intervening space being filled with stearm by the pipe V. A pipe is used for conducting off condensed steam, and a is a fancet by which air escapes when the jacket is lirst charged with steam. The cylindrical upper portion L of the pan is to keep the scum from frothing over. The phig p in the hottom of the pan is furnished with two or three holes, down either of which the contents of the pan may be discharged by the appropriate movement of the valve-handle beneath.

The clarifier being filled with juice, steam is admitted to the jacket and the temperature raised to 174°. After skimming, milk of lime is added to nentralize the acid in the juice, the process being tested from time to time by litmus paper. A tlick scum rises to the top, and the heating is continued until the scum is about to break, when the steam is shnt off, the juice allowed a few minntes to settle, and the middle portion or clear liquid is removed by turning the hanille of the cock c, which opens a hole three inches from the botton of the pan. As soon as scum begins to appear the discharge is stopped. The plug p is then removed, when the somm and sediment pass out of the pan an 1 are placed in bags which, by pressure, yield the remaining juice.

In the clarifier shown in Fig. 1312, the centrifugal force generated by the rapid rotation of the strain-

Fig. 1312.

Centrifugal Clarifier.
er G canses the juice to flow up to and discharge through the perforations around its upper edge, whereby it is effectively brought in contact with the gas which pervades the curb A. The jets of juice are met by currents of gas, produced by the vanes.

Clar'i-fy-ing. The process of removing feculent matter from saccharine juices by heating, skimming, and precipitation. See Clarififr.

Clar-i-net'. (Ital. clurinetio; Fr. clarinctic.) A reed instrument used in hands. Its name from clarus (Latin), clear, :ignifies a certain dominance of tone, and truly it chits an importunate sound. It
is played by means of holes and keys, opened and closed hy the fingers, after the manner of a flute. It was invented by John Denner in Leipsic, A. D. 1600. The donble clarinet of the Arabs is termed a zoomara.

Clar'i-on. (Music.) a. A trumpet with a narrow tube, and having an acute and shrill tone. it was introduced by the Moors into Spain, A. 1. :1.0.
b. A stop of an organ having metallic reed pipu: tuned an octave higher than trumpet; in unison with principal and flute. See Stor.

Clasp. 1. A catch or fastening for a belt, thie covers of a book, etc.

One part has generally a plate, which is bent over to form a look, and the other has a wire on which the hook engages.

A belt-clasp is sometimes merely a hook and eye on the respective parts. See Belt-coupling.
2. (Spinning.) A device consisting of two horizontal beams, the upper one being pressed uron the lower one, or lifted, for drawing out the thread of cotton or wool.
3. A little bent plate which fastens two oljects together, as the clasps which attach the wires to the tapes of hoop-skirts.

Clasp-hook. 1. A pair of hooks moving lipon the same pivots, and forming mousings for each other.
2. A tongs, whose jaws a overlap upon each other. The ruming ring b is the riciss.

Fig. 1313.

Clasp-knife. A large
knife, the blade of which shuts into the handle. Clasp-lock. A lock on the clasp which unites the two flaps of a book-cover.

Clasp-nail. A square-hodied, sharp, wrought nail, whose head has two pointed spurs that sink into the wood.

Clav'e-cin. (Music.) A harpsichord. A prostrate harp whose strings were agitated by plectra operated by keys.

Clav'i-chord. The clavichord was one of the predecessors of the piano-fortc. Like the latter, the strings were struck; unlike the harpsichord and spinct, in which the strings were vibrated by a quill.
The string was struck by a vertical pin-wire, when the key was depressed. The sonorous vibration was modified by a muffer, consisting of a strip of cloth. This also gave a certain softness to the tone. The whole was enclosed in an oblong case. See Piano-forte.

We read of a clavichord having forty-nine stops (keys?) and seventy strings, which bore upon five bridges, the first being the highest, and the others diminishing in proportion.
The clavichord used in concerts about A. D. 1589 lhad been known for some centuries; it was a that rectangular box having twenty keys, embracing two and a half octaves, the semitone \bar{B} flat being introduced in addition to the seven tones of the diatonic scale. The instrument hal no legs, and was supported on a table. It may he considered the precursor of the square piano. It is prohalle that there were not so many strings as keys, the strings heing shortened, as in a gnitar, by a device bronglit into action by the movement of the key, which struck the note.

We read in a Leipsic work of 1600 of an instrnment brought by Prietorius from Italy to Saxony, in which each key had its own string. This was considered quite a novelty in a keyed instrument, though common enough in harps, and was not fol-
lowed till long afterwards, probably the latter half of the eighteenth century.

Clav'i-cith-e'ri-um. (Music.) An old form of upright stringed instrument played by means of keys. It was usel early in the sixteenth century, and has by some been supposed to be the sume as the virginel (which see). The clavicitherium may be considered the precursor of the upright piano. It was modeled upon the cithara, and preserved a harr shape. It was comparatively light, and was rested on a table or the knees while playing.

Clavi-cym'bal. Pretorius, who wrote in the sixteenth century, describes a clavicymbal which he saw at Prague. It was the shape of a prostrate harp, or a grand piano without legs. lts compass wals four octaves, with nineteen motes in each octave. The sharps and flats had separate keys; as, for instance, c sharp and d flat were separate with different tones; keys were also provided between b and c and c and f. Ciavicymbalum.

Cla'vi-er. (Music.) a. The key-board of an organ, piano-forte, or other instrument similarly played.
b. From Latin clavis, a key. The musical instrument of the sixteenth century, which consisted essentially of harps played by keys, were named from the latter feature Clavichord; Clavicymbal; Clayicitierium, etc. (which see).

Clav'i-ole. (Music.) A finger-keyed viol.
Claw. 1. (Carpentry.) a. A hammer with a bent and split peen to draw mails.

b. A little split tool for drawing tacks.
2. The bent and bifurcated end of a crow-bar ; so also of the lifting-bar of a jack.
3. A bent hook on the end of a hoisting ehain. A grapnel for suspending tackle. (Fig. 1314.) A hook-shaped trol.
4. (Locksmithing.) A spur or

Claw. talon projecting from a bolt or tumbler.
The essential feature is the talon or hook, and the word forms a part of many compound words, as -

Claw-Ear.
Claw-bar.
Claw-hammer.
Claw-jack.
Claw-wrench.
Rail-claw.
Tack-claw, etc.
Claw-bar. A lever or crow-har with: a bent bifurcated claw fur draw-

Fig. 1316.

Claw-Hammer.
ing spikes. The cut shows a supplementary shackle G, for reaching the heads of spikes in deep-seated depressions.

Claw-ham'mer. A hammer having a bifurcated bent pren, suitable for catching below the head of a nail to draw it.
Claw'ker. (Kuitting-machinc.) A feed-pawl or hand for a ratchet.

Claw-wrench. A wrench having a loose, pivoted jaw which binds of itself:

Fig. 1317.
Such are many of the forms of pipe-wrcnches (which see).
ln the one shown, the jaw B is made to approach jaw A by the engagement of the circular rack of on the handle with the rack c on the jaw B, so that the harter the strain on the handle the tighter the pinch.
Clay. A composition of

Claw-Wrench. silex or tlint, mixed with alumina. The latter is usually about one fourth.

Forcelain clay is formed by the decomposition of a rock formed of quartz and feldspar.

Chinese kaolin consists of - silex, 71.15 ; alumina, 15.86 ; lime, 1.92 ; water, 6.73.

Comish kaolin consists of --silex, 50 ; alumina, 50 : lime, 1.

In the conmon acceptation of the term, clay is an earth which possesses sufficient ductility and cohesion, when kneaded with water, to form a paste and permit being fashioned by the hand, in a mokl, or on a lathe.
Clayes. (Fortification.) Hurdles to form blinds for working parties. Reinforced with earth, they are substantially gubions, and as such are of a more permanent character.

Clay/ing. 1. (Sugar-making.) A process in the erystallization of refined angar in molds, in which a lump of wet clay is laid mpon the base of the inyerted cone of wet sigar, to secure the more perfect drainage of the coloring solution therefrom, by the prolongation of the process.
2. (Mining.) Lining the hast-hole with clay, to prevent the explosive becoming thamp.

Clay'ing-bar. (Mining.) A cylindrical bar for driving tenacious clay into the crevices of a blasthole, in order to prevent percolation of water on to the charge.
Clay-mill. A mill for grinding clay for bricks,

tiles, or the manufacture of pottery, stone-ware, porcelain, etc. The pug-mill is the form most usually employed. See Brick-machine; Pug-mill.

In the South of Eugland, at a famous clay-pit which supplics the potteries of London and Staffordshire, a form of Chilian mill is used. The dry clay is shoveled into a pan, which has a grated bottom; the runners rub and squeeze the clay so as to render it homogeneous, and mix thoroughly the clayey with the sandy particles with which it abounds.

To the upright shaft of the runners are attached two scrapers projecting as far as the rim of the bedplate; the one is continually spreading the clay over the gratings, to allow the fine clay to pass through; and the other follows, collecting the coarser particles, and is so placed as to bring then again under the runners.

Another kind of mill may be used for working clay into mortar for bricks. It is used in England

Clay-Mill.
for grinding chalk into pulp for adding to the kinds of clay deficient in lime, and is called a crashingmill. Two of these mills are placed close together on a large double mound, sufficiently elevated to allow the malm to run down freely to the brickrath. The chalk-mill is a circular trough liner with brickwork, in whirh the chalk is ground by the action of two heary wheels with spiked tires, made to rerolve hy either one or two horses. The trough is supplied with water by a pump, the lever of which is worked by the machinery of the clay-mill, and as the chalk becomes ground into pulp it passes hy a channel to the brick-earth with w? ${ }^{1}$ ich it is incorporated in a pug-mill.

Clay'more. Formerly the two-handled sword
of the Scotch Highlanders. Now a basket-hilted broadsword.

Clay-pipe. See Tobacco-pipe.
Clay-proc'ess. In this process clay is substituted for plaster in the process of inaking sterentype molds. The face of the type is forced into the clay by pressure. A plaster-mold, on the other hand, is formed by pouring the plaster on the type.

Clay-pul'ver-iz-er. A machine for grinding dry clay to render it more homogencons previous to pugging.

Clay-screen'ing Ma-chine'. A machine for sifting pulverized clay. Used in preparing it for some of the finer ceramic manufactures.

Cleach'ing-net. A hand-net with hoop and pole.
Clead'ing. Plank covering or casing. As :

1. (Mining.) The boarding whieh lines a shaft or a tunnel.
2. (Hydraulic Engincering.) a. The planking of a dam or cotfer-dam; or of a sea-wall, secured to guide piles, for instance.
b. The planking or skin of a canal lock-gate.
3. (Steam-engine.) The wooten coveling of a steam-boiler or cylinder to prevent the radiation of heat. Lagging.

Clean'er 1. (Leather.) A currier's straight. two-handled knife, with a blade two inclees broad.
2. (Founding.) A slicker. A tool nsed for smoothing surfaces in sand-molding.
3. (Carding.) One of a pait of small card cylinders called ureiins, arrangel around the jeriphery of a card-drum. The worker is the larger of the two ; it takes the fiber from the carl-drum and delivers it to the eleaner, which returns it to the carddrum. See Calining-machine.

Clean'ing-ma-chine'. (Silk-manufacturc.) A machine in which silk thread is carried from bobbins over a glass or iron guide-rod, and then drawn through a brush in order to detach any particles of dust or dirt therefrom. To remove knots or humches the thread is drawn through a notch in a bar of metal. When a knot refuses to pass through the opening, the plate is depressed, the hohhin lifted off the friction-roller which drives it, and, the attention of the operator being thus drawn to it, the knot or fluff is picked off and the bnblin again set in motion. See also Cotton-cleaner.

Cleans'ing-vat. (Brcuiug.) A vessel in which the fermentation of beer is concluded; the yeast running out of the bung-hole, and being kept full by supply from a store-vat.

Clear'ance. (Stcum-engine.) The distance between the piston and the cylinder-head when the former is at the end of its stroke.

Clear-coIe. (Painting.) (From elaire colle, transparent size.) A priming coat prepared with size instead of oil.
In oil-gitding, a coat of clrar-cole is laid on intermediate between the uthite stuff and the oil gold-size. See Gilingg.

Cleare. The filtered fluid of coarse sugar decolorized by hone-black.

Clear'er. 1. A tool on which the hemp for sailmakers' twine is finished.
2. A rapidly revolving roller in the scribblingmarline laid alongside the worker.
Clear'er-bar. A bar in a horse hay fork which throws the hay out from the teeth when the rake is lifted.
Clear-foun-da'tion Lace. Also called Lisle lace, from the French town of that name. A light, fine, transparent, white thread, hand-made lace. It has a diamond-shaped mesh forned by two threads plaited to a perpendicular liue.

Clear'ing. 1. (Silk-mumufacturc.) The process of removing irregularities from silk filaments before spimuing, by passing them beneath a scraper, or between steel roliers. See Silk-manufactuif.
2. (Gelico-minting.) Washing the dye solution from the unmordanted portion of the alloth, in the " madiler style " of printing.
3. (Machincry.) The amount of play between the lu-khin - -tith of cog-wheels, to avoid jam.
Clear'ing-beck. (Dycing.) A vat in which cottons printed with certain colors are scoured with soap and water.
Clear'ing-pan. (Sugar-mamufacturc.) A Clarifien: (which see).

Clear'ing-screw. In some fire-arms, a screw at right angles to the nipple, alfording a communication with the chamber.
Clear'ing-stone. The fine stone on which the currier's knie receives its final whetting. It is first ground on the rub-stone. The knife has its edge furned over by a steel.

Clear-stuff. Buards free from knots, wanc, wind-shakes, ring-hearts, dote, sap.

Cleat. (Corpentry.) 1. A strip of wood secured

Cleass.
b, cleat.
$b^{\prime} b^{\prime}$. cleats lashed to a to another to strengthen it ; as a batten placell transversely on the back of several boards which are jointed or matched together.
2. (Nautical.) A belaying piece, consisting of a bar with two arms fastened to a post or stanchion by a bolt passing through its stem.
a a, belay. ing-pins. stay.
3. An iron nailed to a shoe-sole to preserve it.
4. A trunnion bracket on a gun-carriage.

Cleav'er. A heavy, long-bitted chopping-tool, used by butchers in entting up carcasses. In the pork-packing establishments of Cincinnati, Chicago, etc., it is used to the exclusion of other cutting tools, except in trimming. Two men with cleavers stand on each sile of the bluck. One cut severs the heal from the body ; another severs the body at the loins, cutting off both hams; the thirl chops off the two hind fiet ; the fourth removes the two fore feet; a fifth livides the hams; two or three divide the milducs and shoulders on the line of the backbone. It is more quickly done than told. Cireular saws are now substituted in some establishments.
Cleav'ing-knife (Coopering.) A tool used for riving juggles into staves, clapboarls. A frow.

Cleav'ing-saw. A pit-saw; a rip-saw, as dis. tinguished from a cross-cut saw.

Clench-bolt. One whose pointed and is clenched after pissing through the wond, - sometimes over a waiher or ring.

Clep'sy-dra. A water-elock; a hydroscope. The invention of the clepsydra was ascribed by the
ancient Egyptians to Thoth, who is beld to be the original Mercury. It was in use among the Egyltians, Challeans, Greeks, and Romans.
The name is derived from the simple form of a basin with a small hole in the bottom, which, being placed in a vessel of water, gradually tillpel ant sank. This plan is said to be still used in holia, and marks a time equal to about twenty minutes, called a gurhce. An Indian clepsydra of a ditferent construction is mentioned in the arithmetical treatise of Bhas-cara, written in the twelfth century.
The elepsydra is thus described in the SôryaSiddhanta, a Sanserit text-book on astronomy :"A copper vessel, with a hole in the bottom, set in a basin ol pure water, sinks sixty times in a day and night, and is an accurate hemispherical instrument." -Ch. xiii., s. 23.

The Chaldean astronomers used elepssyimas as measurers of tinne, and they remained as aceessuries to astronomical observatories down to tlie time of Galiteo.

The Chaldeans divided the zodiae into twelve equal parts by allowing water to run out of a small orifice during the whole revolution of a stor, and dividing the liquid thus obtained into twelve jarts. So says Sextus Empirirus. It is probable that the discharging-vessel was kept at a constant level, or otherwise equal quautities passing would mark unequal times as the pressure diminished. If the vessel were kept constantly full, it would discharge a quantity equal to its capacity in lualf the time it would empty itself unrenewed.

Athenrus, a distinguished Greek witer of the tbird century, A. D., a native of Egypt, in the course of his "table-talk" mentions that Plato (372 в. c.) had constructed a clepsydra or waterdial which played uron pipes the hours of the night, at a time when they could not be seen on the index.

Vitruvius dates the invention something over 100 years later, attributes it to Ctesibus of Alexandria, who lived under Ptolemy Euergetes, 245 B. c., and who states that water was made to drop upon wheels which turned and actuated a smali statue having a stick in his hand. The tigure rotated on its pedestal and pointed to the figures on a numbered circle. They were, however, known belore Ctesibus, but it is probable that he ajplied toothed wheels to them. They were introduced into Rome by P. Curnelius Seipio Nasica, 157 b. c. The orators in Rome, in the time of Pompey, were limited to a certain time: as Cicero says, latrare ad clepsydram. It is surposed that among the Romans they consisted of a vessel from which the water issued dopp by drop, falling into another vessel in which a rising float indicated against a graduated index the lapse of time.

It may be that they used the hour-glass, a modihied form of the clepsydra, sand being sulstituted for water, and under a gag or five-minute rule, the romning out of the sand shut up the mouth of an orator who was disagreeable to the majority. The friends of Cataline, we may suppose, failed to enforce the rule against Cicero, whose friends movel for a susprension of the rules, and so we have Quousque tendem abutere, etc., the delight of compmsitors, and the horror of dull school-hoys.

In the instrument of C'tesibus, 2, 3, Fig. 1321, the device for the measurement of the hours was a cylinder resting upon a pedestal ; two figures were placed upon the latter, one of which dropped water from its eyes, while the other pointed with a wand to the hour marked on a vertical line drawn upon the cylinder. This cylinder turned on its axis once a year, and on it were drawn curved lines which

CLEW.
exhibited the inequality of the hours on different days, by their being marked at unequal distances.

The manuer of working this machiue was to allow the water to rise through a tube, which, passing through one figure, was discharged into a reservoir M, from which it passed in to the pipe $B C D$. In this pipe a piece of wood floatell ulon the surface, and hy its ascent, as the pipe filled, it raised the small pillar $C D$, on which the other figure rested, and as the float rose iu the pipe the wand was made to point to the different hours. Every twenty-four hours the vessel becane filled, as did the inverted siphon, which communicated with it. The water was then drawn off by the siphen, $E \quad F$, and falling in its descent into the buckets of the whee below, piat that in motion. This wheel had six buckets, and therefore made one revolution every six days. Its axis carried a pinion of sis teeth, working ou another wheel of sixty teeth; this also carried another pinion of ten teeth, and drove a wheel of sixty-one teeth, which by its axis turned the pillar round once in 360° days. These machines indicate

Fig. 1321.

Ciepsydras.
considerable hydrodynamical knowledge, and suggest some acyuaintance of Ctesibus with Archiin id s. who traveled in Egypt.
In the clepsyilia shown at 1, Fig. 1321, the water fro n an upper reservoir, kept constantly full, passed through a pipe into a drum having apertures of vario is sizes corresponiling to the length of the diys at different seasons of the year. The flow was regillated by turning the drum so that its index shumbl correspond with the proper division of a zoliac engraved on the face of the clensydra. The water was discharged into a lower reservoir, on which fluated an inverted vessel suspended from a chain passiug around an axis upon which the hourhand was fixed and comuterhalanced. As the water ris, the vessel ascendel, tuming the hand on its axis and indicating the hour on a dial.

Clepsydras are said to have been found in use amon's the Britons by Julins Cesar, 55 b. c.
The saracens hal several kinds of clepsydras; o:te with a balance.
A clock was presented by Pope Paul 1. to Pepin, Kinf of France, A. D. 760: was possibly a clep. syidr. Pacificus, Archdeacon of Genoa, invented nine in the ninth century.

Lat lly, the clepsydra has been adapted by Captuin Kater, for the accurate measurement of short in'errals of time, by the Howing of mercury from a small orifice in the bottom of a ressel, kept con-
stantly filled to a certain hight. The strean is intercepted at the momeut of uoting any event, and diverted aside into a receiver, into which it continues to run till the moment of noting another event, when the intercentiug cause is suddenly removed and the streani turned to itsorigiual chaunel. The weight of mercury in the receiver in comparison with the known rate of passage determines the interval between the events.

Profensor Airy, Astronomer Koyal of England, has applied the clepsydra to communicating motion to telescopes equatorially mounted.

Partington's clepsylra is constructed to discharge equal quantities of water in equal times. B is a Hoat on the surface of the water, and E is a weight to counterlalance the weight of the siphon C, and its contained water. The water is discharged at F, the

Clepsydra. lower end of the long leg of the siphon, and is collected in the box G, which forms the base of the instrument.

The Chinese clepsydras are deseribed in the United States Agricultural Report, 1851, plate at the end of the book. The description in the Mechanical Report of the Patent Office, same year, pp. 335, ct scq.

Clere-sto'ry. That upper portion of the middle aisle of a Norman or Gathic cathedral cluarch which shows ahove its side aisles, and has a tier or row of windows on each side looking clear over the side-aisle roof. A clear-story.

Cle'vis. A stirrup-shaped metallic strap, used

in connection with a pin to connect a draft-chain or tree to a plow or other tool.

The illustration shows several forms for vertical and horizontal adjustment, for plows, double-trees, shovel-plows, etc.

Clew. (Jautical.) a. A lower corner of a square-
sail ; the aftmost corner of a fore-and-aft sail. The clewlines are attarhed to the clews of a syuare-sail, and draw the latter ul, to the yard in furling. The sheets are attached to the same cormers, and expand the sail.
b. The lines fastened to the ends of a haminock and meeting at the grommots, to which are attaehed the lanyards by which the hammock is suspended from riners or hooks in the deck-beans.

Clew-gar'net. (Irtuticul.) A tackle attached to the elew of in lower square-sail, to haul it up to the yard in furling.

Clew-gar'net Block. (Noutical.) A block with a single sleave, and strapped with

Fig. 1324.
 above the yarl.

When double, the foremost sheave is for the top-gallant clewline and the after one for the royal sheet. The leading part of the fall follows down the mast to the deck.

Clew'line. (Nautical.) A rope for hauling up the clew of an upper siquare-sail.
Cliché. (Printing.) a. The process of obtaining a matrix or east in intaglio from a form of type, so that a cast in metal in cameo may he obtained therefrom for printing purposes. The usual material for newspaper work is papier-maché, or paper in shepts. When the latter material is used, it is dampened and laid upon the form, the thickness of paper, number of sheets, and legree of dampness, being a matter of experience and skill. A stiff brush is then thabbed over the surface in such a manner as to foree down the paper between the type, so as to ohtain a perfect mold. This is thon dried, backell to give it the neepssary rigility, and forms a mold on which a stereotype-plate is cast.
b. A mole of obtaining an inuression from a die in high relinf, or from a form of type, by striking the eold dic with a sudden blow npon a body of metal which is just becoming solil.

Click. The detent a, of a ratchet-wheel b (Fig. 1325), falling into the spaces butweren the cogs as the wheel revolves in one direction, and preventing the backward motion of the wheel. The name is no doubt derived from the sound. It usually acts by spring, sometimes by gravitation. In larger machines it becomes a pand, as in the capistan.
Click-pul'ley. The rim of the sheave e (Fig.

Fig. 1325.

Click und Click-Pulley. $1325, B)$ has notches, engaged by a spring elick d, which acts ns a detent to restrain the slieave from running back. The groove of the sheave is toothed to prevent the shipping of the rope therein. The click is raisel by a trigger and cord when required.

Click'et. A lateh. key; the latch of a door:

Click-wheel. A wheel whose eogs are radial on one face and inclined on the other, so as to give a square face to the end of the elich, paum, ratchet, or detent, whieh prevents the bark movement of the wheel. A ratchet-wheel.

Climb'er. 1. (Telegraphy.) A boot provided

Click and Click-Wheel.

with spurs, by whieh a person is enabled to climth telegraph1-10les to make repairs or ablditions to the wires or insulators.
2. (Iteilroud Engincering.) A driving-wheel of a locomotive, having a positive grip, as hy eogs or pinchers, upon a rail or rack in ascending or descending grades.

Clinch. 1. (Nautical.) A mode of fastening large ropes, eonsisting of a half-hitch with the end stopperl back to its part by seizings. The ouler coud of a hawser is bent by a clinch to the ring of the anchor.
a, sljp-clinclı.
b, elinelisecured.
c, simple elineh.
The knot of the breeching, which secures the gim to the ring-bolts on the side of the gun-port.
2. A fastening, d (Fig. 1327), in which the long end of a nail is turned
 over and the reemreal end eansed to enter the material so as to oppose retraction.

Clinching is listinguishel from riveting, as the metal in the latter process is swaged down either against the object or upon a washer.
3. (Farricry.) The turning over and beating down of the end of a horseshoe nail, against the wall of the hoof, to prevent retraction.

Clinch-built. See Clincuen-wonk.
Clinch'er. A tool for elinehing, - that is, turning over the pointed end of a nail so as to prevent its retraction.
In wool, the end is bowed over and driven into the piece through which the nail last passed.
In farriery, the enid of the horseshoe nail is nipued off and the stub hattered down so as to oppose a hooked, flattened portion, against the action of withdrawal. After the nail has heen driven by a hammer in the ordinary way, one jaw is placed upon the head of the nail, and the other jaw is brought up to engage with and flatten down the point of the mal.

Clinch'er-built. Spe Clincher-work.

Clinch'er-work. 1. Lap-jointerl work. A mote of building in which the lower edge of each plank overlaps the one next below it, like the
weather-boarding of a house ; the shingles or slates of a roof.
The term is varionsly compounded: Clincherbuild, clincher-plating, clincher-work; and, erroneously, clizker-work.

The root of the word clinch is to grasp or fusten, and the feature of the joint is a lap or fold. Clink is an onomatopoetic word derived from the sharp sound of a vitreous body when struck; bence clinker.

Clinclier-work is used on boats of a lighter description, - the galley, gig, cutter, jolly-boat, dingy, etc. (See Boat.) The lower edge of each strake of plank overlaps the upper edge of the next strake below. They are not built upon frames, but upon temporary transverse sectional molds, two, three, and four in number, which are fixed at their proper stations on the keel. The strakes are then put on, heginning with the garboard strake, and bent to the figure given by the molds. Each strake is fastened to the next below it by nails, driven from the outside through the laps or lunds.

When two or more lengths of plank occur in a strake, they are scarfed to each other, the outside lap of each scarf pointing aft. The scarfs have a layer of tarred paper between, and are fastened with nails driven from the thin end of each piece.
2. A mode of uniting the iron plates of vessels, tanks, or boilers, in which the edges are lopped, and seeured by one row of rivets. It is distinguished from carvel-build, in the respect that in the latter the edges of the plates are bronght together and the joint covered by an interior lap or welt, to which the plates are secured by two rows of rivets, one to each plate.

Clinch'ing. (Nautical.) Slightly calking the seams round the ports with oakum, in anticipation of foul weather.

Clinch'ing-iron. Spe Clincher.
Clinch-joint. See Clincuer-work.
Clinch-ring. A lap-ring or open ring, in which the parts on the sides of the opening overlap each other

Clin'j-cal Ther-mom'e-ter. (Surgical.) A thermometer with a long bulb on a bent arm. The straight portion only is attacher to the index-plate, which has a range from 80° to 120°. In use, the bulb is inserted in the axilla, or the mouth. The instrument is self-registering, and is graduated to fifths of degrees.

Clink'er. 1. A brick whose surface is vitrified by the extreme heat of the fire.
2. A description of Dutch brick.
3. A scale ot oxide of iron formed in forging.
4. A mass of incombnstible vitrified scorie or slag, clogging a furnace.

Clink'er-bar. A bal fixed across the top of the ash-pit to support the slice used for clearing the interstices of the bars.

Clink'er-built. See Clincher-work.
Cli-nom'e-ter. 1. An instrument used in determining the slope of cuttings and embankments. It has a quadrant graduated to degrees and fixed at

Fig. 1328.

Cinometer and Level.
the end of a long bar which is laid adown the slope ; an index turns upon the center of the quadrant, to which a spirit level is attached. The level being set horizontally, the angle of the same will be indicated on the quadrant as the latter partakes of the motion of the rod. A battcr-lcuel.
2. A carpenter's tool for leveling up sills and other horizontal framing timbers.
That illnstrated is a combined clinometer, plumb, and level, and has a vertical circular box, with an arrangenent of scales so graduaterl as to give, in connection with one or more index fingers, the amount of deflection of an object from a vertical or horizontal position, in both circular and limear measurement.

Clin'quant. A meretricious alloy ; yellow colper; Dutch-gold. See Alloy.
Clip. 1. An embracing-strap to connect parts together, as in the case of clips on the axle which connect the springs thereto.
The wheels of the ancient Egyptian chariots had strengthening clips of bronze at the junction of the spokes and fellies. The wheels were of small diameter, and not of very strong construction. Metal was sparingly used.
2. An iron strap on a donble or single tree, with a loop by which either is comnected to the plow-clevis, the trees to each other, or the traces to the single tree.
3. A projecting tlange on the upper surfince of a horseshoe which partially embraces the wall of the hoof.

Fig. 1329.

Clip'per. 1.. (Nautical.)
A fast-sailing ressel, constructed on fine, sharp Jines; built especially for speed rather than cargo.
2. A machine for clipping hair. It is especially used for horses, and in England more than in any other country. One form has a stationary knife and several spiral knives on an axis, acting against the edge of the former. A comh is so arranged as to determine the length to which the hair is cut.

A more usual form has a serrated knife reciprocating shearwise, with a similar plate, stationary, or also reciprocating.

Clip'ping-shears. Shears for clipping horses,
Fig. 133'0.

having a guard which gages the length of hair remaining. One form is shown in Fig. 1330, in which the serrated knife B is reciprocated above the servated plate A by means of the hamlle H, the hairs which eome between the teeth being severed thereby. A number of enters are so aranged on a comb that the length of hair left, in clipping, may bs regulated, and the cutters are guarded by said combso that the skin of the animal cannot be injured.

Clip-plate. (Carriage.) The axle-band of a wheel.

Clis'e-om'e-ter. (Surgical.) An instrument for mensuring the angle which the axis of the fomale pelvis makes with that of the body.

Clives. A hook, with a spring to prevent its unfustening.
C.o-a'ca. A sewer. The word is Latin, and has besn long belebrated in reference to the Cloca Miexina, the main sewer of ancient Rome, constructed by the Taryuins, and yet serviceable.

Clock. An instrument, - liffering from a watch in not bing adipted to be carried on the person, and having a motive weight or spring, a train oi gearing, index-hands, and fignred dial, and a pulsative device to deternine the rate at which the mecthinism shatl move.

Before the invention of mechanism by which a rate of motion of a stalf or pointer was made to indicate perio lic lapse of time, the shadow of the sum in his apparent daily progress enabled the observation of the passing hoars. A gnomon, erected so as to throw its traveling shadow across a gralmated are, constitutes a dial, though many considerations intervene between the mere post-shallow which cuts the mark upon the sand, and the dial whose rearings will suit the varying circumstances of the earth in its solar relatious at the solstices and the equinoxes. See Dial.

First the dial and then the elepsydra, is the appurent order; the latter is a mechanical time-indicator (see Clepsydra), but not a clock, if the meaning of the latter term - to strike, to beatis to constitute the distinction ; the cluck-cluck of a hen, and the click-click of a ratchet-wheel, are the lingual allies of the clock, whose pendulun gives the rate of the tick-tick made by the contact of the scape-wheel teeth with the pallets.
The graduated face-plate with figures belonged to the dicel long belore the time of clocks, which are andible in their very name and nature, and the name di:l is now very properly applied to the face of a clock or watch, as their duties are (Latin, dielis) daily. We have no record that goes back of the division of the circle into degrees, and the uarly dials were thus divided. Perhaps the vigesimoquartal division of the dial was derived from the Chinese, for their compass had many centmries ago a number of divisions representing the cardinal ant intemeliate juints, and also certain divisions of the natural day. The division of the Chinese compass into twenty-four points, marking periods of the natural day equal to 15° of the circle, was probably derived from the supposed number of days (24×15 $=360$) oscupied by the sun in its (apparent) course through the heavens. See Dial.

Most nations, we may suppose, had some definite mode of marking divisions of diumal time; with the Iews the time between sunrise and sunset was divided into twelve periods, which were therefore longer at the summer solstice than at eyninoxes, :und longer at the latter than at the winter solstice, This complicated the construction of "the dial of Ahaz" reterred to by Hezekiah, and which was
probably brought from Damascus by Ahaz; we know that he chltained the pattern of an altar from thence. We read (Daniel iv. 19) that Daniel " was astonished for one hour," Chaldean time, which is not astonishing, considering the critical nature of the message he had to deliver. Distinct intimation of the hours is given in connection with the setting up of the dial in the Quirinus at Rome, 293 B . c . The hours were called through Rome by public criers, as they were at night by watchnen, within the memory of some of us.
"They return at evening; they make a noise like a dog, aud go round about the city." - Psalms lix. 6.

Clocks are not very common in China, being mostly confined to the public offices, where it is common to find half a dozen all in a row.

The Chinese divide the day into twelve parts of two hours each. The Italians reckon the twentyfour hours round, instead of dividing them into two sections of twelve homrs each, as we do. The Mexican day was divided into sixteen hours or periods.

The early expedient in England was wax tapers, invented by Alfred the Great, A. D. 886. It appears that even hour-ghasses were not then known in England, though thipy are regarded as very ancient, and were certainly known in Rome long previousty.

The first "striking" or audible notification of the hour, on record, is the clepsydra or water-dial of Plato, 372 в. c., which, ly the agency of water, sounded ulon organ-pijes the hour of the night when the index conll not be sren. The contrivance is mentioned ly Atheneus of Egypt, a distingnished Greek writer of the thirl century, and anthor of the "Deipmosophiste." See Cheprydra.

Wheet-work set in motion by springs and weights was known in the time of Archimedes (287-212 B. c.), and applierl to mechanical (mgines and toys.

The graduated dial, the shadow of the gnomon marking hours, was known in Rome 293 上. c.

Two more things were necessary to make a clock:-

1. To join the wheels to a pointer which traversed the dial.
2. To contrive a mode of regulating the speed of the going works.

When these two features were united to form a clock is not known.
The early indications are as follows :-
A. D. 760 , a clock μ resented by Pope Paul I. to Pepin, of France: prol ably a clejsydra.
A. D. 810 , the clock sent by the Khalif Haroun al Raschid to Charlenagne is helieved to have had some kind of whed'-work, but to have leeen impelled by the fall of water. In the dial were twelve small doors forming the divisions for the hours, each door opened at the hour marked by the index, and let out small brass halls, which, falling on a brll, struck the hours. The doors continued open until the hour of twelve, when twelve figures, representing warriors on horseback, came ont and paraded around the dial-plate.
Pacifirus, Archdeacon of Verona, seems to have improved the clock.
A. D. 1000 , Ebu Junis, of the University of Cordova, had a pendulum-clock; to which Gerbert is supposed to have added the escapement. See PenDelus.

The balance clock deseribed by Al Khâzinî, twelfth century, consisted of a beam suspended on an axis a little above its center of gravity, nal having attached to one of its arms a reservoir which,
by means of a perforation in its bottom, emptied itself in twenty-four homs. The reservoir was poised by other weights which slipped down their arm as the discharge of water lightened the other arm, and the place of the weights marked the lapse of time.

Where the preriod of the clepsydra terminated, and that of weight-driven clocks commenced, cannot now be determined, but it is certain that the clocks of the Spmish Saracens were driven by weights. The renowned Gerbert studied philosophy and com-mon-sense at the Saracenic University of Cordova, beeane successively a schoohnaster at Rheims (where he lad a clock), Archbishop of Ravenna, and Pope Sylvester 11., to which latter dignity he was advanced by the Emperor Otho 111. ; and tbey died by poison, both of then.

To fullow up the recital : -
A. D. 1285 , a clock was placed in the old palace yard, London, and remained till the reign of Queen Elizibeth.
A. D. 1292, a clock was placed in Canterbury Cathedral.
A. D. 1300, Dante refers to a clock which struck the hours. Chancer refers to the horoloyc.

No certain mention is made, up to this time, of the meaus of regulating the speed of the machine, and that the pendulum had not been adopted to any extent, is certain.

It may be presumed that the device used was a fly (ser FLy); a wheel with vanes which impinged upun the air, the latter affording a resistance proportioned to the size, number, radins, angle, and speed of the vanes. Such was the case probahly with :-
A. D. 1350, the clock erected by Richard of Wrallinglord, abbot of St. Albans.
During the same century a pulsating regulator was introduced into France.
A. D. 1364, Henry de Wyck, or de Vick, a German, erected a clock in a tower of the palace of Charles V., at Paris.
A. D. 13is, a striking clock was erected at Westminster.
A. D. 1370, clocks at Strasburg and Courtray, after which they became quite common.
The pulsating arrangement of Henry de Wyck consisted of an alternating balance, which was formed by suspending two heavy weights from a horizontal bar fixed at right angles to an upright arbor, and the noovment was accelerated or retarded hy diminishing or increasing the distance of the weights from the arbor.
This clock, which had no regulating spring, was the type of the astronomical clocks used by Tycho Brabe (1382), and hy many less illustrous but frorthy and useful observers, at and about the same dutte.

Cloc'ss were in possession of private persons ahout 1510 , and about the same time watches were introduced.

Shadespeare refers to a watch in the play of Twelfh Nigh, where Malvolio says:-"] frown the while, and perchance wind up my watch, or play with some rich jewel."
"Mr. Pierce showed me the Queene's [the Portuguese princess, wife of Charles 31.] bedchamber, and her holy-water at her head as she sleeps, with a clock by her ledside, wherein a lamp burns that tells her the time of the night at any time." - Pepys's Diary, 1664.

The pendulum, which engaged the attention of the Spanish Saracens in the eleventh century, and persons of other nations who were so fortunate as to visit their Uuiversity of Cordova, had a sleep of six
centuries, for it was reserved for the sevententh century to bring it into general notice and usefulness.
Early in the seventeenth Century, Galileo, observing the oscillations of a suspended lamp, conceived the idea of making a pendulun a measurer of time, and in 1639 published a work on mechanics and motion, in which he discussed the isochronal properties of nscillating bodies suspended by stringrs of the same length.
A. D. 1641, Richard Harris constructed a pendulum clock in London, for the churd of St. Paul, Covent Garden.
A. D. 1649, a pendulum clock was constructed by Vincenzio Galileo (the younger Galileo).
A. D. 1650 , Huyghens constructed clocks on this principle:-He first explained the nature, properties, and application of the pendulnm, and made it perfect, except the compensation added by Graham, a bout 1700 .

Anchor pallets were introduced by Clement, in 1650, who also clevised the mode of suspending the pendulum from a stud, by means of a piece of watelspring. The mechauism of repetition by means of pulling a string was invented by Barlow, 1676. The endless corl, to continue the clock in regular motion, during the time of winding ul, was invented by Huyghens, 1600 . This was otherwise effected by Harrison, 1735 , by means of his auxiliary spring and additional ratchet. See Gonsg-wherl. Huyghens was also the contriver of the present dial-work for changing the hour into sixty minutes which divide the circumference of the dial, traversed by an additional hand in the center of the clock-face.

Clocks were applied to purposes of astronomy as early as 1484 . Gemma Trosius, in 1530 , suggested their use at sea for acertaining the longitule. In 1741, the English government offered a reward of $£ 20,000$ for a correct mode of deternining longitude at sea. This was won by Harison, in 1762, who inrented and introduced the compensating pendulum balance, made of two metals. Sce Palance; Chronometer.

The balance-spring, which confers upon the balance the isochronal qualities of the pendulum, was invented by Hooke, who applied it in a straight form. Huyghens changed it to a helix.
Gralam invented the dead-beat escapement in 1700. See Escapement.

The spring as a motor for time-pieces was inrented by the Germans, and was rendered necessary to confer portability upon the invention. It was first placed on the arbor of the gleat wheel and a surp'ementary spring opposed the former during the first part of its unwinding. This was intended to connteract the inequality. The fusee was afterwards introduced. A watch with a fusee, made in 1525, ly Lech, of Pragne, was in London a few years back.

Musical or chiming clocks were invented in Germany. Burney notices them as early as 1580.

In 1544, the corporation of master clock-makers of Paris obtained a statute from Francis 1., forbidding non-adanitted persons to make clocks, watches, or clarums, large or small.

Benjamin Franklin's clock is noted as being the simplest on recorl. It slows the hours, minutes, and seconds, and yet contains but three wheels and two pinions in the whole movement. The lnwest wheel has 160 teeth, and makes one revolution in four hours. It carrics the hand on its axle, which points out both the hour and the minute. It turns a pinion of ten leaves, on the same axis with which
is a wheel of 120 teeth that gives motion to a pinion of eight leaves. The second-hand is attached to the axis ol this latter pinion, as also the swing-wheel, which carries thirty teeth, that gives motion to the mallets of an anchor-escapement, and to its pendulum, that vibrates seconds.

The dial of this clock has an exterual cirele having 240 divisions in four suceessive notations of sixty each. This circle shows the minutes; within it the hours are arcanged in a volute of three revolutions along four radii which form right angles with each other. By this arrangement, while the point of the hand shows the minnte, the side shows the hour, or, more strictly speaking, that the hour is one of three at four hours' distance apart. It is supposed that there will be no mistake as to the reading, to

But so many came to see this (the like of which all allowed was not to be seen in Europe), that Mr. Miller was in langer of being rnined, not having time to attend to his own business. So as none offered to purchase it or reward him for his pains, he took the whole machine to pieces."

Churel clocks, or, as they are termed in the trade, tower clocks, are very diverse in their apprarance from any hall or mantel clock. The clock in the illustration is supported by four legs upon the Hoor of the elevatell apartment in the clock-tower, and is driven by two weights. a is the chain by which the going weight is suspended; the chain b of the striking weight passes upward, over a pulley, and is thence suspencled. Each chain, of course, keeps up a constant strain upon its own train, the going train

the extent of four hours' lifference. A small circle above the givat one is divided into sixty parts for secomls.

The clock is wound up by a line going over a pulleyund ratchet on the axis of the great wheel.
To remedy the imperfection in this clock, of the uncertainty of which hour of three it denotes, the spiral coil containing the hours has been changed to a groove of like form enrrying a ball which constantly seeks the lowest position, and thus indicates the hour by proximity to the figures on the spiral.

Rev. John Wesley in his journal gives the following account of a tilking rlock: -
"On Monday, April 27, 1762, being at Lurgan, in lreland, I embraeed the opportunity which !had desired, of talking to Mr. Miller, the contriver of that statue which was in Iurgan when I was there before. It was the figure of an olel man standing in a case, with a curtain drawn before him, over against a elock, which stool on the opposite side of the room. Every time the clork struck he opened the door with one hand, drew back the curtain with the other, turned his head as if looking round on the company, and then said, with a clear, loul, articulate voice, past one, or two, or three, and so on.

Tower Clock.
affording through the escapement the urging pressure upon the pendulum-rol m, which keejs its motion even, and neutralizes exactly its tendency to beat gralually in a smaller and smaller are, and eventually run down. The striking train keeps that portion of the machinery in constant readiness to respond whenever it is released by the recurrence of the completed hour. c is the hour-uhcel and d the suril, the latter determining the number of hlows, while the $A y e$ regulates the rate of the striking, that is, the interval between the blows; f is the striking-lever.
The coing train is principally hetween the standards $h h$, between which is seen the anchor of the escupement. The gimbals $k k k k$ connect to as many rods, which drive the motion-work: behind the
dials, situated in the four faces of the tower respectively.
The clock of Beanrais, France, is composed of fourteen different movenents consisting of 90,000 pieces, weighing over 35,000 pounds, and costing £5,600. The body of the clock is 36 feet high, and 10 feet in breadth by nearly 9 in depth. The main dial - there are fifty in all - is the largest work in enamel in existence, and cost $\$ 650$. Two hands of steel covered hy platinum move over this dial throngh twenty-four divisions; it is pierced, as are all the others, and shows the prolulum, wrighing nearly one cwt., which renews its impulse from a steel ball weighing a gramme, or about one thirtysecond of an ounce. This movement impels the fourteen others, and is wound up weekly; being driven by weights in the usual way: The other dials are calendars of the days of the week and of the month, the month, year, zodiacal signs, eclipses, phases of the moon, etc. This clock shows seconds of time, and indicates erents occuring not oftener than once in 100 years; for instance, it must be remembered that three centuries oat of four the last year leaps its bissextile. In these years the clock has to leap flom February 29, and goes from the 25th to the lst of March. Here is a movement occurring only in 400 years.

A Stiasbourger, jealons for the honor of his townclock, seeks to outrank these Beauvais claims, and says: -
"Our cathedral clock shows all these indications anl some besides. It contains an ecclesiastical computator with all its indications; the golden number, the epacts, dominical letter, solat cycle, etc. ; a perpetual calendar with the morable feasts, a planetarium on the Copernican system, showing all the mean equinoctial revolutions of every planet risible to the naked eye; a celestial sphere showing the precession of the efuinoxes, the solar and lunar questions for the redaction of the mean motion of the sun and moon to true time and place. The Beaurais clook makes a change in every fourth ceatury; but ask an astronomer what is meant by the precessiou of the equinoxes. He will tell ynu it is a movenzent in the stars describing a complete revolution round the earth in the space of abont $2 \overline{0}, 000$ to 20,000 years. In the Strasbourg clock is a sphere following exactly this motion, and whose rotation is of that kind as to insure one revolution in 25,920 years. The thing can be measured and indicated; it is unnecessary to await its accomplishment."

The wooden-clock manufacture was commenced in Waterbury, Conuecticut, by James Harrison, in 1790, on whose books the first is charged January 1, 1791, at $£ 312 \mathrm{~s}$. 8 d . In East Windsor the brassclock manufacture was carried on by Daniel Burnap. In 1793, Eli Terry, who had been instructed in the business by Burnap, made brass and woodeu clocks, with long pendulums; price for a wonden clock and case, from $\$ 18$ to $\$ 49$, the higher priced ones having a brass dial and dial for seconds, and the moon's age, and a more costly case. Brass clocks with a case cost from $\$ 38$ to $\$ 60$.

Terry used a hand-engine for cutting the teeth of the wheels and pinions, and a foot-lathe fur the turned work. In Sovember, 1797, he patented an improvement in clocks, watches, and time-pieces, covering a new construction of an equation clock, showing the difference between apparent and mean time. lı 1802, in which year Willard of Boston took a patent for his time-pieces, Terry began the busiuess on a larger scale by water power. In 1814 he introduced a new era in the business by commencing on the Naugatuck Rirer the manufacture
of the shelf or mantel clock, which he patented in 1816. The cheapness of these created a wide demand. Several improvements made by him in the mechanism, and the later progress in machinery generally, have increased the annual production in that State to hundreds of thcusands, and givell to every hausehold a clock, equal to the old ones, at a cost of $\$ 2$ and upward. His descendants lave lopen engaged in the business to the present time, and his pupil, Channcey Jerome, since 1821 .
The Assembly of Connecticut, in October, 1783 , arrarded a patent for fourteen years to Benjamin Hanks, of Litchtield, for a self-winding clock. It was to wind itself by the help of the air, anil to keep more regular time than uther machines. The principle was made use of in New York and elsewhere.

Sereral ingenious applications of natural pulsations have been made to effect the same purpose: Washburn's Thermal-motor, for instance, in which the expansion and contraction of bars of metal is made by differential levers and ratchets to wind the slring.

Clocks with hands and dials having a common center are arranged to show the time at places having different longitudes. A number of conceutric circles are marked upon the dial of a watch, each of which is marked with the name of a place. The several hands correspond to the number of circles, and are constructed of different lengths. The bauds move upon a common center, but are carable of an adjustment, so that the distances Ietween each of them may be made to correspond to the difference in time of the places marked on their respective circles.
An astronomical clock is one which has a compensating pendulum and otherwise of marked quality, used in determining time in observations.

A chioning clock is one in which the hours or fractions are marked by a carillon.

An electric clock is one whose morements are regulated by electro-magnetic devices.
A regulator, or watch-maker's clock of superior quality for regulating time-pieces.
A sidereal clock, oue regulated to sidereal time, not mean time.

Clock-a-larm'. A device in a clock, which is capable of such arrangement that when a certain hour is reached a repetitive alam shall be struck upon a bell.

An alarm arrangement was attached to the waterclock constructed in France, in the last century. The clock consists of a cylinder dirided into several small cells and suspended by a thread fixed to its axis, in a frame on which the hour distances, formed by trial, are marked out. As the water flows from one cell to another, it changes very slowly the ceuter of gravity of the cylinder, and puts it in motion. The alarm "consists of a bell and small wheels, like those of a clock that strikes the hours, screwed to the top of the frame in which the cylinder is suspended. The axis of the cylinder, at the hour when one is desirous of being wakened, pushes town a small crank, which, by letting fall a weight, puts the alarm in motion. A dial-plate mith a handle is also placed within the frame."

Clock-move'ment Ham'mer. The striker of a clock which sounds the hours upon the bell or gons.

Clock-pil'lar. One of the posts which connect, and at the same time hold at the prescribed distance apart, the plates of a clock movement.

Clock-spring. A coiled steel spring in the go-ing-harrel or the striking-barrel of a clock which
cular shears into widths $1 \frac{1}{2}$ inches to i^{3} of an inch, make them continuons, are coiled on a rech, from ribbon through a red-hot iron tube 6 feet long, 6 inches wide, and 2 iuches deep, which is laid white the ribbon is heated by the rend-hot tuls, it will not come in contact with the finel. As the ribhon emerges frum the hot tube, it passes iuto a bath of oil in a tank six feet long and kept conl by a waterjucket through which a stream constantly passes. It theni passes throagh a bath of molten lead, which gives it the necessary temper; then between iron rollers, which are the median of determiniu; the rate of motion of the rilbon tlarongh the heating-tuhe, the hardening-bath, and the temperingbath. The rate of progression is about 1,000 feet per day, and of narrower ribbons several may be passed at a time. From the rolls the ribbons are again wound over reels and taken to be polished and colored. The ribhon is then passen over and under leathercovered wouden rollers revolving in boxes of emery, by which both surfaces of the stcel are polished : at the sime tine two rulcanite wherls smooth and ro in l the edres. It is then passed through a bath of molten kead, which gives it its color; after coolins it is cut into lengths, the end; softened, the hooks and eyes puit on, and the springs coiled up and packed for sale.

Clock-watch. A watch adapted to strike the hours and quarters similarly to a clock, as tlistinguished from a repecter, which strikes the time only when urged to do so, - by pushing in the stem, for instance.

Clock-work Lamp. Carcel's clock-work lamp pumbs up oil from the rescrvoir in the foot of the lamp and overflows back again from the burner to the reservoir, the How being in excess of the consumption so as to prevent the heating of the metallic portions around the wick. The clo k-work is run by a spring or a descending weight, according to circumstances of size, position, purpose, or requirements of portability. In lighthouses, the excessive supply inlucing overflow is a necessary feature, to secure uniform supply, and the arrangement differs from the domestic form of lamp.

De Kerevenan's clock-work lamp, has a fan driven by clock-work in the stem or foot, furnishing a blast of air on each side of a flat wick to urge the flame and perfect the combustion of the carbon of the oil. This may be or has been applied to Argand lamps.

Clock-work has been applied to lamps and to gasburners to light them at a specilic prearmugel time, the device being on the principle of the alarm
impels the train or strikes the hours, as the case may be. The steel ribbon from which the springs are made is about 3 inclics wide, and is split liy cirfor the different powers required. l'ieces of the saue breadth are riveted together at the euds to which they pass to be hardenet, tempered, proished, and colored. The heating is done by passing the stee lengthways of a furnace of suitable length, so that,
clock and operating upon a lever or thigger to light a match, close au electric circnit, or by other means.

Clod-crush'er. The modern Egyptians use a machine called khonfud, hedychog, to break the cloils, after the land has been plowed. It consists of a cylinder, studded with projecting iton pins. The land shown in the cut is in the vionity of the ancient Heliopolis, and within sight of the minarets of Cairo.

One form of clod-crnsher consists of a series of east-metal riugs, or roller-parts, placed loosely upon Fig 1333.

a round axle, and revolving theraon inderendently of each other, so as to protuce a self-cleaning action, and enable the machine to be readily turned round alout. The surfaces of the roller-parts are pointed with sermated edges and a series of inner teeth, projecting sinleways, fixed at a particular angle to the center of the roller-axle, so as to act most elfectually in penetrating clods perpendiculary, and iu consolidatug the young plants in the soil. The roller is removed from place to place on two travelng

Fig. 1334.

wheels of larger diameter, which l:ft the roller-parts clear off the ground. When the roller has arrived in the field where it is intended to be used, the wheels are removed.

Another form of clod-crusher has spiked rollers attached in the rear of a harrow.

Clog. A protection for the foot worn over the shoe. The sole is elastic, being mate of leather or else having a hinge in the shank. A toe-cap, hee]piece, and instep-strap hold it on the foot. Beneath the sole-piece are an extra sole and heel-tap, made of wood.

Fig. 1835.

Clod-Crusher.

It is yet much used in Eurojer, but goloshes or india-rubber overshoes have to a cousiderable extent superseded the clog.

Theclog is an ancient form of foot-wear, and consisted of a leathern upper and woorlen sole; the upper was nailed to the edge of the sole; the latter was sometimes an inch thick, and often hooped with sheet-iron. They were worn by the Greeks and Romans, and are still common in Italy, Spain, and Portugal. They are
known as sabots in France ; galochrs, tamencos, and zuecos in other parts of the Continent of Europe.

Fig. 1336.

Clog. The Sabotiers, an order of friars which originated in the fourteenth century, rowed to "be shod with wooden shoes," probably as an improvement on the barefooted Carmelites. They were formerly worn by kiugs, came to be regarded by the populace of England as representing Popery and slavery, and formed the burden of popular outcry, aiding in the expulsion of James II. from the country. The cry of the mol, "No slavery, no wooden shoes," made Walpole's life uneasy:

Clois'ter. (Architecture.) A covered ambulatorv.

Close-butt. (Shipbuilding.) A fayed or rabbet id joint where the parts are so elosely fitted or driven as to dispense with calking.

Clos'er. (Musonry.) a. The last stone or brick in a horizontal course closing the gro.
b. A brickbat inserted in course when the gap will not admit a whole brick.

A King closer is a bat, three quarters the size of a brick. A quecn closer is a quarter-brick.

Close-stool. A commode or box with tightly fitting lid to contain a clamber-vessel. A chamberstor).

Close-wall. (Building.) An enclosing wall.
Clos'ing-ham'mer. A hammer used by boilermaiers and iron ship-buililers for closing the seams of iron plates. Soe Ribetisg-tools.

Cloth. (Fabric.) A woven fabric of cotton, linen, or wool. Silk perhaps hardly comes within the category. See Fabric for list of woren gools.

Woolen cloth, after wearing, is subjected to the following processes:-

Braying or scouring: that is, washing in troughs with heary mallets, water and detergents being used to remose the oil and all acquired filth.

Burling: picking off the knots made by the wearer.

Milling or fullimy: to felt the fibers of the cloth closer together, iucreasing the compactness of the fabric and the finish of the face. See FublingMILL.

Iressing: this is done by teasels, whose hooked ends bring the loose fibers to the surface to form a nap. See Teaselisg ; Dressixg.

Shearing: the filaments drawn out by the teasels are shom or singed to a length. See Cloth-sheariNG MachiNe.

Pressing: the cloth is arranged in regular folds and subjected to hydrostatic pressure. A polished pressing-board is placed between each fold. See CLOTH-pRESS.

Some of the later processes of the cloth-manufacture are raried or combined.

Hot-pressing, boiling, stcaming, are each of them means for giving a fine finish by the application of heat.

Piching is a process of removing hlemishes by tweezers, or coloring fanlty spots by a hair-pencil and dye.

Fine-drauing is closing minute holes or faults in the fabric, by inserting sound yarns by means of a needle.

Marking consists in working-in with white or yellow silk a word or mark indicating the quality of the piece.

Baling and pecking conclude the series of processes.

Cloth-creas'er. A device which may be clamped to
the table or the sewingmachine, the
crease being crease being
made by the adjustable bevel-edged wheel under which the fabric is drawn.

Cloth-
cut'ting

A nachine for
cutting cloth into strips, or into shapes for making into garments.

Among the varions forms and modes may be cited:-

Knires corresponding in shape to the various parts of a gamment are mounted upon a reciprocating platen, and descend upon the material jiled in thicknesses upon the bed beneath. Envelope llanks are cut out of the sheet in this manner.

A guillotine knife, straight or curved, and descending vertically.

A knife or saw reciprocating vertically in a constant path like a scroll saw, while the jile of cloth below is mored beneatly so that the saw or hnife follows a line marked upon the upper layer of cloth. The knife is reciprocated like the needte of a sewingmachine, and a presser foot holds the material. It luas also an intermittent feed.

A band-saw acting in the same manner.
A rotary cutter mounted on a rerical spindle Which allows the edge of the knife to be presented in any direction.

A maudrel with rotary cutters to cut cloth into strips for carpet or for other purposes.

Cloth-dress'ing Ma-chine'. A machine in
which the nap of woolen cloth is raised by teasels. See Teaselinc-machine. Also known as agiggingmuchine.
Cloth-dry'ing Ma-chine'. A machine with heated rollers over which cloth is passed to drive of the moisture acquired in dyeing, washing, etc. In the example, $1 /$ is the feed-roll from which the cloth unwinds; it thence prasses over the cylinder $\angle L$, against whose surface it is tightly drawn by

Fig. 1333.

tho guile-rollers $L^{1} L^{2} L^{8} L^{4}$, while the fans C drive a current of air through the meshes of the wire-ganze cylinilers and the cloth. N is the takeup roller on which the cloth rewinds.

A steam cloth-dryer shown at the Paris Exposition had an anmular steam-chamber constructed of two concentric cylinders, which formed a closed cavity, and constituted the cirenmference of a wheel more than 12 feet in diameter. Around the circumference of this wheel, whieh turnel slowly upon a horizontal axis, the cloth was carried, being kept in position by means of two endless chains having tenterhooks attached. The cloth passed round nearly the entire circumference, being carried off on the same sile at which it was introluced ; the velocity of motion at the eircumference was about six inches per second.

The coustruction permits the stearn-chamber to be made very secure against accident, and yet to present an exterior of quite thin metal, facilitating greatly the transmission of heat. The necessary strength is obtained by means of numerous interior stays conneeting the two cylindrical surfaces. The steam is achmitted through the axis.

Cloth Em-boss'ing. This is performed in a rolling-press, the engraved cylinders of which act upon the fabric (or paper), which is passel continuonsly between them; or one or ulore of the cylinders may be printing-cylinders having the usual colorrats and doctors.

Clothes-brush. A brush usually having good black Russian bristles, adapted for brushing cloth.

Clothes-dry'er. A frame on which clothes are suspendel to dry. Among the multitude of forms may be mentioned the post with extensible bars and parallet cords, Fig. 1339 ; this may be dismounted and collapsed like an umbrella. The taggle-jointed frame, with cross-ronnds Iike a ladder, and folding up on the lazy-tongs principle. Others are clotheshorses, consisting of frames with cross-bars, and shutting together like book-covers. Another form has radial bars like spokes, or a slatted frame hinged like a trap door, etc., etc.

The centrifugal machine is used to remove all the moisture that can be got rid of by mechunical means.
Clothes-horse. A form of clothes-dry which stands on legs and has cross-bars on which clotles

may be suspended to ilry. The figure shows numerous rounds on a frame collapsable on the lazy-tongs principle.

Clothes-line. A cord or wire for suspension between posts or other sumports. It is meferably of white cord, and wound on a reel in the intervals of non-use. If left exposed tinned iron wite is good.

Clothes-line Hook. A hold-fast or hracket, with a spool on which the line runs and is stretched.

Fig. 1340.

Clothes-Line Hook.
Clothes-line Reel. A cylinder or axle, on which a clothes-line is wound and usually journalet in a protectel hracket or under a pentroof secured against a building or trep.

Clothes-pin. A little spring nipluers which pinches a parment against the line from which it is suspended to dry. It may be a split pin ; a pair of hinged fingers with a spring enclosed; a bent wire haring a hight which yields and clasps, etc. Clothes-Sprinkler. Clothes-pins are turned and slottell in machines specially constructed therefor.

Clothes-press. 1. A receptacle for clothes. A closet.
2. A press in which clothes are flattened and creased; crape shawis, for instance. See ClothPRESS.

Clothes-sprink'ler. A receptacle for water, with pelforations through which a fine shower of water is thrown ppon clothes in damping them previous to ironing.

Clothes-stick. A rod by which clothes are turned, loosened, or lifted, while in the wash-boiler.

Clothes-tongs. A grasping-tool for removing hot clothes from it boiler, in washing or dyeing.

Clothes-wring'er. A frame having a pair of elastic rolls, througn which clothes are passed to squesze out the water. The improvement concerns

springs for pressure, modes of gearing, material of ro lers and modes of securing them to their shafts, modes of securing the wringer to the side of the tul. See Wrivger.

Cloth-fin'ish-ing Ma-chine'. One for teaseling and shecring; raising the nap, and bringing it to an even length. See Teaseling; Shearing; Nappisig.
Cloth-fold'ing Ma-chine'. One in which wide goods are folded lengthwise, ironed and pressed ready for baling. In the example the cloth is passed over the bulging, spreading roller n, which is aljnstable, and between the folders, which consist

Fig. 1343

Cloth-Folding Machine.
of a plate bent into a sinuons form like a flattened S. From the folders the cloth passes beneath the inclined steam-heated ironer D, and from that to the rollers $F F$, by which it is drawn forward.

Cloth'ing 1. (Stcam.) An outside covering of felt, or other non-conducting material, on the outsile of a boiler or steam-chamber to prevent radiation of heat. Clcading; layging.
2. (Carding-machine.) Bands of leather studded with teeth of wire which engage the fiber. See Carding-machine.

The following names of parts of clothing are used in a mechanical sense :-

Band.	Hoop.
Belt.	Jacket.
Bonnet.	Lining.
Boot.	Pocket.
Breching.	Searn.
Button.	Shoe.
Cap.	Skirt.
Collar.	Sleve.
Cuft.	Sole.
Hat.	Ioke.
Hood.	

3. (Menage.) Full horse-clothing consists of the quarter-sheet, breast-piece, hunting-piece, pad-cloth, hood, body-roller, and knep-caps.

Cloth-meas'ur-ing Ma-chine'. A machine by which fabrics made in great lengths are measured off in pieces of convenient length for sale, and hence known as piece-goods.

Cloth-pa'per. Heasy paper used between folds of cloth, in the finishing-press.

Cloth-plate. That plate in a sewing-machine on which the work rests, throngh which the needle passes, and beneatly which is the looper, or the lower spool or shuttle, as the case may be.

Cloth-press. A liydrostatic press in which woolen cloths are subjected to pressure.

The cloth is arranged in regular folds, a polished pressing-board being arranged between each fold to prevent contact of the cloth surfaces with each other. Between each two pieces of cloth is an iron plate.

For hot-pressing, three hot iron plates are inserted between the folds at intervals of about twenty yards. Cold iron plates next to the hot ones moderate the heat. Pressure is then applied, and the pile allowed to stand till cold. The cloth is then taken and repiled, so that the creases of the former piling come. in the middle of the pressing-boards at the second pressure. Hot pressing gives a lustrous appearance, but is apt to spot with rain.

Boiling and steaming have been substituted for bot-pressing, or used in connection therewith.

In the former the cloth is wound tightly upon a wooden or iron roller, immersed in water heated to $180^{\circ} \mathrm{F}$., steeped for five hours, taken out and cooled for twenty-four hours. It is treated in this way four or fire times; is washed with fuller's earth. It is then stretched on a tenter-frame and dried in a steam-heated room.

In stcaming, after the cloth is hot presscd, it is wound around a perforated copper roller, into which steam is then admitted. If at hipll pressure, it will pass through all the folds in a few minntes; if at low pressure, it will require one anl a lalf hours. After this it is boiled twice. This steaming sares the time of three boilings.

Cloth-prov'er. A mannifying.glass employed in numbering the threals in a given space of cloth.

Cloth-shear'ing Ma-chine'. A machine for cutting to an even length the filaments of wool drawn out in the process of tcascling. lt was formerly done by hand.

One cloth-shearing machine consists of a fixed
semicircular rack concentric with a cutting-erlge called a ledger-blade, and a large revolving wheel containing eight small cutting-disks, whose shafts have pinions which engage with the teeth of the semicircular rack, so as to give the cutting-disks a rotary motion on their axes, in adelition to their revolving motion with the large whel. The machine travels over the cloth, or the cloth under the machine, as may be arrauged.

Revolving shears are used for shearing off the loose fibers from the face of woolen cloths. For narrow cloths the eylinders are 30 inches long and 2 in diamper ; 8 thin knives are twisted aromed the cylinder, making $2 \frac{1}{2}$ turns in the length, and are secured by screws and nuts which pass throngh flanges at the end of the axis. Formerly the cylinders were grooved and fitted with thin, nacrow plates of steel 6 or 8 inches long. The elges of the 8 blades are ground, so as to cons'itute parts of a cylinder, by a grinder or strickle fed with emery, passed to and tro on a slide parallel with the axis of the cylinder, which is driven at about 1,200 turns in the minute.
In use, the eylindur revolves at about the same rate, and in contact with the edge of a long, thin plate of steel, called the ledger-blade, which has a very keen rectilinear edge, whetted to an angle of about 45°; the blarle is fixed as a tangent to the cylinder, and the two are mounted on a swing-carriage with two handles, so as to be brought down by the hands to a fixed stop. The edge of the ledgerblate is sharpened by grinding it arainst the cylinder itself, with flour, emery, and oil, by which the two are sure to agree throughont their whole length.
The cloth, before it goes through the process of cutting, is brushed, so as to raise the fibers ; it then passes from a roller uver a round bar, and comes in contact with the spring-bed, which is a long elastic plate of steel, fixed to the framing of the machine, and nearly as a tangent to the cylinder; this brings the fibers of cloth within the range of the cuttingedges, which reduce them very exactly to one level.

This machize has several ailjustments for determining with great nicety the r-lative position of the ledger-bla le, cylinder, and spring-bed.
Formerly the cloih was passed over a fixed bed having a mollerately sharp, angular ridge; but this was found to cause holes iu the cloth.

Broadcloths require cylinters sixty.five inches long, and machinery of proportionately greater strength. In Lewis's patent cloth-cntting machine (English) the cloth is cut from list to list, or transversely, in which case the cloth is stretched by hooks at the two etlzes, and there are two spring-beds; the cylinder in this machine is forty inches long, and the cloth is shifted that distance between each trip, until the whole piece is sheared.

Fig. 134

Cioth-Smoothing Machine.

Other fabrics, such as earpets, are sheared by the same description of machine.

The lawnmower operates on the same prineiple.

Cloth smooth'ing Ma-chine'. A smoothing and ironing device for cloth in the piece. The eloth is damped and
heated by passage over a trough inelosing a perforated stean-pipe, and then beneath a hollow heated cylinder. The winding roller is journated in a weighted frame, and the clonth is wound while under pressure between the said roller and the main cylinder.

Cloth-spong'er. A tlevice for damping clath previous to ironing. In machines for this purpose the cloth is sponged by steam applied throngh a ${ }^{\mu \mathrm{r}} \mathrm{r}-$ forated adjustable horizontal cylinder around which it is rolled.
Cloth-stretch'er. A machine in which cloth is drawn through a series of frictional stretching-hars and passed over spreading rollers so as to ryalize the inequalities ou its surface and enable it to be firmly and smoothly woumd on the winding-roll.

Cloth-tear'ing Ma-chine'. A machine having a fluted roller and knife-elges. The latter push the cloth into the flutes and tear it iuto strips as it passes through the machine.

Cloth-teaz'ler. A machine for raising the nap of cloth. See Teaseling-machine.

Cloth-var'nish-ing Ma-chine'. For making the enamelet or varnished fabric.
The cloth is passed from the let-off roller beneath a roller in the steam-heated size-vat B; thence to a steam-heated table C, where the varnish is spread

Fig. 1345.

Cloth-Varnishing Machine.
by a revolving brush D, and thence over the rollers of the drying-frame, where it is exposed to jets of air from a perforated pile, and from which it is wound on a take-up roller.

Cloth-wheel. 1. A grinding or polishing wheel, covered with cloth charged with an abrading or polishing material ; as, pumice-stonc, chalk, rotten-stme, crocus, putty-powder, rouge, etc.
The eloth used is heary, similar to that used for the blankets of printing-presses. Felted cloths are sometimes used.

The cloth-wheel is used by opticians, lapidaries, and ivory-workers.
2. A form of feed-movement in sewing-machinps. A serrated-faced wheel protrudes upwardly through the cloth-plate, and has an intermittent motion.

Cloud'ing. 1. An appearance given to silhs and ribbons in the process of lyeing.
2. A diversity of colors in a yarn recurring at regnlar intervals.

Clough A sluice used in returning water to a channel after depositing its secliment on the flooded land.

A flonting clough is used for scouring out some of the channels of the Humber. It consists of a fiame covered with plank, and having a central culvert and sluice. In front are timbers shol with iron in serrated form, which can be raised or lowerel at
pleasure. .Side wings are sloped to accommodate themselves to the inclination of the banks. When the water is at high tide the clough is floated up stream and sunk in the channel by admitting water; and the wings extended by ropes. At full ebb the serrated frames are let down, the machine allowed to yield to the body of water ahove, which forces it along, the teeth scraping up the mud, and the current carrying it off.

Clout. (Carriage.) An iron shield or plate placed on a piece of timber in a carriage - as on an axle-tree - to take the rubbing and keep the wood from being worn.

Clout-nail. a. One with a large flat head.
Fig. 1346.

shockstill and Scarf's Clover-Seed Harrester.
Such are usel to stud timbers exposed to the action of marine borers; also in fastening leather to mood.
b. A long hlunt stuh-nail for bootsoles.
c. A flat-headed nail, nsed for securing clorts on axle-trees or elsewhere.
Clove. (Fr. Clour.) A long spikenail.

Clove-hitch. (Nautical.) Two half-hitches. A half-hitch is to gire the rope a turn around the object, pass the end of the rope round its standingpart, and then throngh the hight. To make a clouc-hitch, repeat the motion around the standing part and throngh the hight, and stop the end to the standing-part. See Hitch.

Clove-hook. (Nautical.) An iron two-part hook, the jaws overlapping ; used in bending chain sheets to the clews of sails, etr.

Clo'ver-seed Har'vest-er. Fig. 1346 illustrates one morle of harsesting clover-seed, and resembles the first of which we have any record. A wheat-harvester on this principle was munning in Gaul, in the first century of the Christian era, and the machine continued in favor for 300 years, although it does not apprar to have been ased in Jtaly. In front of the machine is a row of fingers, between
which the stalks of the clover pass, while the heats remaining above are torn off and are scraped into the box of the machine. It is known as a heade:-

In the old machine nsed 1,800 years ago in Ganl, it was the duty of the attendant to sweep the cars back into the box of the machine, which was driven before the ox that inpelled it.
The English clover-harvester of thirty years hack, shown in the lower part of same figure, is of the old Gallic pattern, is drawn by one horse, and guided by handles in the rear. The load is scomped out occasionally and deposited in bunches in the field.

Clo'ver-hull'er. Red clover (known in England as "broad clover") came from Flanders to Enyland

Fig. 134\%.

and from England to the United States. Its adoption was strongly urged by Sir Richard Weston, in 1645, who saw it growing near Antwerp in 1644, and noticed the speed of its growth and how soon it recovered after mowing. In ten years it had spread throngl the kingdom and made its way to Ireland.
The clover-heads, previously separated from the straw by tramping or thrashing, after passing heneath the thrashing-cylinder, are raised by an endless carrier to a riddle, through which the seed falls npon a carrier which takes it back to the holler, by which

Clover-Thresher.
the sered is liberated from the hulls, to be scparated by the fans and ritedles.

Clo'ver-thrash'er. A machine in which clover, h.y, or the aftermath, which is cut for the seed alone, is thrashed and the seed hulled and cleaned.

The eluver is fed in at the throat A, thrashed by the cylinder B, received on the slatted apron E, carried up past the beater F, the hay picked of by the picker G, and removed by the straw-carrier H, while the seed and chalf fall into the shaking-shoe, where the sieves L, the vibratory action, and the blast finish the separation and deliver the results separately.

The lower figure shows the outside of the machine, the arrangement of the belting, and the elevatorhow O, in which the tailings and unhulled heads are carried up to he rethrashed.

Clow. A sluiee with a sliding-gate. See Clough.
Club'bing. (Nautical.) Driftiug down a current with an anchor out.

Club-com'pass-es. A pair of compasses with a bullet or cone on one leg to set in a hole.

Club-foot, Ap'pa-ra'tus for. Shelltake's apparatus for club-feet and other deformities (English patent, 1801) proceeds upon

Fig. 1349.
 Varus. the principle of continued, repeated, and varied application of springs to correct the abnormal detlection of the part.

Tiemann's apparatus for talipos varus has a strong leather shoe with a metallic sole and a joint near the heel to allow lateral motion. A spiral spring draws the foot outward by a constant, elastic, and easy traction. This pressure is increased or decreased at will, by fastening the spring in a series of sockets.

The single outside upright steel bar with joints at the ankle is fastened round the limb below the knee-joint, and so constructed that the screw at the ankle-joint forces the foot flat upon the floor, which foot in almost all cases is turned under as indieated by the sketch. The spiral spring d being attached to a eat-gut cord, passing round a pulley at the center of the bar and fastemed near the toes upon the outside of the foot, elevates the toes and stretches the temdo Achillis, at the same time drawing the foot to its natural position.

The apparatus for talipcs valgus is on the same principle, hut with reversed action.

Club-haul. (Nauticul.) To bring a vessel's he dround on the other tack, by letting go the lee an hor, and cutting or slipping the cable, the sails being handled so as to cast the vessel's head in the reguired dircetion.

Clump-block. (Nautical.) One made thicker aul stronger than ordinary blocks.

Clus'tered Arch. (Architccturc.) Arched ribs of which several spring from one buttress; shown in the Gothic order of architecture.

Clus'tered Col^{\prime} umn. (Architecturc.) A pier which consists of several columns or shafts clustered togetlier.

Clutch. 1. (Machinery.) A coupling for shafting used in transmitting motion.

The common clutch or gland 1 (Fig. 1850) has a loose band-pulley P, which revolves freely upon the shaft A except when it is shifted by the lever E, so that its projections engage with the gland D, which is firmly keyed to the shaft.
The bayonet-clutch 2 has bayonets $f f$ attached to
a sliding arm D, and which slip through holes in the cross-head, which is keyed on its shaft. D is secured by a feather on its shaft, and g is the scat lor the shilting lever.

In 3, the clutch box D is socketed upon the square arbor of the shaft A, and may he slipped by the lever E cither towards or from the counterpart

box, which is attached to the constantly revolving cog-wheel C and shaft B. The faces of the coiplingmembers have coacting jurjections and interdental spraces.
4 shows a double-clutch by which the vertical shaft is made to drive the lower one in either direction. The lower shifting-piece is secured by a feather upon the shaft, and may be coupled with either of the bevel-wheels, which otherwise run loosely upon the shaft.

The cone-clutch consists of a tapered cylindrical plug sliding on a fast feather in one shaft, and admitting of being forced by a suitable arrangement of levers into the interior of a somewhat similar cylinder fixed on the shaft to he driven.

The dish-clatch is another form of frirtion-clntch, one disk A being slipped upon a spline on the shaft C so as to impinge upon a rotating disk B, and partake of its motion or impart motion thereto by frictional adherence. Friction-clutches are used in heary machinery so as to start the machines without a sudden jar.

Fig. 1331.

The lower illustration shows another form of fric-tion-clutch in which a hoop F on the shaft G is set in motion by the bayonet © $D E$, which is slipped upon the shaft A, the rods $C D$ sliding in holes in the cross-head $H B I$, which is keyed fast to shaft A. When the bayonets project, as in the illustration, they come in contact with the studs L If on the hoop, and impart motion thereto. The hoop may be tightened on the wheel, which it incloses to just such an extent as will cause it to impart motion thereto, when revolved, without giving ton sudden a jerk in startiag.
2. a. A gripper in the end of a chain by which it is connected to the object to be noverl, as in the founlry-crane, whose chntches take hold of two gudgeons in the cente.s of the ends of the flask, so that a mold can be lifted and turned round in the slings for examination, repair, transposition, or removal.
b. A gripper having teeth which clasp a joist or rafter of a barn to afford a means for suspending tackle for lifting in hay, ice, or what not.

Clys'ter-pipe. The nozzle of an enema syringe.
Clys'ter-syr'inge. A syringe for administering melicines jer ano. See Enema-stringe.

Coach. 1. (Vehicle.) A four-wheeled close carrige with two seats inside, and an outside driver's seat.

The term is found in some form or other in almost a!l the languages of Europe, and is closely allied to couch: reclining in comfort seems to be at the bottom of it. So Mary, lufanta of Spain, wife

Fig. 13;2

Quecn Elizabeth's State Coach.
of the Emperor Ferdinand III., thnurht, as she rode in Carinthia in a close carriage with glass windows. Queen Elizabeth's carriage was rather more solid than graceful.

Hackney-coach; a coach kept for hire.

Stag:- coach; one travelling on a regular route, and carrying passengers. The style varies in diferent countries. The stage in England carried six inside and fourteen notside, besides the diver and guard.

Mail-cnach ; one employed in carrying the mails and passengers. Spe Cahiliage ; Cait; Chailot.
2. (Noutical.) eabin on the after-part of the quarter-deck. A mund-house.

Coak. 1. (Carpen-

Coal Breaker ant Wrasher.
ing on to the crushing-rollers F, and the finest of all, falling on a lows plate, is delivered by the shoot c into a pit c.
The rollers F have longitudinal and transverse grooves, forming projretions which break up the thin fragmenits of slate mixed with the eoal, without reducing the latter too much in size. It then falls into the pit c, whence the boly of coal is elevated by the enilless chain of buckets $G F$ and carried to the sorter H, which separates it according to size for delivery to the hoats or taks which are to receive it. The finest portions, which pass through all the gratings of the separator, fall into the tank or bac K, through which a current of water is forced by means of a cylinder and piston O, raising the broken pieces of slate sudticiently high to be forced through a perforated plate and discharged by the spont L M, the How being regulated by Hood-gates, while the corl, in eonsequence of its greater weight, falls to the botion of the bace, from which it is removed as often as necessary through a suitable opening.
Coal-brealk'ing Jack. The jacks A are in-

Fig. 1355

Coal-Breaking Jack. serted in a small recess made in a sean, and a few feet of flexible tubing taken to an adjacent pump shown at B. On working the pump by means of the handlever great pressure is obtained, and the coal is brought down in large masses.

Coal-bunk'er. (Nuutical.) The closed room around the boiler and en-gine-room of a steam vessel for kepping the fnel.

Coal-car. A freight-car designed especially for coal, having facilities for dnmping.

Coal-chute. A spout by which coal in bunkers or elevated boxes is loaded into ears or carts. In the illustration it is shown as extensible and verti-

Fig. 1353.

cally adjnstahle ; the former ly a rod on rollers, the latter by block and tackle.

Coal-cut'ting Ma-chine'. A machine for nn-der-eutting coal-seams in the mine or at the bank. See Coal-mining Machine.

Coal-dump'ing Ap'pa-ra'tus. For loading vessels from the car. On top of the rail a whieh forms part of the staith, the laden carriage descends

and when it attains the point a the whole frame b with the car-

Coal-Dumping. riage is lowered down by the chain passing over the pulley at d, to the center of the deck of the vessel, and the coals deposited in the hold at c.

Coal-min'ing Ma-chine'. One form of the coal-cutting machine has an engine with a reciprocating piston driving a massive steel pick, in any desired direction, and at a very material saving in hewing, or kirving. The motive-power of the engine is highly compressed air, condensed by the steam-engine at the mouth of the pit, and this elastic air is conveyed by slender pipes down the shaft and along the mine to the breast where the coal is being worked. The compressed nir is pumped by the steam-engine into a receiver at the pit-huad luring its otherwise idle hours, or by its surplus power when drawing up, the coal, or pumping out the water from the mine, ant is condensed to a tension of forty or fifty pounds to the square ineh. It is conducted in metalic pipes, $4 \frac{1}{2}$ inches in diameter,

Fig. 1358.

Coal-Cutting Machine.
down to the hottom of the shaft, and thenee in pipes of a smaller diameter to the workings, tuhes of 1 or $1 \frac{1}{4}$ inch caliker bringing it to the eylimber of the machine. This compressel air, when set free at each alternating stroke of the piston, imparts to the adjacent prortions of the mine a pure, dry, canl atmosphere, from a well-known law of all air and
gases, that when compressed they develop heat, and when expanded under a relaxation of pressure, they are relatively cool.

The machine is supported by a cast-metal frame of great solidity, and is of a size and weight proportioned to the character of the coal to be cut. It is constructed to give the blow of the pick, either by the pull or pusli of the piston.

The engine las an oscillating cylinder which has the merit of combining compactuess of shape with but little complication of working parts. The machine rests upon flanged wheels and is propelled either backward or forward by a wheel and screw on a rachet and pinion, attached to one side of the engine. On the oplosite side is a valve-screw for regulating by the hand the access of air to the engine. When working, the man seated upon the little stool in the rear of it moves the rachet-screw conmected with the geariug of the under-carriage, and thereby propels the whole machine along the little railway or tram laid prarallel to the front of the coal-seam, a small distance equal to the longitudinal nip or bite of the pick.

One machine, working 90 blows of the pick per minute, discharges, of condensed air, abont 100 culic feet per minute, which immediately becomes 300 cubie feet of cold air at the normal density, and each machine is competent to supply from 12 to 15 per cent of the ventilation required at the heading ; the air being perfectly fresh, pure, and cool, and allorded precisely at the localities where the workmen are most in need of such an atmosphere. When working at 120 picks per minute, the machine ents an inch at each stroke, 20 inches deep, $2 \frac{1}{2}$ inches wide: a second traverse deepens it to 30 inches, and a thirl to 36 in thes.

Coal-oil Stove. One specifically adapted to cook or lieat by means of coal-oil lamps. In the illustration, the bumer is amular, and has a circle of wicks, the amount of oil being regulated by a screw-valse \vec{J}. The parts of the stove are a hot-plate for cooking vessels, and a chamber above which may have an oven or a clothes-hoiler.
Coal-sack. A rough and strong bag, of hemp or jut", gethetally tarred, and nsed for conveying coals.
With the United States portable or mountuin forge there is furnished a leathem coal-sack. It is 14 incbes in diameter by 18 inches in hight, and of cylindrical shape.

Coal-screen. A sifter for coal. At the mines it is a very large cylinder with an inclined axis and pmitions of varying meshes, so as to sort the broken coul into sizes.
Coal-scut'tle. A box or hod for holding coals for ur sent use.

Ccal-stove. A stove for heating or cooking, adajued for the consumption of stone coal, as dis-
tinguished from charcoal or wood. The hratingstove is of many varieties, as the muguzine, see Fig. 1360; the coosing-store; firep'ace heater, etc. See list nuder sruves and Heating Appliances.

Coal-tongs. a pair of tongs for grasping coal in lmups. Fire-tonys.

Coal-wash'er. A machine in which coal which has been broken and as. sorted is finally washed to deprive it of the dust and dirt adhering. See Coal-breakeli.

In some operations it is worth while to sort, clean, and use certain portions of the fuel which have passed throngh the furnace. In Fig. 1361, the coal, ashes, and cinders

Coal-Stoce. are ground, washech, and elevated into a drun, where the material is assorted by fineness and passed to the shaking-machine, where the qualities are separated according to gravity.

Coam'ings. (Shipbuilding.) The raised border
Fig. 1361.

or frame of a hatchway, to prevent the water on the deek from flowing below. Combings.

The fore and aft pieres of a hatchway frame are cocmings, those athwart ship are head-ledycs. The former rest on carlinge, which extend fiom beam to beam, and the latter rest on the deck beams.

Co-ap'ta-tor. (Surgery.) An apparatus for fitting together the emls of a fractured lone and holding them in position while the bony junction is proceecling.

Coarse-stuff. (Plastering.) The first coat of inside plaster-work. It is cornposed of common lime mortar, as made for bick misonyy, with a small 'fuantity of hair ; or by rolmmes, lime paste, 1 part; sand, 2 to $2 \frac{1}{4}$ parts; lair, $\frac{1}{8}$ part.

Coast'er. A veusel employed in trading voyages from port to port, along a given coast.

Coat. 1. (Niutical.) A piece of tarred canvas, put about the masts at the partners, the rudder-casing, and also around the pumps, where they go
through the upper deck, in order to prevent water passing down.
2. A layer of plaster or paint.

Of plastering :-
A scrateh-coat is the first of three coats; when laid upon laths it is from \ddagger to $\frac{s}{8}$ of an inch in thickness.

One-coat work is plastering in one coat without finish, either on masoury or laths - that is, rendercel or luid.

Tuo-cont work is plastering in two coats, done either in a laying-coat and set, or in a screcd-coat and set.

Screcd-coat; a coat laid even with the edges of the sereeds.

Floated coat; a first coat, laid on with a float.
Sipped-coat is the smoothing off of a brown coat with a suall quantity of lime putty, mixed with 3 per cent of white sand, so as to make a comparatively even surface.

Coat'ing Met'als with Met'als. See Gilding; Plating; Electhu-plating; Silvehing; Galvanizing ; Platinizing ; etc. For list see Metallutey; Metal-working.

Coa:- inls. A pair of buttons joined by a link, fur and higg torether the lappels of a double-breasted coat.

Co'balt. Equivaleut, 29.5 ; symbal, Co. ; specific gravity, 8.92. A reddish-gray metal. Fisingpoint about $2800^{\circ} \mathrm{F}$.
Oxide of cobalt gives the blue color to glass. This glass broken into fragments forms smalt.

Cob. 1. (Mining.) To break ore witb a hammer to reluce its size, to enable its separation from portions of the gangue, and its assortment into grades of quality.

2 An unburnel brick.
Cob'le. (N'utical.) A small fishing-boat, of great antiquity in the British lslands. Cogg'e.
Cob'ler. A bent rasp for straightening the shaft of a ramrod.

Co'bourg-cloth. (Fubric.) A lady's dress gools, cotton-chain, woolen-filling, twilled on one side. It may be considerel an imitation of merino.

Cob-wall. A wall built up solid of a compont of puduled clay and straw, or of straw, lime, and earth.

Cob'web-mi-crom'e-ter. Invented by Ramsden ($1735-1800$). A mierometer in which cobwells are substituted for wires. By turning the screw which approximates or separates the frames across which the cobweb-threads are stretched, the stightest alterations of the tines can be estimated, and a difference, even of roobno of an incle be rendered apureciable.

Coch'le-a. 1. An ancient term for an engine of spiral lom. The serew whereby Archimedes hanched the great galley of Hiero is also called cochlca by Atheneus. A serew-juc':
2. A spiral promp for raising water, as introluces] by Archimedes into Egypt. The Archimederin serpo.

Cock. 1. (Horology.) A bridze-piece fastened at one end to a watch-plate or block, and at the other enl forming a bearing for a livot; of the balance, for instance.

When the piece is supported at both ends, it is a bridge.

In Lepine watches, the wheels are pivoted in bridges instead of full plates.
2. The hammer of a gun-lock.
3. The gnomon or style of a dial. It represents the axis of the earth. It stands in the plane of the meridian, and its angle with the horizon is the latitule of the place. Mercutio may have referred to
this when he made that very exceptionable remark to the nurse.
4. A fancet or rotary valve, usually taking its name from its peculiar use or construction, as:-

Blow-off cock.
Cylinder-cock.
Feed-cock.
Four-way cock. Gage-cock. Oil-cock.

Self-closing cock.
Steam-cock.
Stop-cock.
Three-way cock.
Try-cock.
W ater-cock, etc., etc.

5. A vane.

6. A small boat.
7. A pile of hay. A cocking-machine gathers hay from the swath or windrow and puts it in cock.
8. The pointer of a balance.

Cock-bill. (Nautical.) An anchor is a cockbit when it is suspended vertically from the cathead. See A>chor, jage 96.

Cock'et-cen'ter-ing. One in which head-room is left beneath the arch above the sprinying-line. Where passage beneath the arch is not rupuired furing the execution of the work, a cocket-centering is not needed, but the centering is constructed on a level tie-beam resting on the imposts.
Cock-eye. 1. (Milling.) A cavity on the un-ler-side of the balance-rynd to receive the point of the spindte.
2. (Sieddery.) An iron loop on the end of a trace, adapted to catch over the pin on the end of a single-tree.

Originally woodeock cyc, from the fancied resernblance of the thing to the head of the woodrock, the loop answering to the eye of the bird.
Cock-head. Thy upper point of a mill-stone spindte.

Cock'ing. (Carpentry.) a. A mode of fixing
Fig 1352

Cocking.
the end of a tie-beam or floor-joist to a beam, girder, or wa'l-plate. Cugging.
b. Mortising.

Cock'le. 1. The hemispherical dome on the crown of a heating-turnace. See Heating-stove.
2. A hop-drying kiln. An oast.
3. To huckle, or contract into wrinkles.
4. (Porcelain.) A large drying-stove used in a house where biscuit-ware dipped in g'aze is dried premaratory to firing.
Cock'le and Gar'lic Sep'a-ra'tor. A machine for seprarating from wheat or other grain the seeds of cockle and the corms of the wild garlic, which is sucle a nuisance in some portions of the Atlantic slope.

In the example, the hopper has a small adjustable outlet through which the grain falts on to the perforated cylimder and is carried round and swept on the board by the revolving brush. The cockle drops

Cockle and Garlic Separator.
through the perforations into the cylinder, and is carried round till it is discharged at the end into a duawer. Another mode of separating cockle and garlic is to give the roller a slightly adhesive surface, so that the rongl-skinned cockle or the softskinned garlic may adhere thereto, and be carried off by the roller to be swept away, while the hard and bright-skinned grain yefuses to adhere, and passes to a different recept.ule.

Cock'le-stairs. (Carpentry.) Winding stairs.
Cock-met'al. An inferior alloy of copper and lead for making fancets. See Allor.

Cock-pit. (Nautical.) The after-part of the orlop deck. It is below the water-line and ordinarily forms quarters for junior officers, and in action is devoted to the surgeon and his patients.

Cock-spur. (Pottery.) A small piece of pottery used to place between two pieces of glazed-ware in the saggar, to prevent their adherence during the process of baking. Stilts; trimgles.

Cock-up Let'ter. (Printing.) A large letter standing above its fellows in the line, and formerly used for the initial letter of a book or chapiter.

Co'coa. A palm (Cocos mucifera) from which the nut is derived. It also affords coir, from which ropes are made.
The name of the kernel from which the beverages cacao, broma, and chocolate are prepared, is sometimes corruptly spelt cococ. See Cacan.

Cod'ding-ton Lens. A lens of spherical form having a deep equatorial groove around it in the plane of a great circle perpendiculiu as to the axis of vision. The groove is of such a depth that the stem

Fig. 1364.

Coddington Lens.
connecting the hemispheres has a diameter equal to $\frac{1}{6}$ of the focal length of the lens. This lens was inventer by Dr. Wollaston, and called by him the periscopic lens; he made it by cementing together by their plane faces two hemispherical lenses with an annular, opaque diaphragm between them. Sir David Brewster improved it by cutting a groove in a whole sphere and flling the groove with opaque matter in order to diminish the quantity of light and prevent the confusion arising from the lateral rays.

Cod-line. An 18 -thread deep-sea fishing-line.
Cod'ling. A balk sawed into lengths for staves. It is cleft or rived into staves by means of a frow and mallet.

Coe'horn. (Ordiance.) A small mortar made light enough to be carried by hand, and adapted to throw a shell to a small distance. Used in fortifications and for signaling. The name is derived from its inventor, the Dutch Engineer officer, Coehorn, who was Director General of the fortifications of the United Provinces of Holland.

The regulation Cochorn mortar in the United States Service, is of brass, weighs 160 pounds, 24pdr. caliber. It is mounted on a wooden bed having four handles by which it is carried by as many men.

Fig. 1365.

The English coehorn has a bore of $4 \frac{1}{2}$ inclies, a length of 12 inches, and weighs, with bed, about 340 pounds.
Goodwin's coehom is fixed on a stake and fired by a trigger and lanyard. It is a surprisingly effective little piece, throwing a three-inch shell to a great distance, and may be carried, one under each arm.

Cof'fee-big'gin. A coffee-lot with a bag to contain the
ground coffee through which the boiling water is poured. The wirestrainer is a substitute for the flannel bag.

Coflfeeclean'ing Ma-chine'. A machine re. sembling a bran-duster or smut machine, in which the
 coffee grains are beatcn, rubbed, brushed, and winnoucd to remove the "parchment," or thin adhering envelope of the grain, and also purge it of dust and foreign matter. The devices are numerous, but generally consist of rotating beaters, rubbing surfaces, fans, etc.

Newrll's ${ }^{\text {ratents, }} 1857$ and 1859, may be taken as a type. A stram-heated cylinder, wire-gauze cylimhical envelope, rotating beaters.

Following these are ahout sixteen patents.
The object of some is to clean the grain ; of others to "produce a yellow, brown, or golden color, to increase the conmercial value."

Sand and tale-dust are used by some to rasp the grain.

Cof'fee-hull'er. A machine to remove the husk or sac which covers the collec-grains. It consists of an arrangement of serrated surfaces on a belt, or re"iprocated prast other serrated surfaces, between which the envelope is torn and loosened from the grain. Subsequent rubbing, brushing, dusting, and winnowing complete the process of hulling.

The enffec cleaner and polisher operates upon the grain subsequently.

The machine is similar to a rice-huller. Ditson's patent, 1835, has abrading surfaces made by perforating sheet-iron. See also Adams's patent, 1836.

Coffee-Huller.

Subsequent to thesp are about ten others, which have certain peculiarities of construction. In the example, the husk is removed from the collee while passing hetween the serrated blocks of the endless belt, and the serrated lower surface of the yielding plate.

Cof'fee-ma-chin'er-y. Coffee, as picked from the tree, looks like cherrics, and is treated in Ceylon in the following namner:-

The berius are laid in heaps on the floor, whence they pass to the pulp 'rs. These remove the flesh and skin, sarcocarp anil epricarp, leaving two beans in a sac. The pulper is a stout frame supporting a Hy-wheel, shaft, and barrel. The latter is of sheetcopper, punched from the inside so as to expose a grating surface to the fruit, which is fed on to it from a hopper and passes between the barrel and a chock, which forms a throat. The pulp passes off, white the beans in their envelope fall into a hox beneath and are phaced in cisterns where they are covered with water for twelve hours or so, in order to slightly ferment the mueilage which covers the membrane and prevent its hardening upon the skin.

After washing, it is phacerl on the barbecues, which are circular stone structures with polished plaster surfaces on which the beans are sunned for four
days, while yet remaining in their envelope. It is thus iried sufficiently to be sent to Kandy, and thence to Columbo, where it undergoes a final treatment, consisting of curing, removing the covering, and picking out faulty berries.

In some establishments the beans are cured by a blast of warm dry air introduced into a chamber beneath the berries.

Cof'fee-mill. A small hand-mill in which roasted coffee-berries are ground by passing between the serrated surfaces of opposed steel disks or rollers, or roller and concave, as the case may be.

Collee is the berry of the Coffen Arabica, a shrub of the order rubiacece, and its fruit resembles the cherry. Bruce says that it is uative in Abyssinia. The use of the infusion as a heverage cannot he traced back very far: It was carried by Selim from Egypt to Constantinople, but does not appear to have been publicly sold till 1554. Its use was forbidden by the mufti, but again permitted by an edict of Solyman the Great. The Venetians bronght it from the Levant in 1615, and in 1645 it was introduced into Marseilles.
Coffee was introdnced into England by Daniel Elwarls, a Turkey merchant, in 1657. The first coffee-house in England was in St. Michael's Alley, Cornhill, London ; opened by Pasqua, a Greek servant of Mr. Edwards. It was thell sold at from four to five guineas a pound. Coffee-trees were imported from Mocha ly the Dutch alont 1700, and thence carried to Surinam. In 1714 a coffee-plant was presputed by the magistrates of Amsterdani to Lonis XIV., and placerl in the grounds at Marly. The progeny of this plant were carried to Cayenne and Martinique. In two centuries its use spread all over the civilized world.

The coffee-tree does not thrive where the temperature ever sinks below $55^{\circ} \mathrm{F}$. It grows to the hight of 12 or 15 feet, has a leaf like the laurel, but not so thick. The blossoms are white, like the je asamine, and issue from the axille of the leaf-stalks. When they lade they are sncceeded by the herry, which, as said before, resembles a cherry, is red when ripe, and has a yellowish, glutinous pulp, enclosing a sac containing two seeds.

Cof'fee-pol'ish-er. A machine for removing traces of mildew and stain from coffee as importerl, or the effects of damp or heating in store. In the example, the collee is discharged from the hopper upon the rim of a cylinder, covered with elastic material, and carried between the crushing plate or rubher and knobbed belt. The erushing plate is hinged and held in position by an elastic belt, the end of which is seenred to an adjustable stretcher.

Cof'fee-pot. A vessel in which

Fig. 1368.

Coffee-Polisher. the infusion of coffre is made. Of the various kinds may be cited :-

1. The percolator, in which the infusion passes from the infusion-vessel through a strainer into a reservoir. This is effected by simple filtration, by pressure of steam, or by producing a partial vacuum. The percolator was invented by Count Rumford.

The ground coffee is pressed between perforated dia-1 phragms, so as by compactness to prevent the water

Rumiford's Percolator. from filtering through too quickly.
2. Coffee-pots having arrangements for condensiug the stean and the essential oil, - which constitutes the aroma of the coflee, -and returning them to the infusion. An early arrangement of this kind is the Bencini patent, September 27, 1838. See also Martell's spatent, 1825 ; Rowland, 184t; Waite and Sener, "Old Dominion," 1856. These have lids or upper chambers to condense the steam.
3. Coffee-pots of peenliar construction, as :-

Hotte, $18 \frac{1}{7} 0$; a furnare insile the coffee-pot.
Manning, 1869; an earthenware lining to a metallic pot.

Gibson, 1871 ; a flat breast to prevent lateral tilting when the pot is tipped forward.
Suspended on journals over a lamp and tipped on its bearings.

A strainer suspanded from the spont.
Hot-water jacket.
Iron lieater in reservoir ; the urn.
Divided chambers for tea and coffee, or coffee and water.
A piston to compress the gronod and expel the infusion.

A piston to eject water in desired quantities lrom the water reservoir into the infusion.
Varions arrangements of coffer-pots, of lampheated pots, and mons, may be sem in Wehster and Parkes's "En'yclopedia of Donuestic Economy," Londou, 1852, 1p. $711-716$.

Fig. 1370.

Cof'fee-pulp'er. A machine for treating the coffee fruit by removing tbe pulp and the envelope of the seeds. Sce Cuffee-machinery.

Cof'fee-roast'er. Two objects are attempted to be secured in cotfee-roasters: to keep the berries moving and prevent their burning, and to keep the aroma confined as much as possible. The aroma depends upon the essential oil in the berry, and the empyreumatic flavor is developed by heat; or the oil is developed in the berry in the process of decomposition.
The coffee-roaster is generally of a cylindrical or prismatic form, and is rotated on a lorizontal axis by means of a crank. In Fig. 1370, a, the base-plate is made to fit into the hole in a stove-top made hy removing a pair of store-lids and the center-plate between them, a protecting sheet beneath preventing the direct action of the fire upon the cylinder. which rotates in jonrnals above. The axial stud at each end is eccentric, those on the respective emds being on alternate sides of the center, so as to give a tumbling motion to the coffee, which is thus shaken from end to end of the cylinder as well as from side to sile.

Fig. 1371.

A glass pane or slip allows the state of the process to be observed. The chamber is a polygonal prism, the plates forming the sides being more effective in tumhling the berries

than are the smooth surfaces of a cylinder.
b (Fig. 1370) has a spherieal chaniber which occupies a stove-hole, and is rerolved by the crankhandle while held in place by the other handle.
c is a cylinder monnted in a plate with legs.
Law's coffee-ronster (English) is a hollow splere having a compound notion, revolving continnously in a horizontal plane and intermittingly in a vertical plane. Ure, I. 456.

Fig. 1371 has two cylinders $A B$ with wire-gauze diaphragms $E E$ hinged togetber and held closed hy their handles. The coffee is contained between the foraminons diaphragms. The roaster is reversible, and sits upon the stove-top over a pot-hole.

Coffer. 1. (Architccture.) A sunk panel in a soffit or ceiling, deeply recessed by one or more separate faces, having the appearance of inverted steps, and enriched with moldings in the several internal angles, and with roses in the center.
2. (Fortification.) A hollow work across a dry moat to aid in repulsing a storming party by enfilade fire.
3. (Hydraulic Engincering.) A canal-lock chamber.
4. A large wooden ressel with movable ends to receive a barge or other vessel. A floating dock.
5. A casket for jewels.
6. A store-chest for muniments.

Cof'fer-dam. (Hydraulic Engincering.) A wa-ter-tight enclosure formed by piles driven into the hottom of a river and packed by clay, planks, or other stop-gap. It is nsed as a dam while laying bare the bottom of the river, in order to establish a foundation for a pier, abutment, or quay.

Peronnet's coffer-dams at the bridges of Mantes and Neuilly were made of two rows of piles, whinh were iron-shod, and driven with a monkey weighilig 1,000 pounds. The mud was removed form the in-

outside being protected with clay and an artificial bank a, Fig. 1373.
A sectional view b,
Fig. 1374, will give a clear idea of the duuble wall of piles, between which the pudille is rammed to form a wa-ter-tight filling.

Instead of forming a double wall of piles in this manner, it has bern suggested todredge out the mud enclosed by the outer wall of circumvallation, then fill to a certain hight with béton. Upon this as a basis, an inner circle of shorter piles is driven, and the space between the walls puddled. The interior enclosure is then pumperl ont.
tervening spaee by means of dredging-machines and the sprace filled with clay, rammed down. The wa-

Fig. 1373.

Coffer-Dam,
ter from the interior of the dam was then pumped out.
In shallow water and in situations but little exposed, a single row of piles sometimes suftices, the

The pier coffer-dam of London Bridge (Fig. 1375) is described at length in Cresy. It is ellijtical in

form, and a portion of it is shown in plan in the fig. ure. It was composed of piles not less than 1212

Fig. $13{ }^{15} 5$.

Coffer-Dam of London Bridge.
inches spuare, driven in rows and braced by timbers and tic-bolts. The outer row and sheet walings and the spaces between rows were plugged with clay, the joints calked and covered with pitcl. The piles were straighteued, flaned on the edges, and shod.

A coffer-dan built by the government engineers engaged in improving the narigation of the Mississippi River over the rapids of Hock Island is four thousind six hundrel feet, or seven eighths of a mile long. It runs parallel with the shore, is from eight to fourteen feet wide, and near one million feet of lumber were used in its construction.

Cof'fer-ing. (Mininy.) Securing a sliaft from leaking by ramming in clay. See Catsion; Curb.

Cof'fer-work. (Masonry.) Rubble-work faced with stone. See Masonry.

Cof'fin. 1. (Mininy.) a. A mode of working, open to grass, in which the bed of ore is uncovered by casting up the ore and attle by stall-boards, from one to another, to the surface.
b. An old exposed working.
2. (Printing.) The wooden frame inclosing the imposing-stone.
3. A receptacle to hold a corpse. A burial-case.

Joseph was put in a coffin in Egypt (Gen. I. 26), about 1650 B . c. This is the only mention of a coffin in the Bible; that mode of burial was never common among the lsraelites, hut Joseph's body was embalured and coffined, according to the custom of his adopted country, and was taken out of Egypt by his countrymen whes they left for Canaan, 1491 в. \subset.

The coffins of ancient Egypt were frequently stained to represent rare and foreign woods. The
sycamore was the principal wond used, and it was handsomely paintecl, inlaid, and carved, according to their peenliar ideas and taste.
It must be admitted that Egypt has the palm of priority and skill in the subject of coffins. They uad a yood reason for exercising so much care, as they believed that in due time the spirit would return to the body, and they desired to keep it in the best order possible. We have no room to go into the subject of embalming, but may say, that the brain and viscera were withdrawn, the former at the nostrils, and the latter at incisions made by fint knives in the side of the ahdomen. The cavities were then stuffed and the body bandaged, resinous and aromatic substances being employed to arrest deeay. A box received the body and its wrapping, and the lid was tightly closed. The style of ornamentation can be best gathered by inspection of the mummies, or some of the beautiful volumes written by men who have made the sulject a study. The work of the French professors, "Description de l'Egyptr," marle under the anspices of Napoleon, and Wilkinson's work on the manners and customs of the ancient Eyyptians, will afford the best infomation extant, in book form.
The embalming process of the most expensive kiud cost about a talent of silver, over $\$ 1,000$ of nur money. The processes were graded in price according to the ability of the survirors, the pecuniosity of the estate, or the ante-mortem directions of the defunct.

The illustration annexed is fron a Theban tomb, exliibiting the trade of a coffin-maker. The men

Fig. $13 i 6$.

Coffin-Mithers (Thebes).
are engaged upon the mummies, which are shown in two stages of completion. Some are applying the bandages, one is using the dill for some purpose in this connection, others are painting and polishing the case.

The coffins of the Ethiopians, exhibited to the emissaries of Cambyses, are thus described in Herocl-otus:-"They place the body in a crystal block which has been hollowed out to receive it, crystal being dug up in great abundance in their country, and of a kind very easy to work. You may see the corpse through the block in which it lies, and it neither gives out any unpleasant odor, nor is it in any respect unseemly ; yet there is no part which is not as plainly visible as if the lody was bare."

Book 111,, elapter 24, he speaks of the body being dried, and painted in imitation of health before inhumation; and of a corpse being treated as one of the family for a year after death, meals and attentions being scrupulously offered thereto.

The substance described as having been hollowed out for the reception of the mummy may have been glass, which was known in Egypt previous to this period, or it may have been the lapis specularis, or one form of gypsum.

A sarcophagus of alabaster was (in 1845) in the museum of the late Sir John Soane, Lincoln's-Inn

Fields, London. This, which is very elaborately carved and decorated, was discovered by Belzoni, in Upper Egypt.

Jt is the subject of the poem commencing, -
"Thou alabaster relic! which I hold,
My hand upon thy sculptured margin thrown."
Coffins of baked elay are found amid the ruins of the ancient cities of Mesoprotamia. They are oc-

casionally of wood. A common form of buial among the Hamite Clialdeans was to lay the lody
on a brick platform and then cover it with a dome of pottery, like a morlem dish-cover.

Cothus from Warka, of green glazed pottery and shapel like a slipper-bath (see Fig. 1377), belonged protably to the Challeans of the Parthian age.

One sarcophagns of a Scythian king entombel at kertch was found to be of yew wood, and hatl two compartments; one for the body, the other for weapons. The sarcophagus was in a large stone voult which contained the skeletons of a wife, an attendant, a horse, and divers jars, which probably once held provisions. It is pietured in Rawlinson's Herodotus, note to pll. 49, 50, Vol. III. (Am. ell.).
surcophagi of terra cotta, ornamented in bas-relief and with recumbent statues of the deceased, are tound in the British Musemm. See article "Fuous," in Snith's "Dictionary ol Greek and Roman Anti! nities."

Glass collins were patented in England in 1847. Uufortunately they were also used by the Egyptians over 2,000 years ago.

We learn from lliny that Varro and others directed that their bodies, when dead, should be de$l^{\text {wisited in earthenware. }}$

Coffins male of slate slabsunited liy metallic corner-

Coihus are renderad impervious to moisture by reni:s, asphaltnm, parafine, ete.

A Danish pather states that IIerr Woerman, shipowner of Hamburg, has been commissioned to proenre a coltin for his present Majesty the King Jberio, on the west coast of Africa. The coffin is of fir-wood, polished on the outside, and furnished very comfortably. It is lined with red velvet, and has soft velvet cushions. There are five glass windows in the lid to let the light enter, and under it is placed a mirror for aid to rellection. The handles and feet are of tin, as well as the winlow settings; and, last'y, the colfin arrangement is completed by two bottles of gin and the necessary glasses. The
 prosyrect of death is rendered cheerful by the continnal presence of the box in his Majesty's state apartments.
4. (Milling.) One of the sockets in the eye of the runner, which receives the ends of the driver.
The term is applied to other depressions, esprecially to such as are hollowed or chipped out.

Cof'fin-gage. An instrument, erossshaped, with graduated stem, headpiece, and arms, by which the measurement of a corpise may be readily made.

Cog. 1. A tooth, cam, catelı or lifter, which acts upon an objent to move it ; as in the case of a gearwheel; the wiper on the shaft which lifts a trip-hanmer, or the pestle of a stampmill ; the projection
from the arbor of a stop-motion, or from a disk in a register or feed motion, etc.
2. (C'urpentry.) a. A projecting piece a on the end of a joist, which is in the nature of a tenon, and is received into a noteh in a bearing timber, such as a wall-phate, the cog resting Hush with the npper surface of the plate.
b. A longitudinal tenon $b c d$ projecting from one of the faces of a scarf-joint and entering a recess in the face of the other timber, to prevent lateral deflection of the searf-joint. A coak.

Cog and Round. An old-fashioned bucket-
Fig. 1379.

hoist having a cog-wheel and lantern, the latter laving staves or rounds.

Cog-wear. An old-time narrow frieze goods, of coarse suality.

Cog-wheel, One having teeth which mash into smilar ones on another wheel to impart motion thereto, or to receive it therefrom. The name-cog-slows the original mode of construction, in which cogs or pieces of wool were insertell into mortises in the face of a wheel. Wheels thas constructed are used under the names of rag or sprochel wheels, in comneetion with chains or lantern wherls, the latter having roumls or rumilcs between disks.

The teeth of cog-wheels are now usually nade solid with the rin, being cast therewith or eut thereupon.

There are numerous varieties of cog.wheels, known by pecularr shapes, morles of presentation of

Fig. 1380

the wheel, or by special features of the teeth. A list is given under Geaming (which see).
A spur-wheel has cogs projecting radially, either inward or outward.

A crown or contrate wheel has eags projecting from the rim parallel with the axis.

A bovel or miter wheel has teeth whose faces are oblique with the axis.

The pinion bears a specific relation to a larger cog-wheel.

For list of cog-wheels, see Gearing.
In the illustration a spur-wheel is shown, the cogs being radial.

The characteristic parts of the wheel are as fol-lows:-
a, primitive or goometric rudius; distance of the center of the wheel from the pritch-line.
b, true (or real) radius; distance of center of wheel from extremity of cog.
The cudendum is the difference between the real and geometric radius.
Interelental space ; the interval between cogs.
The pitch c of a wheel is the distance measured along the pitch-line from the center of one tooth to the center of the next.
The pitch-surface of a wheel is an ideal smooth surface, intermediate between the crests of the teeth and the bottoms of the interdental spaces, which, by rolliug contact with the pitch-surface of another wheel, would communicate the same velocity-ratio that the teeth communicate by their sliding contact.
The pitch-line of a wheel, or, in circular wheels, the pitch-circic, is a transverse section of the pitchsurfuce made by a surtace perpendicular to it and to the axis; that is, in spur-wheels, by a plane perpendicular to the axis; in becel-wheels, by a sphere described about the apex of the conieal pitch-surface; and in sherobceol wheels, by any oblate spheroid generated hy the rotation of an ellipse whose foci are the same with those of the hyperbola that generates the pitch surface. (Ravisis.)
The pitch-point of a pair of wheels is the point of contact of their pitch-lines.
The crest of a cog is its extreme outer surface.
The facc c of a cog is the acting surface beyond the pitch-line. f is the shoulder.
The flenk ol lies within the pitch-surface.
The substitution of the iron for the wooden wheel is originally due to Smeaton, who introluced iron wheels at Carron, in (ireat Britain, in 1754, and at Belper, Derbyshire, shortly after. A cast-iron bevelwheel was also used in Scotland about the same time by Mr. W. Murdock. Not until 1784, however, was cast-iron fairly introduced in the various details of mill work, and the credit of this wider application of the improvement helongs to John Reunie, an eminent and successful cngineer, who adopted it for bevel and spur wheels at Boulton and Watt's, at the Soho Rolling Mill and Foundry.

Cog-wheels were formerly distinguished from toothed wheels by the former having teeth of different materials from, and inserted into, the rim.
This distinction is not now very usnal.
Coil. 1. A helix or spiral ; the word is used to indicate variously convolved forms.
It seems proper that the term "coil" should be consilered generic, including both the helical and spiral forms.

Helical, appertaining to a hclix, which is a coil decreasing in radius as it approaches the center ; whether in the same plane as a coil of rope, or a watch-spring, or assuming a conical shape, as with helix:s of shells.

Spiral, sbaped like a wire wombd upon a cylindr: as the spring of the chronometer, the springbalance, etc. The coils have the same diameter.
2. (Nautical.) Rope laid up ring fashion, frace on fak:s. When lail up in a flat helix, without riders, besimning in the middle, and " with the sum," it is said to be a Flemish coil.
Coiled-spring. A metallie spring lail n in a spiral so as to have a resiliency in the line of its axis, either by extension or condensation, as the spring may be arranged. Fig. 1381 shows one mode of coiling springs in which the wire is wound on a revolving mandrel, the end heing held by a sliding sleeve and locking dog. The wire is coiled upon

Fig. 1381.

Machine for coiling Springs.

the mandrel I as it rotates, by a spirally gronverl cylinder K. The coil is stripped from the mandrel by the longitudinal movement of the latter.
The uses of such springs are so numerous that it will be inpossible to enumerate a large proportion of them. Springs for railway cars, spring-balances, berl-bottoms, etc. See Fig. 1143, page 483.

Coin. A piece of metal on which certain characters are stamped by authority, giving the piece a legal current value.

No coin has been found of the ancient Egyptians or Assyriaus; neither do the Phenicians appear to have coined money.

The money of ancient Egypt was in the form of rings, which were of gold and silver, $a b c \quad d$, fig. 1382. The same currency, we learn from Wilkinson, is in use in Senaar and the neighboring countries. The Egyptians had no coin till the time of Alexander, 330 b. c., except a few of the Persian, and some made in imitation, which cost the viccroy his life.

The Chinese and Japanese have also ring-money.
Money was originally estimated by weight, as in the case of the sum paid for a piece of land by Abraham to Ephron the Hittite, and the money "in full weight" found in the corn-sacks of Joseph's brethren. In the Theban paintings, the public weigher is shown in the act of weighing money. See Balance.

To avoid the tronble of weighing the metal whenever a purchase was made, or of cutting it to make fractions, pieces of a known weight were ready cut and introduced into circulation. These were marked with their weight ; afterwards devices, such as the name or figure of the king, were placed upon them to confer authenticity, and thus coins were established.

Chinese bronze and copper money was made as early as 1100 b. c., but none of gold or silver till a much later period.
The brass money referred to hy Homer as existing 1184 в. c. was bronze, and may have been merely pieces of known weiglit. Herodotus states that the Lydians tirst coined money about 1000 R. ©. This was at the period when Solomon paid Hiram in corn, wine, and oil, for the use of his skilled workmen and his cedar-woorl.
The early coins of Lydia show a punch-mark on the reverse, the quadratum incisim, given by a protuberance on the anvil upon which the planchet of metal was laid to receive the impression of the die, which was laid above and struck by a hammer. The punch-mark on the reverse was afterwards converted into a regular inppression in intaglio. The lion device of Lydia was prohably adopted on coins hy Cresus; other Lydian coins have the areher, which was copied on the Persian daric.
The different states of Greece adopted various animals for emblems.
The earliest representations of the human form,
designed as portraits, are the Macedonian series, commencing with Alexander, the son of Amyntas.

One form of Greek money, before the introduction ol coin, was in shewers, of which six formed a handiu'.

An carly gold coin was the Persian darlic e, Fig. 1382, which weighed about 130 grains troy. Silver

Fig. 1352.

coins in imitation were struck by Aryandes, governor of Egypt under the Persians, for which act he was condemucl to death. Silver is said to have been coined by Phedon of Argos, 750 B . c. Gold by Philip of Macedon, 340 в. c. Servius Tullius coined copper money, 578 B. c. Silver was coined at Athens, 512 в. c. ; at Rome, 269 в. c. Iron was coined by Lycurgus, 884 B. c. Plutarch says it re-
quired a cart and two oxen to draw the small sum of 10 mine, about $\$ 28$.

It is said that the com of Philip of Macedon was the first that was alloyed ; it was done to harden it, and make it wear better.

Coined money was first cited in those portions of the Hebrew Scriptures written after the captivity. The Jews had no coined money of their own till the time of the Maccabees, when King Antiochus gave leave to Simon to " coin money for his country with lis own stamp." (1 Maccabees xv. 6.)

The moncy mentioned hy Ezra was probally the Persian daric e, Fig. 1382, equal to about $\$ 5.50$. Cyrus paid the soldiers of Clearchus a daric a month. (Xenopion.)
The Jewish silver shekel had a weight of about half an ounce, and value about 62 sents of our money. To form an idea of the economic value of money, do not forget to consider the reative value of provisions.
$f g$ are the obverse and reverse of the shekel.
$h i$ the obverse and reverse of the half-shekel.
j is an obverse with the inscription, "Shekel of 1srael."
k - the reverse of the same coin, with "Jcrusalem the lloly," and a vase having threc flowers.

The coins of Herod are of copper or brass, and are abundant, mmismatically speaking. The ohverse l has an inscription and anchor; the reverse on has two cornucopie, within which is a carluceus.

The shekel, stater, drachma, and denarius, representing three different nationalities, were curvent in Palestine.

Barkabah, who raised a politico-religious crusale against the Romans in the time of Hadrian, closed the series of Jewish coins (o p), for after this Jerusalem, as a Jewish city, disappears altogether, and under the name of Elia, A. D. 135, became a lioman colony from which Jews were rigorously exchaded. Constantine restored the name and made it a Christian city about A. D. 326. Five centiries of poace, a long period for Jerusalem, followed the restoration under Constantine and Julian. Then followed the Persian, Chosroes 11., A. D. 614 ; Heraclins retriered it in 628 ; but Omar subdned it, A. D. 637. The Christians rerained it but for a brief and bloody interval of 87 years, in the eleventh and twelfth centuries, when it was conquered hy Saladin, hecame nominally attached to the Kingdom of Sicily in 1277, and in 1517 passed under the sway of the Ottoman Sultan, Selim I., whose successor Sulinan built the present walls of the city in 1542 .

The stamping of metal to form coin was orisinally performed by a common punch, by a succession of blows, making a rude impression, more or less perfect, according to the skill of the workman. An instance of this is an early silver coin of Egina with the emblematical tortoise.

The stater, the principal gold coin of ancient Greece, was, perhaps, the earliest coin, and the noode of its manufacture was characteristic of coinage for a long period. The obverse has a rude image of a lion's head, and the reverse has an indentation. A single die was userl, and the picce of metal placed on it; a punch drove the metal into the intaglio of the die, and the marks of the punch remained on the reverse.

The first improvement upon this consisted in placing a device on the face of the punch, giving a design to the reverse in intaglio. This was not in the first place, similar to the cameo relief of the obverse, as may be scen in the q marter-stater of Phocea. 2 Then followed a coinage in which the obverse and reverse showel the same design, - one in relief and
the other in intaglio. The next ster, was evidently to make two dies with intaglio faces, between which the planchet or piece of metal was swaged so as to give the design in relief on each side. To this we still adhere.

The first designs on coin were emblematical or else inlicative of weight, that is, value. The emblems were various, as in the case of the tortoise of Erina, or the owl of Athens, and were afterwards supplanted by tigures or heads of deities, who presided over the destinies of the respective countries or cities.

The silver coin of Alexander I., of Macedonia, $450 \mathrm{~B} . \mathrm{C}$. , is said to have been the first which had a representation of the human figure; and the drachma of Archelans, 413 b. C., the tirst coin with a portrait. This practice was not adopted by the Romans till the time of Julius Cesar, when it became general, and is yet practiced, as is well known. The Mohammedans, in their detestation of images, inscribe the name aud title of the prince, and on the reverse the name of the coin and the sear of the Hegita. The crescent, found on some Byzantine coin - , was adopted as a symbol by the Turks.
"King Abderahman (Ben Moavia) had his zeka, or house for the coinage of money, in Cordova; he introduced no change in the cnrrency, but retained the dies used in Syria by the Caliphs, who were his predecessors, and made his coins in all respects similar to theirs, . . . excepting what was necessitated by time and place." - Conde.

Jnstinian II. was the first who had the image of Christ struck on coins, A. D. 710. The Pope's effigy first occurs on a coin in 1480 .

The as libra, in the time of Servius Tullius (550 в. c.), weighed a pound, as its name indicates; by 190 B. c., it had fallen to half an onnce. Silver was coined 269 B. C., when the denarius weighed 90 grains : in the time of Vespasian, A. D. 70 , it had fallen to 53 grains. The aureus was first issued about 204 b. c., and weighed 166 grains, but had fallen to 90° grains in the time of Heliogabalus, A. D. 218.

The silver coinage of Crotona, 600 B . c., was pure, as was also the gold coinage of Philip of Macedon, 350 в. c. Under Vespasian, A. d. 79 , the silver money contained one fourth its weight of copper. Under Antoninus Pius, A. D. 138, more than one t'iird. Under Commodus, A. D. 180, nearly one half. Under Gordian, A. D. 236, more than two thirds of the so-called silver coin was copper. Under Gallienus, A. D. 361, a coinage was issmed, an alloy of copper, tin, and silver, of which the latter formed less than a tro hundredth part. The Repoblic debased the coin by reducing its weight, the Empire by alloying it.
l'ieces of copper and of tin, of known weight but irregular shape, were used in Britain, till Cunobelin, King of the Trinobantes, who had been educated at the court of Augustus, imitated the Roman coin; hut under Claudius the Bitish mint was destroyed, the Roman coin introluced, and continued in circulation till the arrival of the Saxons.

Assaying in England originated with the Bishop of Salishury, treasurer to Henry I., about 1130. It was practiced by the Romans.

In the reign of Edward I. the penny was so deeply indented with a cross that it was easily divided into half-pence and fourthlings (farthings).

Henry III. issued the first gold coin in England, 125\%. Edward IIl. issued gold coin in 1344, and at that time the armorial bearings appear on British coins.

Pounds sterling, crowns, and shillings were issued by Henry VIII., half-crowns and sixpences by Edward V'I. The guinea, so called from being made
of African gold, was issued in 1663, and stamped with an eleplant. The name "sovereigu" (English pound sterling) was of later date, reign of Janıes 1. The screw-press was invented by Bucher, a Frenchman, in 1553, and was established 111 the English mint in 1602 . The edge was grained at first to prevent clipning. A motto was placed on the edge in 1651 .

The first coin or medal with milled edges is said to be that of George Frederick, Marquis of Brandeuburgh, 1589.
The "angel," value 6s. 8d., first coined A. 13. 1430. The obverse represented Michael the Archangel with his left toot on the dragon.
The tirst government copper coinage in England was in 1620. Copper tokens hat been issued previously by corporations and individuals.
"At my goldsmith's did observe the king's (Charles II.) new medall, where, in little, there is Mrs. Stewart's [afterwards Duchess of Richmond] face, as well done as ever I saw anything in my whole life, I think; and a pretty thing it is that he should choose her face to represent Britannia by." - Peprs's Diery, Feb. 25, 1667.
The alloy (English) of gold is silver and copper, and of silver, is copper. English standard gold is 22 carats gold to 2 of alloy. Standard silver is 11 oz. 2 dwts. silver, to 18 dwts. conper. The American gold coin is 36 parts gold, 3 larts copper, 1 part silver.

The American and Freach silver coin are 9 parts silver, 1 part copper. See Standard.
The proper weight of the double-eagle is 516 troy grains, and the smaller gold coins in proportion. The law permits a variation above or below the standard of half a grain. See Remedy.
The series of operations in coining is as follows:-

1. The ingot is assayed and alloyed.
2. A number of ingots melted into a Iong, flat bar.
3. The bar is repreatedly rolled, cut into pieces, annealed, and re-rolled until it assumes the shape of a ribbon, approximating the width and thickuess of the required coin.
4. The ribbon is drawn through a gage to bring it to exact size.
5. The ribbon is cut into blanks, each planchet being of the weight, and approximately the size, of the coin.
6. The planchet is tested by an automatic weigh-ing-marhine, which rejects heary and light, and selects those of proper weight.
7. The edge of the plauchet is milled, that is, rolled smooth and circular and slightly turned over.
8. The plunchet is heated, cooled in water, cleansed in acidulated water, and then dried in hot sawdust.
9. The blank is stamped between the die and counter-die, the nurliny being done at the same operation.
Coin-as-sort'er. A machine which separates different kinds of coins by size, or coins of the same kind by weight.

In one form of the first mentioned, the coins are put singly into a hopper and fed edgeways to the inclined way, in which they roll upon their edges and lean toward the open side of the way, so as to drop out on arriving at an aperture large enough therefor. The distance between the holding lips of the guides constantly increases, so that the coins will drop out at different places, each into its appropriate tube. The tubes are marked hy a scale, to indicate the number of coins by the depth of the pile.

In another form, the coins pass into a graduated series of rotary cylindrical sifters or sorting-barrels,
with internal spiral divisions, causing the coins to travel through and hetween each spiral thread; circular openings allow all the coins except the largest to drop through. The largest coins are delivered into a till, but the remainder pass through other barrels, until only the smallest ones remain.
In machines for sorting gold or silver coin into full-weights and light-weights, the scales are arranged so that the coin of full weight in a lower position is pushel off hy an automatic pusher into one hox, but the light-weights are lifted a little higher hy the rising of the scale, and are brought opposite to another pusher which sends them into a Jight-weight box.

Coin-count'er. An arrangement by which the process of hand counting, pitce by piece, is dispensed with. A shovel or tray has shallow depressions of a given length, width, and depth to hold so many coins of a given kind. The roins are shoveled into the tray, which is then skillfully agitated until the coins have snugly oompied all the spaces. The remainuler are brushed off, and the complete puota is thrown into a suate to verify the count by weighing.
Coin'ing-press. A power lever-screw press by which the planchet of metal is impressed with the design or legend.
The blanks are placerl in a tube at the front of the press, and at rach motion the lower blank in the pile is seized by fingers and drawn into a collar between the upper and lower dies; where as the lever descends, the two arms of the toggle-joints are

Coining-Press.
brought into line perpendicularly, imparting a bowerful pressure to the blank, eansing it to fill out the collar and forming at the same time the fare and obverse impressions, as well as the flutings or miming on its edge.
The piece is then releasel by the relaxation of the toggle-joint allowing the upper rlie to rise; th. lower die rises suffimputly to lischarge the coin from the collar, and the fingers, returning with a secon! hlank, push the first out and allow it to slite into a hox below. The coins are then examined to detect defective pieces, as flaws sometimes ocenr from air-lmhbles in the original ant ingots; and, after being counted by means of a

The lower die is on what is termed the die-stucte, and gives the reverse impression. The obverse is in the upper die.

The pressure in coining domble-eagles is about 75 tons.

Coin-weigh'ing Ma-chine'. A machine for weighing coin and assorting them accorling to their full or light weight.
The gold coins are placed in a pile, and the bottom one is shifted by a slide along a channel just large enough for the standard gold coin, hat too large for a connterfeit, and is deposited on the scale supported loy a knifeedge upon the beam. The forteps, which temporarily detain the weight-siale, are then let go, and if the coin be light that end of the bean will rise and the other end leaves the agate point which rests upon it; a bolt then alvances and jushes off the coin into a light-weight receptacle. If the coin be full weight, the scale remains down; the lowr bolt knocks it off into a full-weight box at a lower level ; the position of the coin at a lower or a higher. elevation determines which of the bolts shall strike it, and at which eduction aperture it shall hepart.

Coir. The prepared fiber of the hask or periraly of the cocoa-nut, which is made into rope, matting, brushes, rte.

The nut is picked a little before it is ripe, and the pericarp stripped from the mit by forcing it upon an iron stake fixed in the gromel. The rind is then soaked in water for several months to soften the substance whiel fills the interstices between the fibers. It is then beaten upon a stone with a heavy piece of wood, and then rubbed by the hands. Forty cocoa-nuts yield six pominds of coir.
The operation of twisting it into yarn is similar to that pursued with hemp.

Coir cordage is lighter than hemp, is pliable, and has a strength, compared with hempen ropre, of 87 to 108 with large rope, and 60 to 65 with small rope.
lt is well adapted for hawsers, as it is light enough to float in sea-water, and also for rumingrigging, but is not so well allapted for standingrigging, owing to its contractibility.

Coir is also made from the long, filrons, black, cloth-like covering of the Borassus gonnutus.

Coke. Charred pitcoal.
lt is carbonized in heaps, in ovens, or in the retorts of the gas manufactory. It may be remarkel that the production of the best coke and the brest gas from the same coal is incompatible; the hulk of the mass is increased by coking, the weight diminislued from 30 to 55 per cent, aceording to the mode of conducting the process.

As the distillation of wood leaves a solid residue of charcoal, so is coke the residue of the distillation of coal. 2,240 pounis, a long ton, of bituminous coal is said to yield 8,000 to 10,000 eulse feet of carburetel liyilrogen gas, and 1,100 to 1,300 pounds of dry, brittle coke.
Sir John Hacket and Octavins de Strada proposed in 1626 to convert coal into coke, and thus nake it as agreeable a fuel for chamhers as wood or charcoal.
In 1658 the project was reviven ly Sir doln Winter, who constracted a fire-cage 11 inchers high, and a box below with an ash-pit door, which was opened when tlu firm was to he urgeil.
The manufacture of coke in heaps is thus man-aged:-
An oblong spuare liearth is prepared hy heating the parth to a firm, flat surface, and puidling it over with clay. The pieces of coal are then piied uf_{f} on this, leanimg against each other, and each with its acutest angle resting on the hearth. The piles are from 30 to 50 inches high, 9 to 16 feet
broad, and contain from 40 to 100 tons of coal. A number of vents are left, reaching from top to botton, into which the burning fuel is thrown, and they are then closed with small pieces of coal beaten in hard. The tire creeps along the bottom, rises gradually and equally, and bursts out on every side at once. If the coal contain pyrites, the combustion is allowed to proceed a considerable time after the disappearance of the smoke, to extricate the sulphur. If it contain no sulphur, the tire is covered up soon after the smoke disappears, beginning at the batton and proceeding gradually to the top. In from fifty to seventy hours the heap is covered completely, and in from twelve to fourteen days the coke is ready for removal.
The coke of gas-works is obtained from the charred coal, withdrawn from the retorts and quenched with water.

Coke-fur'nace. A furnace in which the volatile matters are expelled from pit-coal, leaving a residual carkon which burns without flame and makes an intense heat. A coke-oten.

Coke-ov'en. An oven in which the gas is expelled from coal, leaving the coke or carbonaceous partion.

A heap of coal enclosed with earth so as to linit the access of air, and provided with small holes to allow the escape of gases, may be fired and will produce coke. Coke-oveus are similar in principle, and have openings above for charging with coal, openings below for withdrawing the coke, and means for graduating the admission of air.

When made on a large scale, a number of large ovens are placed in a row, and a railway is laid

Coke-Oren.
along the top for the coal-cars, which dump their contents into the ovens. A lower railway atiords a track for the cars which receive the coke from the ovens.
The coke-ovens of the London and Birmingham Railroad are eighteen in a series, with flues at the back leading to a chimney 11 feet internal diameter, wall 3 feet thick at the hase, 115 feet high.

Each oven is elliptical, about 11×12 feet. The charge is 6,720 pounds. Forty hours suffice for the coking. It is then withdrawn and watered. The loss in weight, 20 per cent. It gains one quarter in bulk.

Col'an-der. A strainer formed of perforated sbeet-metal.

The colum or colander of the Greeks and Romans was used for straining the must from the pulp and skins of the grapes; the oil from the amurca; and for domestic purposes. They were made of perforated bronze or silver; of hair, broom (spartium), or rushes.
Several were found at Pompeii.
A heautiful bronze colander was exlumed near Helionolis, and is in the Abbott collection. The holes are drilled in small pratterns. It has a handle.

The colander for pouing lead in the making of
shot is a hollow hemisphere of sheet-iron, about 10 inches in diameter, and perforated with holes which are free from burs.

The boles bave nearly the following diameters for the annexed sizes of shot : -

by gradations to No. 9, which is $\frac{\frac{1}{6}}{36}$
Instead of a colander, an oblong ladle is now used in some towers, the elge being scalloped to hu.ait the overflow into smatl streams.

Col'an-der-shov'el. One of wire open-work, for shoveling salt crystals out of the evaporatingpan.

Col'ar-in. (Architccturc.) The space, frequently onamented, between the astragal and the annulets of the capital of the Tusean or Roman doric columm.

Col'co-thar. A red oxide of iron, obtained by the calcination of sulphate of iron, and used for polishing. See Crocus; Grinding Matehials.

Cold-blast. (M/ctallurgy.) dir forced into a smelting-firnace, at a natural temperature, in contradistinction to a heated blast, which is more economical, but produces an inferior quality of iron.

Cold-chis'el. A steel tool used for cutting metals, and driven by the blows of a hammer.

Cold-drawn. Oil expressed from seeds or nuts without previous heating of the latter, is said to be cold drawn; and is of superior quality to that yielded by previously heated seeds or nuts.

Cold-ham'mer-ing. The hammering of a metal, withont fire-heat, to give harduess and temper.

Cold-short. (Founding.) A void or seam in a casting occasioned by the too rapid congelation of the metal which failed to fill the mold perfectly.

Cold-short Iron. Iron containing phosphorous, which may be forged and welded while hot, but is brittle when cold.

Cold-shut. A term meaning that a link is closed while coll, without welding.

Cold-wa'ter Pump. (Stean-engine.) A pump by which the condenser eistern is supplied with cold water.

Col'lar. 1. (Machinery.) A ring or round flange upon or against an object. Its purpose may be:-
A. To restrain a motion within given limits, as:-
a. The collar or butting-ring on an axle, which limits the motion inward of the hnb on the axle.
b. The ring shrunk upon, or an anuular projep-
tion or enlargement of a shaft or rod which keeps it from slipping endwise.
c. A short sleeve on a shaft.
d. The neck of a bolt.
B. To hold an object in place ; as : -
a. The plate of metal screwed down upon the stuffing-box of a steam or pump eylinder, and having a hole through which the piston lasses.
b. The ring insertel in a lathe puppet for holding the end of the mandrel next the chuck, in order to make the spindle run truly.
2. (Enginecring.) The curb or steining around the top of a shaft to restrain the friable superficial strata and to keep loose matters from falling in.
3. (Naulical.) An eye formed in a bight of a shrond or rope, to pass over a mast-heal, to hold a dead-eye or a block, or for other amalogous purposes.
4. (Harncss.) A roll of leather stuffed with straw, etc., and having two creases to hold the
hames. It is phacel around the neek of the horse, fits agninst the shoulders, and forms the hearing against which the horse presses in drawing the load.
The parts of the collar are : -
The withers; the upper bow resting on the neck of the horse.
The after-walc, body-side, or pad; the portion behind the hames.

Fig. 1385.

Beast-Collar.

The forc-uale, or smatl roll.

The housing; a covering to shed min from the collar and shoulder.

The collar-strap; at the upper end.

The breast-collar, so called, is a breaststrap, forming a substitute for a collar.
5. (Architecturc.) a. A ring or cincture. An astragal.
b. A beam staying two opposite rafters at a noint between the comb and the plates. See Collara-rifam.
6. (Coining.) A steel ring which confines a planeliet and prevents lateral spreading under the pressure or blows of the coining-press. When the erlge of the coin is to be lettered, the letters are sunk in the collar, which is in three pieces, confined ly an onter ring.
7. (C:othing.) A bant around the neck, or the neck protion of a body garment. Shirt-collars, or what are made to appear as such, are made of paper, paper and cloth combined, cloth, leather, metal. They are made reversible, are embossed in imitation of lace, linen, stitching; printed in imitation of various kinds of figured goods; stained to resemble certain kinds of fabrics. Paper collars are made combined with bosoms or with neck-ties, or both, with preculiar fastenings or with reinforced buttonholes.

Their manufacture involves maehines for cutting, punching, folling, molding, shaping, embossing, planishing, burnishing, and boxing.

The process of making paper collars is briefly as follows:-Sheets of paper, preferably 16×36 inches and weighing 125 pounds to the ream, are enamelecl, rried, embossed to imitate cloth by roller pressure between plates on which cloth has been tightly stretched and pasted. The sheets are polished by revolving brushes; cut in heaps of eighty thicknesses by steel dies of the shape required; reinforced by patehes of fabric at the button-holes; the buttonholes cut, stitehes inpressed on the border, and the size stampel on them. The collar is molded to fit the neck, rolled up in dozens, so called, hut more often only ten ; put in a box, labeled and cased.

Fig. 1336.

Collar and Cóamp.

Col'lar and Clamp. The ordinary form of dockgate hinge. Also known as anchor and collar. The anchor c is let into the masonry, and the collar is formed by a clevis b, whose legs are secured by forelocks in the clamp. a is the hole for the pintle of the leaf.

Col'lar-awl. (Saddlery.) A form in which the cye-pointed needle has
been used for many years. It is used in sewing collars, the wax-end being passed through the material by its means, and drawn tightly by the hands.

Col'lar-beam. A tie-beam a uniting the breasts of a pair of ratters $b b$, to keep them from sagging or spreading. It acts as a strut, a tie, and often as a ceiling joist for a garret story.

Colilar-block. (Suldlery.) The har-ness-maker's block on which a collar is

Fig. 1387.

Collar-Beam.

shaped and sewn.

Col'lar-check. A heavy woolen goods made for saddlery purposes.

Col'lar-har'ness. Harness witl a collar in contradistinction to breast-harness.

Col'lar-plate. An auxiliary purpet, or midway rest in a lathe for turning long pieces.

Col'lar-tool. (Forging.) A rounding tool for

the formation of collars or flanges on rods by a process of swaging.
a represents the lower half of the tool in the hardy-hole of the anvil.
b is the upper or fullering tool.
c shows the collar and rod in the grip of the pinclets.
Col-lect'ing-bot'tle. A microscopist's tank for collecting and retaining oljects dipped from ponds. The funnel c fits in the tube a when the cover of the latter is removed. The tube b has a cover of fine muslin.

Col'let. 1. (Mrwehinery.) A small band of metal ; as the ring which fastens the packing of a piston.
2. (Jewelry.) a. The part of a riug containing the bezel in

Fig 1389.

Collecting-Eotlle. which the stone is set.
b. The flat surface which terminates the culcasse or lower faceted portion of a brillinut-cut diamond. It is sometimes called the lower table or culet, and is one fifth of the size of the upper one.

Coll'ier. (Nautical.) A vessel employed in carrying eoals by sea.

Col-li-ma'tor. A telescope arranged and used to detemnine errors of collimation, both vertical and horizontal. (Nichol.) A collimating eye-piece has a diagonal reflector for ilhmination, and is used to determine the error of collimation in a transit instrument, by observing the image of a cross-wire reflected from mercury, and comparing its position in the field with that of the same wire seen directly.

The error of collimation is the deviation of the line of collimation of an astronomical or geodetical instrument from its normal or correct pasition with respect to the axis of motion of the instrument. (Webster.)

The floatingand the vertical-floating collimator were invented by Captain Kater, and are two instruments of similar principle and of not very different construction, desigued to facilitate the adjustment of cireles. The former is used for determining the horizontal point, and the latter the zenith or nadir points, as the case may be. Each kind consists of a telescope (with a system of cross-wires in its field) which is made to rest in a horizontal position on a plate of iron floating on a surface of mercury ; or is fixed vertically in a frame, at the lower past of which is an iron ring whose plane is at right angles to the axis of the telescope, the ring floating on mercury in an annular vessel. The telescope of the circle which it is desired to adjust being duly put in position, the observer looks throngh it, either upward or downward, as the case may be, to the telescope of the collimator, which, in the rertical instrument, is monnted with its axis coincident with the axis of the ring. The adjustment consists in bringing the cross-wires of the two telescopes to a mutual intersection by the scren movement of the circle. G. Chambers.

Col'lish. (Shoc-making.) A tool to polish the edlue of a sole.

Col-lo'di-o-chlo'ride Proc'ess. A photo. graphic printing process invented by George H. Simpson, editor of the lhotographic News, about 1863. It consists in holding in suspension a precipitate of chloride of silver in collodion, which is flowed upon glass or paper - in a manner similar to 1 leparing a plate for the negative process - and dried in the dark. The sensitive surface so prodaced blackens on exposure to light, and will consenquently give a pirture under a photographie negative. An excess of free nitrate of silver is necessary to impart sensitiveness; an addition of citric acid and other organic substances is used to produce the desired tints. After exposure the picture is fixed and toued as usnal.

Col-lo'di-on-proc'ess. A process in photogmphy in rented by Areler. An iodized collodion is made by impregnating a solntion of gum-cotton in ether, with a small quantity of iodide of potassium or cadminm. A tilm of the iodized collodion is spreal on the glase, which is then immersed in a solution of nitrate of silver. The inage is taken in the camera, developed by a reak solution of pyrogallic acid and acetic acid, or a solution of protosulphate of iron. Excess of iodide of silver is removed by hyposulphite of soda or cyanide of potassium.

This gires a negutive. A positive is obtained by laying the negative on prepared paper and exposing them to light.

Col-lo'di-o-type. (Photography.) Or collodionprocess. A name appliel to those processes in which a film of sensitized collodion is used on a plate in obtaining an image. In the wet collodion process the plate is exposed while moist ; in the dry collodion process the plate is first dried.

The collodion positives are melanotypes and ambrot?nes; the images are formed on the collorlion, so as to be viewed ly rellected or transmitted light. When riewed by reflected light they are termed ambrotypes.

Collodion negatires are obtained on a film of sensitized collodion on glass.

Col-lu'-vi-a'ri-um. An opening in an arqueduct
to allow access for cleaning or repairs, and for ventillation.

Col'on-nade'. (Architecture.) A range of columns, whether attached or insulated, and sujporting an entablature.
Colon. A punctuation mark (":") prescribing an interval greater than a semicolon.

Col'or-doc'tor. (Calico-printing.) a. A roller of gun-metal or stee] pressed against the face of the engraved roll for calico-printing, and receiving a tremulous motion to slightly abrade the copper surface and enable it to hold the color more effectually.
b. A sharp-edged ruler of gun-metal presented at a tangent upon the engraved cylinder of the calicoprinting machine. The doctor acts as a wiper to hold back superflnous color, and has a slight reciprocating motion in contact with the surface of the cylinder. A lint-doctor ou the other or delivery side of the roller removes bibers of cotton from the eylinder.

Col'ored Fires. Compositions, generally based on powder or its emmponents, used in pyrotechny for making varions ornamental fire-works, knowu as lances. stars, lights, whcel-fires, sun-fires, etc.
Col'ored Light. A prrotechnic display or signal for effect or preconcertel purpose. One formula for their composition is as follows :-

1. White light: 8 parts salt jeter, 2 parts sulphur, 2 parts antimony.
2. Red light : 20 parts nitrate of stroutia, 5 parts chlorate of potash, $6 \frac{1}{2}$ parts snlphur, 1 part chareoal.
3. Blue light : 9 parts chlorate of potash, 3 palts sulphor, 3 parts mountain blne (carbouate of copper).
4. Yellorr light : 24 parts nitrate of solla, 8 paris antimony, 6 parts sulphur, 1 part charcoal.
5. Green light : 20 parts nitrate of baryta, 18 parts chlorate of potash, 10 parts sulphur.
6. Violet light : 4 parts nitrate of strontia, 9 prarts chlorate of potash, 5 parts sulphur, 1 part carbonate of copper, 1 part calomel.
Col'ored Glass. A glass used to internose hetween the light and its illuminated field; nsed as a signal for railways and ships; also in lighthonses to give a marked peenliarity to the light hy which it may be recognized; also for purposes of display.

Color-im'e-ter. A measurer of color. For various forms, see list under Meter.
Col'or-print'ing. Printing by a suceession of colors, or by varions colors occupying parts of the sheet. There are various modes. Sce Chfomatic Prastisg.

Co-los'sus. A statue of gigantic size.
The largest statue in Egypt, according to Diodorus Siculns, was that of Osymandras, in the Ramesion. It is the Memnoninm of Straho. The pedestal is still standing; the court around is filled with its fragments. The foot, of which parts remain, mast have been 11 feet long and 4 feet 10 inches Lroad; the breadth across the shoulders 22 feet 4 inches; the hight is calculated at 54 feet, the weight $1,985,438$ pounds.
The statues of Memnon are 60 feet in hight, including the pedestal. The latter is 13 feet high. but is half buried in the allnvial soil. The material is a coarse, hard breccia, witb imbedded chalcedonies. The southern figure is in one block. The northerm one was loroken before the Christian era, and was repaired with sandstone. in five pieces, by one of the Foman emprerors, jrobably Severns.
The colossi of antiquity (Greek and Roman) are enumerated in Smith's "Dictionary of Greek and Roman Antiquities," p. 322.
Col-rake A shovel used to stir lead ores while , being washed.

Colt'er. A kuife or sharp-edged har, usually secured to the beam, and projecting downward in front of the breast of a plow. Its duty is to make the incision in the soil in advance of the share, making a vertical cut the width of the furrow-slice which is to be cut below by the share and turned over by the mold-board. In the W est it is usually termed a cutter, the term "colter" being applied to those which extend down in front of the share and have a depression in the rear to receive alug on the point of the share, the colter being continued on in tront to form the entering-point. The colter, in this case, is supportel? in the rear by the point of the share; in the ordinary mode the point of the colter projects into a noteh on the upper edge of the share, and is supported thereby. Sometimes, instead of passing through a slot in the beam and being secured by a wedge, or being secured to the bean by a shackle, the colter is bent at right angles, and its shank slips into staples on the sheth, resting parallel with the upper edge of the lami-side.

The ancient plow consisted of a beam and a colter, the latter doing all the work, instead of being merely subsidiary to the main working parts. The colter is not now considered a necessary yart of most plows, except for plowing soll, when it is useful in cutting the roots and enables the plow to do clean work.
The word is from the Latin culter, a knife. Not

Fig. 1391.

Wheel-Colter. all knives were known by that name, but a heavy description with a straight edge, curved back, and sharp point.
ln Fig. 1390 the colter is shown as secured by a sidebar and shackle.
The wheelcolter in Fig. 1391 is mounted as a casterwheel. It has
long heen employed in the fen lands of England.
Colt's Pis'tol. A revolving pistol first patented by Colt in 1835, and perfected in 1845 . See Revolver.

Col'um-ba'ri-um. 1. A hole left in a wall for the insertion of the ends of a timber; named from its resemblance to a niche in a pigeon-house.
2. A niche in a mausoleum for a funereal urn was also so called.

Co-hum'bi-ad. An improved gun introduced by Colonel Bomford, of the Orrlance Corps, United States army, about 1812. It was made proportionately thicker at the breech and smaller at the muzzle than the guns theretofore in use, aud was the precursor of the Paixhan gun of the French army (introduced in 1822), the Dah'gren, and the Rodman.

Co-lum'bi-er. A size of drawing-paper measur-
ing $34 \frac{1}{2} \times 23$ inches, and weighing 100 pounds to the נeam.

Co-lum'bi-um. A rare metal, so named from having been first discoverell in America. Now called niobium. Once called tantuhum.

Col'unn. 1. (Architceture.) A vertical support of the nature of a pillar.

It usually has three members, - the capital, shaft, and base. The capital has an abacus, the basc frequently a plinth.

Early Ligyptian columns were fluted. The lonic volute was from Persepolis. The Doric is Egyptian. The Corinthian is an improvement on the Egyptian. The pediment is Grecian, as are also all the fine and skillful proportions of parts. Ormamented architraves are from the land of the Nile. Figures for columns, resembling the Atlantes and Caryatides of the Greeks, are found in old Egypt.
2. (Printing.) A perpendicular set of type or printed lines; usually said of matter separated from another set or bounded by a vertical rule or line.
3. (Distilliny.) A vessel containing a verticalseries of chambers used in stills for continuous distillation ; such as Coffey's, in which the two columns are known as the analyzer and the rectifier. In Fig. 1392, it consists of a series of chambers placed one above the other, the lower one communicating with the vessel. Steamisadmitted, and passes up through the pipes into the chambers, being com. pelled, by means of hoods, to descend in

its passage, and enter the chambers beneath the surface of the liquid contained therein. The chambers are partially filled from above with the liquid to be distilled, the pines distributing the liquid from the top to the bottom chamber of the series.
4. (Calico-prixting.) The name of a certain description of steam apparatus by which steam is applied to cloths topically treated with a mixture of dye-extracts and mordants, in order to fix the colors.

The column is a copper cylinder 44 inches long and 5 inches diameter, perforated with $\frac{1}{16}$ th inch holes, at distances of \ddagger inch. liound it are lapped a few folds of blanket, then of white calico ; the goods are then wound on, the pieces being stitched together; over all are a

Fig 1393.

few thicknesses of white calico. The column is then placed vertically, and the steam admitted to its inside is emitted through the holes, saturating the cloth and fixing the cu!ors. The process takes twenty or thirty minutes.

Col'umn-lathe. A dentist's or watch-maker's lathe on a vertical extensible post to accommodate an operator in a sitting or standing posture.

Col'umn-rule. (Priating.) A brass slip to separate columis of type.

Comb. 1. (Toilet.) An instrument with a row of teeth for cleaning, straightening, and adjusting the hair.

Egyplian Combs (Tiebes).
The combs of ancient Egypt were made of rood or ivory, and generally doule, one side having finer teeth than tlie ather.

The Greeks had also combs with two rows of teeth like our fine-tootl combs. Sinch have been found in Pomprii. They aud the Romans used combs (pacten) of boxwool from the shores of the Euxine.

The women of China wore ivory combs in the nintl century A. D. The comb of the Patagonians and Fuegians is the jaw of a porpoise.

C'ombs derive theil names from purpose, form, or material, as :-

Back-comb.
Child's round-comb. Ures-comb.
Fine-tooth comb. Folding-comb.
Cutt:--percha comb.
Hair-comb.
A comb was formerly used to drive up the woofthread to compact the fabric in weaving. It remains in the modern reed. Combs are used in the same manner by the modern Hindoos.
Cuabs for removing the grain from the straw (whent or Hax) were used in Egypt and in Rome. Sem Ripple.
2. A rake-shaped implement consisting of a head with two or three rows of tapering steel teeth, the rows being of different lengths.

The tool is used in combing long-stapled wool for worsted goods. The combs are used in pairs. Shartstapled wool is carded.

The combs or cards for wool-carding are shown in th: illuruated mannseripts and missals of the Middle Ages, so called. (Sce Fig. 1395.) A pair of catds were as necessary an article of furniture in a hous as a distaff. It is more truly a pair of connls than of crrds, and the wool is evidently longstapled. This would be inelicated by the pot of hot witer in which the combs are placed.
3. The seltated doffing-knife which removes the Heece from the doffing-cylinder of a carding-machine.

Horn-comb.

India rubber comb. Ivary comb.
Metal-backed comb.
Kound-comb.
Turtoise-shell comb.

A mode of making combs with economy of material was invented by Ricketts, london, somre years since, and has become common. A slip, a little wider than a comb, is placed in a machine which has a descending centter of peculiar conformation adapted to cut throngh the tortoise-shell or horn by a series of tapering euts which torm the outlines of the teeth of a jair of combs, as in the figure (w), the teeth of one comb occupying the interdental spaces of the other.

Kelly's " Alachine for making P'arted Combs" has a bet-plate p which is secured by screws to a bench ; from the bed-plate rise standards u which support an axle a turned by a winch h. On the axle is a crank which communieates motion by the collar c to

Comb-Making Machine.
the arm b, to whose lower sile the cutter is attached. As the bar works up and down in the gnide 7 , the cutter makes its incisions in the tortoise-shell t, which is intermittiagly moved so as to be advanced one notch between each descent of the cutter.

The cutter consists of two sharj, blates of steel, diverging from each other so as to give the required tajer' to the tooth. Each blow ents one tooth, and by severance leaves a tooth on the twin comb, the respective combs being parted by a slight pull when the cuts are all made.

In the sliding bel there is an opening into which a heated bar is put to keep the tortoise-shell warm and prevent its splitting.

The bed is advanced between each pulsation of the cutter by a fect-screw operatell by a spmr-wheel ind a mutilated gear on the winch-shaft.
a m are brush-makers' combs. See p. 597.
Comb-pot. A stave at which the combs are warmed in the operation of preparing long-staplet wool for worstet.

Comb-saw. The hand-saw of the combentter is called a stadu, and has two blades, one terper than the other ; a gage on the saw-blade determines the depth of cut. Some of the saws are serrated on each edge. The blades are made of thick steel, and are ground away on the edges as thin as the noteles of the comb. They have about tweuty points to the inch. Betwern the blates is a thin slip or tongue of metal, called a leoryuet, which determines and
preserves the interval. The arrangement of the two blades secures the regularity of the intervals, as the shallow tooth keeps in advance and sinks the tonth half-way, while the decper tonl completes the former kerf. The form and mode of action are shown at α, b, c, d, c, Fig. 1397.
The tiles of the comb-maker are called by sprecific

names, mostly derivel from the Frencl, as are the operations. They are, -
f, the float ; !t, the graille; h, the found; i, the carlet: j, the topper.
The files are of the description called floats; that is, they have but a single course of teeth, and incline forward at about 15°. The teeth are made by a file, as the shape is not reatily obtained by chisel and hammer.
The floats $k \cdot l$ m n are used hy ivory-carvers for the handles of knives and in the preparation of works which are completed by scorpers and gravers.
o ancl p are used as inlaying tools.
In the comb-sawing machine (Fig. 1398) the carrier, with the stock from which the comb is producel, receives a succession of movements, pach advancing the comb the distance of a tooth's wilth. The saws enter and recede in unison with these movements,

Fig. 1338.

and the pointers cut nicks as starting-points for the saws, which act subsequently.
Com'et-seek'er. A cheap equatorial, with coarsely divided circles, and a large field in comparison to its aperture. Its name suggests its use, and the resultant "find" is subjected to the more accurately graduated and more powerful instruments of comparatively limited fields.

The comet-scekicr of the Washington Observatory was made by Merz and Mahler, of Munich. It has an object-glass of about 4 inches in dianeter and a focal length of 32 inches. Low powers are used, that it may embrace a large field and collect the greatest possible quantity of light. It cost $\$ 280$.

Com-mand'er. 1. (Nautical.) A large wooden mallet, used in the sail and rigging lofts in driving the splicing-fid.
2. (Hat-making.) A string on the outside of the c mical hat-body, pressed upon it down the sides of the block, to bring the body to the cylindrical form.

Com-menc'ing-ham'mer. The hammer of the gold-beater which he first uses after the quartiers are placed in a packet with interleaves of vellum. It weighs 6 or 7 pounds, and has a slightly convex face 4 inches in diameter.
Com'mis-sure. (Masonry.) The joint between two cournes.
Com-mode'. A night closet containing a cham-
 ber vessel or mrinal, with a lid ant means for preventing exhalations of fetid odors. The commode has usually a seat, lid, and stench-tight joint. In the illustration, the covered pail has a pan for feces, and one for a disinfectant which deodorizes the mephitic vapors. See Eabth-closet.
Com'mon Raf'ters. The upper rafters, holding the covering; in contradistinction to the principal rafters.
Com-mu'ni-ca'-
tion-valve. (Stcam.) The valve in the steam-pipe leading from the boiler to the cylinder of a steantengine.

Com'mu-tator. (Telegraphy.) An instrument which periodically interrupts an electric current.

The word is generally used as a synonyme of Rheotrope.
Sometiones used (in England especially) as a name for a device for throwing into a circuit a greater or less amount of the force of a battery.

Occasionally used to designate a device for directing a current into several eircuits in succession; the current being through only one circnit at a time.
lt seems to be used in the above senses by various standard electricians, but they all agree in one point in their use of it ; i. e. that there is changc, either of direction, strength, or circuit of the current.

Com-pan'ion. A wooden covering over the staircase to a ship's cabin. A companion-hatch. The staircase is the companion-ladler or companion-way.
Com-par'a-teur. A Prussian instrument for accurately acertaining the length of measures after Bessel's mode. The mierometers are placed on a strong manogany bean; and the slide, which carries the tivo measures to be compared, is so arranged
that it moves them exactly behind one another in the mierometer line, and there retains them.

Com'pass. 1. A circumscribing instrument, or one tur describing arcs or measnrer's lines.
2. An instrument for determining horizontal direction by reference to a poised magnetized needle. See -

Amplitude-compass. Azimuth-compass. Beam-compass. Bisecting-dividers.
Bow-compass.
Bow-pen.
Bож-pencil.
Bullet-compass.
Calipers.
Circumferentor.
Circumventor. Club-comprass. Compass-hoard. Compass-brick. Complass-card. Compass-joint. Compass-needle. Compass-plane.
Comprass-roof.
Compass-saw:
Compass-timber.
Compass-window.
Cone-compass.
Cutting-compass.
Diamond-cutter's compass. Universal compass.
Dip ping-needle.
Dividers.
Donble compass.
Drawing-compass.
Com'pass-bar. A fixed iron ring in the si" ver-from-lcal-extructing furmace, which supports the lest or cupcl-hearth in place in the reverberatory, where the process is carried on. See Silver-from-lead-extracting Furnace.

Com'pass-board. The hole-board of the lom for fancy weaving. It is an upright board of the loon through which pass the neck-twines.

Com'pass-brick. A brick with a curved face, suitahle for wells and other circular work.

Com'pass-card. The card of a mariner's compass on which the points are drawn. It is usually attached to the needle, and is read with reference to a mark which represents the ship's head.

Com'pass-es. A two-legged instrument for measuring distances, or for describing ares or circles.

The compass was a common im-
plement among the carpenters and masous of ancient times. The nonsense about its invention by Perdix, the nephew of Dectalus, and the consequent hurling from the temple of Athena by his envious uncle, is rather absurd, considering the condition of anstral and oriental architecture for several thousand years then past. Nepoticide was common enough, however.
The cut is from a Roman tomb, and shows the compass, ealipers,

Fig. 1400.

Roman Tools. plumb, rule, square, mallet and chisel.
That the compass was known to the Egyptians cannot be doubted. It cannot be necessary to cite particular instances of its evident use in architecture and drawing. The tombs of Beni Hassan, about 1706 b. c., and Thebes, about 1500 B. c., are full of illustrations, both in their own construction and
th ir m:ural ornaments, of the uses of the compass. While the dates of the Egyptian monuments have not been ascertained heyond 2100 B. c., or thereaboats, all will admit that the monuments of Osymandyas were made by a mation that had been in provess of development for many centuries. So the compass was in use in Lgypt many hundred years b.fore Cecrops and his brother Egyptians left their mative comentry and gave the first taste of arts to ancient Attica.
Several compasses were discovered at Hereulaneam (overwhelmed, A. n. 79), and among the number was a pair of reducing-compasses. See BowIRN ; Divinels ; also list under Compass.
Com'pass-joint. A form of joint usual in compasses in which one leg has a circular disk or two, clamued between other disks belouging to the fellow leg.

Com'pass-nee'dle. The polarized bar which is suspeuded so as to assume a direction resulting from the earth's magnetism. There are several way's of suspending the needle. See Mariner's Compass; Dir-compass; Mafetometer.
Com'pass of the Fig'ure 8. A double calipers, measuring with one pair of branches and giving the measure with the other. See Calipelis.
Com'pass-plane. A plane with a curved face, used to work on coneave surfaces. The illustration shows several forms, and also some hollows and rounds also com-pass-shaped. An ordinary smoothing-plane is also shown, whose sole is non-conformable to the surface under treatment.

Com'pass-roof. A bent rafter or curb roof.

Com'pass-saw. A saw with a narrow blade, adapted to run in a circle of moderate radius. By a rotation of the hand it is constantly swerved, and its kerf allows it some play, so that it cuts in a curve. It is usually thick enough on the entting-edge to run withont any set. The blade is an inch wide next to the handle, tapers to one quarter inch at the point,

and has five teeth to the inch. Otherwise known as a Fuet-naw; Lack-saw; Key-hole Saw.

Com'pass-tim'ber. Naturally erooked, curved, or arehed timber lor ships' frames, to secure deckbeams to the frames, etc.

Com'pass-win'dow. (Curpentry.) A circular, hay, or oriel window.
Com'pen-sa'tion Bal'ance. A balance-wheel for a watch or chronometer, so constructed as to make isochronal beats, notwithstanding changes of te:uprerature.

It was invented by Harrison, of Foulby, England, who devoted himself for a long series of years -1728-1761 - to the discovery of a mode of overcoming the change of rate due to the expansion and contraction of the balance.
The compensation peniulum requires but one alljustmsnt, to maintain the center of gravity at an equal distance at all times, from the axis of oscillation. The compensation balance is subject to two variations, - one owing to the expansion and contraction, by variations of heat, of the balance itself, causing it to go slower or faster as the case may be;
the other owing to the expansion and contraction of the bulance syring, which is rendered more rigid by cold and less rigid when expranded loy heat, thus exert. ing a variable effect under variations of temperature.

Harrison was the inventor of the gridiron com. pensation pendulum for clocks, which depends for its action upon the unequal expansion and contraction of different metals by given degrees of heat. In the suarch of a mode of giving an even rate to the balance-wheel of a watch, he first applied his combined steel and brass to the curb of the regulator, so that the spring hecame lengthened or shortened in a degree sufficient to compensate for its own change of tension, and also for the changed diametcr of the balance.

The curb of the regulator has two pins which enbrace the heir-spring or recoit-spring of the balance, and determine the length of the spring involvel in the action. When a longer portion is allowed to play, the beat is slower, and conversely.

The English government in 1714 offered a reward of $£ 20,000$ for the discovery of a correct mode of ascertaining the longitude at sea. Harrison made four time-pieces within the years above cited, and in 1764 and following years receivel $£ 24,000$ for his improvements. (See Chronometer.) The special point of novelty was the compensation balance, which was constructed to run at an equal rate under changes of temperature. It is formel of two metals, in the following manmer:- (For illustration, see Chronometer.)
A ring of steel is made with a bar across the middle ; outside this ring is a ring of brass, lirmly hrazed to it; hoth rings are cut through at points diagonally opposite each other on opposite sides of the cross-lur; and a few screws with heavy heads are set in various places near the end of tach portion of the cut ring; consequently, as the elasticity of the chronometer spring is diminished, and the size of the balance itself is increasel, hy an increase of temperature, the onter brass ring of the lalanee is expanded more than the inner, steel one, bending the ends of the two combined rings, with their attached screws, inward, toward the center of gravity of the balance, and causing it to make an equal numher of pulsations with a lesser force; the ohject being to so compensate the decreased force of the spring by the decreased inertia of the balance, that the number of its ribrations shall be equal under all variations of temperature; the balance compensating for its own contraction and expansion, and for inequalities in the effectiveness of the balance-spring. The perinhural contraction or expansion under inerement or decrement of temprature, respectively, is due to the mequal expansion or contraction of the metals, steel and brass, under changes of temperature; the same differential expansion or contraction that would cause them, if brazed together so as to be straight at a given temperature, to bend in one dircetion or the other when exposed to an atmosphere aheve or below that temperature.
The proper adjustment of the screws is a matter of great importance, requiring much nicety ; it being necessary to make repeated trials at dilferent temperatures, and can therefore only be done in winter or by means of freezing mixtures; thus rendering this compensation a tedions as well as expensive opuration. The ultimate tests and rating are usually performed at sovernment observatories.

Com'pen-sa'tion Pend'u-lum. A pendulum so arranged as to preserve the center of gravity of the bob at a constant distance from the axis of suspension, notwithstanding changes of temperature.

The principal compensating pendulums are, -

The gridiron, by Harrison.
Thi mercurial, by Graliam. See Pendulusi.
Com'pen-sa'tor. 1. (N'autical.) An iron plate placed near the compass on board iron vessels, to neutralize the effect of the local attraction upon the needle. 2. (Gas.) A device to equalize the action of the exhauster which withdraws the gas from the retorts. Should the exlauster be driven so fast as to reduce the pressure on the retorts below the desired proint, the diminished pressure will act upon the elastic plate and cause the motion of a valve which allows the gas to pass back towards the retorts. The compensating device is similar to that of a gas-regulator, but the application is special for the purpose stated.

Com'po. A con-

Fig. 1403.

Composing-Frame. crete or mortar.

Com-pos'ing frame. The stand on which the printer's cases rest.

Com-pos'ing -ma-chine'. A machine in which type are set up. See Type-setting Machine.

Com-pos'ing stand. A frame holding the printel's cases. (Fig. 1403.) See Case.

Com-pos'ing stick. A metallic frame to contain type, with one open side and one adjustable end, which is moved out or in to adapt it to the width of a column. In it the type are composed

Fig. 1404.

and justified, and from it they are transferred to the ga ley.
Com-pos'ite. (Shipbuilding.) A vessel having a wooden skin on an iron frane-work. Jorlan's system, English patent, 1849, is as follows :-
The whole outer skin, including keel, stern, stern-post, and planking, is of wood, arranged as in the skin of an ordinary woodeu ship; and the framework insile the skin, including frames, beams, keelson, stringers, shelf-pieces, water-ways, hooks, transoms, diagonal hraces, ete., is of iron, arranged uearly as in an ordinary iron ship. Tables of rules for sizes of the different parts are given in the appentix to the third division of the folio work on "Shipbuilding," by Messrs. Watt, Rankin, Barnes, and Napier. Mrackenzic, London, 1866.
Certain varriations are found in composite building.
Bettely introduced trough-shaped or "channel iro: " for the frames.
MacLaine's system consists of an inner skin of jron an l outer skin of wood, on an ordinary iron frame.

Heni's system : an inner skin of iron to which are riveted transverse iron frames of a Z-shaped section. The ang'es of these frames are filled up solid with woml, and an outer wooden skin covers the whole.
Captain Skinner's system: an irou frame imbedded between two wooden skins.

Feather's system: wooden bottom and iron topsides. The iron frames terminate at their lower ends in broad forks or saddles, which sit upon and are fastened to the wooden parts of the sides.

Com-pos'i-tor. See Trie-setting Machine.
Com'pound Arch. An arch which has the archivolt molded or formed into a series of square recesses and angles, and practically consisting of a number of concentric archways successively placed within and hehind each other.

Com'pound asle. One consisting of two parts joinem hy a sleeve or other locking device. See Axie.

Com'pound Bat'ter-y. A Voltaic Lattery, consisting of several pairs of plates, developing a cumulative effect. See Galvanic Batteriy.

Com'pound Mi'cro-scope. A microscope made up of a combination of lenses arranged in a tube. See Michuscope.

Com'pound Pier. A clustered column.
Com'pound Rail. A rail made of several portions with a lougitudinal joiut, avoiding the transverse joint across the rail whereby the jarring is occasioned. A continuous rail.

The term may also be applied to several forms of rails which consist of a number of portions bolted or keved together.

Com'pound Rest. (Lathc.) The tool-carrier of an engine-lathe, moved longitudinally (along the work) by the lcading-scrow, actuated by the ferd; and transversely (to or from the work), by its own feed-screw.

Com'pound Screw. Two or more screws on the same axis. When the pitch of the respective screws vanies, it forms a differcutial screw (a); when they run in different directions, it is
 a right and left screw (b).

Com'pound Steam-

 en'gine. (Stcan.) A form of stean-engine originally patented by Homblower in 1781, in which steam at a relatively greater pressure was allowed to expand in a small cylinder, and then, escaping into a larger cylinder, to expand itself against a larger piston. As stem was applied in his day at so very small a pressure, the particular value of the idea was not developed until Trevethick and Woolf used a high pressure in the hirst cylinder with expansion into a larger one.Trevethick applied high-pressure steam to Watt's ordinary single cylinder or Cornish engine, white Woolf revived and modified Hornblower's engine, and, by working it with high-pressure steam, obtained results far beyond those of the original inventor. Woolf's first engine was erected at Meux's brewery in 1806. He took up his residence in Cornwall about 1813, where he astonished the Comish engineers with the results oltained, but ultimately they found that high-pressure steam, applied to the single-cylinder engines, produced equally good results at the ordinary pressnres when used expansively.

Compound engines are of two classes, which may be called combined and independent compound engines. The former are those in which the cylinders are near each other, and the pistons commence their respective strokes simultaneously or nearly so, the steam expanding from one cylinder direct to the other through as small a passage as convenient. To this class belong most land engines, and the compound marine with cranks at about 130°. In inde-
pendent compound engines, the cylinders need not be near, and the pistons need not-generally do not - make their strokes together ; their distinctive feature being that the stean passes from one cylinder to a receptacle which may be as harge as convenient, and that from this the large cylinder takes its steam. To this class belong many eondensing land engines, furnished with auxiliary high-pressure cylinders, and the compound marinc encines with cranks at right angles. See Duoble-cybinder Steam-engine; Duplex Stean-exgine.

Com'press. 1. A pledget of tow, folded linen, or lint, to press upon any part to stop bleeding, arrest circulation, of for other purpose.
2. A machine for re-pressing cotton bales.

Com-pressed'-air En'gine. One driven by the elastic foree of compressed air. Its construction is usually like that of a steam-engine, the force of the expanding air being exerted against a piston in a cylinder.

An air-compressing machine for the service of such an engiue was built, priviously to 1856 , by
in diameter, with a stroke of 3 feet; it drives two condensing air-pumps P P which work alternately, one on each side of the beam center, delivering the air into the center reservoir $N N$, from which it passes into the main pipe M. The beam is commected at the other end to a cramk and Hy-wheel F, for the purpose of equalizing the motion.

The air-pumps $P^{P} P$ are 21 inches in diameter, with a stroke of 18 inches; they are placed inverted, with the piston-rods passing out below, where the stufing-boxes are not exposed to the pressure of the compressed air, and are worked with cross-heads, sliding in vertical guides by means of side rouls from the beam. The air-pumps are fitted with ballvalves, of which there are three sets to each jump, each set consisting of 44 brass balls, 2 inches in diameter, arranged in three concentric rings. The balls are confined by separate cages to a lift of $\frac{1}{2}$ ineh. A stratum of water supplied by a pump \vec{V} covers the piston valves, and the delivery and inlet valves, through which all the air has to pass. The water flows from the central reservoir through the small pipes 00 into each of the air-pumps during the periods of their downward strokes. The surplus water is discharged at each npward stroke through the delivery valves, keeping them also covered with water.
The eompressed-air engine at Ardsley Colliery, England, travels upon wheels and is pushed to its work by hamd. A steam-engine at the surfice compresses air to a pressure ol from 50 to 60 ponnels to the square inch, and the air is conveyed by metallie tubes to the bottom of the mine, and by a caontchone tube to the engine. It mulercuts 3 feet deep and 150 feet long in 8 hours.

One of the Mount Cenis Tunnel air-compressors, invented and constructed by Sommeilleur, and placel at Bardonneche, the Italian end of the tumnel, is represented by a vertical longitudinal section on the page opposite.

Randolph, Eliot, \& Co., of Glasgow, Scotland, for Govan Colliery, near that city, and was deseribed in the proceedings of the Institution of Mechanical Engineers at Glasgow. It was used to condense air to work an ordinary high-pressure engine at the lower shaft of the mine. It was held by those who were familiar with the construction and working of the engines, that a more valuable effect would have jesulterl from working the air expansively, eatting off at one third stroke and expranding down to the atmospheric pressure. A vahable feature developed in this connection was the low temperature of the escaping and expanding air, which was very salnhious in a mine whose temperature varied from 80° to $90^{\circ} \mathrm{F}$. The appratus had been in use six years without requiring any repair byond the replacement of some of the valve-cages.

The air-main was of the area of the working eylinder, and the difference in pressure at the two engines was only one pound in favor of the upper one.

Fig. 1406 is a vertical section of the compressing engine, in which the steam-cylinder C is 15 inches

The description is condensed from the report of Dr. F. A. P. Barnard, United States Commissioner to the Paris Exposition.
The compressor's operate by applying the living force of a large column of water descending in an inelined tube A, to drive a body of contined air into a receiver B, within which there is maintained a constant pressure of six atmospheres by means of an hydraulic heal. Each compressing-engine is an inverted siphon, having the long arm A inclined and the short arm C vertical. The puppet-valve D is for the purpose of regulating the periods of motion and rest of the contained water colnmm.
The short arm C of the siphon is the chamber into which is introduced the air to be compressed. At its upper extremity it communicates by a valve E with the receiver \dot{B} of compressed air. This valve is kept elosed by the pressure of the air in the reeeiver, so long as the pressure beneath it is less, but when the air beneath attains ly compression the same tension as that alrealy in the receiver, the valve opens and the new charge enters.

The compression-chamber C^{\prime} receives its successive charges of air from the atmosphere by valves F opening inward. It is freed from water after each pulsation or act of compression, by means of another valve G, which opens at a level somewhat above the bend of the siphon, so that the bend itself and the loug arm remain always full of water, the overtlow at F^{\prime} being discharged through the canal H.
The action of the machine is as follows:- The air-clamber C being full of air at the ordinary density of the atmosphere, the great valve D in the inclined pipe A is openmel, and the water rushes throngh the shoit bend into the chamber C, compressing the air before it, and finally driving it through pipe S into the recciver B. The water then comes to rest, the supply ralve D closes, the discharge valve G opens, the water escapes at H, and a new charge of air enters at F.
L is the notive lever of the feed-valse, M the motive lever of the discharging-valve, P is the gearing by which the proper correspondence of motion between the respective valves is secured, R is the engine which operates the gearing P, and intermediately the valves $D G$.
The difference of level between the head of the driving column of water and the point of ilischarge is 85.25 leet. The diameter of the tube is 23.56 inches, and the hight of the air-chanber, neasured from the level of discharge at bottom to the valve opening into the recipient at top, is 47.12 inches. These measurements would give for the total capacity of the air-chamber 39.9 cubic feet; and this is the maximum charge which the machine is capable of compressing at a single impulse. The charge actually compressed, however, is less than this, and is determined by the condition that the resistance which it opposies to the driving force, during its compression and subsequent passage into the re ipient, shall exhanst this force exactly, without excess or deficiency. In ease the resistance is in excess, a portion of the air will fail to pass into the receiver and so be lost. In case it is in deticieney, a portion of the motive-power will be uselessly expeuted, and, moreover, the column of water will strike the top of the ain-rhamber with violence, and may damage the machine. The practical adjustinent of the bulk of the charge to the power of the engine is attained by a tentative process, a series of small valves I being adapted to the side of the air-chamber in a vertical row, through which the air can escape, but which the air by its inertia closes successively as it rises. If, in a series of experiments, these valves he sectred one after another, berinning at the top, the charge of air will be gradually increased, until at length it is found to have the volnme requirel.
There were at Bardonneche ten of these compressors constantly at work, each one making three impulses per minute, or 4,320 per clay. If the charge at each impube were eynal to the capacity of the air-chamber, the total volume of air compressed daily would be $\mathbf{1 , 7 2 3 , 2 0 4}$ enbic feet. It appears that the rolume actually compressed a momnted to only $8 \div 6,020$ cubic feet, so that the charge in the compressor was but about 19 enbic feet at each impulse.

The power of such a compression machine is equivalent to that which would be generated by the descent of a vertical column of water 85.25 feet in length and 23.56 inches in diameter through a space of 47.12 inches three times per minate throngh the day. The calculation shows that this would a little exceed 18 -horse power. The whole ten of the compressors furnished, accordingly, 150 -horse power.

The power employed is actually capable of compressing $1,195,258$ cubic feet daily, to a bulk under the pressure of six atmospheres of 305,350 cuhic feet, beconing by subserpuent contraction 201,210 cabic feet. But the amount artually compressem was only 820,020 cubic feet daily, giving ultimately 137,670 cnbic feet of compressed air at the normal temperature. This represents a compressing force of ouly 125 -horse power, being less by 55 than the theoretic force of the compressors.

The 137,670 cubic feet at the pressure of six atmospheres are capable of prolucing an amount ol work hardly equivalent to is-horse power. There was therefore a loss at Bardonneche, from ranses known and unknown, equal to seven tweliths of the hydraulic force employed.

The same hydraulic power, or an equavalent stean power, would probably be applied more effectually in compressing air by means of pumps, than in the method above described. This the enginects themselves appear to have tacitly adnittel, by introducing pumps at the northern entrance of the tunnel.

The success of the Mont Cenis tumel and the progress of the Hoosac have settled the quention of the availability and exonomy of the system of transmission of compressed air by pipes. The coo ing and ventilation, as has been already remarked, are important auxiliaries. The Hoosac Mountain is being daily pierced at either end about five feet, by means of rock drills, using compressed air as a motor. The practice at Mont Cenis carried air at 50, 60 , and 70 pounds to the square inch 4 miles in pipes of 8 and 10 inches diameter, and at IInosac tumnel, Massachusetts, air was camied at 60 ald 6.5 pounds to the square ineh $1 \frac{1}{4}$ miles with little or no loss. There are other instances of long conducts, in pipes from 1 inch to 8,9 , and 10 inches. Near Mauch Chunk, Pennsylvania, a railroad turnel is being driven, or has been completed, under a mountain by the same agency.

The piers for Roebling's East River Bridgr, and those for Euds's Illinois and St. Lunis, are sunk by the aid of compressed air conveyed in tubes.

Locomotives have been diven by means of air compressed into reservoirs, and are brietly ruferred to in the article on Anle-evgine. One of these was invented ly Bompas (English patent, 1828). On the frame of the locomotive were two tanks which were charged with compressed air by stationary engines at the depots and way-stations. The air operation was substantially similar to that of a steamengine, the air being admitted from alternate reservoirs to the sides of the pistons with which the sail reservoirs respectively communicate. The pistonrod is connected in the usual mamer with the crank and driving-shaft. An engine, similar in most material respects to the above, was matle by Baron voa Rathlen, in 1848, and was driven by its air motor from Pntney to Wandsworth (England), at the rate of ten or twelve miles per hour.

Pafsey, in 1847, invented an engine of this cl.aracter in which a large reservoir A was secured to a frame monnted on wheels. In this reservoir the air was complessed to as great an extent as was compratible with safety, and was emittel] gradually into the chamber B, where it expanded to its working pressure. This emission is regnlated antomatically by a plunger in a tabe passing through the roof of the chaniber B. Above the plunger is a spring which yields to the normal or working pressure of the air in the chamber B; but when, owing to the withdrawal of air to the working cylinder, the pressure in the chamber is relaxed, the spring depresses the plunger

Parsey's Compressed-Air Engine.
b. A device for compressing a gun-carriage to its slide or platform during recoil; the carriage is again set free for running up.
3. (Microscopy.) A device to flatten microscopic objects uuder examiaation,

Fig. 1408.

and the connections of the latter turn a faucet- in order to make out valve in the pipe C, and allow the passage of air from the rescroir A to the chamber B, to restore the working pressure in the latter. The compressed air passes hy the pipe D to the cylineler E, where it acts in the manner usual with the double-incting steam-engine, and exhansts into the atmosphere. F is the supply aperture through which the reservoin is charced, and G the salety-valve. The pistonrod, cross-head, and pitman connect in the usual wav with the crank and driving-shaft.

The project has lately been revived for impelling street-cars.

Unter "Air as a Means of Transmitting Power," has been noticed the attempt of Dr. Papin of Blois to run a pumping-engine by compressed air conducted ly pipes from a conciensing engine situaterl at the distaner of a mile and driven hy a fall of water. For some reason, friction and leakage proluably, the doctor failed.

For the application of compressed air as a water elcvator, see " Air as Water Elevator; Compressed."

In the city of New York, in 1858 or 1859. Captain Eriesson arranged a power to run sewing-nachines for a chotling hirm in that city. A caloric encine in the cellar compressed the air; it was carried to the upper story in pipes, and there moved little enrines, which, in turn, operated sewing-machines to the montier of some eighty. The act of compressing air throws ofl its heat, and then when it is again exhausterl, it takes up that heat again from the surrounding atmosphere, doing two things, combensing and precipitating the vitiated air, and furnishing one of the best possible menns of ventilation. These machines worked suceessfully for years.
H. 11. Day now proposes to transfer the power of the Niagara Falls to Buffalo, minus certain almitted losses in working, which would leave a handsome surpilus. Also the lower falls at Rochester, N. Y., to that city. Nous verrons.
Com-press'ing-ma-chine'. A macline for mak. ing compressel bullets.
Com-pres'sion-cast'ing. A morle of casting bronzes, etc., in mokds of potters' clay under a pressure whicll eauses the metal to flow into the clelieate tracery left by the pattern. The work approaches nearly the work of the graver and chisel. It is espeeially used in casting house-huilders' hardware, letters and numhers for houses, stanps, etc.
Com-pres'sion-cock. One containing an indiarubber tuhe which is collapsed by the pressure of the end of a serew-plug turned by the key.

Com-press'or. 1. (Surgicil.) An instrument to eompress the femoral artery ; a substitute for a tourniquet.
2. (Nauficnl.) a. A lever arm to press on the chain-cable and keep it from veering away too fast.
their structure. The ring c and the basepiece beneath it are glazed, and, while not obstructing the light, form surlaces hetween which the ob. ject is flattened, or merely held. A compressorium.

Compressors for the microseope are of yarious kinds; as, lever; reversible cell, parallel plate, IF cn. ham's, ete.
4. (Pheumatics.) A machine for compressing air. Sce Alr-PUMi; Complessed-Air Engine; Alrcomifessing Machine.

Com'rade-bat'ter-y. One of a pair of joint battcrics.

Con'cave. The curved bed or breasting in which a cylinder works, as in the case of a thrasher. Fig. 1409, the example, shows a concave in which each

Fig 1409.

Cylinder and Concave.
slat rests upon a spring, and the grain escapes throngh the intervening spaces.

Con'cave Brick. A brick used in turning arches or curves. A compass-brick.

Con'cave Plane. A compass-plane for smoothing curved surfaces.

Con-ca'vo-con'vex File. A file with eurved faces, respectively coneave and convex, made by rutting a flat file and then bending it into shape he. twern clies. The more is the invention of sir Joln Robison, President of the Scottish Socicty of Arts, and is designed to enable the conrex side to be cut like a flat file hy a chisel which reaches across the edge, instead of by eutting numerous courses, which usually eover the convex surfaces of files.

Con-ca'vo-con'vex Lens. A lens whose sides are respectively concave and convex, the latter face having a curve of the greater radius, so that the lens is thicker at the margin than elsewhere.

It differs from a meniscus in that the concave face of the latter has the larger rulius, and the margin is an edge where the two faces run together.

Con'cen-tra'tor. An apparatus for the separa-
tion of dry, comminuted ore, according to the gravity of its particles, by exposing a falling sheet of oredust to intermittent puffs of air. The action has been enmpared to that of the jigger which acts in a watercistern, the boly of ore in the sieve being jerkell up and down in the water, and thereby seprated into strata of varying gravities and consequent richness. The analony is not perfect, for in the jigger the ores all lie in the sieve, but the upper layer is poor and is raked off as refuse, while the succeeding layers are progressively ricler down to the best at the bottom, the different grades being scraperl off in succession, and either reworked or laid aside for sinelting, as the case may be.

The action of Krom's concentrator is more like that of a fanning-mill, in which the richer portions (the grain) withstand the hast and fall into the receiver, while the lighter portions, which have but few metallic partieles, are blown over and correspond to the tailings of the grain-rinnowing machine.

A form of concentrator analogons to the smut-mills might be contrived, the ore passing through a trunk, the lighter being carried the farthest, a separation intn grades of comparative gravity being thus effected.

Krom's concentrator has an arrangement in which the ore passes from a hopper on to a sieve, upon which it forms a bed. This bell of ore is intermittingly lifted by a pulsating blast beneath, so that it becomes sorted into layers of comparative gravities. The upper is the lighter portion or refuse, and falls over the end of the sieve as tailings ; the heavier portion passes through the meshes of the sieve, and is collected in a receptacle beneath.

In the comparison between the jigger and the conccutrator, it will be found that in the hearier medium, water, the material will sink slowly, and thns the particles will tend to sort themselves effectually. In the concentrator, the medium being lighter, the ore will fall more quickly. As it is necessary that the ore, between each pulsation,

Fig. 1110.

Krom's Ore-Concentrator. either in the jugger or in the concentrator, shall have time to fall again on to the sieve after each saltation, the ore in the concentrator may be more rapidly pulsated than it can be in the jigger.

Water is said to admit of from 50 to So lifts per minute, anl air from 300 to 400 in the same space of time. Whether the more rapid action in air be more effeetual than the more perfect suspension and gradual subsidence in water, is a matter to be determined by experiment and persistent trial. It is not safe to argue the question on general grounds.

The machine has a receiver H to hold the pulverived ore; an ore-berl S on which the ore is acted upon; the gates $O G$ to regulate the flow of ore from the receiver and depth of ore on the orebed ; passage C for the ore; and roller R to effeet the lischarge of the same; bellows B to gire the putfs of air; a trip-wheel and spring to operate the
bellows; a ratchet-wheel and pawl to operate the discharge-roller R.

It is operated as follows :- Ore is placed in the receiver H, and the driving pulley set in motion. On the opposite end of the pulley-shaft is the tripwheel, which aets against a lever; by the joint action of the trip-wheel forcing the lever in one direction and the spring carrying it suddenly back in the opposite one, the bellows B is made to swing on the shaft I, giving at each upward movement a sudden puff of air through the ore-bed, and lifting the ore lying on it.

The spring is adapted to produce the best result, as it is important that the puff of air should be sudden. On the trip-wheel are six projections; therefore the speed of 50 to 70 revolutions per minnte of the pulley gives 300 to 400 upward movements of the bellows.
Other forms of concentrators for comminuted ore, amalgam, auriferous sand, and sulphurets consist of agitated pans, reciprocated or revolving in a rotary path, and haring inclined beds over whith the material is sorted by gravity and discharged at different outlets.

Con-cen'tric En'gine. One name for the rotary engine (which see).

Con'cer-ti'na An instrument with a bellows and free reeds, on the principe of the accordion. It is grasped by both hands, and the keys are on each of the heads. An instrument of sweetness, power, and compass. Invented by Professor Wheatstone.
Con'cha. (Architcturc.) The concave, ribless surface of a vanlt.
Con-chom'e-ter. An instrnment for measuring shells. Conchyleometer.
Con-clud'ing Line. (Nautical). a, A small line hitched to the middle of the steps or sternladders.
b. A line leading through the middle of the steps of a Jacob's ladder.
Con-crete'. A mixture of rubber, stone chippings, gravel or broken stones, with lime and water. it is used in foundations and in filling in between masonry facings of walls. It differs from pisé matelial in having lime instead of clay to form a bond for the stones. See Pisé-work ; Béton.

The ancients used concrete very largely. In wall building, it is usually made by dunping the materials in to the trencli dug for the foundation, the gravel, sand, lime, and water being thrown in, in proper quantity ; or the materials are measured into a barrow, into which water is poured, and the whole dumped into the hole or trench where it is required. The proportions of sand and lime are those suitable for forming mortar. The mortar forms a bond for the larger stone, constituting a matrix of hydrated silicate of lime.
To guard against the filling up of the Said enil of the Suez Canal by the deposits of the Nile, great blocks weighing twenty tons each, of a composite stone, formed out of hydraulic lime ground to dust by powerful mills, and mixed with sand, are sunk and piled in the harbor, and piers constructed therenn. Three hundred thousand tons of these hlocks have been used at Port Saïd alone. See Bétux.
The walls of the fortress of Ciudad Rodrigo, in spain, are of concrete. The marks of the boards which retained the semi-fluid matter in their construction are everywhere perfectiy risible; and besides sand and gravel, there are large quantities of romed bowlder-stones in the walls, from 4 to 6 inches in diameter, procnred from the ground around the city, where they abound.

Schroder's cement: coal-ashes, 100 ; hydraulic cement, 16 ; Portland cement, 1 part. Work in a prag-mill and mold. Cooley's: coarse pebbles, 60 ; rough saud, 25 ; lime, 15. Semple : peblles, 80 ;

Fig. 1411.

Concrete-Wall Building.

Con-crete'
press. A machinein which a mass of concreteispressed into the form of a building blouk. The concretc is placed in the luppler m, and, when the
s'ile n and the lower slide are withdrawn, drops iuto the bos, which has divisional partitions $k \hbar$ anil a bottom i. The slide is replaced by the motion of the sector u, which mores the rack x. The pressure is then brought beneath the follower at by mpins of the lever h, cam g, and toggles c c. The li. of the press-box is then withdrawn, and the rough sand, 40 ; lime, 10. The mode of buiiding concrete walls is indicated by the cut, in which the mass of mortar is leeld between facing walls of lorick and innor boards, the latter leing temporary.

Fig 1412.

b'ock is lifted out of the box by the sector and rack $f e$.

Con-cret'er. A form of apparatus for concentratiny sirnp, by allowing it to flow in a boiling condition over the surface of a heated pan, and then subjecting it to the heat of a copper cylinder revolving over a fire, and having an internal hotblast. The sirup in a concentrated condition is discharged at the lower end.

Con-cus'sion-fuse. A fuse which is ignited and explodes the shell at the moment of impact, by the breakage of a capsule or other similar internal arrangement, containing chemicals which explode

Fig. 1413.

by the force of the blow. The figure shows a spherical and an elongated projectile provided with a fuse which is exploded by the jar of impact.

Con-densed'-let'ter. (Printing.) One with a narrower fice than usual with the given hight.

Con-dens'er. An apparatus for cooling heated vapors to a temperature at which they become liquid; or, fumes to a temperature at which they are lrecipitated ; or, impure and heated gases to a more cleanly and cool condition; or, a heated vegetable extract or juice to a less fluid condition.

Or hy pressure, bringing a sliver or film of fiber to a slightly felted and more solid condition; or, a foil to a more compact state; or, an elastic fluid into a smaller bulk.

Or, by convergence concentrating the heat and light of a pencil of rays upon a relatively small area.

Or, a means of absorbing minute electrical effects.

1. (Steam-enginc.) A means of reducing to a liquid form the steam in front of the piston so as to olitain a partial vacuum at that point, and thes util$\mathrm{i} \%$ the natural pressure of the atmosphere.
Steam-engine condensers are of several forms :-
The injection conderser was inrentel by Watt, who was a plito-sophical-instrument maker in flasgow, when, in 1764, a model of an. atmospheric engine (Newcomen's), belonging to the University of Clasgow, was bronght to him to repair ; the cylinder of this model was 2 inches in diameter, and 6 inches in length. Having repaired damages, whatever they were, the little machine was put to the proof, but failed to work satisfactorily.
He made a working machine on a larger scale, the cylinder being 6 inches diameter, 12 -inch stroke, and was mate of wood hoiled in linseedoil. Still the little machine was oldurate, and he failell to realize the results he suprosed attainable.

The engine working on the atmosplueric principle, the valualile effect was in proportion to the perfection of the vacuum obtainable below the piston. But liere a trouble met him. If he injected so large a quantity of water as to obtain a good atmosplperic pressure, the cylinder was so much couled that he lost a great quantity of steam in warming it up, and it beeame necessary to strike a mean. Smeaton, who had prolably ohtained the best results mi to this time, rarely cooled the contents of the cylinder below 180°, at which temperature the steam has a pressure equal to a column of 15 inches of mereury. Thus he lost half the atmospheric pressure for the sake of avoiding the great waste of inconing steam

CONDENSER.
which condensed against the sides of the cylinder until the latter acquired the heat of the steam, all which was necessary before the engine could make the up-stroke.

Watt instituted a series of very careful experiments on the relation between temperatures and nressure of steam, and brought to hear upon the subject careful analysis as well as genius. The result was the scparcue condenser. Instead of cooling the cylinder, he comected it with another ressel in wich the refrigeration was accomplished, a valved communication being prorided between the two.

The engine was thus the atmospheric engine with a separate condenser, securing economy of fuel and tinte with increase of power.

If the in rentor had stopped at this point he rould have found

Verical Column Condenser.

 that the condensers would after a while become charged and inoperative; so he contrived a pipe 34 feet long (Fig. 1414), which led away from the condenser, its lower end being submerged in a tank, and inasmuch as such a column is greater than can be supported by the pressure of the atmosphere, the water rould leave thecondenser, which would then be occupied only by steam and air. The steam enters the charnber A by the bent pipe, and the water the chamber E by the other pipe, and passes in a shower through the perforations in the chamber, condensing the steam and carrying it down the dis-charge-pipe F into the cistern G. The pipe is so long that the weight of the column of water makes an almost perfect racuum, and thus dispenses with an air-pump for discharging the heated water. The device is also used in vacuum-pans, etc. The pipe F is shown with a break and gap to indicate that a large portion is removed to bring the device within propertions convenient for display upon the page. See Aspilator ; Alr-pemp (Fig. 115).

Surface-Condenser.

The surfuce-condenser has a series of flat chambers or tubes, usnally the latter, in which the steam is cooled by a body of water surrounding the tubes. The most secure way of fastening the tubes in the heads is Horatio Allen's wooden thimble, which swells after placing in position, and makes a tight joint. Distilled rrater for ships' use is obtained by the condensation of steam in a surface condenser. To render it more palatable it is artificially aërated and then filtered through animal charcoal.
2. (Distilling.) The still-condenser is generally of the worm-tub form ; the coil containing the alcoholic vapor trav-

Fig. 1416.

Worm-Condenser. ersing a tub which receives a constant accession of cold water, condensing the vapor in the coil. The liquid escapes at a cock below. In the example, the liquor condensed in each coil may be separately with. diawn.

In Hadley's still the pipe rising from the still has successive condensers $b b$ in ascending series, the liquid in the condenser jackets being gradually cooler as they recede from the still. The ohject is to eliminate by successive stages a liquid of given tenuity, and return the heavier condensed vapors.
In Liebig's,
 the neck of the still b passes through a water-jacket e to the recpiver h. The jacket is fumished with a constant stream of water from cistern c, by yipe d, and cxit f, to waste-cup $g . a$ is the lamp.
In Fig. 1418 is shown an apparatus for preparing purified ammonia, from the ammoniacal livplor of gas-works, hy distillation, cooling, and treating the products with charcoal, and condensing the liquid.

Fig. 1419 is an apparatus in which a condenser C is placed between the vacuum-pan A, and the airpunip G, so as to condense any alcoholic spirit which may have formed in the sugar or molasses under treatment.
3. (Metallurgy.) An apartment in which metallic or deleterious gaseous fumes are condensed to prevent their escape into, and contamination of, the atmosphere.

These have been tried with more or less success in the copper-works of Swansea, the lead-works of England, and in various other manufactories. The

Ammonia Still and Contenser.
gencral feature is a prolonged duct for the fumes, with showers of water to condense the arsenical, sulphurous, and other fugitive volatile matters. Thu same devices serve an economical purpose in saving fugitive funes of leal, zinc, mercury, sulphur, antimony, ete. See Alsenic-fulinace.

Fig. 14:0 is finnace and condenser for the dry distillation of ore of metals capable of assuming volatile condition with a moderate heat. The broken
ore is fed from the hopner C into the revolving-linm A, which is heated by the furnace B and supplied with air under pressure by the pipe E from the airpump. The heated ore is ground by the rolling balls G, and the fumes escape by the bent pipe D through the succession of sealet water-chambers $H H^{\star} H^{\prime \prime}$ aml pipes $D^{\prime} D^{\prime \prime} D^{\prime \prime \prime}$ to the partitioned chamber J and the conchding vessel K^{\prime} which contains mercury.
What remains volatile alter this escapes at the

chimney L. The post M supports one trumnion of the drum, and the other trunnion is a sleeve carrying the cog-wheel.
4. (Gas-muking.) An apparatns in which the crule gas from the retort is cooled, and the ammoniacal liquor and tar extracted therefrom. See Gas-condensier.
5. (Sugar Munufacture.) The Degrand (Derosne) condenser is in the train of sugar apparatus, and consists of a vertical series of convoluted steam-nipes C, over which trickles the sugar-caue juice from the detecator. See Fig. 1421.
6. (Wool Manufucture.) A device used in wool manufacture to compact the narrow slivers from a carding-machine so as to bring them into the condition of slubs. The narrow circumferential cards of the doffing-cylinder deliver narrow slivers which nass to the condenser.
This consists of a pair of transverse rollers sup)porting a belt as wile as the doffing-cylinder is long, and receiving the slivers which are detached from the card-rings of the said cylnder by the doffing-knife. As the slivers pass from the
doffer they run liedoffer they run be-
neath an upper roll. er, which, in addition to its rotary motion, has an endways motion of two inches, bark and forth in the direction of its length. By this means, carh sliver is rolled upon the traversing helt in a mamer simitar to that ol rolling it beneath the palm of the hand upon a table. It is thins

Derosne Condenser.
rounded and compactel, the fibers becoming somewhat interlaced and closely associated, the nature of the wool tending materially to assist the operation. The endways motion of the roller is given by an eccentric at one end. The slublings, as they are formed, are carried forward by the apron and wound upon a revolving bar ; when filled, this is removed and placed in the mule, which draws from it as it would from bobbins placed on skewers on a creel.
7. A dentist's tool for packing foil for plugging teeth.
8. An air-pump for filling a chamber with air or gas at a pressure alove the atmospheric. The condensing air-pump was known to Ctesibus, and figures largely in the "Spiritalia" of Hero.
9. (Optics.) A lens to gather and concentrate the rays collected by the mirror and direct them upon the object. There are several varieties, known as the achromatic condenser, etc. See Condensing-Lens.
10. (Elcctricity.) a. An instrument for concentrating electricity by the effect of induction. It usually consists of a confolded sheet of tin-foil, whose layers are separated by a thin sheet having a nonconducting surface.

Volta's electrical condeuser is attached to a goldleaf electrometer, and consists of two brass plates, one connected to the cap of the electrometer, the other supported on a brass pillar. The use of the instrument is to render apparent such portions of electricity as are too weak to be indicated by the electrometer only.
b. With induction apparatus, it is a device for absorption or suppression of the extra current, inducel by the rapid breaks in the main current.
c. An instrument in which an electric spark passes between the poles in a closed glass cylinder, so as to be employed in burning metals in an atmosphere of any given tenuity or specific chemical character, to obtain the spectra of metals or gases free fronı accidental characteristics of the general atmosphere for the time being. A spark-condenscr.

Con-dens'er-gage. A tube of glass, thirty-two inches long, open at hoth ends, the upper end being tixed to the condenser, the lower end dipping into mercury. It is to ascertain the degree of exhaustion in the steam-conilenser.

Con-dens'ing-lens. A plano-convex (bull's eyc) or double convex lens, to concentrate rays upon an opaque microscopic olipet.

Con-dens'ing-en'gine. (Steam-engine.) One
in which the steam below or in advance of the piston is condensed, in order that a power equal to the cumulative force of steam and atmospheric pressure may act upon the effective side.

In contradistinction to the non-condensing engine, in which no provision is made for a partial vacuum in advance of the piston.
The object of condensation is twofold:-
To avail the atmospheric pressure.

To economize the fuel by making effective a part of the otherwise escaping heat.

Among the condensing-engines may be cited:- The

Condensing-Lens. Cornish and marine engines of varions kinds. Pumping and factory engines of large size are usually condensing.

The engines of the Eastern rivers and Northern lakes are usually condensing. Those of the Western and Southern rivers are usually high-pressure and non-condensing. The latter of a given power are lighter than the condensing, and the deptly of water often determines the question, which kind of engine shall be adopted in a country or district.

Locomotives belong to the non-condensing class, securing compactness and power within moderate limits as to weight.

Con-dens'ing-syr'inge. A syringe whose valves are so arranged as to take air above and condense it below the piston, so as to condense air into any chamber to which the foot of the syringe is secured.

Con-duct'or. 1. (Elcetricity.) A term applied to a body capable of transmitting an electric current. Strictly speaking, all bodies are conductors of electricity, but those of relatively very small conductivity are known as non-conductors; for instance: -

The conductivity of copper being estimated at 40,000,000,

That of water is as 1.
Becquerel's table is as follows : -

In practice: A prime conductor colleets and transmits the frictional electricity of the electrical machine. It was introduced by Bose in 1741 .

A lightning-conductor, for conducting the static or tension electricity of the atmosphere larmlessly to the earth. It consists of a wire, rod, or slip of metal from the top of a house, tower, steeple, or mast, to the ground, or, better still, a ground-plate or system of buried iron pipes.

Gray and Wheler, in 1720-1736, made experiments to ascertain the distance through which electric force could be transmittel, using insulated metals.

Gray, in 1729, discovered the properties of electric conductors. "He found that the attraction and repulsion which appear in clectric bodies are exhibited also by other bodies in contact with the electric." - WHEWELL.

Dr. Watson, in 1747, passed transmitted electricity
throngh 2,800 feet of wire and 8,000 feet of water, using the earth circuit.

Benjamin Franklin, in 1748, performed his experiments on the banks ol the Schuylkill, "coucluded by a picnic, when spirits were fired by an electric spark sent throngh the river, and a turkey was killed hy the electric shork, and roasted by the electric jack, before a fire kindled by the electrified bottle." The latter was the Leyden jar, the invention of Muschenbroek and Klisist, three years previous.

Franklin fiew his kite in Philadelphia in 1752, and proved the substantial identity of lightning and frictional electricity. He then invented the light-ning-rod for the harmless passage of the electricity.

D'Alibard erected a lightning rod in the same year.

Richmann of St. Petersburg, the following year, in repeating Franklin's experiment, was killed by a stroke of hightning.

Charles Marslall, in 1753 , proposed insulated wires, suspended hy poles, as electrical condnctors for trausmitting neessages.

Lesarge, in 1774, used twenty-four electrized wires and a pith-ball electrometer as a mole of signaling. Lomond, in 1787, used one wire and a pith-ball.

Reizen, in 1794, had twenty-six line wires and letters in tin-foil which were rendered visible by electricity.

Cavallo, in 1795, had one wire, and talked by sparks. He had an explosion of gas for an alarm.
2. (Nurgical.) A grooved staff for directing a penetrating instrument in surgical operations; such as the forceps in extracting balls; lithontriptic instruments, etc.

Con'duit. (Hydraulic Engineering.) A pipe or

Fig. $1+23$.

Conduit of the Pont du Gard. passage, usually coveled, for conducting water.
Cone. The ventplug which is screwed into the barrel of a fire-aım (A, Fig. 1424). The outer end is the nipple for receiving the percus-siol-cap.
a, nipple.
b, square.
c, shoulder.
d, screw-thread.
c, vent.
Cone-bit. A bor. ing - bit of conical form.
Cone-com'pass-es. A pair of compasses with a cone or bullet on one leg, to set in a hole. A bul-let-compasses.

Cone-gear. A mode of transmitting motion, consisting of two cones rolling together.

Cone-joint. A joint (B, Fig. 1424) formed by a double cone of iron inserted into the ends of the pipes to be joined, and tightened by serew-bolts, as shown in the figure.

This joint is tuickly mate and is very strong.
Cone-plate. The conical collar-plate of a luthehe rd .

Cone-pulley. 1. An arrangement for varying the speed of the boblin in spinning-machines, giving them a gradually decreasing velocity as the roving is wound thereon, so as to keep an equal strain on the roving (C, Fig. 1424). The lower pulley is driven with a uniform speell, and commmicates motion to the other by a band which is slipped to-
wards the larger end of the upper roller as the roving gradually fills the bobbin. See Fig. 751. The object is toobtain an equal pull on the roving, notwithstanding changes in the diameter of the cop as the winding proceeds.
2. (Machincry.) A pulley with several faces of varying diameter, so as to obtain varying speeds of the mandrel. A spreed-!ulley.

Cone-valve. A hollow valve having a conical, perforated face, through which water is discharged when the valve rises, without impinging directly upon the valve-face or seat.

Cone-vise Coupling.

 A mode of connecting the ends of shafting, consistingFig. $1+24$.
 of an onter sleeve a and two inner sleeves $b b$. The interior surface of portion a has two conical frustums, and the innersleeves have gains for the bolts $c c$, which draw them together and jam them between the inclines of the outer sleere and the surfaces of the respective rods.

Cone -

wheel. The cone-wheel has several applications:-

1. Two frustums are in apposition, one having teeth on its face and the other a spirally arranged row of studs. The toothed wheel at its small end acts upon studs on the larger portion of the opposite wheel and conversely. The effect is to confer a regular variability of rotation to the stud-wheel from a regular rotation of the driving-frustum.

2. The frustum, being driven by the

Cone-Vise Couplings. mates, motion to the wheel ahove it. This is not intermittent or variable, but is adjustable. The nearer the upper wheel is to the base of the cone, the faster will it rotate, and conversely.

Con-fec'tion-pan. A pau for making comfts or other confections which require to be rolled upon one another while being dried by heat. In the example, the shaft of the pan is secured to a ring by a miversal joint. Its lower end rests in a socket mule on the upper face of the wheel, which is rotated by

Fig. 122\%.

Cone- Whe els. marked thereon. Or an paper may be impaled, and, when withdrawn, answer as a pattern.
2. A head-measurer used by hatters.
Con'ge. A small circular molding occurring at the junction of the shaft of a column with its base. The cchinus, or quarterround, is a stelling conge; the cavelto is a holloro congc. Con'greve. A phosphorous natch ignited by friction. See Ligutisgdevices.

Con'i-cal-wheel.

Con'greve-rock'et. The Asiatic rocket improved and employed as a formidable instrument of war by Sir William Congreve, 1804. See Rocket; Gunpowder.

Con'i-cal-gear'ing. An arrangement of gearing in which a pair of cogged cones transmit through interposed pinions motion of the required speed.

Con'i-cal-pend'u-lum. A pendulum of a conical shape suspended by a wire and moring in a circular path in a horizontal plane. See PenduLiM.

A tern sometimes applied to the rotating ball governor.

Con'i-cal-pulley. Conical-pulleys are used in cotton machinery where a gradually increasing or decreasing spped is required. See Cone-pulley.

Con'i-cal-valve. 1. A form of valve for water and steam engines. a is the valve-seat, made tapering so as to fit into the valre-chamber of a punp. Tpon the rim of this is fixed the bridge b, serving both as a guide and a stop for the valve ϵ, whose lower sten enters the sleeve d.

2 shows a conical frustum ε having a stem in the bridge-piece e and a seat a.

3 shows Watt's conical valve $g h$, with a stem in the bridge f, and operated by a lever and cord.
gearing, and carries the shaft around with it, giving a wabbling motion to the pan. The shaft describes two cones connected at their common vertex, which is at the center of oscillation in the universal joint. A rolling motion is imparted to the pan, which is heated by steam or hotair pipes beneath, communicating by flexible pipes with a furnace or boiler and an escape-pipe.

Con-form'a-tor. 1. A skeleton frame of slats and braces, adaptable to the person, and then, after adjustment, removable, so as to be laid upon cloth and allow the pattern to be n elastic jacket with points

A wheel shaped like a frustum of a cone, and used in many ways: as a roller for turning curves in moving heavy bodies; the cone-pulleys are forms of wheels for changing speed; used in spliuning-machines and lathe-heads; the fusee is a conicalwheel with a spiral track for the chain.
Co-nis'si-net. The stone which crowns a pier, or that lies immediately over the capital of the impost, and uncler the sweep.

has a movable section by which it may be made an intermediate connection hetween two links of a broken chain. The open-ring or lap-ring is a form of con-necting-liuk used in attaching a singletree to a double-tree, and the latter to the plow-clevis.

Con-nect'ing-rod. (Machincry.) a. The rod connecting the piston-rod or cross-head of a locomotive engine with the crank of the driving-wheel axle.
b. The coupling-rod which connects driving-wheels on the same side of a locomotive. By coupling other pairs of driving-wheels to the jair which is intmediately actuated by the engines, slip

Con-nect'inglink. A link which
 is avoided, as a greater number have a tractive adherence to the rails and are not mere bearers.
c. The rod connecting the cross-head of a beamengine with that end of the working bean which plays over the cylinder.

The rod depending from the other end of the beam is the pitman or pump-rod, as the case may be.
Con-nect'or. 1. (Electricity.) A device for holding two parts of a conductor, as the two wires for iustance, in intimate contact. A bind-ing-screw; a clamp.
2. The English term for a car-coupling.

Con'science. A plate resting against the drill-head and enabling the pressure of the breast or hand to be brought pion the drill. A patcite.

Con'sole. (Building.) A bracket whose sole or shelf is supported by a pair of flowing scrolls.

Con'stant Bat'ter-y. A name applied to the Voltaic battery of Professor Daniell, in which the zinc is separated from the copper by a porns diaphragnt, such as blauder or unglazed porcelain, two distinct liquids being used. The part of the battery containing the ziuc is charged with dilute sulphuric acid, and the part containing the copper is charged with sulphate of copper. See Galvanic Battery.

Con-struc'tion-way. (Ditilrouding.) As distinguished from the fiuished or pormanent way of a railrond. It is a temporary way used in transporting the gravel, etc., of the cuttings to the fills or places where the embankments are to be made. Also in obtaining gravel from other points where the cuttings for the track do not furnish it.

Also used in transporting material and men to the point at which the work is progressing and in carrying ballast for the track.

Con'tact-lev'el. A valuable adaptation of the spinit-level used hy certain instrument-makers for the protuction of exact divisions of scales, and generally for the determination of very minute differences of length.

This device was invented about the year 1820, by Repsold, a celebrated instrument-maker of Hamburg, whose mechanical genius first manifested itself in the repairing of chronometers while he was mate of a vessel at sea.

It consists of a very delicate level pivoted at its middle and across its length, with a small tilt-weight at one end, which tips always in one direction. From the center of the level downward, a short rigid arm extends with a plain polished surface perpendicular to the chord of the level, and against which the contaet is made. The carrier of this arrangement is either fixed, or mounted on a slide, governed by a micrometer screw. If now the end of a rol terminating in a hardened steel point be advanced horizontally till it bears against the contact-arm, the level will gradnally assume the horizontal position, and the movement of the bubble as indicated by the scale upon the glass will depend upon the relation between the radius to which the level-tube is ground, and the length of the contact-lever. If the latter is $\frac{1}{2}$ an inch long, and the radius of the glass tube is 400 feet (levels for astronomical purposes are ground to a sweep of 800 and 1,000 feet radius), we have the relation between the lever and radius as 1 is to 9,600 , and as $\frac{1}{5} \delta$ of an inch can readily be read from the level-scale, क्राण will be the diflereuce in length which each division on such a seale indicates.

When it is remmbered that such a determination of length ean be repeated indefinitely, and that the readings are made without the aid of a magnifyingglass or artificial illumination, the perfection and beanty of the metholl will he appreciated.

Con-tin'u-ous Rail. A rail made in sections with a fougitulinal vertical joint, and the sections laid together, breaking joint.
The continuons rail has been tested on the Now York Central failroad and on other Ameriean lines. Its smoothness of action left but littie to be desired while it was new, but it soon deteriorated. The rail is made in seetions which have a longitudinal vertical joint; the parts being united by bolts and nuts, with the addition of fish-plates at the transverse joints. The sections breuk joint, that is, the junction of two pipces on one sille comes opposite to an momboken surface of the rail on the other side. See Fining
Cont'line. The space betwren the strands on the outside of a ropr. In urorming, this space is filled up with spun yarn or small rope, which brings
the rope so treated to a nearly cylindrical shape, either to strengthen it or to render the surlace smooth and fair for scrving or parceling.

Con-tour'. (Fortification.) Natural contour: the form of the ground surface with respect to its undulations.

Line of contour: a horizontal plane intersecting a portion of ground.

Con'tra-bas'so. (Music.) The largest and deepest-toned of the series of stringed instruments played with the bow. A double-bass.

Con-trac'tion-rule. A rule in excess of standard measurement used by pattern-makers, to allow for the contraction of the cast metal in cooling.

Con'tra-mure. An out-wall built about the wall of a city or fortitication.

Con'trate-wheel. A crown-wheel or facc-wheel, in a watch. Also known as the fourth wheel. Its cogs project perpendicularly to thic plane of the wheel. It gave a name to the old vertical or verge movement, in clocks and watches, where a crownwheel is placed in engagement with the pinion on the arbor of the escape-wheel, in order to bring into horizontal position in the clock the arbors of all except the escape-wheel. The anchor pallet has put the contrate-wheel out of use in clock escapements, and the lever and other movements have superseded the old vertical movement in watches.

Con'tra-val-la'tion. (Fortification.) An advanced oflensive work consisting of a trench and parapet to check sallies of the garrison.

Con'tra-va'peur. A French invention, a partial substitute for brakes. It consists in injecting a small stream of water from the boiler into the ex-haust-pijles or passages before and during the reYersal, so as to bring a counter-pressure of steam upon the piston.

Con-trol'ler. (Nautical.) A cast-iron block having depressions on its upper surface adapted to fit the links of the cable which passes over the block on its way from the locker to the hawse-hole.

Controllers are bolted to the deck at varions points in the line traversed by the cable. The latter tends to drop into the hollow of the block which then arrests the motion. The cable may le lifted out of the hollow, by the short arm of a lever which rises from the botton of the hollow in the block.

Con-ver'sion. (Shipbuilding.) The cutting - usually with the saw - of logs of timber into picees nearly of the shape required.

Conver-sa'tion-tube. An elastic tule with a mouth-piece about two inches in diameter, and at the other end an ear-piece. The neck is a yard or more in length, made of spiral wire covered with caoutchone and overspun with mohair or silk.

Con-vert'ing. 1. (Firc-arms.) A name applied to changing muzzle-loading arms to hreech-loaders, and which, in some form, has taken place with the small-arms of most national armaments.

From among the various competing plans for converting the Enfield rifle of the English service into a breechloader, that of Snider was adopted. The cost of conversion is about 15s. English for each rifle.

The method is as follows:About two

Snider's Converted Eufield iistle.

inches of the barrel are cut away at the breech, and a solid breech-stopper A, working sideways on a hinge, is placed in the opening thus made. Through this stopper passes a piston, one end of which, B, when the breech is closed, receives the blow from the hammer, while the other communicates it to the center of the cartridge, thus firing the latter. Tue empty cartridge-rase is retracted after each discharge by means of sliding back the stopper on its [intle, when the tilting of the piece tips out the shel] and another can be inserted. It weighs 9 pounds $5 \frac{1}{4}$ ounces, and has been fired fifteen times in a minute.
The Springfield (U. S.) riffe is also converted into a breech-loader. See Fine-arm.
2. Rusing, or reducing a ship by a deck; or otherwise clanming or degrading it into a batteryvessel, or a receiving or prison hulk.
3. Decarbonizing, or changing cast-iron into sted. See Cunveritor ; Besshmer Process.

Con-vert'ing-fur'nace. One for converting wrought-iron into steal. Wrought-iron is iron in its greatest purity, though it is seldom that all the imparities are perfectly eliminated. Stuel contaius a jortion of carbon, more or less, and is a carburet of iron. Cast-iron coutains a much larger amount of carbon Qualities of each depend upon the quantity and nature of other matters which are combined wit's the iron, some being undesirable but ditficult of rmoval, and others bein! purposely added to confer a quality or to nentralize extraneoas matters which are present.
The hars of iron are cut by shears to the required lengt! and are placed in layers in a flat, narrow furnitce, with intervening layers of pounded charcoal. Above the alternate strata of iron and charcoal is a covering of ferruginous earth. The mass being heated, the carbon is in some way absorbed by the irun, whi h is converted into steel. This is known as Cemestation (which see).

The resulting blister steel, so called from the blisters formed by bubbles of gas which was eliminated during the process of conversion, is then cut up, reheated and hammered, and becomes shcar ster. 1.

Blister stesl, cut up, heated in crucibles, poured into molds, and the ingots hammered into shape, becones cust-steel.

Con-vert'or. An irou retort in which molten
iron is exposed to a blast of air, the oxygen of which burns out the carbon and some other impurities of the iron; a subsequent addition to the charge makes a further chemical change, and the result is a grade of steel. It is used in the Bessemer proeess.
Condensing, from a brilliant description by Mr. R. W. Raymond of the process as condncted liy Mr. Holley, it may be brielly described as follows :-

The five-ton convertor is an iron vessel! $1 \frac{1}{2}$ feet high and 9 feet in diameter externally, of a bulhous shape, and hang upan trunnions. The lower limisphere is truncated, giving a that bottom, five or six feet in diameter. The upper hemisphere terminates in a large neck inclined sidewise, so that a flame issuing under pressure from the mouth of the upright convertor is obliquely directed into a chimmey, guarded by a hood. The whole vessel has a rude resemblance to a pear. It is surported by heavy trunnions on each side of the ceuter, and revolved upon these by hydraulic power.

This hage iron bottle, with its neek awry, is lined with a foot of refractory silicious material, known as ganistcr, to jreserve the iron shell. The trumnion is hollow, and a passage from it runs down the outside, looking like a strong rib in the iron surface, to the bottom, where it conmunicates with the tuyeres. The bottom of the Holley convertor is movable, and when taken out looks like a great plug of fire-brick, two fuet high, resting upon a cast-iron disk. The tuyeres, or nozzles for the blast, are imbedded vertically in the lining, and present ten groups, each containing a dozen three-eighths inch holes. The aggregate area of these openings is equal to that of a single tuyere 4.1 inches in diameter, but the thorough agitation produced by dividing the blast secures much greater useful effect. The jressure of the blast is twenty-fire jounds per square inch.

The convertor iu its upright position, being heated by a charge of coals and the blast, is turned mouth downward to vomit out the glowing coals, then upon its side to receive its charge, which runs from the cupola furnace ahove, along a trough, and plunges into the mouth of the convertor. The position of the retort at this time prevents the charge from running into the tuyeres before the Hast begins. Afterwards the fressure of the air itself keeps the passages clear. Then the blast is let on, and the convertor swung back to a vertical position. A tongue of white flame comes roaring out of the

Fig. 1432.

moatl2. The silicon of the pig oxidizes first, without very inteuse flame; but as the graphite and esperially the combined carbon begin to burn also, the hat rises to some $5,000^{\circ} \mathrm{F}$., and the light is so brilliznt as to cast shadows across full sunsline.

In fifteen or twenty minutes the marvellons illu-
mination ceases more suddenly than it began. The volume and brilliancy of the flames diminish together with startling rapidity. This change of the Bessemer flame marks the elimination of most of the carbon, and indicates the critical moment. When it arrives, the blast is stopped, the convertor is
turned upon its side, and 600 pounds of melted spiegeleisen are turned into it, as the pig was previously charged. The reaction is instant and violent. The mangatese of the spirgeleisen combines with any sulphur that may remain in the bath, forming compounds which pass into the slag. It also decomposes in the slag silicates of iron, taking
by tongs attached to the same machinery, and are carted away, all red-hot, to the hammer-shops, where they are thmmped and rolled or otberwise tortured into their required forms of rails, tires, and plates.
Con'vex Lens. One having a protuherant form.
A plano-convex lens has one llat and one bulging side.

A concavo-convex or convexo-concave las one protuberant and one depressed side.
A convexo-convex or double-convex has two consex surlaces, not necessarily of the same radii. See Lens.

Con-vey'or. A mechanical means of carrying objects. A term applied usually to
thoseadaptathose adaptations of band-buckets or spirals which convey grain, chaff, flour, bran, etc., in thrashers, elevators, or grindingmills ; or ma. terials to upper stories of warehouses or shops, or buildings in course of

Holley's Convertor.
the place of the iron and returning it to the bath. Finally, the carbon and manganese together reduce the oxide of iron formel during hlowing, which would destroy the nalleability of the iron. This is quickly accomplisheal, and now the gigantic convertor, like a monster weary of drinking boiling iron and snorting fire, turns its month downward, and discharges its contents into a vast kettle or ladle, brought underneath for the purpose by one of those intelligent cranes that stand around so silent and so helpful. The ladle is swang over the mohls ranged round the sille of the semicircular pit below, like a row of Ali Baba's oil-jars, each capable of containing a bandit. The white, one would almost say transparent, metal is drawn off into these through a taplole in the bottom of the ladle, retaining the slag which lloats on the surface till the last. When the first mold is filled, the plug is closed, the ladle swang round to the sec:ond moll, and so on till all the steel is thus cast into ingots, the size of which varies witl the kind of wark for which the steel is required. A thin steel plate is placed on the top of each casting immediately the mold is filled, and over this a bed of saml is phacen, and speedily and firmly pressell down.

As som as the ingots have solidified, anll while they are still glowing, the molds arc lifted off them by means of an lyydraulic crane, and afterwards the ingots are picked up

latter kind, for hotel or steambeat nse, is shown in Fig. 1435, in which the fire-chambers $h h k$, ovens i i, and flues, are so arranged that the range has two frouts and an end, so that attendants can have ready access to all parts of the range. The products of combustion are ntilized in heating closets below the ovens for rarming plates and keeping the viands warm, and thence dire into the sub-Hoor flue l, which connects with the chimney of the building.

Cook'ing-stove. A structure, usually of iron,

English Stove. containing a fuelchamber and orens, with boles into which pors may be set to buil the contents.
Stoves are comparatively nncommon in England. They prefer the open fireplace for apartinents and the range for kitchens. See Rayge.
The English cook. store of forty years since is shown in the annexed cut. The front of the store is a grate at which joints may be roasted. Between the fire-back and the oren is an air-flue. A part of the front may be lowered, as shawn in dotted lines, to form a shelf for stewing.

American Cooking-Stoce.
A plate mas be in front to form a blower. The fire is directed abore or below the oren by means of dampers. The passage between the fire and the oren

- Koasting-Stove, wioh Resermir. is supplied by airfrom belorr, and discharges into the oren, from whence a pipe discharges the fnmes of the cookingin. to the chim ney. This is said to hare the effect of roasting rather than baking.

Fig. 1437 representsan ordinary form of stove, the doors being opened and lids off to expose the interior.

Fig. 143 S is ann attempt to secure a roasting-stove by means of direct radiation from the fire-box iuto the oren through the back fire-plate and the front oven-plate for roasting or broiling ; but this direct radiation is shut off when the oven is used for baking.
Fig. 1439 has an elerated oren and a coalmagazine, being an application of the baseburning principle to the cook-ing-store. The base is connected by vertical flues to the upper part containing the oven. There are many hundreds of varieties; some differences being actual, some im. aginary.
Cool'er. 1. (Breving.) A
 large rat, relatively hroad and shallow, in which the beer is cooled. Mechanical appliances are sometimes used to expedite the process. See Liquid-cooler: ; Beer-couler.
2. (Domestic.) a. An ice-chest or safe for riands in hot weather. See Refhigerator.
b. A tin vessel with lid, faucet, and non-conducting jacket, for containing ice-water.
3. (Sugar.) A trough in which condensed canejuice from kettles or vacuum pans is placed to

Fig. 1440 .

Sugar-Cookr.
crystallize. In Cuban sugar-honses each conler holds $1 \frac{1}{8}$ hogsheads.

Cool'ing-floor. A large shallow tank in which wort is cooled. Horizontal ranes for causing a circulation of air orer the wort are called flighters. Apparatus for bringing the wort in contact with artificially cooled surfaces are Refrigeliatohs (which spe).
Coom. A term applied to refnse matters, sucl as soot, smoke-black, coal-dnst, the mold which fomms on conve liquids, the drip of journal-boxes, etc.

Coop'er-ing. The art of making casks and harrels.

The invention is ascribed by Pliny to the people who lived at the foot of the Alus. It seems to have attuined great excellence at an early day.

The business is divirled into several kinds, which may or may not be carried on together.

Dry coopering consists of making barrels for fiour, lams, eggs, grain, sugar, etc.

Irct or tight coopering is for whiskey, molasses, nickled meat, cider, vinegar, etc.

White coopriug consists of buckets, tubs, churns, ete.

Bucket-making and barrel-making are generally carried on in factories, special machinery being employed.

The accompanying cut gives an impression that the business of coopering is conducted on energetic

Fig. 1441.

Japanese Coopers (from a Native Picture).
principles. While the Hindoo bricklayer sits at his work, and the blacksmith of some other country name forgotten - hokls his tongs with his foot, it appears that in Japan one holds the driver and unother climbs upon the trussed eask to use the hannmer.

Coop'er's Ham'mer. A hammer with a narrow peca, whose length is in the plane of the motion of the hammer; used for battering and flaring an iron hoop to tit the bulge of a cask. Also called a fluch enimer.

Coop'er's Plane. A long plane set in slanting position, sole upward, npon which staves are jointed. A jointer. Planes and shaves are or may be used in smoothing the work. See list nnder next article.

Coop'er's Tools:-

Adze.
Anger. Taper
Barrel-machine.
Barrel-head machine.
Borer.
Bucket-machine.
Bung.
Bang-entter.

Butt-howel.
Chineing-machine.
Cleaving-knife.
Cooper's hammer.
Cradle.
Cresset.
Croze.
Crozing-machine.

Doweling-nachine.
Drawing-knife.

Driver.

Flagging-iron.
Flue-hammer.
Frow.
Gathering-hoop.
Heading-circler.
Heading-knife.
Hearling-machine.
Hollowing and backing-
machine.
Hoop.
hoop-bending machine.
Hoop-cutter.
lloop-dressing machine.
Hoop-driver.

Jigger.
Jointer.
Overshave.
Pack.
Pail-machine.
Raising-knife.
Rounding-machine.
Setting-up machine.
Shook.
Spoke-shave.
Stave.
Stave-bender.
Stave-cutter.
Stavedresser.
Stave-jointer.
oop-purching machine Stawe machme
Hoop-purching machine. Stave-setter.
Hoopriving machine. Tap-borer.
Hool-shaving machine. Truss-hoop.
Hoop splaying and bend- Turrel.
ing machine.
Howel.
V-croze.
Inshave.
Coo-thay'. (Fabric.) A striped satin made in India.

Cop; Cop'pin. 1. (Spinning.) A conical ball of thread wound upon a spindle or tube in a spin-ning-machine, and removable by slipping therefrom.

The copping-rcel is the means of distributing the roving or yarn up and down on the bobbin, so as to wind it into the form required. The form (1, Fig. 1442) is the result of a scheme for giving each layer an equal length of yarn, so that the length of the layer on the Loblin shall decrcuse as its diameter incruases.

The increase in diameter renders necessary a decrease in speed, in order that it may wind equal yarn in equal times. This is accomplished by a device called a concpullley (which see).

The cop (2, Fig. 1442) made on the spinulles of the mule is of a different form, the yarm being wound in a double cone as a foundation abcd, upon which the rest is built upward in successive layers, which are easily unwound, citber by the reel or in the shuttle. The conical spinulle-form with conical ends is preserved (a $b c e f)$, as being the most compact and selfsustaining, consideration being hal to the form of the shuttle in which it
 is to lie.
2. A tube, also known as a quill, for winding silk upon in given lengths for market ; a substitute for skeins. Being hollow, it may be placed on the spindle or skewer of any winding-machine. The silk end is secured in a slit, as in the case of spools.

Cope. 1. (Founding.) The upper part of a | mold; the lower is the drag. It may consist of
several parts, which divide by a vertical joint and mutually rest upon the dray. See Flusk.

It is also known as the cap, coat, top, case, dome. Some of these are mere synonymes, others refer to specific forms of the object.
2. (Architecturc.) A cromn, arch, or arched lintel. The root-meaning is the same as cap or corer.
Cope-chis'el. A chisel adañted for cutting grooves.
Cop'ing. (Masonry.) The top, protecting course on the top of a rall. It is of three kinds :-
Parallcl coping, level on top.
Feuther-cdged coping, bedded level and sloping on top.

Sadilc-back coping has a curved or doubly inclined top.
The under edge should be thronted, that is, grooved, so that the drip will not run back on the Wall, but drop from the edge.
Cop'per. 1. A red metal. Equivalent, 31.7 : symb l, Cu. (cuprum) ; specific gravity, S. 7 to S.9, accorling to density ; fusing-point, 1996° F. A moderately hard, milleable, ductile metal. A good conductor of heat and electricity.
Its uses are very numerous. In the shape of wire and sheets its employments ramify through all the uses and conveniences of commerce and the honsehuld.
The alloys, brass and bronze, are the most useful of that interesting class of compounds. Besides these, it enters into the composition of albata, bellmetal, speculnu-metal, etc. See Alloy.
lts salts are usually poisonous, but brilliant, and are extensively used in the arts.

It forms the material for the lower denomination of the coins of most civilized nations.
Copprer was known and used long before iron. The discovery, so far as the nations depending on the Western Asiatic civilization is concerned, is probably due to the Seythians. Aristotle, Pliny, and others give the names of the supposed discorerers, and carry it bask to the era of fabulons divinities. The first alloy of copper was that with tin, making a bronze; afterwarl with zinc, making a brass. The same name is applied to both in the Greek, also in the Latin. The tin for the alloy was found in the islands called Cassiteris or Cassiterides, which are the Scilly Islands and the promontory of Cornwall. "Midacritus," says Pliny, "was the first who bro:ight tin from thence, and the islands recpired the Greek name of the metal." Herolotus makes the same statement as to the source of the meta', and the same district is yet rich in tin, and is worked to great profit. The tin brought by the Phoenicians to Solomon to alloy the copner for the vessels of the Temple at Jerusalem made other trips when it was carried to Babylon, returned under Cy rus, was retaken by Antochus Epiphanes, and was thence saattered, probably in the form of coin.
The references in the Bible to copper are very infrequent, considering it to be the commonest metal they had. It is but twice mentioned, while brass (s o truslated) is mentioned thirty-one times. It should be rendered bronze, its alloy being tin, and not zinc.

Copper was in common use in ancient Assyria. No iron was found in the excarations of Khorsabad by M. Botta, who was the first successful explorer of the tumuli on the Tigris. Iron armor, inlaid with copper, was found by Layard at Nimroud.

Sheet-copper was made in ancient Egypt,
Hesiod speaks of the third generation of men "who had arms of copper, houses of copper, who plowed with copper, and the black iron did not
exist." In the Honeric poems, kuives, spear-points, and armor were still made of copper.

The process of reducing copper ore depends upon its character. Swansea, in South Wales, has the principal part of the work, ores being brought there from Cornwall, Devonshire, Spain, South America, Anstralia, Africa, and the United States, and there they are smelted and refined. Sce Copper-flestace.

The Mansfield (Prussian Saxony) process consists in roasting the calcareous ore to expel the sulphur and oxidize the metal ; the ore is then smelted in a cupola, the slag and molten metal being drawn at two tap-holes into separate cisterns. The malte, combined sulphurets of iron and copper, is repeatedly roasted, and the resulting sulphate of copper remored by lixiviation. When silver is present, it is removed with lead, and that separated by cupellation.

With the Longmaid process the copper prrites is roasted in the presence of chloride of sudium. A douhledecomposition ensues; sulphuric acid is forned and attacks the soda, the copper beconses a soluble sulphate, the iron is in the form of peroxide; the escaping fumes of chlorine impregnate lime, which becomes bleaching-powder.

The wet treatment of copper is br grinding and roasting; sulphuric acid is forned and attacks the oxide of copper, the resulting sulphate is dissolved away, and the inetal precipitated by peroxite of iron.

In making sliect-cojper the plates of copper from

Brewer's Copper.

 the smelting and refining works are heated, in small orens called muffes, to a bright-red heat, and then reqeatedly rolled; the rollers, at each operation, being brought nearer together. The plates thus produced are called blanks, which are again heated in the muffle and rolled again. A repetition of the process makes shect-copper.2. A large ressel - usually of copper - set in brickwork, and used by launders, conpers, brewers, bleachers, dyers, and on shipboard; in boiling clothes, staves, cloths, etc., or in making extracts or decactions.

Cop'per Al-loys'. Copper is the most useful of all metals for alloys, and a list of its combinations is मriven on page 61 et scq.

Cop'per-bit. A pointed piece of copper, riveted to an iron shauk and provided with a woolen hau-

Fig. 144

dle. It is used for soldering. If not previously tinised, it is heated to a dull red in a charcoal fire; hastily filed to a clean metallic surface; then rubbed immediately upon a lump of sal-anımoniac, and ucxt upon a copper or tin plate, upon which a few drops of solder have been placed. This will counjletely
coat the tool, which may be wiped clean with a piece of tow, and is ready for use. a bhow different positions of the lit on its stock.
c is a device ly which a gas-jet is applied to the back of the copper-bit, almitting of its coustant use, without continued reference back to the furnace for reheating. The gas passes through the elastic tube, and thence through the handle and shank, whence it issnes in a jet npon the back of the hit, in quantities determined by the stopcock. The elastic tube allows the tool to be movel readily in any direction.

Cop'per-bot'tomed. (Shipbuilding.) Having that portion of the outer skin which is exprosed to the water sheathed with copper, as a protection agaiust that great bore, the Teredi) unvalis.
Cop'per-cap. The copper capsule, charged with a fulminate and placel on the nipple of a fire-arm, to explode the charge when the hammer falls.

Cop'per-faced. (T'ypc.) Having a face of coppur upon a shank of type-metal.

Cop'per-fast'ened. (Shipbuilding.) Having the planks, etc., fastened with copper bolts, in contradistinction to iron; the latter being liable to rust, especially in contact with oak and by exposure to wet.
Cop'per-fur'nace. Copper-smelting, as practiced at Swansea, Wales, consists of the following processes :-

1. Culcination of the ore. This is conducted in a reverberatory furnace. (Sce Calcining-Furnace; Coppri.) The charge is introduced by hopper on t1) the hearth of the furnace, where it is exposed for $11 \frac{1}{2}$ hours to a flame, which disengages the sulphur and arsenic in a gaseous shape.
2. Separalion of the copper from gangue and oxirle of iron. This is accomplished in a melting-furnase, which callects the copper in a matt, consisting of sulphuret of copper and iron, the gangue and oxide of iron in the shape of scorix, and ilrives off certain amounts of sulphur and other volatile matters.
Each charge is in the furnace four lours. The matt collects in the basin of the hearth, and is rin off into a cistern, whereby it is grammlaterl. The scoriz is run off into sand-pits of small size, where it forms bricks, which are examined for traces of copper and the richer portions retained for remelting.
The copper is in the condition called coarse metal.
3. Caleination of the coarse metal. This is perfurmed in a reverberatory furnace, the heat being gradually increasel for 36 hours. The copper here reaches the condition of calcizal corrser metal.
4. Oxidation and removal of the iron. To the prodnct of the former operation are added certain copper ores free from sulphuret of iron. By melting in connection therewith, the sulphuret of iron is oxilized and passes into the s!ag, while the copper becomes a matt, in the condition of white metal. The charge is six hours in the furnace.
5. Rcmelting and refining the matt. By the application of heat in finmace the reactions of the former operations are repeatel; disengaging sulphurous acill, setting eopper free to unite with the mall, and removing iron, which passes from the condition of sulphuret to an oxide and passes into the scorie.

The product is known as blue metal.

6. Remelting of slays. The slags resulting from operations 4, 7, and 8, are mixed with certain other ores in a furnace, and several chenical reactions take place, which result in two metallic products for future operations, -red and white metals.
7. Refining of the blue metul. The blue metal of operation 5 is slowly calcined, and then fused at
a high temperature, the first part of the operation taking $8 \frac{1}{4}$ hours, and the second $2 \frac{1}{2}$ hours. The reactions are to sume extent repetitions of the former, and the product is whif metal.
8. Refining of former metallic products. The white metal of operation 7, and the red and white metals of operation 6, are caleined and then relined, producing a rich regulus of copper, a rich slag, and bottoms.
9. Combining and refining of former metallic products. The whitc metal, regulus, and bottoms of former operations are calcined and fused, some rich ore being added. The product is metallic coppur and a rich slag, which goes back to the operation 4. The product is known as coarsc copper. It is run into pigs. Time required, 24 hours.
10. Convcrting the coarse copper into malleable. The coarse comper, in the form of pigs, is placed in the furnace ; about $21 \frac{3}{4}$ hours being employed in bringing it to that condition where the slag on the surface containing the metallic oxides is skimmed ofl. It is then called dry, and is in a condition whil would be brittle, were it withlrawn. It is rendered malleable by carbonizing, charcoal and gyeen wool being thrown on the surface. It is then ladled out and poured into molds.

Cop'per-plate En-grav/ing. A very ancient art ; in chasing or enchasing - that is, carving on metal - it is seen in all the regions of antiquity, in the ages of copper and bronze, before iron was used. Many thousanils of years passed brfore the plates ornamented by the graver were used for printing. anll even then it was suggested hy taking proofs of inlaid or chased work. An artist woulil take impressions of his work for purposes of transfer or reference, and from these came the suggestion of making the engraving in such a manner that the impression itself might be beautiful and worth keeping for its merits, other than as a workman's copy.
In copper-plate engraving the lines are etched, or cut by a graver in a plate; then filled with an ink; the surface of the plate wiped clean ; the paper laid upon the surface of the plate, and both run througl a roller-press, by which the ink is transferred to the 1 raper.

Vasari ascribes the invention of engraving on copper to a goldsmith of Florence named Maso Finiguerra, about 1460 . The oldest engravers whose names and marks are known were Israel de Mecheln, of Bokholt, in the bishopric of Nunster; Martin Schoen, of Colmar, in Alsace, where he died 1486 ; Michael Wolgemuth, of Nuremberg, the preceptor of the famons Albert Durer.

Cop'per-plate Print'ing-press. This press is for obtaining impressions froin sunken engravings ; that is, those in which the design is cut into the copper or steel piate, in contradistinction to such as have the design salient, as in wood-engravings. where the part which is not designed to print is cut away.

In copper or steel plate engraving, lines are made in the plate by the graver ; by the etching-point, followed with acid; by the etching-point alone (called dry point) ; and by the diamond point of the ruling-machine, followed with acill.

These lines in the plate, whether fine or heavy, are filled with ink, and the plate is then passed through the press, delivering the impression upon the soft, damp paper above it, the ink adhering to the pajer and being withdrawn from the lines of the plate.

To describe the process a little more at length : The plate is laid on a small metallic table heated by a brazier beneath. This is to warm the ink, which is made very thick, and is laid on with a dabber or
roller until the lines are all full and the surface covered. The surface of the plate is then wiped off with a eloth, leaving the ink in the lines. This requires dexterity, and the plate is first wiped in one direction and then in another. The bare hand, sligbtly dried by a little whiting, is then applied to the plate to polish the surface, and, the margin being wiped clean, the plate is laid upon the traversing bed of the press.

The paper for the impression is then laid on the plate, and the workman tums the roller by means of the spokes, drawing the plate and paper between the bed and roller, subjecting it to heavy pressure, and causing the ink to adhere to the paper and leave the lines of the plate. Blankets intervene between the paper and the roller.

When an "India noof" is to be taken, the sheet of fine lndia paper is first laid on the inked plate, and the backing of paper is roughened by dabbing it with the bristles of a stifl brush. It is then laid on the India paper, and the pressure causes the two papers to nulhere.

The old-fashioned copper-plate press has a roller moved by the raclial handles, and a bed traversing on anti-firictiou rollers. A great improvement consists

Fig 145.

Plate-Press.
in the D-roller, which has one flat side, and allows the bed and plate to return by a counter-weight after passing beneath the periphery of the roller. A farther improvement is the heater in the bed-plate.

The Dutch, Germaus, and ltalians have contended for the honor of the invention of this press, but it has heen awarded to the Italian sculptor anl goldsmith, Tomasso Finiguera, a Florentine, who lived ahout 1460 . It is stated to have been snggested to him by the appearance of the impression derived by the accidental pouring of a quantity of brimstone upon an engraved plate, probably engraved for the ornamentation of furniture or some inplement or article of viruc. The first copper-plate presses were simple pressure. The rolling-press was invented in 1545.
Cop'pin. (Sninning.) A cop (which see).
Cop'ping-plate. (Spinning.) The coppingrail of a throstle-machine.

Cop'ping-rail. The rail or bar npon whiph the bobbins rest in the bobbin-and-fly or the throstle machine, and by whose up-and-down motion the
rooving or yara is evenly distributed. See Bubbin-and-fly Frame, or Throstle.
Cop-tube. (Spinning.) The tube in a spinningmachine on which the conical ball, or cop, of thread or yarn is formed.

Cop'u-la. (Music.) The stop which connects the manuals, or the latter with the pedials.

Cop'y. 1. A size of writing-paper measuring 20×16 inches.
2. Matter fnr printing.

Cop'y-hold'er. A clasp to hold matter while being set up.

Cop'y-ing-in'stru-ment. A tracing-instrument, or oue for multiplying by manifoll process.

A silhouette-machine is one for giving, on a reduced scale, the outline of a shadow-portrait.

A photograph is used for copying drawings on a changed scale.

Another mode is by taking an impression on a web of india-rubber, and then stretching it to the desired extent; or else stretching it and taking the impression, and allowing it to contract to the desired extent. In either case the impression may be transferred to the stone loy the proper processes.
Cop'y-ing-ma-chine'. A CopyiNg-press (which see).

Cop'y-ing-pa'per. Thin, unsized paper, used damp, for taking implessions from writings in a copring-press.

Cop'y-ing-press. A machine for taking a copy of a writing by pressure.

The usual system is to write with an ink haring a somewhat riscid character, and to expose the written page to pressure in contact with a leaf of bibulous paper.

One of the first suggestions in this line was by Benjamin Franklin, who sanded the ret wet ink of the manuscript, passed it between rollers in contact with a polished soft-metal plate, imbedding the emery in the pewter so as to leave an impression from which a copy may be obtained by the copperplate printing process.
James Watt, abont 1780, adopted the plan of pressure of a page of bibulons paper against the damp manuscript, the writing being legible through the thin copying-
paper.

Ritchie's copy-ing-press A has formed the model for most of its class, having a bed, a platen, and a cam-lever.

The book containing the manuseript in contact with a damp page, is placed on the berl, and the platen p hrought down by the rotation of the nut h, which traverses the serew s. An effective pressure is then brought to bear upon the screw and platen by the oscillation of the lever l, whose cam c

Fig. 1446.

Corying-Presses

bears upon the upeer end of the serew-shaft, and gives sufficient power to deliver the impression.

Bhenel's copying-press B acts on the componndlever principle. The bottom of the press b receives the book, and the platen, being laid thereon, is driven down by the pressure of the central stud k, which is beneath the lever hinged at f.

A second lever l, hinged at j, and having a cam s at the end, is then bronght to bear upon the former lever, giving a force equal to the delivery of an im. pression from the damp, ink of the manuscript upon a sheet of thin bibulous paper laid thereon and Lacked by a rlamp sheet.

Other modes of copying are found.
The manijold writer, invented by Wedgwood, 1806, and consisting of colored sheets alternating with thin paper, and giving a number ol identical impressions by the action of a stylus.

Hrackins's polygraph, in which several peneils are carried in a frame, each obeying the action of a principul and writing unon its own particular sheet of paper.

Cop'y-ing-tel'e-graph. An apparatus for antomatic telegraphy known as Bonelli's telegraph. The apparatus consists of a dispratehing instrument and a receiver at the respective ends of the line.

The message is written with a non-conducting ink on a sheet of foil, which is then lapped around the roller, and a sheet of white paper is wrapped on the receiving roller and covered by a sheet of transfer1riper. The clectric circuit being established, so long as the point of the lever of the dispatcher is in contact with the metallie surface of the paper, the armature of the receiver is attracted by its magnet, and the stylus of the receiver elevated. When the stylus of the dispateher crosses the non-conducting ink, the circuit is hroken, the stylus of the receiver drops upon the transfer-paper and inuprints a mark uron the paper heneath. Bonelli's had five styles and as many wires; the former trailed over the line of letters, making five simultancous impressions, which gave dotted skeletons of the letters, the points being sufficiently umerons and proximate to
enable the letters to be readily distinguished. Instead of the ink of transfer, chemically prepared paper has been nsed, which was acted upon by the spark, giving visible dots at the points of chemical reaction.
Cor'a-cle. A form of canoe used in Egypt and in Britain from the earliest periols of history. it consists of a light wooden frame covered with hides, and capable of being carried on the shoulders. The coracle is still in use in the West of Eugland, Wales, and in some parts of heland.
The same kind of boat is yet aned upon the river BoTchou, in Thibet, as mentioned by the Abbé Huc, in his "Travels in Tartary and Thibet," $1844-46$. "It was composed of ox-Jides, solidly sewn together, and kept in shape by some light triangles oll bambioo. The man theu took his boat again upon

Fig. 1448.

Coracle. his buck, and role off."
The birch-bark canoe differs mainly from this in the material wherewith it is covered. See Canoe.

Cor'bel. (Architecture.) Or corbcille. A form of bracket used in Gothic architecture to support the ends of timbers, arches, jrampets, floors, cornices, ete. It is a projecting block of stone, usually carved, and with a receding face.

Cor'bel-piece. A bolster, a wooden supporting piece or bracket. A corbel.
Cor'bel-ta'ble. A cornice supported by corbels.
Cor-bond'. (Mining.) An irregular mass or dropper from the lode.

Cord. 1. A string or small rope composed of several strands twisted together.
2. A kind of stont ribled lustian; corduroy.
3. In fancy wearing, the space of the designpaper contined by two vertical lines, also the string which comnects the neck-twincs at the leaf.

Cord'age. See Rope.
Cord-cov'er-ing Ma-chine. A machine in
Fig. 1449.

Cord-Coiering Machure.
which a corl (or wire) receives a covering of thread or silk ; when this is plaited on, it constitutes braiding. (See Bradding-machine.) In the marhine represented, the yarn-bobbins D D are upon carriers, and the yarn proceeds upwardly through the spindles C and the flyer-bobbins H, which are sleeved thereon and carry the silk, which is twisted by the flyer around the yarn or cord from the spool D at a point below where it issues from the guide G. At a print above, the three covered yarns are twisted iuto a threefold card or bullion.

Cord-dry/er. A machise for drying sized or dyed cords, webhing, tapes, etc.

The stuff passes beneath rollers submerged in the liquid of the tank, thence beneath pressure-rollers, which remove superfluous moisture; then between flattening rollers, thence to the dryer, which has a series of parallel pipes placed in slightly inclined

Cord-Drying Machine.
ranges ; the material to be dried passing up and down, being interlaced between the pipes. Hollow, heated cylinders, around which the fabric passes, are placed between the ranges.

Cord'ed Fab'ric. One having a pile which is cut in ribs in the direction of the length of the warp, as corduroy.

One having alternate larger and smaller threads, either in the weft or the warp, so as to give a ribbed or corded surface.

Cord'er. (Sewing-machine.) A device for laying coriIs between fabrics, or corls or brails on the surface of a fabric. See "Sewing-Machine Attachments," published by G. W. Gregory, Washington, D. C.

Cor-dit'las. (Fabric.) A kind of kersey.
Cord'ing. (Weaving.) The cording of a loom is the arrangement of the hedulles so that they move in such clusters and times as may be required for the production of the pattern. (See Draft.) A set of hedulles connected with a given shaft is called a leaf. Each shaft is connected by a cord to the trealle whereby it is moverl.

Cor'don. 1. (Forlification.) The coping of the revetment of the scarp, which is the inner wall of the ditch. At this point the fruisc is placed, if such be used.
The cordin projects a foot beyond the face of the scarp, or revetment.
2. The edge of a stone on the outside of a build. inc.

Cor'do-van; Cord'wain. A Spanish leather, originally of goat-skin, but now frequently male of split horse-hides. It is finished as a black morocco, and is named from Cordova (the ancient Corduba), which is situated on the Guadalquiver, in Andalusia, and was founded by Marcellus. It was the
chief emporinm of Tberia. The Moorish city contained 300,000 inhabitants in the eighth, ninth, and tenth centuries. It was the great seat of the arts, sciences, and learning in the days of liheral Spain, when the people were worth something, before the black darkness of the Pedros and Philips.
Cor-du-roy'. 1. (Fabric.) A stout, ribbed cotton fustian, made with a pile so cut as to leave a surface ridged in the direction of the warp.
2. A road formed of poles laid transversely and in contact. It is used as a mnd-bridge in swampy places.

Core. 1. (Founding.) An internal mold which forms the interior of a cylinder, tube, pipe, fancet, or other hollow casting. It is made of various proportions of new sand, loan, and horse-dung. It requires to be thoroughly dried, and when containing horse-dung mnst be burned to a red heat, to consume the straw. This makes it porons and of a brickred color.

The core is made in a corc-box, and has projecting portions, known as core-prints, which rest in the prints of the mold. The model from which the object is cast is solid, and makes an impression, partly in the cope and partly in the drag. When the pattern is removed, the core is laid in its place, the projecting portions resting in the recesses mate by the prints of the pattern. Touching the loam of the mold at no other point, it occupies, in the case of a pipe, a central position in the space which is to be run full of metal. When the metal has been poured around it and then cooled, the core is broken out, leaving the casting hollow.

Simple cores are those which do not prevent the delivery of the cope and drag, that is, which have

no undercut portion which wonld prevent the portions of the flask from being parted in the usual тay.
In the first of the examples represented (a), the core is inserted in the pattern when molding, and is pushed from the pattem sn as to remain in the mold when the pattern is withdrawn.
In the second example (b), the portion of the core projectivg from the pattern forms a print, amd both pattern and core are molded together. When the pattern is withdrawn, the core is detached and the print inserted in the impression made by it in the copre. That part of the core which was imbedded in ti-e pattern then projects into the space, and the metaI is cast around it. The core thus makes a hole in the casting, but not through it, as will be observed.

In the third example (e), the pattern has projectiug pieces, called priuts, on one or both sides; when nolded, these projections make holes in the luam. Cores of the required size and shape, and having projections to fit these holes, are previously made, and. being fitted thereinto, are securel thereby, the portions projecting into the open space boing surromonded hy the metal, so as to make a hole in the exsting or a hollow casting, as the case may be, when the core is picked to pieces and broken out of the metai.

The example of patterns and cores shows several arranged in one flask. In one figure, the ingates and ruancrs are prepared aml the coles in their places,

Fig. 1452

Patterns and Cores.
being shaded for distinction. In the upper figure, the articles are in their ultimate shape, with holes in them.

The gronp includes a stopack with a cruciform core, which forms the duct and the hole for the spiggot. A piece having a straight and a curved mortise, and which delivers its own core. One having onty a perpenticular, square cote. One with a round core parallel with the faee of the flask. Oae having two rectangular cures crossing each other at right angles. The eap of a double-acting fump, the core for which is shown in section in the small figure; the shaded portions being the metal.

Sheaves are east with annular cores, the pattern being divided in a plane perpendicular to its axis, which permits one half the pattern to be withdrawn, then the core, then the other part of the pattern. The eore is then replaced, and the mold elosed.

When a core is made on a large scale, as in the interior moht of a heary cylinder, cistern, tank, ete., it is called a nowel.
2. A central piece oceupying an axial position within a circular aperture at whieh clay or lead exulles in the process of making earthen ware or tealen pipes. The core gives the insile shape to the pipe.
3. (hope-making.) The central stiand around which four other strands are twisted in a shroud h voser-laid rope.
4. (Hydraulic Engincering.) A wall or structure absolutely innervious to water, placed in an emb.mkment or dike to prevent the percolation of water, which may penetrate the porous material of which the remainder of the dike is composel. The core may he of puddte or a wall laid in hydraulie cement.

Core-bar. The bar or spindle which supports the core of a shell.

Core-box. A divisible box in which elay is rammal t, f fin cores. For cylindrical cores, as in
the example 1 , it divides through the axis, mach fortion having a recess which is equal to one half of the eore to be molded therein. These portions are united ly dowel-pins, and held together by elamps while the sand is rammed into thein.

Fig. 1453.
The examples (2) rejresent:-
a b the two halves of a brass or lead carc-box suitable for casting the stopeock c; d shows the core itself after its removal from the corebox b, in which it is alsu shown. c is the model from which the object ismolded; theshaded parts represent the projections or core-grints, whieh imprint with- 6 in the mold the places where the extremities of the core d are supported when placed therein.

Core-box Plane. A peculiar form of plane which has a cutting tooth projecting below the sole, to plow grooves in the parts of a core-box.

Core-print. A projecting ${ }^{\text {inicee on }}$

Core- Eoxes.

 a prittern fur molding, to form a hale in the mold to receive the end of the core by which it is sustained in the mold in proper position relatively to the object east. (See e, Fig. 1453.)Cor'er and sli'cer. An implement for cutting the core out of a peeled apple, and at the same time cutting into pieces lor cooking or drying. (See Fig. 281.)

Core-valve. A plug-valve which has a rotary reciprocation in a cylindrical or hollow conieal seat; occmying about the same relative position to its seat as the core of a fancet locs to the casting itself.

Co-rec'tome. Corctomc. An instrument for cutting through the iris to form an artiticial $j^{\text {mind }}$. An iridectome (which see).

Corf. (Mining.) 1. A basket to carry coal ol ore. A corve.
2. A square frame of wood to carry coals on.
. 3. A sled or low-wheeled wagon in a mine, to convey coal or ore from the miners to the bottom of the slaft.

Cork. The bark of the evergreen oak (Quercus suber). It grows in the Sonth of France, in Tuseany, Spain, Portugal, and Algeria. The tree sheds its abmilant bark naturally, but this produce $^{\text {ris value- }}$ less commereially.

The cork-tree at the age of twenty-five years is barked for the first time. A circulariurision is first made through the bark near the ground, and another, also aromil the tree, close hy the branclies. These cuts are followed by others equally deep, made longitudinally, and dividing the hark into hroat planks. The tree is then left: the sap has been stopled from circulation; the hark begins to dry and curl outward; and shortly each strip is peeled
ofl by the hand. This process is repeated every ten years. Thus gathered, this bark is prepared for market in two ways. By one method, the tables, as they are called, are heaped one upon another, their concave sides being undermost, in deep trenehes, and, being plentifully moistened, are pressed beneath hnge bowlders till thoroughly llattened out. They are then dried carefully before large tires, and turned constantly. When perfectly flat and dry, they are complete.

By the second method the damp pressure in the pits is dispensed with, the tables being simply laid with their convex sides toward the fire, and suffered to remain until their warp is lost and they become llat. This tree and its uses were known to the Greeks and Romans. In the time of Pliny it was employed for nearly as many purposes as at present; as thoats for fishermen's nets, waterproof soles for shoes, buoys for anchors, and for swimining.jackets. The use of cork for stopping bottles was not entirely unknown to the Romans, being mentioned by Cato and Horace, though its application to this purpose does not seem to have been very conmon, as we find everywhere directions given to close up winecasks and other vessels with pitch, clay, gypsum, or potter's earth, or to fill the upper part of the vessel with oil or honey, in order to exclude the air from those liqnors which they wished to preserve.
Stoppers of cork seem to have been first introduced after the inrention of glass bottles, and these do not appear to have come into use before the fifteenth cuntury. When Stephanus wrote (in 1553), cork was used in France principally for soles; and in Germany wax stoppers were used by the apothecaries until about the close of the seventeenth century,

Where the tree is indigenous, the inhabitants ap. ply eork to many purposes. In Spain, beehives and kitchen pails, pillows and window lights; in Morocco, drinking-vessels and plates, tubs and houseconduits : in Portugal, roofs for houses, lining for crarden-walls, and fences for poultry-yards; in Turkey, calins for the cork-entters and coffins for the dead ; in Italy, images and crosses, pavements along the via cruciu, and buttresses for the village churches; in Algeria, shoes and wearing-apparel, sadules and horseshoes, armor and boats, landmarks and fortifications, furniture in mansions, racks in stables, and steps for houses. Its use for tloats, shoe-soles, wads for howitzers, bungs, stoppers, hat foundations, life-boats, models of architecture, and as a material for Spanish black, are familiar to most of us.

Cork-clasp. A wire attached to the neck of a battle, and holding down the cork. See Bottle.stopper.

Cork-cut'ter's Knife. The knife of the corkcutter has a very thin and slaarp blade about six inches long and tapering, with a truncatedend. It is constantly whetterl upon the board from which rises the stake on which the cork rests during cutting.

Cork-fau'cet. One adapted toleinserted through a cork, to draw the contents of a bottle. Sec Bot-tle-factet.
Cork'ing-ma-chine'. One for hriving corks into bottles. a is the frame; $b b$, two vertieal guiderods connected at top by the bridging-piece c. A cross-head sliding on the upper ends of the gniderods $b b$ is connected by side-rods $k k$ to the lever g,
the branches of which have their fulcrums at i, and are united at the handle h. In the eross-head are secured three metallic plugs e, immediately above the holes in the cross-piece f, which is firmly secured to the guide-rods b. In the cross-piece f are three conical tubes of different sizes, so as to suit the varying neeks of bottles of different sizes. The upper ends of the tubes are larger than the lower ends, through which the corks are forcibly driven. n is a wedge-shaped piece whose upper smface is horizontal, and it is moved to and fro in slide by means of the treadle t and armm.

The operation is as follows :-

The workman seats himself at the machine, one foot on the treadle, and the handle h in his right hand. He places a hottle on the welge n, with

Fig. 1455.

Masterman's Corking-Machine. its neck beneath such one of the three tuhes as will contain a cork of the size he sees to be suitable. Such a cork heing placed in the tube, a motion of the treadle raises the bottle, and the depression of the lever $h g$ drives the cork into the neck of the hottle. The reverse motions of the lever and treadle release the bottle. See Bottling-machine.

Father Penguin, a monk of the monastery of Hautvilliers (died in 1715), seems to have been the inventor of sparkling champagne. The wine of the country had been celebrated for centuries, but the old Penedictine discovered the art of making it effervescent, and sceured it hy a cork and string.

Cork-fast'en-er. See Búttle-stopper.
Cork-jack'et. A jaeket lined with cork for the purpose of sustaining the wearer on the surface of the water. The Roman whom Camilhus sent to the capitol when besieged by the Cauls is reported to have supported himself by a cork-jacket as he swam the Tiber with his elothes on his head.

Cork-ma-chine'. Corks are made by hand and by machinery. The former readily but slowly produces the perfectly shaped, somewhat tapering eork; the latter process prodnced a eleanly cut cork, usn2ally of eylindrical form, the tapering form being afterwards given by pressure. In hand-making, the workman, with a sharp knife in his hand, and a block of cork in his left, forms the cork by two semicireular cuts. In the machine, the knife euts a perfect are ; the machine drops the cork into one receptacle and the shavings into another, and the hone instantly sharpens the knife for farther work.

In another furm ol machine, the slabs are cut into square blocks by a circular knife mounted like a circular saw. The square pieces are then held by the liands of boys in a kind of lathe, in such a position that the sharp and thin end of a hollow cylindrical cutter will cut out a perfectly round cork in an instant. Cutters of various sizes are employed to cut corks of the desired size. Each cork is then placed by little fingers in corresponding recesses, in a feed-
whet of an automatie machine, where the corks are taperal by the removal of a thin shaving from the periphery of one end. The shaving is removed by the sharp elge of a circular cutter over two feet in diameter, which revolves horizontally. The edge of every instrument that cuts cork is brought in contact with the material to be cut with a very draveing stroke, as such spongy material conld not be cut satisfictorily by a crusshing stroke. Thick slabs of cork are cut into large corks, while the thin ones are workel into corks of a corresponding size.
Cork-press. One in which a cork, previonsly wetted, is rendered elastie, to enable it the more readily to enter the neck of a bottle. In one form,

Fig. 1456.

Cork-Presses.
the cork is placed between the serrated surfaees of the concave and the eccentric cam, and pressed to a less or greater extent by a partial rotation of the latter.

Another form is a lever press witl jaws.
Cork-pull. A substitute for a corkscrew, having hooks or fangs which clasp a cork when in the bottle and draw it thence.
The jaws, while collapsed by the slide, are passed through the neck of the bottle ; and, being opened, are then clasped around the cork by the motion of the slide, and the cork with its retractor is drawn from the bottle.

Fig. 1457.

Cork-Pull.

Fig. 1458.

Corkscrew.

Cork'screw. The double-screw which entered the cork by rotation, and then withdrew it by a continued or reversed circular motion, was patented in England by Thomason, 1802.
Cork'screw-stair'case. A winding stairs with a solid newel.

Cor'liss-en'gine. A form of steam-engine having a variable and automatic cut-off of peculiar character. (See CUT-off.) It has two inlet and two exhaust valves, which are segmental, and vibrate, each on its spindle, within a bored eylindrical seat. The valves are independently moved by rods from a vibrating disk, which is operated by an eccentric and rod. The mechanism which opens the valve is thrown out of gear during every stroke of the engine. When this disconnection takes plase, the valve is instantaneously closed by a spring, which is cushioned by a small piston closing on compressed air. The instant at which the steam-valves are thrown out of gear, and the steam thus cut off, depends on the position of the halls of the governor at the moment. The exhaust-valves open invariably to their full extent. See Cut-off.

Corn-cake Cut/ter. A stamp or form whieh cuts corn-cakes from the sheet of dough; or a ma-

Fig. 1459.

Cake-Cutter

chine having a roller earrying said forms and cutting into shapes the sheet of dough, which is spread upon the table passing beneath.

Corn-cov'er-er. A plow or pair of plows to mn alongside a row of dropped corn and throw eath upon the seed. Sometimes followed by a roller on the same stock to compact the earth.

Corn-crib. A granary for corn, having openings between the slats forming the sides, to enable the erib to admit air and season the com withont molding.

Corn-cul'ti-va'tor. A plow for cultivating com in hills or drills. See Cultivaror.

Corn-cut'ter. 1. (Agriculture.) A knife or a machine for cutting corn. See Conn-knife; Connharvester.
2. (Surgical.) An instrument for removing horny excreseences from the feet.

Corn-drill. A planter for sowing eorn in rows.
The corn-planter, properly speaking, places the seed in hills in a row. When the rows are checlied, so called, the corn niay be worked one way and then aeross, and so on. Com in drills ean be tenled but one way. See Cond-planter.

Cor'ner. (Bonk-binding.) a. Leather cornereovering to a half-hound book.
b. A triangular tool used in gold or hlind tool. ing.

Cor'ner-chis'el. A chisel with two elges projecting rectangularly from a corner ; used for cutting the coners of mortises.

Cor'ner-drill. One driveri by a erank and bevel gearing, being thus adapted to bore in places where

Corner-Drill.
the surrounding frame or ma. chinery will not allow the revolution of the ordinary bracehandle. The back-center has a rigid support, and the tool is adranced by the occasional rotation of the feed-screw, by a lever-pin in the transverse hole of the screwhead. Also called a French drill.

Cor'ner-punch. (Machincry.) An angular punch for cleaning out corners.

Cor'ner-saw. One for removing the corners of a block, giving it an octagonal shape. The saw-mandrel is mounted in a head which traverses on ways parallel to the trongh in which the block is placed. The block is slid in the trough, bringing it against the saw, and taking off the corners in

succession. It is one of the series of block-making machines.

Cor'net. 1. (Music.) a. A wooden mind-instrument of the oboe class, long since disused.
b. A metallic windinstrument resembling a trumpet, and used in bands. The comu of the Romans, like the instruments mentioned in Leviticns (xxv. 9), was curved and formed from a horn. It was afterwards of metal, probably copper. Its in. vention is credited by Athenrus to the Etrus cans. It differed from the libia in being larger, and from the tuba in being curved. It had no keys or stopples.
2. Au auricular instrument which does not protrucle beyond the external ear. It is used in cases of obstruction of the mcatus auditorius, by reason of contraction, or the presence of polipi, and is made of gold or silver.
Cor'net-a-Pis'tons. (Jusic.) A metallic windinstrument of the trumpet class, furuished with valves and stoppers. These instrunients, under the care of Sax of Paris and Distin of London, have attained great exce!lence.

shock, when they may be tied, and then deposited butt down upon the surface of the eartl. The stalks are gathered to the cutters by two reels $G G$ with interlocking arms, and after heing cut are forced through a narrow passage to a revolving circular platform H surrounded by hoops, so arranged that one half may be opened outward for the discharge of the shock; the stalks are held upright in this receptacle by a semicircular spring upon the top of the hoops. To a post upon the main frame is pivoted a lever, which operates a clasping derice by which the shock is lifted for discharge. Two small reels $k k$ at the front of the frame, revolving in perpendicular planes, pick up broken stalks.
Corn-hull'er. A machine for removing the
hull or cuticle from grains of corn, without powdering the same. Sce Hominy-machine.
Corn-husk'er. A machine for taking the ear of corn out of its envelopiny sheath of leaves. Some

Corn-Hiskier.
machines operate upon the corn in the field to husk it off the stalk; in others, the ear is simply jerked from the stalk, and the machine tears off the husks from the ears. Fig. 1464 shows one in which shocked corn is husked. The unhusked com in the stalk is laid upon the table at the top of the machine, and pushed, batt-ends forward, between two feed-rollers $B B$, whereupon the ears are separated from the stalks by catters b, arranged longitudinally upon the lowermost of the feed-rollers. The severed

ears pass down upon an inclined plane C, which directs them into the trough-like space between the two individual rollers of each pair of husking-rollers n, and as they pass lougitudinally down such space the rapidly moving surfaces of the rollers citch the husks, giving a kind of rotary movement to the ears, stripping away the husks, which latter are carried down between the rollers and ejected underneath the machine. The ears meanwhile are thrown back by a transverse roller I, and fall from

Coraish Boiler.

Fig. 1467.
impulse of the steam. On the completion of the stroke, the steam is allowed to pass treely from one side of the piston to the other, producing an equilibrium of effect during the out-stroke. Before the piston arrives at the point of commeneement again, the equilibrium-valve is closed, shutting in a quantity of steamz before it. By means of this enshioning, which is subject to the nicest adjustment, the loss from clearance and steam-ports is rendered practically nothing, if the stean so compressed be equal to the initial pressure. The piston is thus gradually brought to a neutral state at the end of the stroke, when the exhanst-valve opens a communication by pipe f between the lower end of the cylinder a and the condenser $g . c$ is the cataract;

Wrathing-Planter.
The great care and systematic mode of reporting the duty of the engines of Cornwall has enabled a more careful review to be made in respect to the gradnal in provement of the steam-engine than has been afforded by my other description of engine. See Duty.

Corn-knife. A blade about twenty inches long, attached by a tang to a handle, and used for cutting standing corn. It resembles the cane-knife or machete, and is used for a similar purpose.

Corn-mill. A farm or plantation mill, usually of iron both as to its runner and the concave, and usel for rough-grinding corn on the coll for stock.

Cor-no'pe-an. (Music.) A kind of cornet with valves.
Corn-plant'er. A machine for dropping corn in hills, previously opening the ground for the reception of the seed, and suhserguently throwing back the earth and rolling it flat.

mainshaft. The share opens the furrow, the roller Y covers the

Fig. 1468 shows a corn-planter used like a plow; a man follows and operates the seed-valve T by a hand-trigger. A rotating pocketed disk in the adjustable hopper is rotated at varying speeds by a worm on the shaft rotated by a pinion engaging with one or another of the gearwheels on the seed.

Fig. 1469 is arranged to plant two rows at once, the operator riding on the machine and working the seed-slides by a lerer, or allowing them to be worked by a cam driven by the axle, as may be desired. The sled-runners $F F$ open the furrow; by a motion of the upright lever H the planting part may be lifted clear of the ground, resting on the tongue and wheels in going from field to tield or turning at the ends of the rows.
Another form is a hand-planter, which is thrust into the ground. The downward motion of the plunger drives the seed into the ground. The upward motion operates the seed-slide $g g$ by the zigzag n, and deposits another bunch of grains in the pocket b, ready to be thrust out by the next descent of the plunger.

Corn-plow. A shovel-plow, double-shovel, or other form of plow for tending crops planted in hills. See Cultivator.

Fig. 1472.

Disk-Sheller.
corn is heated till the hull cracks open and allows the starchy follicles to expand.

Corn-row Mark'er. A sled with a gaged width between the ruuners for marking out rows in which to plant corn. It has an outrigger, which scratches the ground at another gaged distance, as a guide for the wext trip. The process is repeatel at right angles to the former markings, and the intersections of the marks are the places for tropping the seed.

Corn-sheller. The cornsheller, for rubhing the grains from the cob, is made in various forms.

1. The roughened or toothed disk (Fig. 1472), wlich operates upon the ears in connection with a chute or ohlique pressure-board, which holds

the plow.
The hooks, attached to hanging-posts, are in the advance, and are maintained in position by certain devices. Their duty is to straighten out the cornstalks parallel with the line of motion of the nachine. The rotating cutter-wheel has its bearings in a vertically adjustable frame.

Fig. 1476.

Fig. 1473.

Cylinder-Sheller.
the corn against the rubber. 2. The cylinder (Figs. 1473 and 1474) with toothed periphery acting upon the ears in connection with a concave, which afforls a gradually decreasing throat as the ears roll and rub and par't with their grains.
3. An orifice into which the eal is driven by a blow from a mallet, driving the cob through and slelling off the grains.

Corn shock Ty'er. An inplement for straining a band around a shock of corn, to facilitate
to facilitate
tying. The pin is thrust into the slook, and one end of the band fastemed to one part, while the other end of the band is wound umon the axis.

Corn-shock'ing Ma-chine'. A machine for cutting corn in the field and binding it into slocks.

Fig 147.

Cone-Sheller.

P

1 Th air, which passes into the pans to which the tubes air, which passes into the pans to which the thbes
are attached. The inner cover is cooled with ice, and the outer one incloses the interior arrangements.

Corn-strip'ping Knife. A knife for cutting green corn from the cob for cooking or canning. The roasting ear is erected upon a spike in the

Fig 147%.

dish ; the corn is stripped from the cob hy a handled cutter with curved, lapping spring blades.
Co-ro'na. (Architceture.) A broad, projecting face forming the principal member of a cornice. The soffit is throated, so as to form a drip else.

Corpse-cool'er. A temporary coffin or shell in which a corpse is laid to delay the natural decay by exposure to an artificially cooled atmosphere. In Fig. 1478, the metallic case has an interior wire basket to receive the corpse. Between the hasket and case are pipes which contain a freezing mixture. he cover has hollow pockets for the circulation of

Fig. 14.3.

Corpse-Preserver.
Cor'ri-dor. 1. (Fortification.) The corered way forming a walk around the whole of the work.
2. (Architecture.) A gallery or open comnunication to the different apartments of a house.

Cor'ru-gat'ed I'ron. Sheet-metal pressed into wrinkles or folds, so as to give it greater stiffness. It is used in many ways; as sheathing, housecovering, roofing, etc.
"As admirably shown by Buckland, the partitions which separate into chambers all the whorls of the ammonite except the outermost one were exquisitely adapted to strengthen, by the tortuons mindings of their outer edges, a shell which had to combine great lightness with great powers of resist-

Ammoniles humpriesianus (Oolite). ance. Itself a continuous areh thronghout, it was supported by a series of continuous arches inside, somewhat resembling in form the groined ribs of the Gothic roof, but which, unlike the ponderons stour-wurk ol the merlieval architects, were as light as they were strong. And to this combination of arches there was adiled, in the ribs and grooves of thi: shell, yet another element of strength, - that whinh lias of late been introduced into iron roofs, which, ly means of their corrugations, - rils aml groores like those of the ammonite, - are made to : 1 ais over wide spaces without the snpport of beams or rafters. Sill more recently, the same principle ha.s been introduced into nietallic boats, which, whull conmgated, like the old ammonites, are fomml to be sufficiently strong to resist almost any degree of pressure withont the wonted adlition of an interior framework." - Hegri Millek.

Cor'ru-gat'ing-ma-chine'. A machine for corrugating sheet-metal.

In one form it is a rolling-mill in which a series of parallel grooves, alternating with parallel elera-

Fig. 1 180.

Corrugating. Mill.
tions, is cut in the circumference of the central roll, and countelart grooves and elevations are fommed in the npper and lower roll, so that the iron is passed consecutirely between the rolls in opposite directions ; in another form the rolls are grooved longitudinally. In anutluet form the corrugation is by simple pressure leetween dies.

Co-run'dum. A hard mineral consisting of crystalline alumina. The sapplire and ruby are allied substances of different colors. Enıery is a dark-colored, granular variety. See EmERY.

Corundum is used in powder of varying fineness; is made up into wheels and laps with gums, resins, glue, etc. ; is used by dentists in the form of rones, curs, files (round, taper', and oval), slabs, wheels, laps, bobs, points, tare.

It is made into various grades by pounding and sifting. Is molded in fornis and presses.

Cor-vette'. (Iautical.) A ship-1igged man-of-war with a flush deck, and carrying from eighteen to twenty-six guns, in one tier. It ranks next below a frigatc.
Cor'set-mak'ing Ma-chine'. A loom for weaving fabrics having an undulating contour of rarying dimeusions. It is arranged to make the tubular spraces for the introduction of the whalebones. In the machine exhibited at the French Exposition in 1867, the linincijle of a constant length of travel for the shuttle was arlopted for the sake of simplicity ; but as it is necessary, in wearing the gores, that the weft-thread should pass through ouly a part of the breadth of the warp, the Jacquard has been employed for the purpose of taking up the portion of the warp required to be woven in that part. As the shuttle always passes over the full breadth of the warp, of which only one portion, say one third, is to be used, it unrinds the full length of weft thread from the bobbin, bnt only one third of it is tied in the warp. In repassing the shuttle one third more is tiel, thus leaving one thind of the unemployed weft-thread in the form of a loop upm the article manufactured. To remore this superluous thread, the threarl-catcher, which is a lever with an elastic finger, passes from hehind, throngl the lay on each side of the reed, and pulls the thread out. The shuttle is conveyed by a carrier to the center of the warp, where it is taken ly the other carrier and passel throngh the remainder of its course.
The most difficult part of the work is performed by the regulator or take-up motion, the action of which is to take up the woven cloth in such a manner as to leare a straight line in front of the reed. As the cloth is woven first only on one side; then for the whalehone pockets, where the cloth is donble, evenly over the full breadth; thirdly, on the other side only; and, finally, for the full breadth at the back and front of the star, - the motion of the regnlator must change accordingly: To effect this, the cloth passes hetween two sets of rollers, the upher of which are simple pressure-rollers, to be regnlated by springs and set serews. The lower rollers are flated and worked by a system of levers independent of each other. The levers are worked cunjointly by the Jacquard and lay, so that the lay gives only a novement to those levers which lave been preriously acted upon by the Jacquard.

An elastic-warp tension is obtained by a peculiarly constructed lever combined with an elastic brake, so as to render the whole nachine fit for flat, convex, plain, or richly ornamented work, according to the
cards placed upon the Jacquard, and the material put in wap and shuttle.

Cos'aques. Freuch fancy paper for wrapping sweetmeats.

Cos'mo-labe. An astronomical instrument resembling the astrolabe, and formerly used for measuring angles.

Cos'mo-ra'ma. A pictorial exhibition in which the views are latid horizontally upon a semicircular table, and reflected by diagonal mirrors to the lenses at which the eye of the spectator is successively applied. The pietures are ilhuminated by hidden lamps.

Cos'mo-sphere'. An apparatus for exhibiting the relation of the earth to the fixed stars. A terrestrial globe is placed in the center of a large, hollow glasis sphere on which are depieted the stars and constellations.

Cos'sas. (Fabric.) A kind of plain India muslin.
Cos'tean-ing. (Mining.) A Cornish term for a methol of prospecting for metallic lodes. Trenches or pits are dur in the supericial strata, and uniterl by a drift which crosses the direetion of the vein, if any exist ; the veins in the vicinity affording a guide for direction. Costcening.

Cot. 1. A sort of refuse wool.
2. A sheath or sleeve; as a clothing for a drawingroller of a spinning-frame ; a cover for a sore finger.
3. A rude bout, as a dug-out or canoe.

4. A bedstead.

Co-til'lion. (Fubric.) A woolen material in black and white for ladies' skirts.

Cot'tage-chair. A form of chair adapted for confort rather than show, and equable of being earried on to the lawn, on pienics, etc. A folding chair.

Cot'ter. A key. A wedge-shaped piece driven between the gibs.in attaching a strap-head to a con-neeting-rod and tightening the brasses of a bearing. See Key.

1. A key inserted into a link which has been passed through another link of a chain. A broken chain is thus temporarily mender. This mode is arlopted in fastening a \log on the sled, and generally in securing an object by a chain when the whole length of the latter is not required. The hook at the end of the chain usually forms the colter, and it is much better than making a running noose of the chain in the link, as the latter is diffieult to unfasten, while the cotter can be slipped or driven out, leaving all free. A toggle.
2. A wetge which is driven alongside the end of the tongue in the mortise of the slet-roller, tightening the latter against the gib. See Gir.

The eatter used for temporarily holding an iron plate to the rib of a vessel while heing riveted is shown at 2, Fig. 1482. The cotter has a slight
suring, and the taper jin has a wedging action upcu the vlate.

Cot'ter-drill. A drill for boring slots; it or the work laving a lateral motion after its depth is attained.
Cot'ter-file. A narrow file with straicht sides, used in tiling grooves for cotters, keys, or wedges.
Cot'ter-plates. (Founding.) The lianges or lips of a mold-box.
Cot'ton. A plant, or the fibrous product thereof, having a scientifie Latin name (gossymium), hut an Arabic common name (goton), which pleasantly $1 e-$ minds us of the great pleople from whom we derived it.

Herodotus (Book 111. e. 106) refers to the cotton of India: "The wild trees of that country beas tleeces as their fruit, surpassing those of the sherp in beaty and excellence; and the ludjans use cloth made from this tree-wool." ln another place he states that the Indian contingent of the amy of Xerxes wore cotton drawers (Book V11., Gemaan Barmwolle, tree-wool, c. 65).
Theophrastus, the disciple of Aristotle, derived farther infomation from the expedition of Alexander, and says:-

- The trees from which the Indians make clothes have a leaf like that ol the black mulkerry, but the whole plant resembles the dog-rose. They set thiom in the plains arranged in rows, so as to resemble vines at a distance. They bear no fruit, but the eapsule containing the wool is, when closed, alcut the size of a quince, and when ripe it expunds so as to emit the wool, which is woven into cloths, either cheap or of great value."

Aristobulus, one of Alexander's generals, mentions the cotton-phant as the "wonl-bearing tiee," aud stated that its capsules contained seels, which were taken out, and that what remained was combed like wool. Nearchus, Alexander's famous navigator, also refers to it, and says that the shints, mantles, and turbans of the people of India were made of it. Strabo, on the authonity of Nearchus, refers to the fabrics of cotton as being fowered and leautifully dyed.

An awning of cotton was spread over the theater by Lentulus Spinther, July 6, 63 в. c. Linem had heen formerly used.
l'liny mentions cotton in four places in his Natural History ; two refer to the account of Theop l rastus, one to the carbasa (cotton) of Spain, one to the cotton of Egypt:-
" In Unper Egypt, towards Arabia, there grows a shrub, which some call gossypium, and others oylon, from which the studls are made that we rall myling. It is small, and bears a fruit resembling the fillent, within which is a downy wool which is spun into thread. There is nothing to be prefersed to there stutfs for softness and whiteness; beantiful carments are made from them for the priests of Fgypt."

The old hatred of the Egyptian priests for wool and preference for flax would not militate against the eatton when they found it to be vegetable growth. In the earlier periods of the Nile people, nothing bnt linen was used by priests or for enibalming.

Arrian the historian (d. A. D. 140) eites the importations from the East to Europe of cotton goods, plain and ormamented. The muslins of Bengal were then called Gangitiki, to indicate that they came from the Ganges. The Indian names yet survive in the words muslin, named from Moussol, and calico from Calieut.
Julius Pollux, in the Onomasticon (A. D. 170), refers to the cotton of India, which he terms byssus, and compares with flax : -
"The tree produces a fruit most nearly resemblingo
a walnut, but three-cleft. After the outer covering, which is like a walnut, is divided and dry, the substance resembling wool is extracted, and is used in the manufacture of cloth for woof, the warp being linen."

Cotton paper used by the gold-beater is mentioned by Theophilus Presbyter about A. D. 800.
On the discovery of America by Columbus, cotton formed the principal article of clothing among the Mexicans. They interwove it with fine-spmu hair of rabbits, or with feathers for state robes. The cuirasses of thick cotton fabrie were proof against the Indian missiles, aud were adopted by the Spaniards. The nobles wore instearl, euirasses of thin plates of gold or silver with surcoats of featherwork.

Among the presents stolen or purchased by the Irutal Cortez and sent to Charles V. were "cotton mantles, some all white, others mixed with white and black, or red, green, yellow, and blue; waistcoats, counterpanes, tapestries, and carpets of cotton; and the colors of the cottons were extremely fine." - Clavigero's Conquest of Mexico.

The Mexicans had indigo and cochineal.
Columbus found the cotton-plant wihl in Hispaniola, in other West India islands, and on the continent of South America, where the natives used it for dresses and tishing-nets.

Magellan, in 1519 , fonnd the Brazilian natives reposing on beds of cotton down.
Conton goods were familiar to the Arabs in the time of Mohammed, A. D. 627 , and the culture was carried by his followers throngh the Mediterranean coast of Africa into Spain, whence the fabrie reached the less civilizell parts of Europe. Alclerrahman 111. commenced the manufacture of cotton in Spain, and in the fourteenth century it was introduced into ltaly:

When the best part of the inlahitants of Spain were expelled, when the University of Cordova became a thing forgotten on the peninsula, when the memory of Alhazen was lost, and the era of the Pedros and Philips commenced, then the cottonplant, too, fadeit awray, and all the industries growing out of this beautiful staple languished. The culture and mamufacture revired again in Spain at Yalencia and Barcelona respectively.

Fabrics and yarns were largely imported from the East into Europe for several centuries; but the manufacture of the cotton-wool, as it was long ealled, grallually crept into the various countries of Europe.

The earliest notice in Eagland is by Roberts, 1641, who deseribes the excellent goods, "fustians, vermillions, dimities, and other stuffs," made by the inhahitants of Dlanchester, of "cotton-wool brought from Snyrna and Cyprus." First made by machinery ly Louis Paul in 1736-40. See Cotrosmachivert.

In the seventeenth century, cotton fabrics were so largely imported into England from India as to interfere with the woolen, linen, and silk interests, and the importation of cotton goods wha forhidden in 1700.

An act of parliament in 1721 imposed a fine of $£ 5$ on the wearer of cottou and $£ 20$ on the vendor. It was thought to be the ruin of England, and every depression in trade was charged on the cotton, which was superseding wool. Thirty years afterward the annual value of manufactured cottons was $£ 200,000$. In 1860 it was $£ 52,000,000$. In 1823 , Great Britain employed 10,000 steam-looms; the number in 1865 was 400,000 , drisen by steampower estimated equal to 294,000 horses, and directly employing $1,000,000$ jersons.

The Parliamentary Report of 1851 states the number of pounds of cotton worked into yarn per day (nearly) : 2,000,000 pounds. Spindles in operation - . $20,000,000$
Power-looms
250,000
Factories
2,000
Hands employed inside the walls 350,000
Horse-power (steam and water). $\quad 80,000$
Production of cotton goods in 1850 per day
$4,000,000$ yards. Production of unwoven cotton yarn per day

500,000 pounds.
Cotton-seed was brought into England from the Levant; taken thence to the Balmas, and thence to Georgia in 1786. The first cotton-mill in America was at Bererly, Mass., in 1788.

In the following list are associated the terms used in the deseription, manufacture, and prodlucts of fibrons material, excepting those involving pul]'ing, which will be found under the indical head of PAPER (which see). The following list includes cotton, flax, wool, hemp, silk, etc., alpliauces. See -

Ageing.
Balling-machine.
Bat.
Batting.
Batting-maehine.
Beating-engise.
Bier.
Billy.
Bink.
Bleaching.
Block-1rinting.
Blower and spreader.
Blowing-machine.
Bobbin.
Boblinet-machine.
Bobbin-winder.
Bobbin and fly frame.
Boon.
Bott-hammer.
Braiding-machine.
Braid-sizing and polish-
ing machine.
Brake. Flax and hemp
Branning.
Breaker.
Breaking-frame.
Breaking-machine.
Bronze.
Brushing-machine.
Bucking.
Bucking-keir.
Bulfalo.
Bunch.
Bundle.
Bundling-press.
Burling-iron.
Burling-machine.
Burr:
Burring-machine.
Cable-laid.
Calendering-machine.
Calicn-printing.
Can-frame.
Can-roving machine.
Canras-frame.
Card.
Card-clothing.
Card-grinding.
Carding-engine.

Carding-machine.
Card-machine.
Card-setting machine.
Carriage.
Carrier.
Cask.
Candroy.
Chamber.
Chemicking.
Chenille-machine.
(hina-blue style.
Circular bolt.
Clasp.
Cleaning-machine.
Clearer.
Clearing.
Cloth.
Cloth-creaser.
Cloth-crimping machine.
Cloth-cutting maehine.
Cloth-dressing machine.
Cloth-drying machine.
Cloth-embossing machine.
Cloth-finishing machine.
Cloth-folding machine.
Cloth-measuring machine.
Cloth-napping machine.
Cloth-press.
Cloth-shearing machine.
Cloth-smoothing machine.
Cloth-sponger.
Cloth-stretcher.
Cloth-teaseler.
C!oth-tenter-har.
Coiling or laying slivers.
Color-doctor.
Column.
Clouded-yarn machine.
Comb.
Comb-broach.
Combing-machine.
Condenser.
Cone-pulley.
Cop.
Copping-plate.
Copping-rail.
Cop-tube.
Cop-winder.
Cord.

Cord-covering machine.	Floss silk.	Packaging-machine.	Slab.
Cord-dryer.	Fluting-machine.	l'adding.	Sliver.
Cot.	Flyer.	Parroting.	Sliver-box.
Cot-roller.	Fondu.	Picker. Cotton	Slub.
Cotton.	Frame.	Picking. Cloth	Slubbing.
Cotton-cleaner.	Frizzing-machine.	Pigment.	Slubbing-machine.
Cotton-elevator	Fulling.	Pile.	Souring.
Cotton-gin.	Fulling hat-bodies.	Pirn.	Speeder.
Cottonizing-tiber	Fulling-mill.	Planking-machine.	Spindle.
Cotton-praper.	Fulling-stock.	Plaquage-style.	Splinel.
Cotton-picker.	Gasing.	Plucker.	Spinning.
Cotton-press.	Gig.	Polishing. Yarn and	Spinning-jack.
Cotton-thread.	Gigging-machine.	thread	Spinning-jenny,
Connterfaller.	Gill.	Pouncing-machine.	Spinning-machine.
Craping-machine.	Gill-frame	Printing.	Spinning-wheel.
Creel.	Gimp-machine.	Presser-bar.	Spirit-colors.
Creeping-sheet.	Gin. Cotton	Presser-flyer.	Spoot.
Crisper.	Glossing.	Puffer-pipe.	Spooling-machine.
Crotting.	Grounding-in.	Quill.	Spool-labeling machine.
Cross-shearing machine.	Hateek.	Quilting-framc.	Spoon.
Cut.	Hackle.	lap.	Spreader.
Cutting-engine.	Hackling-machine.	Raw-silk.	Spreading-frame.
Dampring-nachine.	Hair-rope picker.	Reed.	Spun-yarn.
Dash-wheel.	lland-spinuing machine.	Reel.	Squirrel.
Decoloring-style.	Hank.	Reeling-machine.	Steam-chest.
Dent.	Hlarke.	Reëntering.	Steeping.
Devil.	Harp.	lieserve-style.	Stocking-frame.
Discharger.	Hatchel.	Resist.	Stocking-machine.
Discharge-style.	Hlawser.	Retting.	Stop-finger.
DistatI.	1lawser-laid.	Riblun.	Strand.
Dofler.	Heck-box.	ling and traveler.	Stretcher-mule.
Dotting-cylinder.	Heckle.	Ring-spinner.	Stretching-frame.
Doffug-knife.	Heckling-machine.	Rinsing-machine.	Strick.
Doubler.	Heddle.	Ripple.	Suint.
Donbling.	Hemp.	Foll.	Sulphuring.
Doubling and twisting	Hemp-brake.	Roll-boiling.	Swift.
Drawing.	Hot-llue.	Kongeant-style.	Swimmin Swingle.
Drawing-frame.	Iron-man.	Ropie.	Swing-stock.
Drawing-head.	Jack-frame.	Rope-making machine.	Teaseling-machine.
Dresser. Copper	Jack in a box.	Rope-winch.	Tenter.
Dressing-machine.	Jenny.	Roving.	Tenter-bar.
Drum.	Kemp.	Roving-frame.	Tewing-beetle.
Drying-nachine.	Knitting-lurr.	Scavenger-roll.	Thread.
Dumb-singles.	Kıitting-machine.	Scouring.	Thread-finisher.
Dunging.	Knotting.	Scribbling-machine.	Thread-frame.
Dust-room.	Lace-machine.	Scriniping-bar.	Thread-machine.
Dreing.	Lag.	Scutcher.	Thread-polisher.
Embroidering-machine.	Lattern.	Scutching-machine.	Thread-winder.
Enleavage-style.	Lap.	Shake-willy.	Throstle.
Etfuational-hox.	Lap-frame.	Slearing.	Throwing.
Fabric (sce list).	Lapping-machine.	Sheeting-machine.	Thrown-silk.
Faller.	Lay.	Shives.	Thrum.
Faller-wire.	Laying-machine.	Shove.	Top.
Felt.	Lea.	Shroud. Hawser-laid	Top-flat.
Felting-machine.	Leaver-machine.	Shuttle.	Tow.
Fiber-cleaning.	Lewis.	silk.	T'ram.
Fiber. Separating ani-	Licker-in.	Silk-cleaning knife.	Twilly.
mal and yegetable	Linen-prorer.	silk-doubling machine.	Twine-machine.
Filling-engine.	Lint-doctor.	Silk-filature.	Twine-reeler.
Fine-drawing.	Looin (see Weaving).	Silk-reel.	Twist.
Finishing-card.	Maduer-style.	Silk-sizing machine.	Urehin.
Fishing-uet machine.	Mangle.	Silk-sorting machine.	Wadding.
Flat.	Marabout.	Silk-stretcling machine.	Wadding-sizer.
Flax.	Mordant.	Silk-twister.	Warp.
Flax and hemp brake.	Mosaic-wool.	Silk-winder.	Warp-dresser.
Flax-cleaning machine.	NuFe.	Singeing-machine.	Warp-frame.
Flax-cotton.	Napping-cloth.	Singer.	Warping-hook.
Flax-cutting machine.	Netting-machine.	Singles.	Warping-jack.
Flax-dresser.	Noils.	Sinker.	Warping-mill.
Flece.	Oiling.	Sizing-machine.	Warp-machinc.
Flock.	Opening-machine.	Skein.	Waste-picking machine.
Flock-dnster.	Organzine.	Skewer.	Water-frame.
Flocking-machine.	Pad.	Skip.	Water-laid.

Water-twist.	Wool-machinery.
Waxing.	Wool-oiler.
Whirl.	Wool-picker.
Whillers.	Wool-press.
Willowing.	Wool-sorting.
Willy.	Wool-table.
Wincing-machine.	Wool-washer.
Winding-machine.	Worker.
Woll.	Worsted.
Woof.	Yarn.
Wool.	Yarn-cleaner.
Wool-burring machine.	Yan-dryer.
Wool-cleaner.	Yarn-priuting machine.
Wool-conbing.	Yarn-reel.
Wocl-dryer.	Yarn-winder.

Cot'ton-ade. (Fizbric.) Cotton check.
Cot ton-bale Tie. Sue Bale-tie.
Cot'ton-brush Chop'per. A machine with revolviug knives to cut up the old dried cottonstalks, to prepare the land for plowing for another crop.
Cot'ton-chop'per. An implement which is drawn over a drilled row of cotton-plants, and chops

Fig. 1453.

Cotton-Chopper.
gaps in the row so as to leave the plants in bunches or hulls. The machine is supported on two wheels, and has a plow to run on each side of the row. Motion is communicated from the rotary axle by bevel-wheels to a revolving head having obliçue cutters, which chop gaps in the row of plants as the machine progresses.

Cot'ton-clean'er. A machine for separating
the dust and dirt from cotton. This is performed by a scutching and blowing action, the tussocks of cotton being torn asunder and oprened, allowing the dirt to fall out. The heavier portions fall through gratings, and the lighter are carried off throngh airducts by means of exhanst-fims.

Machines for this purpose are of very variable construction, less uniformaty existing in this department than in any other of the series of operations in cotton. The preliminary processes of the cottonmill are unpacking, sorling, picking, cleaning, willowing, batting, and lapping.

The cotton-cleaner (Fig. 1484) has a long series of consentive operations. The cotton from the feed-ing-table is passed between a pair of fluted rollers B, then between smooth rollers, which present it to the action of the toothed seutcher D, which revolves rapidly and wafts the loosened filaments towards a wire cylinder d, over which it travels, being compressed by a Huted roller d^{\prime} iu its passage, and thence between a pair of smooth rollers e, which condense it into a bat ready for a repetition of the operation. Passing between another pair of rollers, the web of cotton is presented to the second scutcher f, which has finer and more numerous teeth, and drives the fibers forward to the wire cylinders $H I$, a knife C keeping clear the lower roller of the last feed-pair. The dirt falls between the bars of the gratings m, over which the cotton passes successively as it comes from the consecutive scutchers, and the lighter dust passes through the meshes of the wire cylinders $H T K L$, an exhaust-draft of air operating from the periphery of the cylinders inward, and the dust passing off by ducts to the case in which the exhaust-fan rotates, and thence by a suitable chute. to the open air or cellar.

A deffector F prevents the passage of the cotton upward to the chute, forming a wiper for the cylinder I. The bat of cotton, hy passing between two wire cylinders, is subjected, on its upper and lower surfaces respectively, to a drawing action, which removes the dust, and is helieved to accomplish it more perlectly than when the operation is contined to one side of the bat, a single cylinder being employed.

The bat from the crlinders $H I$ is subjected to the pressure of a toothed roller n. Which acts as a doffer to the upper cylinder, and thence passes between a pair of condensing rollers, which compact it previous to a repetition of the operation.

A third set of feed-rollers next present the bat to scutcher P, which delivers the filaments, thus opened for the third time, to the wire cylinders $h^{-} L$, whence it issues in a partially conpacted wad, and is passed, by the fluted doffer and two pairs of

Filson's Cotton-Cleaner.
pressure-rollers, to the lap-roller R, on which it is wound, ready for the operation of carding.

Another machine has a device for regulating the speed of the feed-apron by the weight conse, guent upon the thickness of the layer of cotton presented, the object being to present equal quantitics in equal times to the licker-in. The concave s is supported on a center, and its ascillations affect the position of the band on the cone-pulleys b below, so as to vary the speed of the traveling feed-apron c.

As the cotton passes beyond the roller, it is struck by the arms of the scutcher d, and delivered on to the grid s, whose bars are longitudinal and otfer no obstacle to the motion ol the fibers, while the spaces allow the dirt to fall. The cotton then passes between the surfaces of the

Lord's Cotton-Cleaner.
wire cylinders $c h$, which have an internal exhaust to remiove the dust. From thence the bat passes to the pair of condensing-rollers m, and then to the lajroller n, on which it is wound.

Cot'ton-ee. (Fabric.) A Turkish fabric of cotton and silk satimet.

Cot'ton-el'e-va'tor. An arrangement in a cot-ton-mill of a tube with air-blast or spiked straps for carrving cotton to the upper stories.

Cot'ton-gin. A therice, originally invented by Whitney, 1794, in which lint is picked from the seed by means of saw-teeth projecting through slits in the side of the chamber in which the seed-cotton is placed.

In the example, the cotton occupies chamber F, where the picker-roll A^{\prime} rotates. E is a grid form-
rotating brush-cylinder B , and the heavier specks fall upon the mote-board k, while the lint and dust pass to the chamber R, and fall upon the wire-gauze surface of the cylinder P, the dust passing through and being conducted out of the machine, while the lint is arrested and passes to the dofting and combacting cylinders, from which it issues as a hat.
ln Fig. 1487, instead of saws are needle-pointed teeth. The teeth are set obliquely to the radial

1. Sorted and mixed, to give uniform quality to a given lot. The rotton is jiled in layers in a bink, and, in taking it from the side of the heal, the cotton of the several strata is an arerage of the whole.
2. Scutched ol willowed, to tear the matted masses aplart and open out the fibers.
3. Cleancd and baltcd by a combined tearing and blowing action.
4. The bat is farther treated in a similar manner, the filaments being more divided, received on a wiregauze drum, 1 ressed into a thin sheet, and delivered as a lap upon a roller.
5. Carded, to straighten the fibers, which are delivered in fececs or slivers by the doffer; that is, in broad or narrow films or transparent sheets of fiber; or the flecee is reduced to a sliver by being passed through a funnel and consolidated by rollers.
6. Doublcd and dravon, to complete the parallelism and elongate the ribbon. By the repetition of this process, the possible inequalities of separate ribhons are lost by throwing then together and re-drawing again and again, and depositing in cans.
7. Roxing, to attenuate and slightly twist the spongy corl and wind it on bobbins.
8. Fiac-roviny and strotching by the bobbin-andfly frame or the strctcher-mule, delivering on bobbins.
9. Spinning in the throstle, which continuously draws, twists, and winds the yam (lor war]) ; or in the mulc, which draies ant and twists lengths of about 56 inches, and then winds upou the spiudles (for weft).
10. Wrinding, doubling, and singeing the yarns, to fit them for the weaver.
11. Packing.
12. Dressing.
13. Wrarping.
14. Weaving.
N. B. There are many varieties and differences in machines and brocesses, and some even in the order of details. Dluch ditlerence also exists in the machines for finer or coarser work, so that, while the above list is substantially accurate, it will uot be fouml to agree with the order of all factories, and perhaps not in every respect with any one.

The inventions involved in the treatment of cotton by machinery are about as follows:-

Fly-shuttle, John Kay, of Bury, 1738.
Carding-machine, Lewis Panl, 1738.
Drop-box, Robert Kay, 1760.
Spinning by rollers, Lewis Paul or John Wyatt, 1735.

Spinning-jenny, Hargreaves, 1767.
Water-frame, Arkwight, 1769.
Power-luon, Kev. D. E. Cartwright, 1785.
Cotton-gin, Eli Whlitney, 1794.
Dressing-machine, Jolinson and Radeliffe, 18021804.

Power-loom, Horrocks, 1803-1813.
Mule, Simuel Crompton, 1774-1779.
Self-acting mulp, Roherts, 1825.
See Cotton, Flax, Wool, Hemp, Silk, etc., Appliancers, P. 631.

A cotton-factory cited by Ure has machines in the following proportions:-

1 willow, 1 blowing-machine, 1 lap-nachine, cajable together of cleaning and lapping 9,000 pounds of cotton per week.

21 cards, breakers, and finishers : joint capacity 5,000 rounds per week of 69 hours.

3 clrawing-frames of 3 heads each.
2 coarse bobbin-and-fly frames.
7 fine fly-frames.
12 self-acting mules; 404 spindles each.

10 throstle-frames; 236 spindles each.
7 dressing-machines.
236 poucer-looms.
2 warping-mills.
300 warp-winding spindles.
The rovings have four hanks in the pound, and are spum into yarn No. 38 on the throstles as well as by the mules.

Cot'ton Pa'per. We are imlehterl for cotton paper to the Arabiams, and it is summer] that they learned it of nations still east of them. The use of cotton for this purpose was probably derived from "far Cathay" (China), whence we recrived gunpowder, porcelain, the mariner's compass, ant the art of glazing earthenware.

The first use of cotton paper in Europe was among the Saracens in Spain, and cannot he traced hack beyond the tenth century. In Enrope, it preceled the use of flax fiber for that purpose. The paper of Xativa, a city of Valencia, was famous in the twelfth enntury. See Paper.

Cot'ton-pick'er. 1. A machine for scutching cotton to tear apart the matted masses and clean it. Sec Cotton-cleaner.
2. A machine for picking cotton from the bolls of the plant. One form consists of a traveling tootherl belt, which catelnes the cotton fiber and lrags it into a receptacle. This form is shown in Fig. 1488, which has a toothed wheel working into

Cotton-Picker.

the links of an endless chain haring reflex spines, which strip, the cotton from the bolls, and carry it to the other end of the machine, where it is thrown off into a receptacle by a revolving stripper.

Other machines have rotary brushes, and still others operate by blowers, flexible air-pipes, and nets which catch the fiber.

Cot'ton-press. One in which cotton is baled for trausportation and storage.
There are various forms of cotton-presses, known as the screw, toggle, beater, revolving, hydraulic, portable, double-acting, windlass, rack-anil-pinion, re-pressing, and rolling-pressure presses. See under those heads respectively.

The olld form of press was the screw, which ascended vertically from the follower and worked in a mut in the upper cross-beam. It was rotated by a sweep.

In the illustration is a modern form of the screwpress, which leaves the upper enil of the box open for filling, the screw working from beneath.

The cotton is confined in a long rectangular chest that revolves on a vertical axis, engaging a screw that drives the follower.
The bevel-wheel k is driven by the shaft and band wherls, and engages another bevel-wheel, which is secured, teeth down, beneath the sill-framing of the box, which runs on rollers on the rim of the curb G. As the box rotates, the screw rotates in its nut, and elevates the follower F.

Fig. 1489.

Cot'ton-seed Clean'er. A machine for tearing the remainins liber from the cotton-seed, or one which so far companets the fiber upon the seed that the latter will roll upon itself without making a mt , and so becone fitted to be sown by an ordinary machine.
Cot'ton-seed Hull'er. A machine by which the hall of the cotton-sted is rasped off and siltel from the farinaceous and oily matters, which are

Intilized for their oil and the refuse for manure. The kernels pass through the screen, while the coarser hulls and fibers are carrich along and discharged from the lip of the screen. The lulled seed is then received into the box-screen I, which, being shaken by suitable mechanism, separates the still remaining lighter portions of the hulls that pass the wire screen, carrying these portions out over the ajron J, while the cleaned and hulled seed passes out through the chute K.

Cot'ton-seed Mill. One for grinding the seed of cotton, either for manure or for obtaining from the meal the oil, either by pressure or the more usual mode of treatment by bisulphide of cartion (Sim's process) or hydrocarbon.

Cot'ton-seed Plant'er. One in which the feedmotions are positive, as the seed adheres by the interlacing of its fibers, and requires to be tom apart and driven down the chnte to the gromed.

In Fig. 1491, the adjustable teeth are armanged within a case in a hopper; and are operated by gear-

Fig. 1491.

Cotton-Seed Planter.
ing in connection with the driving-wheel, and regulated by cams secured to the casp, wherehy the cot-ton-sced is jrojented down the tube. liotating ams work in the case, preventing choking therein.

Cot'ton Thread. Cottou thread for sewing is male by laymg together two or more yarns of eilual ruality and twisting them. Previous to the douking aud twisting, the yarn is passpll through a trongh containing a thin solution of stareh. The twist is given in an opposite direction to that applien by the spiming-machine, as in the case of organzine silk.

Cot'ton-top'per. A machine which passes along and jrunts the row of growing cotton-phants, in order to curb its rampant luxuriance.

Cot'trel. A hook and trammel for suspending a cooking-vessel.

Couch. 1. (Matling.) The heap of steeped barley on the floor where the grains undergo germination, effecting the change into mall. The opreration of couching takes about fourteen days, and the subsequent kiln-drying, which arrests germination, takes two days.
2. (Puper-making.) To take the flake of imperfeetly compacted pulp from the nold or apron on which it has heen formed.

With hand-laid paprer this is the husiness of the coucher, who teceives the mold from the dipper and couches the sheet upon a felt.

In paper-machinery the operation is performed by a roller called the couching-roller.
3. A reclining seat, hed, or sofa.

The Greeks adopted the couch from the Persians.
"After this had been said, Cymilcus asked for some spiced and boiled water to drink; saying he must wash down all those salt arguments with sweet drink. [Salted fish had been the subject under discussion.] And Ulprian said to him with some indignation, and slapping his pillow with his hand, ' How long will it be before you leave off your barbarian tricks?" -Dcimosophists, 111. 94.
4. (In painting, etc.) The ground or base on which the color is applied; a varnish or sizing. The term is also used in leather-gilding, gold-wire drawing, and other mechanical arts.

Couch'ing-in'stru-ment. One employed in depressing the opaque lens in cataract previous to remoral.

Cou-lisse'. 1. A gronved piece of timber.
2. A pair of battens, or a groove in which a sluicegate moves up and down.

Cou-lomb's Bal'ance. The torsion-balance ; a form of Electrompter (which see).

Coun'ter. 1. (Shipbuilding.) That part of a ship's stern which overhangs the stern-post. The counter-timbers spring from the wing-transom, which extends across between the fashion-pieces, crossing in front of the stern-post, near its head. At the top of the counter-timbers is the taffrail.
2. A bench or long table on which merchandise is exhibited or money-atiairs transacted.
3. The back part of a boot or shoe, around the heel of the wearer, and to which the boot-heel is attached.
4. An apparatus attached to a steam-engine, printing-press, or other machine, for the purpose of counting the revolutions or pulsations, as the case may be. A game-scorer.
5. (Nining.) A cross vein.

Coun'ter-bal/ance. A weight in a driver or fly-wheel to overcome a dead point, or balance the weight of some object wbose gravity affects the epposite side of the wbeel.

A suspended weight to counterpoise the weight of a drawbridge, crane-jit, bob, or working-heam.

Coun'ter-bat'ter-y. A battery at the crest of a glacis, to silence the fire of the besiegers, and cover the storming jarty.

Coun'ter-beam. (Printing.) A beam connected to the platen hy two or more rods, through the medium of which the reciprocating motion is communicated to the platen.

Coun'ter-brace. (Nautical.) The brace of the foretopsail to leeward.

Coun'ter-check. A plane for working out the groove which unites the two sashes of a window in the millle.

Coun'ter-die. The upper die or stamp.
Coun'ter-drain. (Hydraztic E'ngincering.) A drain at the foot of a canal or dike embankment, to catch and carry off the water.

Coun'ter-ex-ten'sion Ap-pa-ra'tus. For retaining tirmly the upper part of a limb while ex-

Counter-Extension Apparatus.
tension is practiced upon the lower, in cases of fracture of the fernur or the neck of the trochanter major, to enable the bony parts to unite without a shortening of the limb. It consists of coactionsplints for the femur (if that be the seat of the accident) ; a counter-extending band attached to the bed-head; and a round perineal band which passes around the crotch; an extending band fastened by starch bandage to the lower leg; a wooden block on the foot-sole, connecting the band to an extension cord, which runs over a pulley on the bed-foot.

Coun'ter-faller. (Cotton-manufacture.) In the mule-spinner, a counterweighted wire, which is depressed when the faller-wire lowers the row of yarns to wind them on the cop. Its duty is to balance the threads after they are depresscd by the faller. wire, and to straighten them when loose.

Coun'ter-fort. (Mrasonry.) A pier or buttress bonded as a revetment to the back of a retaining wall, to support and also tie the wall, such as the scarp of a fort, to the bank in the rear.
The buttress is sometimes on the face. When arches are turned between counterforts, it is called a counter-arched revetment.

Coun'ter-gage. (Carpentry.) An adjustable, double-pointed gage for transferring the measurement of a mortise to the end of a stick where a tenon is to be made, or vice versa.
Coun'ter-guard. (Fortification.) A rampart in adrance of a bastion and having faces parallel thereto.
Coun'ter-mine. (Fortification.) A mine by the besieged, to meet an approach, destroy an offensive position, or intercept a mine of the attacking party.

Coun'ter-mure. (Masonry.) The facing of a wall.
Coun'ter-pane. A coverlet, sometimes woven in raised figures. A quilt; a spread.

Counterpane-weaving is with two shuttles, one holding a much coarser weft than the other. The coarser is thrown in at certain intervals, and the thread is picked up with an iron pin, rather hooked at tbe point, so as to form knobs disposed in a sort of pattern.
Coun'ter-poise. A balance-weight upon a wheel or heam, as on the driving-wheel of a locomotive, etc. A counterbalance.

Coun'ter-poise-bridge. A bascule-brilge; the platform is raised by machinery or otherwise, the operation being assisted by counter-weights. See Basclle; Lifting-bridge.

Coun'ter-proof. One taken by transfer from another proof just printed. The object is to finrnish an engraver with a copy, non-reversed, of his plate.

Coun'ter-punch. (Chasing.) One which supports the metal beneath while the hammer is ajrplied above, and may be the means of expanding a dented place by outward pressure while hlows are given on the outer surface around the spot thus supported.
Coun'ter-rails. (Shipbuilding.) The ornamental molding
across a square stern at the ter-
mination of mination of the counter.

Coun'-ter-scales. A convenient form of scales for counter or tableuse. It has many forms.

COUPLING.

Coun'-ter-scarp. (Fortifictaon.) The wall on the outer side of the ditch, opposite to the scurg, which is on the fort side.
Coun'ter-shaft. An opposite and parallel shaft driven by band or gearing from the former one.

Coun'ter-sink. 1. An enlargement of a hole to rective the head

Countersinhs. of a serew or bolt.
The sides of the hole are merely chanfered (a a when it is to receive the lead of :n ordinary wood screw.
When a flathead screw or a bolt-heat is to le let in flush with or below the surface, a flat bottom b is required.
2. A tool for making a countersink depression.

In wateh-making, the countersinks $c c$ are of the flat-bottom class; a central stem passes into the hole for the shank of the screw, and acts as guide fir the entting edge. f is a tapring comtersink formed hy a wing twisted into a spiral cutting edge.

Coun'ter-sink-bit. A boring-tool having a conical or cylindrical cutter, which makes a depression to snit the head of a screw. See $c d c f g$, Fig. 1494.

Coun'ter-sunk-head'ed Bolt. A bolt having a beveled head, which is let into a corresponding civity in one of the pieces which it binds together. see Bolt.
Coun'ter-sunk Nail. A nail with a conical heal tike a woud-screw.
Coun'ter Swal'low-tail. (Fortification.) An ontwork in the form of a single tenaille, with a witle gorge.
Coun'ter-tim'ber. (Shipbuilding.) One of the timbers in that part of a ship's stern which overhangs the stern-post.

Coun'ter-trench. (Fortification.) A trench made hy the garrison to intercept that of the besiegrers.
Coun'ter-val-la'tion. (Fortification.) Lines or earthworks around a fortress to repel sorties.

Coun'ter-vault. An inverted areh or vault.
Coun'ter-works. (Fortificalion.) Works undertaken for the purpose of destroying or rendering uspless those of the enemy.
Count'ess. A size of slate. See Slate.
Coun'try. 1. (Mining.) The rock or strata in which a metallic lorle is found.
2. (Furtificution.) The region outside of a fort down to which the glacis slopes.

Count-wheel. (Horology.) A wheel with peripheral notehes, whose intervals are spaces whose proportionsare $1,2,3$, up to 12 . The wheel governs the striking so far as to regulate the number of blows. The knife-edge detent being lifted out of a notch, the hammer vibrates so long as the edge rests on the portion of the wheel hetween the notches. These spraces are graduated in length, so as to allow the hammer to make $1,2,3$, etc., vibrations up to 12, when it has completed a revolution and hegins arain. Seventy-eight blows are struck in a complete revolution. It is superseded in some clocks by the rack and suui', invented by Tompion.
Cou-pe'. 1. A four-wheeled close carriage with a single inside seat and a pereh for the driver.
2. The front apartment of a French diligence or an English railway-car.

Coup'er. A lever on the upper part of the loom, to raise the harness.

Coup'le. (Electricity.) A voltaic eouple is a pair of plates forming a battery, or a part of one.
Coup'led Col'umns. Columns arranged in pairs, where the nature of the openings, doors, windows, or niches precludes the usual intercolummar distance.

Coupler. 1. (Music.) A connection between the corresponding keys of different banks or ranks of keys, so that they act together when one is played upon. When a key of the lower bank is touched, it actuates the one above; but the action is not reciprocal. The coupler is thrown into action by a drawstop or pedal.

Octaves in the same bank are sometimes coupled, to avoil the necessity of striking oetaves hy stretching the hands. Similarly, the great-organ may be coupled with the choir-organ or the swell.
2. The ring which slips upon the handles of a crucible tongs, or a nipping-tool of any kind. Also called reins.

Couples. (Carpentry.) Rafters framed together in pairs hy a tie, which is generally fixed above the feet of the rafters.

Main conlples ; the roof-trusses.
Coup'ling. A device for uniting adjacent parts or objects. See under the following heads:-

Axle-coupling.
Bale-tie.
ball and socket.
land-coupling.
Bayonet-joint.
Belt-clasjs.
Belt-courling.
Belt-fastener.
Binding-screw.
Bolster-coupling. Buckle.
Car-coupling.
Carriage-conpling.
Carriage-shackle.
Chain-coupling.
Clasp.
Gimmal.
Glanl.
Grappling-iron.
Gripes.
Gyves.
Hime-fastening.
Hand-clamp.
Hand-cuff.
Harness-snap.
Hasp.
Hinge.
Hook (varieties, see Hиок).
Hoplle.
Hose-coupling.
Jew's-harp-shackle.
Joint (varieties, see Jonst).
Claw for suspending tackle.Joint-coupling.
Clevis.
Clinch-ring.
Clip.
Clutch.
Clutch-rope.
Coat-link.
Connecting-link.
Connector:
Coupler.
Coupling-box.
Coupling-link.
Coupling-pin.
Coupling-pole.
Cramp.
Differential coupling.
Draft-bar.
Draw-bal:
Draw-link.
Expansion-coupling.
Felloc-coupling.
Fetter.
Fish-bar.
Fish-joint.
Flexible coupling.
Friction-clutch.
Friction-coupling.
Gimbal.

Key-coupler.
Kuuckle-joint.
Lap-ring.
Lengthening-rod.
Link.
Manacles.
Oldham's coupling.
Opuen ring.
Parral.
lerch.
Pipe-coupling.
Pitman-coupling.
Rail-coupling.
Reach.
Reins.
Ring.
Fod-conpling.
Screw-coupling.
Shackle.
Shaft-coupling.
Shank-coupling.
Snap-hook.
Snap-link:
Spiral-spring coupling.
Split-pin.
Split-ring.
Spring-coupling.

Swivel.	Truss.
Thill-coupling.	Turnbuckle.
Tool-coupling.	Universal joint.
Tree-coupling.	Wagon-coupling.

Coup'ling-box. A metallic box into which the ends of two shafts are fastened, to couple them in line.

Coupling-link. An open or split link for connecting two objects, or forming a detachable section in a chain.

Coup'ling-pin. (Vchiclc.) A bolt which fastens the hind hounds to the coupling-pole, which is attached to the fore-gears by the king-bolt.

Coup'ling-pole. (Vchicle.) A pole connecting the fore and hind gear of a wagon.
Coupling-strap. A strap connected to the off bit-ring of the off horse, thence through the near bit-ring, and leading back to the harness of the near horse. Used with artillery horses, and also for restive horses in ordinary service.
Con-pure'. (Fortification.) A passage cut through the glacis in the reentering angle of the covered way, to facilitate sallies by the besieged. They are sometimes made through the lower curtain, to let boats into a little haven built in the reëntering angle of the counterscarp of the outworks.
Course. 1. (1)asonry.) One row or tier of bricks or stones in a wall.
Pinth-course; a lower, projecting, square-faced course.
B^{\prime} ocking-course ; laid on top of the cornice.
Boading-course; one in which the stones lie with their length across the wall.
Heading-course ; being all headers.
Stretching-course ; consisting of stretchers.
Springing-course; upon which an arch rests
String-course ; a projecting course in a wall.
Rows of slates, tiles, and shingles are also termed courscs. The barge-course is one projecting over the gable of a building.
2. (Music.) A set of strings of the same tone placed alongside, and struck one, two, or three at a time, according to the strength of sound desired. The adjustment in a piano is made by the soft pedal, which shifts the bank of keys.
3. (Filc-cutting.) A row of parallel teeth on the face of a file. One course makes a singlc-cut file. A coursc crossing the former at right angles constitutes it a double-cut file.
Eight courses of cuts are required for a square tile, doublc-cut on each side.
On the half-round files for gullcting saws as many as twenty-three courses are required for the convex side, and only two for the straight side.
4. (Mining.) The direction of a vein or lode.

Coursed Ma'son-ry. As distinguished from piorre produe, in which the stone is cast in at rancom to make a foundation, as in the Plymouth and other breakwaters, the Rip-raps, etc. Coursed masoury consists of blocks lying on their beds in courses. When laid beneath the surface of the water, they are directed by operators in the div-ing-bell, as practiced by Smeaton at Ramsgate Harbor.

Coursed-rubble masonry is laid in courses with ocuasional headers ; the side joints are not necessarily vertical, nor the stones in a course of an even thickness.

Cours'es. (Nautical.) The sails sustained by the lower masts ; as the foresail, mainsail, and spanker.
Cours'ing-joint. The mortar-joint between two courses of bricks or stones.

Court-plas'ter. Silk surfaced with a solution of balsam of benzoin.

Cous'si-net'. (Architecture.) The impost stone on the top of a pier. Cushom.
Cove. 1. (Architecture.) a. A hollow forming a member of some cornice-moldings or ceiling-ornamentation.
b. The concavity of an arch or ceiling.
2. (Shipbuilding.) An arched molding at the foot of the tatfrail. An elliptical molding sprung over it is called the arch of the cove.

Coved Ceil'ing. One with a hollow of about a quarter-circle rumning round the room, situated above the cornice, and dying into the flat central portion.
Cov'er. 1. (Roofing.) That portion of a slate, tile, or shingle which is hidden by the overlap of the course above. The exposed part is the margin.
2. (Machinery.) The cap-head or end-plate of a cylinder.
3. A lid or hatch for a coal-hole, cistern, or vaultopening.
4. A turret or cupola on a kitchen or hoilingbouse, pierced at the sides to let out steam or smoke.
5. (Steam-engine.) The lap of a slide-valve. See Lap.

Cov'ered Way. (Fortificalion.) A sunken area around a fortification, of which the glacis forms the parapet. A banquette on the interior slope of the glacis affords a place for the garrison to stand on while delivering a grazing fire over the glacis.

Cov'er-ing. (Bookinding.) The clothing of the sides and lack of a book with cloth, nuslin, leather, paper, or other material. The cover ready for the contents is a case.
Cov'er-ing-strap. (Iron Shipbuilding.) A plate beneath the two meeting plates in a strake, to which they are riveted and by which they are counected.
Co-vet'ta. A plane used for molding framework, called also a quarter-round.

Cov'ing. (Archiucchure.) a. The overhang of the upper portions of a building beyond the limits of the ground plan.
b. The splayed reveals or inclined jainbs on the sides of a fireplace. These jambs were square in the old Englisl fireplaces. In some of the Lourre fireplaces the jambs have an angle of ahout 45°. These were probably erected alout 1750 , by Gabriel, under the orders of M. de Marigny. Gauger had previously (1715) given to the coring a paraholic curve. Count Rumford invented or adopted the inclined coving, having an angle of 135° with the fire-back, to radiate heat into the roon.

Cow. 1. (Mining.) A wooden wedge to jam against the barrel of a gin or crab, to keep it from revolving. (Prov. Eng.)
2. A kind of self-acting brake formerly used on inclined planes. A trailcr.

Cow'an. A Scotch fishing-hoat.
Cow-beck. A mixture of hair and wool for hats.
Cow-catch'er. An inclined frame in front of a
Fig. 1495.

Cow-Catcher.

CRADLE.
locomotive, to throw obstructions from the track. A pilot. L'atented in England by Lindo, 1840.

Cow-horn For'ceps. A

Fig. 1496.

Cow-horn Forceps. dentist's instroment for extracting molars. That for the upper jaw has one hooked prong like a cow's horn, the other jrong being gouge-shaped.
The cow-hom forceps for the lower molars has two curved prongs, which hook betwern the pairs of side-roots of the molar.
Cowl. A chimney-cap made to turn around hy the wind, or provided with ducts by which the wind is made an accessory in educting the smoke and other volatile products of combustion.

A wire cap or cage on the top of a locomotive smoke-stack.
Cowls are also used on the summits of ventilating shafts for publie buildings.
$a($ Fig. 1497). The tlue has enveloping side passages which assist the draft by induction.
b. The spindle of the cowl is stepped in a socket, its collar revolving in tlanges npon the upper side of the cap-plate, which is anchored to the brickwork of the chimney.
c is a cowl or hood for a car-roof, and has an adjustment by which its moath is presented in either direetion to lead in vital air, or by induction to expel foul air.

- In f, the issuing current of air and smoke is deflected outward by the cone, and impinges upon the obliquely set plates of the fan-cap, causing it to revolve.

Cow-milk'er. A mechanical device for milking cows. The usual devices are on the principle of the breast-jump, with cups for the sev. eral teats. The elastic culs commnnicate with the conical eylinder of the diaphragin pump, the piston of which is worked by the handles. The milk is discharged by a spout iuto a jail beneath.
Cown'er. Thearched

Cono-Milker.
part of a ship's stern.
Crab. 1. A winch on a movable frame with power-gearing, used in connection with derricks and other non-permanent hoisting-machines.

The laryer gear-wheel is on the sbaft of the roller, and is rotated by the spur-pinion and band-crauks.

Fig. 1499.

2. A form of windlass for hauling ships into dock.
3. A machine used in ropewalks to stretch the yarn.
4. A claw for temporarily anchoring to the ground a portable machine.
Crack'er. 1. (Pyrotechnics.) A form of explosive fire-work. Marens Greecus, in the eighth century, spenks of a composition of sulphur, charcoal, and saltpeter, which he said might be made to imitate thunder by folding some of it up in a cover and tying it tightly. This was a cracker.
2. A hard-baked biscuit. See Biscuit.
3. One of the deeply grooved iron cylinders which revolve in pairs and grind the tongh, raw eaontchonc, which has been previously ent in pieces by a circular knife.

Cra'dle. 1. A baby's bed or cot, oscillating on rockers or swung upon pirots.

The aneient Greeks usenl cradles, and called them hy nam's indicating their forms, such as little bed, bnat, etc.

Biby cradles were used by the Romans. They are mentionell by Theocritus. The cradle of Henry V. of England swing between two posts.
2. A thin shell or case of wood, acting as a splint for a broken bone or dislocated limb.
3. A framework which supports the belclothes above an injured limb.
4. A frame on which loam-molds are placed in an oven to be burned, after the spiudle is withdrawn.
5. (Hydraulic Enginecring.) The frame in which a ship hes on the ways, and which aceompanies her in launching; or, the frame in which a vessel lies on a way or slip, or in a canal-lift.

A cradle was used in very early times in crossing the lsthmus of Corinth, from the Corinthian to the Cenehrean sea. The place was called the Diolcos, or drawing-nlace, and was five miles in leugth. This crossing-place was again used during the maritime warfare between the Genoese and the Turks.

At a number of places in Lombardy and Venetia the locks are insufficient or absent, and boats are cradled and transported over the grade.

The same thing takes place on the Morris and Essex Caual, which crosses the State of New Jersey, uniting the Hudson and Delaware Rivers. See N clined Plane.

In its simple form, the cradle consists of three longitudinal timbers united by ribs or cross-pieces. Thi. is Hoated beneath the ship, which is lashed thereto by cables. The cradle and its burden are then Hoated to the inclined ways or slip, up which it is hauled, being supported by rollers which interrene between the timbers of the cradle and those of the slip.
6. (Mctallurgy.) A rocking apparatus, used in collecting gold from soil and simd by agitating the auriterons earth in water.
The earth is shoreled into the sievc, and washed through its meshes by water, which also carries off
right angles, and then several times diagonally, until the whole surface of the plate is roughened, so as to hold the ink of the copper-plate printer. The burnisher and seraper remove the burr in parts, according to the desired graduation of lights.
8. A suspended scaffold used by miners.
9. (Curpentry.) The longh framework or bracketiug forming ribbing for vault ed ceilings and arehes intended to be corered with plaster.
10. (Husbandry.) a. A set of fingers projecting from a post which is mortised into the snath of a grain-scythe.
b. A grain-seythe.

The American grain-cradle is a superior implement. The English cradle-scythe, judging by the representations, is a far inferior tool; nothing in its execution comes up to the rate and quality of work as seen in the American harvest-field before cradles were superseded.

Fig. 1201.

Cra'dle-scythe. (\because gricul. ture.) A broad scythe to be fitted in a grain-cradle, as distinguished from a grass or mowing seythe.

Cra'dling. 1. (Coopering.) Cutting a cask in two lengthmise, in order to allow it to pass through a doorway or hatchway, the parts being afterwards

the lighter earthy particles in suspension. The coarser matters, which do not pass the nieshes of the sieve, are thrown out and the operation repeated. After a large quautity of earth has been thus disposed of, the contents of the cradle are washed in a pan and the gokl obtained from the settlings.
7. A tool used by measotint-engravers. It consists of a steel plate with a proper tang and handle, and has angular groores on its under surface, so that when the rounded end is obliquely ground, it will form a row of points by which a multitude of burs are raisel upon a plate. This is the mode of procepding in Mezzotist-fingravisg (which see), the cratle being rocked back aud forth, and retreating, making a zigzag series of burrs. This is crossed at
lead. So said Diodoms Siculus.
Cramps of lead for fastening together the stones of masonry were found by Lavard among the ruins of Ninereh. Leaden cramps were similarly used in Egypt.
The blocks included in one layer of masonry in Smeaton's Eddystone lighthouse were nnited by iron cramps, with melted lead poured around them. Wooden dowels united the layers.

The stones in the Coliseum of Vespasian were united by brouze cramps.
2. (Cierpentry.) u. A rectangular frame with a tightening screw, by which carpenters compress the joints of tramework, as in making doors and other panel-work, and for other purposes. Its office is somewhat similat to that of a clamp.
b. A bench-hook or hold-fast. (A, Fig. 1503.)
3. (Bootmaking.) A piece ol board, shaped like the front of a boot, over which leather is bent to form the upper of a bout or shoe. See Chmp.

Cramp-drill. A portable drill having a eutting and a feeding motion. In one of the examples the feet-screw is in the lower member of the cramp-frame, and in the other one it is in the upper portion and forms a sleeve around the drill-spindle which rotates within it.

Cramp-i'ron. An iron binding two stones together in a conrse. It has usually turned-over ends which penctrate the respective ashlars. See Cramp.
Cramp-joint. One in which the parts are bound together ly locking-bars. Sce Cramp.
Cram'poons. 1. A clutel formed like a pair of calipers, used in raising objects.
2. lron spikes worn on the Loots, to assist the foothold in climbing the slopes of earthworks.
Cran'ber-ry-gath'er-er. An implement shaped like a rake, and adiuted to catel below the berries on the stalk, and collect them in a bag or box attached to the rake-heat.
Crane. 1. A machine for hoisting and lowering heary weights. It consists of a vertical post or frame, which is rotatable on its axis, and a jib or projecting arm over which the chain or rope passes

Fig. 1504.

Old Dutch Crane.
on its way from the winch at the foot of the post to the load to he lifterl.
The corvus of the Romans, which has been translated crouc, was a boarding device, consisting of a ladder attached to a verticat spar and so piroted as to bring the outer eut over the deck of the ship to be boarted. A grappling-hook was suspended from the end of the staging. By this means of approach the Romans boarded the Carthaginian vessels, and achieved success in several naval engagements. A corrus was also used as a true crane for picking off soltliers garrisoning a city wall, and sictting them down outside. It is described by Tacitus:-
"The stones of the pyranids were raised by making mounds of earth; cranes and other engines

Fig. 1505.

Cranes.
not being known at that time."-Diodorus Siculuts (60 b. c.).
The old Dutch crane, which was also in use in England till the early part of the present century, was operated by a tread-wheel, around which the rope was wound; the rope then passed over griderollers to the jib of the crane, which projected over the hatchway of the ship and turned upon a pivot, so that it could move ronnd about three fourths of a cirele, and so deliver the goods upon the quay.

In order to lower the goods the men walked backward ; but as it sometimes happened that they were overbalanced by the descemding weight, a bar or pole of wood was suspented from the axle, so that in such case they might lay hold of it, and save themselves from being whirled round in the wheel.
The great wheel and the framing which supported
it were contained in a wooden bnididing, to the corner of which the jib was attached.

The essential features of a crane may be combined in a machine of simple construction (Fig. 1505), the central pillar being sustained by a frame of timber a, by a planted pillar b, or by guys c, as in the three examples of cranes of sinple construction. The operation is sufficiently plain withont entering into detail.

The ordinary warehonse or foundry crane (d, Fig. 1505) is nsually stepped in the floor, and has its upper bearing in a joist or bean. Its size, proportions, and to some extent its construction, depend upon its place and application.

The application of iron in the construction of the crane causes some change in the appearance c, apparent lightness and compactness being gained.

The double crane (f, Fig. 1505) has two jibs; one of which is employed in raising a load, while the other is depositing its load in position. The crane is mounted on a eariage traversing on rails or rollers, and in the illustration is shown as applied to laying stones on a breakwater. Each jib has a
concare side bas a cellular structure to resist compression.

Cranes were worked by hydraulic pressure as eally as 1846 , at Neweastle, England; subsequently the lock-gates and cranes of the Albert Dock, Liverpool, and those of the Grimsby lock, were worked by water, denved cither frow the town-reservirs or from elevated reservoirs into which it was pumped for that special purpuse.

These sources, lueing thatnating or expensive, gave rise to the adaptation of machinery for the purpose.

Armstrong's hydraulic crane, English, 1554 (h, Fig. $\left.1500^{\circ}\right)$, consists of one or more hydranlic presses, with a set of sheaves nised in the inverted order of blochs and pulleys, for the purpose of obtaining an extenced motion ot the chain from a comparatively s..ort stroke of the piston.

In the illnstration, the motion is multiplied threefoll, eaeh block having two sheaves.

Swinging the jib is eflected by means of a rack or

chain operating on the base of the movable part of the crane, and connected either with the cylinder and piston, having alternate motion like that of a steam-engine, or with two presses applied to produce the same effect by alteruate action.

Armstrong's aceumulator is intended to store the fower exerted by the engine in charging it, and consists of a reserroir giving pressure by load instead of by eleration. It is a large, cast-iron cylinder fitted with a plunger, from which a heary load-case is suspender?. Water is injected by the engine, raising the plunger and the load, the effeetive weight of which is utilized in ejecting the water as it may be occasionally called for.

The fower thus exerted in the ejpetion of water from the rugine is usually equal to a column of water 1,500 feet high. See Acoumtesme.

A form of crane (i, Fig. $150 \overline{\text { on }}$) traveling upon a wide-gage railroad, and bearing its loal suspended from a beam ahove, has been alopted in some yards where heary timber, stone, or iron reguire to be noved, loaled, and moaded. The hoisting-chains are worlsed by winches on each section, and pass over a truck above, which has traverses on the beam, so as to bring the hook over a load nearer to or farther from the rails. By means of the traveling motion of the machine on the rails and the traversing motion of the track above, the hook of the chain may be brought over any part of the space within the rails. If hoth windlasses be thrned at once, the loand rises. If one be unwound while the other is winding, the look does not rise, bat the truck traverses.

Fairbairn's traveling crane (j, Fig. 1507) is adapted for a wrecking-crane for ratroad use. A crane

adapted for lifting fifteen tons will have a counterweight of ten tons in the rear. In the example from whicl? the illustration is derived, the jib swept over a circle of 25 feet diameter, and was capable of lifting the loat 18 feet above the rails on the beam above, towards the winding side. By turning or unturning the respective windlasses at the necessary slepels relatively, a compound motion may he attained, towards or from either rail upward or downwarl.

One form of traversing-cranc consists of a crab upon a carriage traveling upon rails on the beams overhead in a foumdry. By the rotation of the roller of the crab, the chain or rope is womm on and the load liften, and by the motion of the carriage is tramsported to any place within the range of the rails. It is known as nu overhord crane.

The foundry-crane has a traversing carriage on
the jib, which permits the point of suspension to be moved out or in from the central post; the range being from the outer end to the mid-length of the jib. The traversingearriage is movel by an endless chain descemting to the floor of the foundry.

In Morrison's steam-crane, the crane-post forms the stean-cylinder, and is fitted with a piston having a flexible piston-rod of wire rope, which works stem-tight through a stutling-box at the top, and prisses over two pulleys, itself forming the elaain for lifting the load.

The downward stroke only of the piston is utilized in lifting, and the stean induction and eduction are governed by slide-valves operated by hand-levers.

In Evans's stean-erane, a virtical hoiler forms the crane-post and revolves with it. The cast-iron top of the boiler has lugs for the attachment of the tension-rols. An oscillating eylinder is attached and tumishes the power.

The projecting arm or beam of a crane is the $j i b$.
The post and j ib collectively are sometimes known as the gibbct.

The diagonal is the stay.
2. (Nautical.) a. A forked post to support a boom or spare spar on deck.
b. A projecting bracket to support spars, etc.
3. An overhanging tube for supplying a tender with water. A water-crame.
4. A contrivance to hold a stone, and present it to the slicer of the layidary.

It consists of a clamp which moves horizontally, having its bearings on a vertical post rising from the bench of the lapidary. A weighted string is attached to the lever-arm, and keeps the stone constantly pressed up against the slicer. Sue Slicen.
Crane, Der'rick. A form of crane having spars for $;$ jib and plost. See Derimick.

Crane's-bill. (Śurgical.) A pair of long-nosed pinchers.

Cra'ni-om'e-ter. An instrmment for measuring

 sizes of skulls.Dr. Morton gives the following as the average result of numerous measurements of skulls :-

European		87 cubic inches.	
Malay	85		
Negro .	83	،	"
Mongol	82	"	"
Aucient Fgyptian	80	"	"
American	79	"	"
Ancient Peruvian	75 to 79	"	"

Professor Huxley says that the most capacions European skull has a capacity of 114 cubic inches ; the smallest, 55 inches. Schaallhausen finds Hindon skulls of 46 cubic inches.

Cra'ni-o-tome'. A cutting instrument for opening the fetal head, to assist delivery.

Crank. An arm (called the uebb) at right angles to an axis hy which motion is impartel thereto or reeeivel therefrom. The crank on the axis of a grindstone or a fanming-mill is a familiar instance.

The crank is also a valued device in converting a rotary into a reciprocating motion, or conversely. An example of the former is found in the saw-mill ; of the latter, in the steam-enginc. Watt is the inventor of the latter application of it.
3 (Fig. 1509) slows the single-crank; 4, the double-cratz ; 5, the bell-crank.

1 (Fig. 1509), a, wrist or pin ; b, shaft ; c, web; d, boss.
James Watt - no mean judge - remarks that "the true inventor of the crank rotative motion was the man, whose name, unfortunately, has not been preserved, who first contrived the common foot-lathe.

CRAPE.

The applying to the stean-engine was merely taking a knife to cut cheese which hod been made to cut bread." It was a meritoriousapplication, however, devised by Watt, to turn the reciprocating action of the piston into a rotary motion, and was stoleu from him ly a man who spied out the design froma sketch and conversation of Watt's workmen. Watt invented the SUN AND Planet Mution as a substitute (which see). See also Planet-wheel and Epicycluhal Wilefl. If the foot-lathe were the earliest form of lathe, which is not certain, and James Watt's idea were correet, which is quite probable, we may agree with one authority that the crank is as old as Talns, the grandson of Dedalus, abont 1240 B. c. ; or, according to Pliny, Theodorus of Samos, about 600 B. c. It must be recollected, however, that among the ollest Egyptian paintings is the representation of Thoth forming man upon the potter's wheel.
The crank was first used with the steam-engine on board the paddle-wheel steamboat of Jonathan Hull (English patent, December 21, 1736, No. 556). It did not revolve, but reciprocated, and formed an intermediate between the rope, which was pulled by the descent of the piston, when a vacum was created in the Newcomen atmosphric engine and the leg of the propeller, which scems to have acted somewhat like the leg of a grasshopper.

A four-throw crank was employed on each end of the axis of the wallower or lantern-wherd, which was drivers by the water-wheel under the north arch of London Bridge, as described by Beighton, 1731. This mehimas supplied a part of London with water. The water-wheel was first placed there ly Morice in 1582 , but it is not stated by what levice the rotary motion of the wheel was converted into the reciprocating motions of the pistons in the six pumps which were operated hy it.

2 (Fig. 1509) shows a combination of crank and cenentric. The boss a, on which turns the spurwheel b, is fixed. The crank c turns with the spindle d, which is fitted eccentrically in the boss a. The pin e with the block f are lixed to the spurwheel, which is set in motion by the pinion $\frac{g}{}$. In revolving rouml, this wheel carries with it the crank; but, owing to the eccentricity of the two centers, the block f slides down the slot in the crank, and in so doing approaches nrarer to the center on which the latter revolves. This has the effect that, as the angular relocity of the spur-wheel is constant, it will cause different points in the radius of the crank consceutively to revolve with the sawe linear velocity ; or, in other words, will cause the angular velocity of the crank gradually to increase during one half of the revolution, and gradually to deerease during the other half. The
stroke of the crank may also be varied by shifting the crank-pin in the slot h.

A two-throw or three-throw erank-shaft is one having so many cranks set at different angles on the shalt.

Crank-ax'le. 1. An axle bent down between the wheels, in order to lower the bed of the wagon and make loading more easy.

It has been introduced in England for comntry and city wagons, and also in the United States. It is credited to Baddeley, an early contributor to the London "Mechanic's Magrazine."
2. (Steam-engine.) The clriving-axlo to whiclare connected the piston-rols of a locomotive engine. This is the usual English form : in America we conneet to wrists on the drive-wheels.

Crank-brace. The usual form of brace, which has a bent shank by which it is rotated.

Cranked Tool (Irou-turning.) A tool which is made to embrace the rest α, by which it is prevented from slipping away from the work. A lin is inserted in one of the holes in the rest, to prevent the escape of the tool sideways. The direct penetration is olitained by depressing the handle; the lateral Fig. 1510.

Cranked Tuol. motion by rotating the tool by its transverse handle, which may be a hand-vise temporarily screwed upon the shaft, or a shonlder-test haudle, as in the illustration of hecl-fool.

Crank-hook. The bar comnecting the treadle and crank in the common foot-lathe.

Crank-pin. A pin connecting the ends of a double crank or projecting from the end of a single crank. In either case it is for the attachment of a pitman or connecting-rod. (See $\alpha, 1$, Fig. 1509.)
Crank-pull'er. A machine for pulling the crank off an axle or shaft.
Fig. 1511 shows a hy. draulic erankpuller which is portable, and therefore applicable to work in situ. It is shown as constructed with a 4 -inch ram, and capable ol exerting a force of forty tons.

Crank-shaft.

A shaft driven
by a crank, such as that of the grindstone.
Crank-wheel. A wheel having a wrist to which a pitman or connecting-roll is attached, and acting as a crank, while the peripheral portion may ast as a flywheel, or may constitute a pulley or a traction-wheel.

Cran'ny. (Glass-manuffecture.) A tool for forming the necks of glass bottles.

Crape. (Fubric.) A gauzy fabric made of raw silk, and woven without crossing.

Uncolored, or gayly dyel, it is a rich shawl-stutf.
Colored black and crimped, it is a mourninggoods. Smoath crape is used in ecelesiastical habits of a certain order, not quite so elevated as the cambric lawn of a bishop.
"A saint in crape is twice a saint in laum."
The latter is the superlative decree of ecclesiastieal habiliments in reformed churehes.
Crisped crape denotes a poignant grief; the change
to a smoother class of goods indicates that the mereiful hand of Time has burnished out the wrinkles and lines of care.
Silk intended for crisp crape is more twisted than that for the smooth. The twist of the threat, especially that of the warp, is what gives the wrinkled appearance to the goots when taken out of the loom.
A \ddot{r} ophanes and grucic are grods of a similar deseription, either white or colored.
Crape is said to have been made by Ste Badour, Queen of France, A. 1. 680 . It was first made at Boulogne.
Crape-mo-rette'. (Fabric.) A gauzy woolen fabric of fine texture, the warp being light and open, and the weft relatively heavy and theecy. White or colorerl.
Crap'ing-ma-chine'. A machine by which silk is crapul, i. e. crinklecl.
Crap-leath'er. Leather made from thin cowhides. Usel for pumps and light shops.
Crare. A kind of coasting-vessel, now disused.
Crash. (Fubric.) A heary, coarse, plain, or twilled linen toweling or packing-cloth.
Crate. A large wicker hamper with woolen supports, in which crockery-ware is packed for transportation.

Crutcs among the Romans corresponded to the Engtish hurdes. They were of wicker-work, and were used for screens, for leveling groumd after rough-raking (rastrum) ; also as ftakes tor ilrying fruit. The latter were soluetimes made of selge or straw.

Large crates were used in bridging fosses, protecting military engines, ete.

Crawl. A pen of stakes and hurdles on the seaside, for fish.
Cray. A small sea-vessel.
Cray'on. 1. A colored pencil consisting of a cylimer of fine pipe-clay colored with a pigment.
Black creyons are colored with plumbago, or made of ltalian black chalk.

A white crayon is a cylinder of chalk, common in Englind aml France. Werl chalk is found in France. The holder is a porte-crayon.
Crayous are said to have been made in France in 1422, and imported thence into England in 1748. It is hard to say how long ago charcoal, chalk, and achreous earths were used.
Hans Holbein drew portraits in crayon in 1540. Sir Thmmats Lawrence exolled in this style of por-trait-painting, 1800-1 1830.
2. LLithngraphy.) A composition formed as a pencil, and used for drawing upon lithographic stones. It is of a soapy nature, consisting of soap, wax, resins, and lamp-black, melted, and sometimes burnwl, together.

Craze-mill. A grinding-mill for tin ore.
Craz'ing. The craching of the glaze upon articles of pottery or pore

Cream-freez'er. A domestic machine in which crean is stirred in a vessel plunged in a freezing mixture, usually of pommed ice and salt.

Cream-slice. A woolen knife for dividing and servind trozen cream.

Creas'er. 1. A tool used for making single or double lines on leather, to form guides or creases to sew by:
a, the aljustable double creaser, has two spring jaws, which are set open by means of a screw, so as to make the guide-lines at any required distance apart.
b is a double creaser without adjustability.
c is a single creaser.
They are also used for lining leather, to give it a finished appearance.

2. d is used by sleet-iron workers for rounding small beads and tubes. Its shank has a tang by which it is secured in a square socket of the workbench.

Top ancl bottom crcasing tools c, of any suitable size and pattern, may be set in the jaws of a creasingswage, the lower ent of whose frame has a tang to set in the work-bench, while the upper hinged portion carries the top tool and is struck by a hammer.
The lower figure is a tool similar to the chisel, but having a blunt, rounded edge, employed by blacksmiths for making grooves in hot iron.
3. (Bookbinding.) A tool for making the bandimpression distinct on the hack.
4. (Seniug-machine.) An attachment which makes a mark in a line parallel with the work in hand, to indicate the place for the next seam or tuck.

Creas'ing. A layer of tiles forming a corona for a wall.

Creas'ing Ham'mer. A narrow, rounded-edge hammer, used for making gronves in sheet-metal.

Creaze. (Mining.) The tin in the middle part of the buddle.

Creel. 1. (Spinning.) The bar which holds the paying-atl bobbins in the bobbin-and-fly,
the throstle machine, or the mule. In the first machine the bobbins hold the sliecr, which is to be spun and twisted into a roving; in the latter machines, by a substantially similar operation, the roving is converted into yarm. The creel may have several bars with rows of skewers, upon which the bobbins are placed to unwind their contents.
2. A fish or root basket.

Creep. (Jining-cngincering.) The curving upward of the floor of a gallery, owing to the pressure of superincumbent strata upon the pillars. Opposed to thrust, which is a depression of the roof.

Creep'er. 1. A four-clawel grapmel or drag, used in dragging the bottom of a harbor, pond, or well, to recover any-
 thing which has been lost overboard, or Creel of Mule. the bouly of a drowned person.
2. α. An iron bar connecting the andirons.
b. Small doys, with low neeks or none at all, used between the usiual andirons to support brands above the hearth.
3. An endless, moving feeding-apron, or a pair of aprons arranged one above the other, having motion to feed tihers to or from a machine; c. g. the crepper which feeds the sliver or sheet of fibers from the doffer of a carding-machine. See Lap.
4. A sniall sole or piece carrying spurs, which may be attached to the boot, to prevent slipping on ice. Creep'ing. (N‘utical.) Dragging by grapuels for the recovery of a lost cable or rope.

The most remarkable instance on record is the recovery of the Atlantic cable, broken in mitlocean.

Creep'ing-sheet. The feeding-apron of a card-ing-madine.

Cre-mail-lere'. (Fortification.) An indented borizontal outline.

Cre-mo'na. A violin of fine quality, named from C'remone, Italy.

Not to be confonnled with the cromorna stop of an organ ; named from the resemblance of its timbre to the German krumm-hurn, a crooked horn.

Cren'e-lat'ed Mold'ing. A kind of molding in which the beads have rectangular dentations.

Cre-nelle'. (Fortification.) A loop-hole in a parapet wall or stockade through which to discharge. musketiy.

Cre'o-sote-ap-pli'ance. A dentist's instrument intended to prevent flud cansties, such as creosote or solution of nitrate of silver, from running down aud canterizing the lips when being applied to the gums. A spiral platinum-wire carries the sponge, and a glass tube attached to the handle and surrounding the wire catches any of the caustic which may run down the wire.

Cre'o-soting. A mode of preventing decay of timber by saturating with creosote. This is said to coagulate the albmmen, absorb the oxygen, resinify in the pores of the wood and exclurle air, and act as a poison to prevent fungi, acari, and other parasites.

Cre'pou. (Fubric.) A thin stuff resembling crape, made of wool, silk, or mixed.

Cre-quillas. (Fabric.) A light, lowpriced cutton fabric.

Cres'cent. A musieal instrument, consisting of a staff with arms and suspended bells, used in a band.

Cres'set. 1. A basket of open iron-work in which wood or coal is burued as a beacon. It was

Fig. 1514.

formerly used where lighthouses are now erected, and its modern use is principally at wharves and boat-lamlings.

A hoisting arrangement for a cresset in which a
beacon-fire is kept bunning is shown in the illustration B. The pivots of the cresset ε are above its center of gravity, so that it swings level, whatever may be the position of the mast. The mast itself is so pivoted as to swing 120° in a vertimal plane, being operated by a winch and ropes. It is brought down within convenient distance, that the fire may be replenished, and is again elevated for service.
2. (Coopcring.) An iron basket or cage A to hold fire, char the inside of a cask, and make the staves flexible.

Crest. 1. The ridge of a roof ; hence crest-tiles, which lie on the comb of the roof and shed water botll ways.
2. The top of a parapet, embankment, slope, or wall. (sice Fig. 2.)

Crest-tile. A saddle-tile, one having a double slope, on the ridge of a roof.

Cre-vasse'-stop'per. A kind of floating-dock which is brought broadside against the bank and

Fig. 1515.

sunk in place, to act as a dam. When it is fairly anchored, the sheet-piling is driven down into the berl both on the chord and are side of the struc. ture.

Crev'et A crucible or melting-pot.
Crib. 1. A ehild's cot.
2. The rack or manger of a stable.
3. A granary with slatted sides for ear corm.
4. A reel for winling yarn (Srotland).
5. A small raft of timber (Camarla).
6. A structure of logs to be anchored with stones. Cribs are used for bridge-piers, ice-breakers, dams, etc. Sce Dam.

Crib'bing. Internal lining of a shaft with frametimbers aul plank-backing, to prevent caving, stop percolation of water, etc. The different styles are known as spikiug-cribs, wadying-cribs.

Crib'ble. (Mining.) A sleve.
Crib-strap. (Mcuerge.) A neck-tlırottler for crib-biting and wind-sucking horses.

Cric. The inflecting ring which turns inward and condenses the flame of a lamp.

Crick. A small jack-screw.
Crick'et. 1. An ancient English national game, said to be itlentical with the "clinb-ball" played in the fourteenth century.
2. A low stool, or a low table or portable shelf for kitehen uses.

Crimp'er. 1. (Shocmaking.) A curved board over which the uepper of a boot or shoe is stretched, to give it the required shape.

In the common form the wetted leather is stretehed by the pincers and hy rubbing, and tacked on the edges to hold it till slry. Many patented boot-crimps have heen introdnced to expedite the process, as in the apparatus (Fig. 1516) which is

applied to the bench by a swivel-derice, which permits the whole to be turned to the right or left as the work proceeds. The curved bar which supports the form uron which the leather is crimped has its groove lined with rubber, which prevents the wrinkling of the oleather white mukerguing the stretching process. 1 spirial spring is emplayed to hold together the two parts of a clutch, and thus retain the work rigidly in any position, but adapts the elutch to be disengaged to allow the shaft to be turned to
 bring the work in convenient positions for the operator. The yoke which clanns the forms to its support ran be alljusted at will, withont interfer: ing with its hold upon the form.
2. (Toilet.) A fork, a pair ai needles, or a pinching device in which hair is braided to acyuire a wayy appearance.

The hair-crimper (Fig. 1517) has a catel-bar pivoted to the how of the hair-pin. The hair, being womd upon the two legs of the hair-pin, is pressed by the bar, and the latter clasped to the legs of the pin.
3. A machine for crimping or ruffing textile fabrius has usially a pair of fluted rollers between which the article is prassel, as in the illustration, in which are two fluted cylinders, the lower in fixem hearings, the upprer vertically adjustable; one or both being hollow for the reception of a heated iron.
4. (IVire-working.) A machine in which wire is given a simous form, to aldapt it the more readily to
take its position in woven wire-work.
A machine in which wire cloth iscrimped by pressure between dies, each of which has projecting teeth
 which come opposite the interdental spaces of the other die. 5. (Siedlllery.) A press or break in which leather is molded inta form between dies, as in the illustration, in which leather for a satdle-pad is phaced on the bulbous portion B, and the linged portion is brought down over it and locked in position till the

Fig. 1520.

leather is sufficiently dried to retain permanently its new slape.

Crimp'ing-ma-chine'. See Crimper.
Crimp'ing-i'ron. An instrument for pinching, purkering, or fluting cap-fronts, frills, skirts, etc. See Compres.

Crin'gle. (Noutical.) A rope made into a erommet and containing a thimble, and worked into the bolt-rope of a sail for the attachment of a linitle or other rope. The head-cringle is lashed by the head-earing to the strons on the raritarm. The cringles on the leech are for the attuchment of the rect-tuckle.
Crin'o-line. (Fabric.) Originally, a horse-hair and cotton fabric for sctting out a lady's skirts. the term is now conmonly applied to the hoop-skirt, which has its periods of revival. Hoops were worn in 1740 three feet across the hips.
Crip'pler. A board with a corrugated under-surface and a strap above to hold it to the haml, used in bererling or graining leather, to give it a gramular appuance and rember it supple. The leather is folled with the grain side in contact, and rubbed on the flesh side with the ponmel, which is another name for the crimpler.

Crip'ple-tim'ber. Studding or scantling used in marrowing situations, where they are necessarily shorter than their fellows, as the cripplc-studuling from the ralters to the lloor-joists in attics finished with a collar-beam ceiling. A jack-limber.

Crisp'er. An instrument for crispiny the nap of doth; i. e covering the surface with little curls, such as with petersham or chinchilla. A crispingiron.

Cris'tale. (Fabric.) A white worsted fabric.
Cro-chet'-lace. Hand-knitted lace.
Cro-chet'-nee'dle. A neetle with a hooked und, used for catcling the thread and drawing it throngh the lopl in crochet-work.

Cro-chet-type. Type with fancy faces, to set up in imitation of lace, crochet, or warsted work.

Crock'er-y-ware. See Potreiy ; EarthenWabe; Pomenaln, ete.
Crock'et. (Architccurc.) An upwardly projecting carved ornament on a Gothic gable or fiying-buttriss.
Cro'cus. A polishinf powder composed of per-
oxide of iton. It is prepared from crystals of sulplate of iron, calcined in crucibles. The portion at the bottom, which has been exposed to the greatest heat, is the hardest, is purplish in color, and is called crocus. It is used for polishing brass or steel. The upper portion is of a scarlet color, and is called rorge. It is used for polishing gold, silver, and speculum metal. Rouge, the cosmetic, is made from safflower, or from carmitue, which is a preparation of cochineal.

Croft'ing. Exposing linen on the grass to the influence of air and sunshine, after being bucked or soaked in an alkaline lye.
Cro-mor'na. (Ifusic.) The cromorna or krummhorn is a reed-pipe stop of an organ, taned in unison with open-diapason, and lepending for the peculiar timbre or quality of its tone upon the shape and proportions of the tube through which the sound of the tongue is emitted. See STop.
Croom. A husbandman's fork with long tines.
Crop. (Mining.) 1. Tin ore of the first quality, after it is dressed or cleaned for smelting.
2. The appearance of a vein or seam, as of ore or coal, at the surface. The strike.
Cropped. (Boobbinding.) A book cut so severely as to reduce the margin too much. When cut into the print, the book is said to bleced.
Cross. 1. (Telegraplyy.) Accidental metallic connection between two wires on a line. - Pore.
2. (Surveying.) An instrument for laying off lines perpendicular to the main course.
Cross-az'le. 1. A shaft, windlass, or rollep worked by opposite levers; as the copper-plate printing-press, etc.
2. (Fuilroad Enginecring.) A driving-axle with cranks st at an angle of 90° with each other.

Cross-bar Shot. Shot which folds into a sphere for loalling, but on parting from the muzzle expands to a cross with sections of the shot at the extremities of the arms.
Cross-beam. A beam in a frame laid crossways. In a ship, a piece laid across heavy posts called bitts, and to which the cable is fastenell when riding at anchor.
Cross-bear'er. The transverse bars supporting the grate-bars of a furnace.
Cross-bond. A form of bricklaying in which the joints of one stretcher-course come in the middle of the courses abore and below.
Cross-bow. A weapon formed of a bow crosswise unon a stock. It is similar in kind to, but smaller than, the ballista, which it doubtless suggested. It was used by the Normans at the battle of Hastings. The arbalest was a form of it.

Cross-chap Vise. A vise in which the jaws close towards each other in a line contrary to their usual direction.
Cross-chock. (Shipbuilding.) A piece fayed across the deal-wood amilshins, to make good the deficiencies of the lower futtocks.
Cross-course. (Mining.) A non-metalliferous seam crossing at right angles thereto.

Cross-cut. (Mining.) A drift from a shaft, to intersest a vein of ore.

Cross-cut Chis'el. A chisel with a narrow edge and convilerable depth, used in cutting a groove in iron, especially in cast-iron, where a portion is to be cut or broken off.

Fig. $10 \check{231}$.

Cross-Cut Savo.
Cross-cut Saw. A saw adapted for cutting timber across the grain.

Hand-saws are made and set for the purnose. The ordinary saw for cutting timber into lengths has a handle at each end and cuts each way.

Fig. 1522.

The drag-saw is for cross-cutting, but only cuts on the mull motion, being stocked at one end.

Crossed Belt. (Nuchinery.) A belt crossed between pulleys so as to rerolve them in opposite directions. (See Belting.) To prevent the rubbing of the belts, rollers may be interposed.

Crossed Lens. (Optics.) A form of single conrex lens having the least spherical aberration. The refractive index of the glass should be 1.5 , and the radius of the posterior surface six times that of the anterior surface, both surfaces being convex.
Crossed Out. When the web of a wheel is sawed and filed away so as to leave a cross of fonr spokes or arms, it is said to be crossed out. This is common in watch and clock wheels.
Cros-sette'. (Building.) A projecting piece on a roussoir, as ab which gives it a
bearing upmo the next voussoir on the side towards the springing.
Cross-file. A file uset in dress. ing out the arms or crosses of fine

Fig. 1523. wheels. It has two convex faces of different curvatures. It is also known as a double half-round file.

Cross-frog. An arrangement of crossing rails at a rectangular intersection of roads. Each track is notched for the passage of the flanges of the wheels traversing the other track. A crossing.

Cross-gar'net. A cross-shaped hinge made like the letter T on its side (-). The cross-portion is fastened to the jamb or post, and the strap is hinged to the rertical leaf and secured to the door or gate.

This is an ancient form, and many very elaborate examples are found in ecclesiastical and feudal architecture.

Cross Half-lat'tice I'ron. A kind of angleiron with fonr radiating tlanges. Double-T iron, with a section like a Greek cross.

Cross-han'dle. A handle attached transversely

CROWN-Gl.ASS.
to the axis of the tool, as that of the anger, One form of dueling-pistols had a cross-handle.

Cross-head. (Sterm-engine.) A bar moving between parallel and straight slides. It is driven by the piston-rod, and by means of a counecting-rod imparts motion to a beam, or to the crank of an axle or shaft. On its ends are the cross-hecul blocks, which slide between two parallel guides.

The sliding journal-box (Fig. 1524) is adapted to oceupy a
Sliding Journal-Eoxes. slot in a cross-head to which it imparts motion. The box has two taper-cheeks a a and two taper-gibs $b b$ adjustable by screws, so as to set up the boxing to the wrist and the cheeks to the guides in the cross-head.

Cross'ing. (Ritilway.) A casting phaced at the rectangular intersection of two railways, where the rails of each track are partly cut away to allow passage to the flanges of the crossing wheels.

Cross-jack Yard. (Nrutical.) a. The yard of a square-sail oceasionally carried by a cutter in running before the wind.
b. The lower yard on the nizzen-mast.

Cross-lode. (Mining.) A cross-vein; one intersecting the principal tode.

Cross-mouth Chis'el. A boring - chisel of a cylindrical form with a diametrical blade.

Cross-pawl. See Cross-srall.
Cross-piece. (Shipbuilding.) a. A flooringpiece resting upon the keel and placed between the half-floors which form the lower sections of the ribs on each side. The hulf-floors make a butt-joint on the middle line of the ressel between the keel and hicelson.
b. A bar ruming athwartship between the knightheads, and to which the rmming rigging is belayed.
ε. A bar connecting the litt-heads.
Cross-rule Pa'per. Paper ruled off in squares, affording a means of drawing a pattern for weaving or worsted work.
Cross-shed. The upper shed of a ganze-loom.
Cross-sill. A railroad sleeper or tie lying trans. versely beneath the rails.

Cross-som'er. Or summer. A beam of timher.
Cross-spall. (Shipbuildisg.) A temporary horizontal timber-brace, to hold a frame in position. Vertieal or inclined braces are called shores.

Cross-spalls hold the pasition afterwards acenpied by the deck-bcrms.

Cross-spring'er. (Architecture.) In a groined arch, the rib that springs from a pillar in a diagonal direction at the intersection of the arches forming the groin.

Cross-staff. A surveyor's instrument for measuring off-set.s.

Cross-strain'ing. (Saddlery.) Canvas or webbing stretched transversely over the first straining. The two are stretched over the tree, and united form the foumlation for the seat of the saddle.

Cross-tail. (Sterem-engine.) A bar connecting the rear ents of the side-brrs of a back-action steamengine. The side-bars proced from the cross-head on the end of the piston-rol, and receive motion from the piston; from the eross-tail proceeds the pitman, which is connected to the crank of the pro-

FIg. 1525.

pehler-shaft. ehinery.) A gudgeon having a winged or ribhed shank.
Cross-Tail Gudgeon Cross-tie. (Ruilroal Engineer-
ing.) A cross-sill beneath the rails, to support them and keep them from spreading apart.

Cross-tim'ber. (Shiphuilding.) One of the flour-timbers of a frame, resting at its middle upon the keel. Butted against its heads are the heels of the first futtocks. Alongside of it are half-foor timbers, whose hecls butt against each other over the keel.

Cross'-trees. (Nuutical.) Timbers athwartship in the tops, resting on the trestle-trees, to spread the shrouls of the mast above and support the frame of the topl.
Cross-vault'ing. (Avehitcelure.) A eeiling formed ly the intersection of two or more simple vaults of arch-work.

Cross-weav'ing Loom. A loom for weaving with a crossed warp.

Cross-web'bing. (Saddlcry.) Webbing stretched transversely over the saddle-tree, to strengthen the foundation for the saddle-spat.

Cro'ta-lo. A Turkish musical instrument.
Cro'ta-lum. (Music.) An ancient castanet, used in the rites of Cybele.

Crotch. (Nautical.) A forked post for snpporting a boom or horizontal spar.

Crotch'et. 1. (Surgicil.) (Fr. crochet, a hook.) Applied to surgieal and other instruments of a hooked form derived from the French; as the craniotomy or placente hooks.
Specifically, a curved instrument for extracting the fetus.
2. (Printing.) A bracket ("[]").
3. (Nouticul.) A forked support. A crotch.
4. (Fortification.) An indentation in a covered way, oprosite to a traverse.
Croud. A erypt, or under-croft of a ehurch.
Crow. 1. An iron har used as a lever ; it had usually a bent end, which was freifuently forked, and may have been

Fig. 1526. named from its fancied resemblance to a beak.
2. Formerly, the beak or rostrum on the stem of a war-galley. Also a device formerly used, consisting of a pivoted lever and chain with hooks for engaging an enemy's vessel or pieking ott her men. A corvus.

Crow-foot. 1. (Nautical.) A contrivance for suspending the ridge of an awning. It cousists of a number of cords depending from a long
 block called an euphiroe or uphiroc.
2. (Furtification.) A crow's-foot or calloop. Sue Calitrop.
Crowle. An old English windinstrument.

Crown 1. (Architcturc.) a.
Crozes.
The vertex of an areh.
b. The coronce or upper member of a cornice.
2. The dome of a furnace.
3. A size of paper, 15×19 inches.
4. The hub or canon of a bell.
5. The upper surface of a hat body.
6. An English silver coin ; ralue, 5 shillings.
7. The part of a cut gem above the girdle.
8. The part of an anchor where the arms join the shank.
9. The stepl face of an anvil.

Crown-gate. The heal-gate of a canal-lock.
Crown-glass. Glass made by llowing and whirling, changing the ball of glass into a glole and eventually into a disk attached to the end of the ponty. Window-glass is made in this manner. Crown-glass is a finer variety, a compound of sili-
cate of 1 ntash, or suda, and silicate of lime, - silica, 63 ; potash, 22 ; lime, 12°; alumina, 3 . It is much harder than the glass into whose coraposition lead enters, ant which is called flint-glass.

Bohemian glass, iv its composition, is similar to the above in respect to the absence of lead in notable quantities. It is a silicate of potash and line, with a little silicate of alumiua. It is very hard, transparent, and difficult to fuse.

Crown-glass is made in round disks by the following procens:-

The materials are fritted in a reverheratory furnace, and then melted in a pot. A lump of glass sufficient to make a table of nine pounds weight is extracted at the end of a blouing-tube, and is dis-

tended into a pear shape by blowing through the tube and rolling on the marver, which is a castiron slab on a stand. Being softened by heat at the mouth of a small blowing-furnace, it is rolled on the marver and blown till it assumes a more spherical stape, but has a conical ent, which is remored as the glass approximates a spherical form, being blown as it is rolled on the brellion-ber. Being again heated at the blowing-furnace, rotation and blowing being perseverel in, it becomes splerical. It is then presented at a larger furnace-hole called the bot-toming-hnle, and being rapidly rotated becones oblate. A pontil tipped with molten glass is then applied to the center of the flat portion, anl the blowing-tube is detached by touching the neek of the globe with a cold wet iron. This leaves a hole in the end from which the blowing-tube was detached, and the article appears as shown at the sight-hand upper corner.

Heat and rotation being still applienl, first at a furnace-opening of moderate size called the nose-hole, and then at a much larger one called a Flashissfuncace (which see), the bole becomes more and more enlarsen as the article becomes more and more oblate. Finally it fies open with a sharp rustling noise, and appears as a flat plate, called a tnole, adhering at its central. thicker portion, the bull's-cye, to the pmisit, by which, during the later portions of the process, it was rested on the hook in the balf-
wall before the furnace, which formed a partial sereen for the workman.

When it has cooled sufficiently to he rigisl and not liable to bend or collapse, it is placed on a fork, the pontil detached by the application of a cold iron, and the table placed in the amealing arch or kiln, where it rests on its edge for perhap st wenty-four hours, gradually cooling. The annealing-arch is termed a lecr, and this is often made continuous; the trays holding the ware traveling from the hot to the cool end, being pusbed along as the trays of recently made glass-ware are received at one end, while the contents of the trays at the discharge-pnd, having cooled suffiriently to bear handling, are removed.

The size of a table or disk of crown-glass is ahout 52 inches, and a pot holding one half-ton will make about 100 tables.

Crown'ing. 1. (Machinery.) The central bulge or swell of a band-pulley.
2. Convex at top ; opposed to dishing.

Crown-pa'per. Paper which formerly had the crown for a water-mark. Its size is 15×19 inches.

Crown-piece. A strap in a bridle, head-stall, or halter, which passes over the head of a borse, its ends being buckled to the cheek-straps.

Crown-post. (Carpentry.) A vertical post in a truss, supprting the crown-plate in a king-post truss. A hing-post.

Crown-saw. A saw of cylindrical shape, with teeth on the end and operated by a rotative motion. The trephine was the first of the class. It is used for making buttons and markers, sawing staves, brushbachs, chair-backs, etc.

Crown-saws of large size are made in sections, riveted to the outside of a strong ling, and carefully hammeresl, so that the plates constitute one continuous eylinder ; the edges of the

Fig. 1523. plates making butt-joints with each other. The ring is fixed to the surface. chuck of a lathe-mandrel, by means of hook-bolts h, and the work is grasped in a slide-rest, which traverses within the saw and $1^{\text {mallel }}$ with its axis.

Smaller cylindrical saws are marle of a single, bent steel plate, rolled to form, and brazed at the joint. They are used in barrelmaking machines, to saw stares from the bolt.

Fig. 1529 shows a crownsaw and hit by which the sheares for blocks are cut out

Sheave-Saw. and bored simultaneously ; b is the stock to which the cylindrical saw and the center-bit are attached.

Crown-sheet. The upper plate of a locomotive

 fire-box.Crown-tile. A common, Hat tile. A plane-titc.

Crown-valve. A domeshaped valve which is reetically reciprocated overa slotterl box.
Crown-wheel. One in which the cors are perpendicular to the plane of motion of the wheel. It is also calle, a comirate or face wheel. Comtrate is a term applied to this
whel in horology: Fucc-wheel indicates that the teeth project firom the circular face, as distinguished from the 1 riphery or rim.

Crown-wheel Es-cape'ment. One so named because the escalpe-wheel is a crown ratchet-wheel whose teeth escajle from the pallets of the verge. A vertical escipement.
Crown-work. (Fortification.) An extension of the main work consisting of a bustion between two curtains, whith are terminated by helf-bastions and commamed liy the main-work.
Crow's-bill. (S'urgicel.) A bullet foreepis.
Crow's-foot. 1. (Well-boring.) A bent hook adilpted to engage the shoulter or

Fig. 1531

a

 collar on a drilt-rod or well-tube while lowering it into a well or drilled shaft, or to hold the same while a section above it is being attaehed or detathel (a, b, Fig. 1531).
in well-boring the auger or atrill-rod passes through a hole in the staging, but the crow's-foot is too large to jatss
Chow's-Foot. through the hole, and is thus the. means of holding the seetions of rod or tubing which are suspended therefrom.
A scotch answers the same purpose. It is a bent bar whieh slips on the rod and forms a resting-plaee for the shoulder or collar.
2. (Fortification.) A ball armed with spikes, so arranged that one is always presentel upwardly; such are strewn on the ground lor defence against the approach of eavalry. A celtrop.
Crow's-nest. A tub or hox at the top-gallant mast-heal, for the lookout-man who watches for whales.
Croy. A mound or structure projecting into a stream, to break the force of the water ou a particnlar part and prevent encroachments.

Croze. 1. (Coopering.) A tool used for making the groores for the heads of easks, after the ends of the staves have been leveled by a tool called a sust-plene, which is like a juck-plene, but of a cireular plan.

The croze resembles a gage, except that it is very much larger; the hewl is nearly semicireular, and terminates in two handles. The stem, which is proportionally large, is secured by a wedge; the cutter is composed of three or four saw-teeth, closely fol-

Fig. 1532.

Cooper's Croze.
lowed by a hookel router, which sweeps ont the bottom of the groove.

In anotluer form, it is a cireular plane with a gouge-bit.
2. (Hut-making.) To moroll and re-roll a hat-body so as to change the surfaces in contact, and prevent their felting together in the process of felting hats.

Croz'ing-ma-chine'. (Coopering.) A machine for cutting on staves the croze or groove for the reception of the edge of the head.

Cru'ci-ble. 1. A melting-pot of an earthen composition or of refractory metal, adapted to withstand high temperatures. They are meutioned by the Greek authors, and are shown in the ancient

Egyptian paintings, and were early used in locimastic oprerations, and were made by the old alchomists for their own use. Metallie crucibles are of platinum, silver, or iron. S'ce Faraday's "Clumital Mlanipulations."
Agricola, the celebrated metallurgist, and Glauber, a noted chemist, both in the sixteenth century, mate their own erucibles.

Hessian erucibles are inade of the best fire-clay and coarse sand. They are the eheapest, and answer lor all uses where a single melting will suffice, as in refining or experiments. They come in nests of sizes from two inehes up to eight inches high. They are used in this conntry in all expuments where dluxes are needed; are round at the bottem, but ale furnished hoth romed and triangular at the top. Wealgwood made erueibles in his time of a closi and fine texture, but liable to crack. In France an excellent crucible is made at Pirardy of a sort of kaolin and fine sand. They are made very thin, turned up on a potter's wheel; are tall and slim, lend easily at a ligh heat, and are liable to track in cooling, hut are used largely ly the melters of bronze and hass in l'aris. "The Duteh made what were known as "blue jots," or "black-lead pots" of clay and graphite in the early part of the seventeenth century; and in their day these were the safest meltingyots, heeause they would stand four or five meltings, and submit to considerable change of temperature, before cracking. The graphite was known by them as pot loot, or potter's lead, from the use of it. In England many kinds of clay were used; but the chief dependence was on that known as the "Stourbridge clay," which, when mixed with pulverized coke, made a useful and cheap melting-pot, but it could not he cooled off and used again. La 1827 the late Mr. Joseph Dixon began the manulacture of crucibles by mixing the graplite, otherwise known as plumbago, found in the State of New Hamplire, with a clay used by the glass-makers, for neltingjuts; and these were much hetter than the butch 1ots, being able to stand very great and sudden changes of temperature. Mr. Dixon saw beantitul specimens of tuliated graphite, lnought home as curiosities by the captains of latia ship's that had tonehed at Ceylon ; ant, finding this better than the New Hamplsire graphite, he procured a shipment in 182s, heing the first lot of Ceylon graplrite urer brought to the United States, and the first known use of foliated graphite for crucible making. About 1830 Mr . Dixon adopted the "Ditch pipeeclay" to mix with the Ceylon graphite. To ten pounds of ground graphite, seven pounds of clay, two pounds of the kaolin, and one pomsd of tine 'phartz sand, add water, to make the mass plastic enough to be turned up on a potter's wheel to the desired shape. To the above, for stecl melting, there shonld be alded half a pound of pulverized clareoal or eoke, as may be most convenient. The pots are dricd carefully, burned in a potter's kiln to a white heat, and are then lit for use. In use, crucibles should be placed in the fire, and not on it. The fire should smround the crucible to the very tol, and a blast, if used, should not strike the ericibles direet. They shonld be kept in a dry place, the least dampness heing liatal. If they are well made, no ammaling is needell, the ohject of annealing being only to complete the shrinkage that shouk be fully accomplished in the "burning" by the ertible-maker. For melting brass, copper, gold, silver, or alloys of metals, a Dixon graphite erucible shonld rum from twenty to forty meltings, according to the fuel, draft, care, or other circmmstances. For melting steel they win run from four to six times, and longer by a
systematic cleaning the slag from the surface after the mold, which is then pressed carefnlly downward,
cach melting, and coating the crucihle with a mixture consisting of tire-clay, graphite, charcoal, and pure fine quartz sand. in haudling cracibles the tongs shoulid fit so as not to bend them in lifting from the fire, as the frequent bending will crack the crucibles lefore they are worn out.

Crucibles are made at the Dixon Works, Jersey City, New Jersey, of all sizes, from those that hold but two ounces ap to six hundrel pounds capacity. Covers are made tor all sizes. Retorts of all shajes and chemical ware are also made of the crucible mixture. It will stand a very bigh heat, but is wasted by most thuxes. At the mints large crucih? es are used, and dippers are made of the same material, with which the metal is ladled out. Stirrers are also mate with which to stir up the liquid metal.

The crucibles are sized ly figures denoting the number of kilogrammes of brass they will holl, No. 1 holl. ing $2 \frac{1}{3}$ pounils, No. 10 holding 2.2 pounds, and so on up to No. 300. Sce Ghaphite.

Crucibles for glass-makers are made of a mixture of burned live-clay very coarsely ground, with the raw clay and a portion of the old pots ground np .

Several forms of meltingpots are shown in Fig. 1533. a and b^{*} are refiners' pots for gold and silrer ; c^{\prime}, a fonndry-pot; d, a steel pot ; e, crucible lid and stirrer of the saume intractable material.
2. A hasin at the bottom of a furnace to collect the molten metal.

Cru'ci-ble-mold. Crucibles are molded on a wheel or in a press. Difficrent materials, qualities, and sizes require different treatment. One common ordinary moile of forming erucibles for melting steel. in the process of making, is shown in Fig. 1534, 1

and 2 , which show the cast-iron mold with a lardwood core; the larger illustration shows a mold with handles for lifting. The lump of clay is placed in the mold a, the core e is forced down upon it, and driven clown by a hammer until the rod in the center enters the inole in the bottom b of the mold. e is the circular plate which molds the upper edge. In removing, the core c is first carefully lifted and the hole in the bottom closed by a plug of clay. The mold a is then lifted from the bottom b and placerl on the jost shown at 3 ; the top of this is somewhat smaller than the opening in the bottom of
the mold, which is then pressed carefnlly downward,
leaving the molded crucible on the top of the post. The upper margin of the crucible is then pressed in by hand, assuming the form represented at 4 ; the circular cover and eylindrical stand-piece lieing also shown.

Fig. 1535 shows a form of press for molding crncibles, in which the pistou forces the clay from the

cylinder into the mold abore. The bottom of the mold corresponds to the base of the crucible, and the core is held in place by a locking-plate ahove. The clay in the mold is cnt off from the mass by a wire which mass between the cylinder and the mold.

In the molding of crucilles on a throwing-table the latter has a rim-base for the mold, and is rotated by power applied beneath. The plaster-of-paris mold has a detachable botion, and its cirenlar body is divisible vertically into two halves secured by a hoop. The mass of material, being placed in the

Fig. 1:36

mold, is fashioned by a hinged molding-blade, which corresnonds in shape to the inner surface of the intended crucible, and by pressure builds up the plastic material against the inside surface of the mold. The surplus material at top is cut off with a knife. The blade is withdrawn, and the crucible, with its mold, is removed to dry and harden, previous to burning.

One other mode of molding is sometimes practiced:
the slip, of the consistence of cream, is poured into molds made of stuceo, and allowed to stand in the mold until a suffieient quantity will adnere to the mold, when the remaining liquid portion is poared out. The mold and its inmer coating of slip are removed to the oven, when the slij contracts and may be renoved. When dry, the biscuit crucible is ready for baking.
Fig. 1537. Cru'ci-ble-ov'en. A heater for crucihles, to dry them before boming in a kilu. Plastic clay is moldel into grecn crueibles, assunes the biscut form by dryiug, and is bumed to constitute a "rucible.

Cru'ci-ble-tongs. I form of tonds for lifting cructhes fiom the furnace.

Cru'et. A jar or bottle for condiments or flavors used at table upon meats, retc. A caster. A cruet-stund holds a number of suly little vials.

Cruive. A salmon-trap of the nature of a weir. It has stone walls, which eross the river, and an intermediate chamber of slats or spars which admit the fish but oppose their exit.

Crumb-re-mov'er. A tray for receiving the crumbs swept up by the crumbbrush.

Crup'per. (Harncss.) A lonp which
Crucible.
Tongs. passes heneath the tail of a lorse, and is connected by a strap with the saddle, to keep it from riding forward. The rounded portion E B is the erupper-loop.

Fig. 153 S.

Crupper.

Crup'per-chain. (Nrautical.) A chain for lashing the jib-boom down to the bowsprit.

Crush'er. A mill or machine for

Fig 1539. mashing rock or ore See Onecrusher; Stone-chusher ; Stimp.
Crutch. 1. A staff with a crosspiree to support the person beneath the arm-pit. The foot is shod with a rubber pad, or may have a spur to prevent slippung.
2. (Iforoloyy.) The fork at the end of the arm which depends from the axis of the anchor-escapement. The pendulum-rorl is contained within the limbs of the crutch, and vibrates the anchor, itself also receiving a slight impulse from the train.
3. (Siddllery.) One form of pommel for a lady's saddle, consisting of a forked rest which hoids the legg of the rider.
4. (Shipurighting.) a. One of the struts or stay-plates in the prow or stern of in iron vessel, which supports the sides where they nearly approach each other. They occupy a position corresponding to that of the dead-rood in a timber ressel, and are used to prevent the crushing
in of the plating.
b. A knee-timber placed inside a ressel to secure the heels of the caut-timbers abaft.
c. A smport upon the taffrail lor the boon.
d. A forked row-loek upon the gunwale.
5. (Founding.) The cross-handle on the end of a shank; (a founder's metal-ladle,) by which it is tipered.

Crwth. A Welsh musical instrument with six strings, played upon with a bow.
The first four strings are contucted from the tailjiece lown the hinger-loard; but the fifth and sixth, which are about an inch longer than the others, hranch from them laterally, and range about the distance of an inch from the neek.

Cry'o-lite-glass. A semi-transparent class mate from cryolite and sand, and sometimes known as fusible porcelain or milh-glass.

Cry-oph'o-rus. An instrument to ilinstrate the process of freezing by craporation. Insented by Dr. Wollaston.
It consists of two bulbs and a connecting tube, air luing expelled from the interior by heating the body of water inclosed and her-
metically closing the opening. The water being poured into one bulb, the other buib is placed in a mixture of ice and
 salt, which condenses the rapor and canses so rapid evaporation from the former buib as to freeze the water therein.

Crypt. (Masonry.) A rault beneath a church or mausoleum, and either entirely or partly underground.

Cryp'to-graph. A message written in cipher.
 Crys'tal. (Gluess.) A preuliarly rellncid kind of glass.

Crys'tal-lized Tin-plate. Or moire-métull ique. A variegated crystallized ajpearance produced on the surface of tin-plate by applying to it in a heated state some dilute nitro-muriatic acid, washing it, drying, and coating it with lacquer.

Crys-tallo-ce-ram'ic. A kind of glass incrustation. It consists of an opaupe subatance, imbectuled in a mass of colorless glass. A medallion or bas-relief is molded in a peculiar kind of clay, and inclosed between two pieces of soft glass in their melted state. The molten glass is dropmed upon the surface of the medallion, and the surface afterwards polished. The white clay seen within tle clean and highly refractive glass presents an appearance nearly resembling that of unlurnished silver.

Crys-tal'lo-en-grav'ing. A morle of ornamenting glass-ware by taking impressions from intaglio, and impressing them on the ware while casting.

The die is first sprinkled over with Tripoli powder, then with fine dry plaster and briek-dust, and then with coarse powder of the same two materials; it is placel under a press, and at the same time exposed to the artion of water, by which the sandy layers become solidified into a cast. This cast thus obtained is placed in the iron moll in whiel the glass vessel is to be made, and becomes an integral jart of the ressel so proluced; but by the application of a little water the cast is separatel, and leaves an intaglio impression upon the glass as sharp as the original die. The eake thus used seldom suffices for a second impression.

Crys-tal'lo-type. A photographic pictureonglass.
C-spring. (Fehicles.) A spring, in form like the letter C, and employed in close carriages of old style, and some modern ones. it is planted on the frane of the carriage, and to its upper phable end the suspernsion-straps are fastened.

culasse has twenty-four facets, which occupy the zone between the girdle and the collet or culct. See BrilLhast.

Cu'li-na-ry-boil'er. A cookingvessel for holding water in which victuals are boiled. Its form and appurtenances are adapted to the customary uses of peoples, - to be swoung

Cube Su'gar-ma-chine'. A machine for cutting up loaf-sugar into little cubes for table use consists of a set of eircular saws which rednee it to the form of long square sticks. These are dropped into untight grooves in the machine, of which there are a number side by side, and of which the bottoms are removable plates. These form stops, and at the regulated listance above are a pair of knife-edges whieh move inward toward each other and divide all the columns of sugar simultaneonsly. As the knifeedges close, the supporting-plates open and allow the cubes to drop.

Cuck'oo-clock. One in which the hours are sounded by wind proceeding through reeds which simulate the voice of the bird after which it is named.

Cuck'old's-neck. A knot by which a rope is secured to a spar, the two parts of the rope crossing each other and seized torether.

Cu-cur'bit. An earthen or glass ressel usel in distillation, and having a roundel shape like a gourl ; hence the name. It contains the lipuid to be distilled, and is crowned by the alembic. See Alembic.

Cu'cur-bit'u-la A cupping-glass.
The cucurbitula cruenta is designed to draw hlood.
The cucurbitulu sicca is for dry enpping, and is a local vacuum-apparatus.

The cucurbitula cum forro is armed with iron.
Cud'dy. 1. (Vauticul.) a. The cook-honse or gatley of a vessel.
b. A small double-decked portion of a canal-boat or lighter, forming a cabin for the crew.
2. A lever mounted on a tripol for lifting stones, leveling np railroad-ties, etc. A lever-jach.

Cue. A staff with whose enl the billiard ball is struck. It is usually shod with vulcanite or leather. This end is known as the tip.

Cui-rass'. An arnor for the body; formerly of leather, but now of metal. It consists of a breast and a back phate, lapping on the shoulders and buckled together bencath the arms.

It sueceeded the hauberh, or coat-of-mail, and the hacqueton, or padded leather jacket, about 1350 . It has survivel all other forms of defensive armor for the body, being yet in use in the heavy cavalry of some Enropean armies.
The surcoat or jupon, which usually covered th:e former styles of armor, was haid aside about the time the cuirass was adopted, say the reign of Edward 111.
The early cuirass of the Greeks was of linen, which was afterwards covered with plates of hom or scales of horse-boofs.
The Roxalani wore leather with thin plates of iron. The Persians wore a siluilar cuirass. The Romans introduced Hexible bands of steel, folding over one another during the flexure of the hody.

The Howan hastati wore chain-mail (huherhs). The same nation, as well as the Greeks, used the back and breast plate.

Cuisse. Plate-armor for the thigh. Cuish; cuissot; cuissart.

Cu-lasse'. (Diamond-cutting.) The lower, faceted portion of a brilliant-cut diamond, which is imbedded in the setting, or is below the girdle. The
over a fire, stand on a hearth, yest on the bars of a grate, set within a pot-hole of a stove. In Fig. $15+2$, the kettle is placed in an openbottomed shell of similar shape, but of size sufficient to allow the calorie corrent circu. lation between them. A valve in the kettle-lid allows escape of steam beneath the lid of the shell.

Another form Jas a duct for leading off steam and efthuria. The

Culinary-Eoiler. lid las a hinged portion with a spont which conducts the steam to a pipe which leads it to the fire-ehamber.
The boilers of nations unaciuainted with metal or pottery were usually plaited ressels of roots or rushes so closely worked as to be water-proof, or treated with some water-resisting substance. The latter raried with different nations and tribes, according to the materials at hand.

Some of the Nortb American ludians made their boilers of long, tough roats wound in plies
 around a center, and shaped like an inverted beehive. The water in all such vessels was heated by the introluction of hot stones from a fire kindled on the gronnd in the vicinity.
"If the Seythians do not happen to possess a caldron, they make the animal's pameh hold the flesh, and, louring in at the same time a little water, lay the bones umder and light them. By this plan your ox is made to hoil himself." - HeRoDotes, IV. 61.

The Dacotah Indians sometimes boil animals in their own skins, taking the skin off whole, suspending it at the four curners, and making use of boilingstones as usual.
The plan was commonly used in the stone age of Europe, and, no donht, of other regions. The "boil-ing-stones" are familiar objects with archrologists, and are foumd with Hint tools and weapons.
Several tribes of Polynesia and Oceanica have been discovered entirely destitute of any knowledge of boiling water. It occasioned the most intense wonder. Says Wallis:-
"It is impossible to describe the astonishment expressed by the Society lslanders when they saw
the gromer dress his pork and poultry by hoiling them in a pot. Having no vessel that would bear the fire, they hal no idera of hot water:"

Cantain C'ook says they had but two modes of cooking. - broiling and baking.

Cul'let. 1. A small central plane in the baek of a cut gen.
2. (Crluss.) Broken glass for remelting.

Cul'lis. A gutter in a roof or elsewhere.
CuI'ti-va'tor. This term, in a broad signification, includes harrows, drags, grubbers, scaritiers,

Fig 154.

Cu'titators.
scuffers, pulverizers, spiked harrows and rollers, horse-hoes, shovel-plows, and same other implements. The essential idea of cultivation is of course broater still, as it comprehends all the means of til'age, which would include plows, the dominant implement in the art of husbandry.
The tem cultivatom, in the United States, emhraces implements which are used in tending growing erops. These are: -

1. The implement specifically known as a cultivator, having a triangular frame set with teeth or
shares, and drawn by one horse, which walks in the balk between the rows of corn, potators, or other plants. The animal is hitched to the aurex of the fram, and the implement is guided by a pair of handles at the rear.
2. Single and double shovel-p.anes, which are used for precisely the same purpose, but are known as phows. Sce Shovfl-fluw.

The cultivator is an improved harrow.
The course of improvenent is not dilficult for a farming mechanic to imagine.

The ordinary harrow, we may say, is dependent for its course solely upon the direction of draft.

A gool harrow, especially for new grouml and in fields where there are occasional obstructions, is that of an A torm (a, Fig. 1544). The rear comers may be reatily raised ly a hooked stick, so as to allow it to pass a stump without swewiug the team. Better still is a bow of hickory, as in the next ligure (b) ; hy this it may be lifterl one side at once, or, ly swinging back on it, the whole harrow is lifted, to clear it of aceumblated weds, etc. This harrow is for regular service in putting in crops.
A smatler size, with a bow handle, is made to go between two rows of corn, potatons, heans, ptc., the handle aflom from the row, to suit any irgegularity in the line of plants, and also to keep it to its duty if the horse swerves from the exact path.

Another mote of athxing landles is shown in the. next figure (c), and this brings the suljept to such close relationship to the cultivator as to render it umeressary to trace the steps farther.

In comection with the snbject we must not for. get the anthor of "Horse-hocing Hushambry." Jethro Tull introduced his system of drilling crops in 1701, with the object of caltivating the jlants ly machinery. He published lis hook 1731. Lfis sys. ten remdered the cultivator possib?
The English cultivators and horse-hoes may be classed together, as no line of demarcation exists between them. The horse-hoes are designed to tend drilled erops, the prongs or shares passing along the balks between the rows of plants, - wheat, barley, oats, rye, tumins, beans, etc. This pemlers it necessary that the shares shonkl have the same gace ol width as the drills; but this is all that is peeculiar about them, and is a question of proportion, not wineiple.

The tendency in all economical farming on an extembed scale is toward reducing manual labor. Cultivators and shovel-plows have to a great extent supersented the hoe in corn-culture, anel the English horse-hoc is clesigned to do the same in the culture of smaller drilled grain. A man ran kill more weeds in a day with a double-shovel plow or cultivator than he can in a week with a hoe, coteris paribus.

Wilkie, of Teddington, Scotland, is the inventor of the cultivator. He invented the plurality of shares, the expanding frame, and the caster-wheel. His cultivator (shown at d, Fig. 1544) has a frame of triangular form. The apex is supported on a caster-wheel, and the rear of the frame upon a pair of wheels. The share-frame is so suspended from the traction-frame as hy a parall 1 movement to be raisen hollily, or lowered, by means of a single lever mojecting at the rear. The lever catches in notches in the segment-bar, so as to maintain the desired adjustment.

The teeth are curved prongs which enter the soil obliquely and raise weeds to the surface; the trash passes up the incline, and falls over the rear ends of the teeth, which are thus self-cleaning.

Finlayson's cultivator e (Pritish, 1826) is made (curved, flat share, whose depth is regulated by a of iron, and the prongs are arranged on parallel,

Fig. 1545.

Fig. 1546 shows one Ameriean form of cultivator, in which the plows are managed by levers in driving and riding, and by the handles when walking behind the machine. The plow-beams are gimbal. jointed to standards depeniling from the axle, and have vertical and lateral movement by two handlevers.

Fig. 1547 shows a form in which the plow-frames are attached by an arched yoke, which pernits in-

Fig. $154 \overline{7}$

dependent motion. Their clevises embrace posts shackled to the earriage.

Cul'ti-va'tor-plow. A plow usell in tending crops, sueh as shocel-plou, a double shurel-plow, etc. See Celfivator.

Cul've-rin. (Orduance.) A cannon of the sixternth eentury ; from 9 to 12 feet long, $5 \frac{1}{2}$ inches bore, and carrying 18 -pound round-shot. A demiculverin was a 9 -pounder.

Cannon in those times were named after reptiles and rapacious animals; as, for instance, -

Culverin (coulcuorine. Fr.), serpent, from the suake (colubcr), which was formed ajon it to constitute handles.

Musket (mosquct, Fri), sparrow-hawk.
Iragon (Fr.) was the name of a certain form of musquet, and survires in the word dragoon.

Fulcon was an ancient name of a certain grade of orinanee.

Cul'vert. A drain or mater-way of masonry heneath a road or canal. It is a bridge or viaduct on a small seale.
Cul'ver-tailed. Davetailed. (Culver, AngloSaxon, pigeon.)

Cum'ming. (Brewing.) A ressel for holding wort.

Cu-nette'. (Fortification.) A small diteh in the middle of a dry ditch, to drain the water off the place.

Cup-Surfaced Loner.

Cup. 1. The step ot the capstan-spindle.
2. A hollowed portion or ohject, to lookl a liquid.
3. A glass placed above a scarified place, to extract blood in cupping.
4. One of a series of little domes (A) attached to a boiler-plate and serving to extend the fire-surface. In Fig. 1548 the device is shown as attached to a Cornish-boiler, the cups projerting into the water, and tubes E passing through the water-champer. C are pipes connecting the jacket on the interior water-space, D, the onter water-space, $E, \mathrm{I}_{\text {assiag }}$ to admit air to the fire-bridge. c, air-indnction valse.

Cu'pel. A porous ressel, usually made of prulverized bone-ashes, and employed in assaying for separating the

Cupel-Muld precions metals from their oxy. dizable alloys. Cuplelsaremate in a molle with a die having a boss-like projection for forming the cavity for containing the specimens to be assayed. Those used in the Britishmint are made of the cores of ox-homs burned and pulverizal.

Cujuls of hone parth are lescribed ly the great Arabian chemist Djafar, who lived about A. D. 875. He was the riscoverer of nitric acid and aqua-regia. See Alembic.

Cu'pel-la'tion. An alloy of silver and lead is exposed to a rel heat on the floor of a muftle, where a current of air plays over i's surface. The leat is converted into the protoside, melts, and runs oill, leaving the refind silver.
In assaying: silver it is purifierl in a small cupel cubjected to an mydizing lorated hast. This leaves it puere silver, the lead piosing into the porous vessel.
The assay of goln is more complex. The copmer and other oxydizahle motals are remored by cupallation with leat. A large excess of silrer is then added to the alloy, which is rolled into n sheet called a cornct. The silver is dissolved out with nitrie acid, which leaves the gold as a sponye. This is called marting.
The process of refining silver with lead in a furnace is described by Ezekiel, and is regarded by Napier as substantially coincident with the modern cupellation.
Cu'pel-lo. A small furmace for assaying.
Cu'pel Py-rom'e-ter. Analloypyrometerwhich
indicates the heat by incippent or total liquefaction.
Cu'po-la. 1. (Ȧchitecture.) u. A lantern or small apratment on the sumnit of a dome.
b. A splerical or sphuroidal covering to a huilding or any part of it.
2. (Metallurgy.) a. A furnaer for melting metals for casting. See Curoli-FtiNaCE,
b. A fumare for heating shot to be fired at shipping and other intlammahb ohjerts.
Cu'po-la-fur'nace, A furnite for melting iron in a foundry.
The name is derived from a cupola or dome leading to the chimmey, which is now frenumently omitted. A culpola of ordinary size may be thus lescribed :-

At the base is a peelestal of brickwork 20 to 30 inches high, upon which stands a cast-iron cylinuler from 30 to 40 inches diameter, and 5 to 8 feet high; this is lined with fire-clay, brick, or other refractory
matter, which contracts its internal diameter to from 18 to 24 inches. The furnace is open at the top for the escape of the flame and gases, and for the almission of the charge, consisting of pig-iron, waste or old metal, coke, and lime in due proportion. The lime acts as a llux, and much assists the fusion ; chalk or oystershells ture 11sed where conveniently accessible.

At the back of the furnace are several tuyere-holes, one above another, through which the air is urged by a blower. is the lluid metal collects below, the air is admitted at a higher aperture, and the lower bast-hole is stopped.
The front of the furnace has a large oprening at which clinkers, slag, and unconsumed fuel are renoved when cleaning the furnave. This aperture is closed by a guardphate, fixel on by staples attached to the iron case of the furnace. In the center of the guard-plate is the tappinghote, which is closed during the melting by a ramming of sand.

Some furnaces are made rectangular or cylindrical, with separate plates like staves, bound by hoops, so that the
 furnace may be taken down if the charge should accidentally become solidified therein.

Cujolas are built on a scale much exceerling the one fust ilescribed; the capacity of such may be gathered from the articles Casxon, ANvil, Statrary, beal, ete. A large cupola for anvilcasting is 74 inches in diameter, lined with firehrick, amb having a melting caparity of twelve tons. It has three tuyeres, 9 inches area at the month, and situate on three sides of the circle. The holes are in four series. The blast, for this and three other furnaces, is from two revolving fans, 5 feet diameter, anel making 1,000 revolutions per minute.

In Fig. 1551 is shown a combination of the reverberatory and smelting-furnace, in which the

Fig. 1551.

CURB.
charge is first heated on the liearth of the former, and from thence rans or is polerl into the cmpola. The heat passing from the latter is utilized in the preliminary heating of the charge.

Cupped. (Jachincry.) Depressed at the center. Dished. The depression around the eye of a millstoue is called the bosom.

Cup'ping In'stru-ment. The most ancient form of euphing was a sucking action by means of the moath. Job refers to sucking the poison of asps; from a wound, doubtless. Machaon "sucked forth the bloot" from the wounds of Menelaus. Eleanor, the yneen, drew the poison from the wounds of her hushad, the English king. Tubes were early substituted for the lips, to avoid contact of the prirulent matter with the mouth. Blood-letting is still performed by the Hindoos, Chinese, and Malays, by means of a copper cup and tube, the mouth being applied to the latter.

In the late Dr. Abbott's museum of Egyptian Antipuities, New York City, are three of the ancient (culping-horns, similiar to those used throngh the East at the present time. The operator exhausts the air throngh a sniall hole at the point of the hom, to which he applies his month, and then covers it with a piece of leather, which is attached to it for that purpose. They were found in tombs at Sakkarah.

Cupping-instruments are described by Hipnocrates 413 B. C., and by Celsus 20 B . c.

Hero of Alexandria states that the instrument is intended to be nsell without firc, referring to the practice then in rogue of rarefying the air within the tube as a means of obtaining a partial vacumm. The cupping-glass (-1, Fig. 1552) described by 1 Iero, has an onter chamber with an open mouth α, and an inner chamber b, dividel from the former by a diaphragm $f ; m$ is a ralve which governs the opening e in the diaphragm; the valve d governs the opening e by which the chamber b is connected with the extermal air. The valve d being opened and the ralve m closed, the mouth is applied to the opming e, and a powerful inspitation is taken, rarefying the air in chaniber b. This is cepeated until the varmum in b is as perfect as ea: be obtained ly mealls of luman inspiration an l the museles of the mouth. The opening of "is then applied to the skin of the patient, and the valve m heing turned "into the void thus created [in 1] both the flesk and the matter about it will bes hawn up throngh the interstices of the Hesh, which we call invisible spuces or pores."

Contrary to common opi iion, glass was well known in Egypt 1500 years before Hero.

In the cupping-apparatus B (Fig. 1552), the glass cylinuler has a lip attacherl suitable for application to the skin, or to the nipple when used as a lreastpump. A central rol a has a disk with lancets which act as scarifiers, and the air is exhatstenl from the cylinder loy means of a piston in the tube b attached. Detached from the hlood-receiver ρ, the airpump may be used as a syringe.

In the cupping-in strmment C the receiver a is connected by a tlexible jipe b mith the mozzle of an ordinary syringe c. The sides of the eoncentric chamber atford an extended hearing for the eup, and prevent its being driven into the bolly by the pressure of the atmosphere.

In the instrument D the glass has an elastic bulh b, ly which the partial exhaustion is effected, and has also an adjustable disk prorided with puncturing points to lance or irritate the shin.
E (Fig. 155)) is a puncturing and cupping apparatus, in which the scaritim is placed axiaily viathin the hollow piston-rod c, which works in a
stuffing-box on the cylinder g. In using, the air is exhausted from g by the motion of the piston e, operated by the handle d. To puncture, the needlo-

bar b receires a quick downward thenst, forcing the needles on K^{\prime} into the protulnerant flesll within the cup. The spring returns the needle-har and diak to position.

Dry cupping is the application uf air-exhanster] cups to an unscarified flace to excite the part, and on an extended scale is known as a Derithatos (which see). This was patented in England ly N. Smith. 1802. The cup is applied to the patient topically, or an arm or log may he plaetal within a suitahly shapecl chamher, a Hexible inllia-rubber lip, adhering to the frerson and exclniling onter air when the air-pump is rorked. In the larger form the patient is inclosed in the chamber all but the heal, or eutirely, as in the Anf-nath (which see). The artion of the skin in each case is cxcited by the partial removal of external atmorpherie pressure.

Cup-valve. (Steam-enginc.) a. A cup-shaped or ennical valve, which is guided by a stem to and from its flaring seat.
b. A form of balance-value which opens sinultaneously on top and sides.
e. A valve formed by an in. verted cup orer the end of a

Cup-Falve. pipe or opening.
Curb. A fortified edge or marginal structure, to contine or protect an object, or maintain its shalue asainst external or internal pressure.

1. (Hydruulic Enginecring.) a. A stoned or hoarded structure around a well, to keep back the surrounding earth. In Fig. 1554 is shown the curb of the pumping-well of the Chicago Water-Works, which was sunk 29 feet, mostly through quicksand.

Cylindrical Well-Curb of Chicago Water-Works.
It was $31 \frac{1}{2}$ feet internal, 37 feet external, diameter, built of hard briek laid in hydraulic mortar, and plastered inside and out. It was banded every three feet with land-iron, and weighed 440 tons. It was constructed upon a shoe of 32 tons weight, made in
 eightsegments bolted together, and the interior was dredged out without removing the water, toavoid the unsettling of the enginefonndations in the vicinity.
In sinking the curb through dry strata or those in which the water may be removed hy pumping, the carth is excavated by digging as the work jro-
 ceeds, and building up as the structure deseends. In sinking wells by sections which are curbed before another section is excavated, the earth is removed from the central part andstruts inserted, to
hold the upper section while the other is built beneath.
lron curbs are of boiler-iron or of cast-iron seg. ments bolted togetber, rings being added at the top as the structure descends. The well at Southampton, England, was some hundreds of feet in depth, and curbed in this way. It was intended to be artesian, but the water did not thus respond.
b. A boarded structure to contain concrete, which hardens and acts as a pier or foundation.
c. The outer casing-wheel of a turhine. It is a cylimder inserted into the floor of the forehay, inclosing the wheel which rotates within.
d. A curved shronding which confines the water agamst the lloats or buckets of a Scoop-wheel or Bbeast-whele (which see).
c. The inclosure which leads water from a forebay to a water-wheel. Also called a momile.
2. A breast-wall or retaining wall to hold up a bank of earth.
3. The edge-stone of a sidewalk, pavement, or trottoir.
4. (Carpentry.) a. The wall-plate at the springing of a dome.
b. The circular plate at the top of a dome into which the ribs are frameel.
c. The wall-plate on the top of the pemment portion of a windmill, on which the cap rotates as the wind veers.
5. An inclined circular plate around the margin of a soap or salt kettle, to return what boils over:
6. (Iframess.) A elain or strap behinul the jaw of a horse, commectel at its ends to the rings on the upper ends of the liranches of a stiff-bit, and forming a fulcrum for the branches, which act as a lever. Sue Bit.
Curb-beam. A beam of a wooden britge to conline the rom material.

Curb-bit. A stiff-hit having branches by which a leverage is obtained npon the jaws of a horse. The lower end has rings or loops for the reins, and the upper end has loopss for the curb-chain and the cheek-strops of the head-stall. The cury-chain has usually twisted links, and is fast by one end to the loop of the off branch, and is liooked to the loop of the norr hranch. It forms the fulcrum for the leverace of the bratuches. See Bir.
Curb-pins. (Horology.) The pins on the lever of a watch-regulator which embrace the hair-spring of the balance aul regulate its vibrations.

Curb-plate. The wall-plate of a circular or elliptical dume or roof.

Fig 1 º̄b.

Curb-Roof

Curb-roof. (Building.) A roof with canted slopes; having two sets of rafters with different inclinations. Otherwise called a Mansard-roof, after the French architect who frequently adopted it ; or a gambrel-roof, from its crooked shape, like the hind leg of a horse.

The vien on the left represents a section of roof. A is the rafter, the foot of which projects over the phate $B . \quad C$ is the cornice, in whicle is built the gutter, the metallic lining of which extends nearly to the top of the plate $B . \quad E$ is a bed-nold corering the ends of the rafters. F, slates or shingles running over the edge of the bet-mold E. The view on the right shows an eleration of oue of these roofs with dormer-window.

Cur-cullio Trap. A tray, or a cincture of fiber, attached to the trunk of a jlun, apricot, or other cur-culio-ravagel tree, to intercept the insects which climb up the hark.

Curd-break'er. A frame of wires or slats which is workell to and fro in a vat of cheese-curds, to break the latter into small pieces and enable the whey to drain off. A curd-cutter.

Curd-cut'ter. A spindle with revolving knives on an axle, for cutting the curd to expedite whey. (b, Fig. 1557.) A nother form of curd cutter (a) is a hoop with a diametric knife having an archel stem and wooden handle. It is used by an up-and-down motion, the curd heing in a tub.

Curl'ing-i'ron. A heated roul, or a tube with an internal heater, arount which hair is bent and pressed to curl it.
The curling-iron of the Romans was hollow, and named calamustrum, from its resemblane to a reed (culamus). The use was common among hoth sexes in the imperial city. It was the duty of the slaves. The same practice, there is no doubt, obtained in Egypt. The Jadies of the latter land prided themselves in magnificent coiffures, as we see in the works of Lepsius, Rossellini, Champollion, rte.

The beards of the kings of Niurvel and othes: kingdoms of the basin of the Euplutates and Tigris were no doubt indebted to the curling iron or tongs; their beards fell in splendid ringlets over the throat and chest.

Curl'ing-tongs. A tongs having one round member and one semi-tubular, between and around which hair is wound to curt it.

Cur'rent. The full or slope of a platform or sheet-metal roof, to carry off the water. Gutters usually have a current of $\frac{1}{}$ inch to the foot.

A flow of water. The direction is the sct of the current ; the rate is the sliff of the current.

Cur'rent-fend'er. A structure to ward ofl the current from a bank which it may ot herwise undermine.

Cur'rent-gage. See Cernent-meter.
Cur'rent-me'ter. An instrument for neasuring the velocity of currents.

1. The Palot tube (a, Fig. 1555), whiela act by the ascension of water in a bent pipe whose lower orifice is presented squarely to the current, the indication being read by a float or graduation in or upon the vertical part of the tube.
 This is Boilean's.
2. The dynamometer current-gage of Woltmann, 1790 , is a light water-whee operated by the current, ambl having on its axis an endless screw, which opcrates toothed wheels and a register, the rate or force being deduced from the rotations in a given time.

The relocimeter is a similarly constructed instrument with a converse application, being a spiral wheel attached to a ship and showing by its revolutions the rate of progression of the vessel through the water.

The technical language in which the flow of water and its channels are known and described is as follows : -

Bcd; the water-course, having a bottom and two sides or shorcs. When the latter are deseribed as right or left hand, going down stream is assumed.

The transverse section is a vertical plane at right angles to the course of the current. The perimeter is the length of this section in the bed.

The longitudinal section or profile is a vertical plane in the course of the flowing water.

The slope or declivity is the mean angle of inclination of the surface of the water to the horizon.

The full is the difference in the hight at any tro points of determinate distance apart ; as, for instance, 8 incles to the mile.

The line of curvent is the point of maximum velocity.

The mid-channel is the deepest prart of the bed. The velocity is greater at the surface than the bed. The surface is higher in the current than at the shore wheu the river is rising, lower than at the shore when the river is falling.

Herolotus (11. 4, 5) reports the Egyptian juriests as saying, that in the time of Men [Menes] "all Esypt, except the Thehaic canton, was a marsh, none of the land below Lake Meris then showing itself above the surface of the water. This is [now] a clistance of seven days sail from the sea up the river. What they said of their comntry scemed to me very reasonable; for any onc who sees Egypt, without having heard a word of it before, must perceive, if he have only common powers of observation, tlat the Egypt to which the Greeks go in their ships is an acquired country, the gilt of the river." Wilkinson contradicts the statenent, very unreasonably.

In this connection it may be remarked that the alhuial plain at the month of the Meander, in Asia Minor, has been alvanced toward the sea, in the historic times, a distance of twelve or thirteen miles.

At Ephesus there is now a plan, of three miles width, between the temple and the sea, which has been entirely created since the days of Herolutus.

Ostia, the former port of home, is now many miles inland.

Heralotns referred (450, B. C.) to the action of the river Meander, and also stated that "the river Acheloms, which, atter passing throngh Acarmania, enspties itself into the sea oppositu to the islands Edhindes, has already joined one hall of them to the continent." - lanok 11. ch. 10.

The volume of water poured during twenty-four hours into the At diterranean by the Nile is, -
Whent low
$150,5 i 6,392,368$ cubic meters.
When high $705,514,667,440$

The Nile at the first catanot, at Assoman, is 300 fect above its level at Cairo (773 miles), and 365 fert above the Hediteramean ($378+154$ to the Rosettia mouth $=732$ miles). The fall from Assoum to Cairo is therefore alout 0.54 feet per mile; from Cairo to the Damietta month, ahont .31 feet per mile. From Assouan to Damietta mouth, an average of 0.524 feet prer mile.

The Nile deposit is estimated by Wilkinson, at Elephantine, as equal to mine fect in 1700 years; at Thebes, seven feet in an equal period.

Accorling to Herodotus, a rise of the Sile equal to 8 cubits overtlowed all Egypt helow Memphis, in the time of Moeris: "Now Mreris hal not been deal 900 years when I heard this of the priests, yet at the present day, unless the river rise 15 or 16 eubits, it does not overflow the land." - Heronotus, 11. 13. See Nilumbiter.

The mean annual dischatge of the Missisippi is caleulated at $19,500,000,000,000$ enlic feet, carryind down $812,500,000,000$ pomils of sedimentary matt r, equal to one sifuare mile of deposit 241 feet in depth.

Theriver advances into the G ulf $2 G 2$ feet per ammm. The fall of the
Lower Mississippi per mile is
32 of a foot.
Ohio per mile is
Missumi below Fort Union per mile is
Upur Mississippi below St. Paul per mile is
.42 ، "
Cur'rent-mill A mill driven by a currentwheel, and usually on board a moored vessel with stream-driven padiles.

The first notice of current-mills is the account of the recourse had to them by Belisarius, A. D. 536, when the Romans were besieged by Vitiges the Ostragoth, who had ent the fourteen aquelnets which brought water to the imperial city. The surphas water of the apueducts drove the grainmills of the city, and the reconse had by lehisarius to moored twin-vessels provided with puddles, and the mills, enabled the prople to eat hread instead of larehel wheat and frumenty.

The German crusaders in the eleventh century burnt seven floating mills on a stream in Bulgaria, a pretty fair specinen of the erusading rable.

The current-wheel of belisarius was batented by Hawkins in England in 1802, and by several other parties before and since, both there and here. See

Ctheient-whalel.

Cur'rent-reg'u-la'tor. (Telcgraphy.) A device for cletemining the intensity of the cmrent allowed to pass a given point. It usially consists of interposied coils of greater or less resistance.

Cur'rent-wheel. The current-unhel is perlaps the first application of the force of water in motion to driving machinery. The norin has heen in use for thonsands of years in Egypt, Persia, Aralia, and Syria, amd was introducell by the liomans or Saracens (probably the latter) into Spain.

The norin, as a water-whecl, has malial floats, which are sutliciently submerged in the current of
the river to be acted upon by the water and give rotation to the wheel on its horizontal axis. On the side of the wheel near its prempery are jivoted buckets, which till as they dip bencath the water, and are tipped, on rearhing their highest cevation, by contact with a fixed obstacle, thus disclarging their contents consecutively into a chute which conveys it to a reservoir. Hundreds of these wheels are working day and night the year round in the rivers and streams of Syria and Palestine. The noria has many modifications which do not come withan the denomination of current-uchect. The term Nie ' Tra is arphelel in Syria and Palestine to any device which has pots or buckets attached to a wheel or to a rope passing over a wherl, filled with water at the lowest pution of their revolution, and discharging into a chute at their highest elevation. whether worked by the cureat or otherwise. See Nolita.
The tympanum is another form of current-uhed, and like the noric has an Eastern origin. It is froquently called the lersian. Unlike the noria, it is only capalile of lifting water to a heright ahout equal to its radius, while the noria lifts water to a height nearly equal to its diameter. Sece T'Yn inand.

In the first century b. c. water-whech for driving mills were used in Asia Minor and on the Tiber. In the former ease we suphose, and in the latter case we know, that these were current-ncheds.
Straho, Yitruvins, Pliny, and Pmeopius have descrilned them at various times from 70 B. c. to A. D. 555. They were usiel on the Tiber on a large seale by Belisarins, during the siege of liome, when the sumply by the a!pueducts was cut ofl by the Goth Vitiges, in the reign of Justinian, A. D. 536. See Chainentmbl.

The tide and current wheel, creeted first in the vicinity of the north end of Lonlon Bridge, and subserpuently under its northern areh, was erected by leter Morice, a Dutchman, in 1582, and cperated force-pumps which supplied a part of London with water: The stand-pipe from the pump was 120 feet high, and condueted the water to a cistern at that height, where it was distributed to the dwellinghonses in the vicinity, and by four lead-pipes to cistems at Bishopsgate, Allgate, the Bridge, and Wall-hrook. The amount raised was abont 216 gallons per minute. The wheel worked sixteen funis, each 7 inches in diameter, and laving a stroke of 30 inches. Several other similar mathines wre erected at other 1 oints, and were similarly driven.

The axle of the trundle was prolongell at each end, and had quadruple cranks whieh comected by rods to the enls of four walking-beams 24 feet long, whose other ends worked the piston-roms of the pumps. The axis of oscillation of the lever supporting the wheel, and by which it was adjusted to the state of the tide, was coincident with the axle of the trundle, so that the latter engaged with the s-feet cog-wheel in any condition of rertical adjustment. Each end of the walking-beam was made eflective.

During the seventeenth and cighteenth centuries the works were extended from time to time, and occupicel one after another of the arches.

In the first arch of the bridge was one wheel working sixteen foree-pumps. In the third arch were three wherls, working filty-two pumps. The united oflect was 2,052 gallons per minute, raised 120 feet high.

In 1767 Smeaton adderl whepls in the fifth arch. Stem-engimes were added ahout this time to assist at low water and at neap-tides. Thus the matter
rewained till 1821. The present daily supply of $4 \frac{1}{2}$ feet in diameter and having 20 rounds, and whose water to Loudou is equal to a lake of 50 acres, 3 feet deep.
Stow, the antiquarian and historian, describes the works in 1600; and Beighton in 1781 gives an ac-

Fig. 15059.

Current-Theel, London, 1.31.
count of them at that date. The water-whee's at that time were placed under several of the arehes. The axle of a wheel was 19 feet long, 3 feet diameter. The radial arms suplorted the rings and twenty-six floats, 14 feet long and 18 inches wide. The axles turned on brass gudgeons supported in comenterpoisel levers, which permitted the rertical aljustment of the wheel as the tide rose and fell. On the axis of the
iron axle revolved in brasses.
Fig. 1560 is an illustration of a floating frame in which an undershot wheel is journaled; the frame as represented consists of two scows connected by beams and having a skeleton prow to ward off driftwood. The prows of the barges are wedge-shaped, to chirect the stream into the space between them oecupied ly the water-wheel.

A curred gate conforming to the circumference of the wheel regulates the amount of water impinging on the luckets and consequently the sjeed of the wheel, and also stops the wheel by cutting off the stream from the buckets. The main or wheel-shaft carries on the shore end a hevelgear that drives a similar gear, from the shaft of which power is carricul, by means of pulleys and bolts or shafting, to the mill standing upou the bank. The receiving pulley and shaft are hung in a frame, one end of which is hingrd or pivoted to the shore-side float or scow, and the other to the mill-building. Thus, whether the water he high or low, the leelt is always kept "tant." Chains or roles moor the floating scows to the shore, and the pivoted frame holds them in position.

Cur'ri-cle. A two-wheel claise with a pole for a pair of laorses.
Cur'rier's Knife. A large, two-handled knife, with a recurved edge, employed by curriers to shave or pare the tlesh side of lides.
The knife is about 12 inches long and 5 wide ; one end has a plain handle and the other a cross- handle, in the direction of the plane of the blate. The erlge of the kinile is brought up ly means of a

Current- Theel.
Eig. 1561.

Currier's Knife.
whetstone, and a wire edge is con-s-antly preserved by a steel wire Which aets as a burnisher.

Cux'ri-er's Tools. See:-
Bean.
Beam-knite.
Cleaner.
Clearing-stone.
Crippler.
Currier's kuife.
Horse.
Mace.
Pommel.
Raising-boarl.
Round knife.
lub-stone.
Slicker.
Steel.
Striking-knife.
Unhairing-knife.
Cux'ry-card. A leather or wooren slip with inserted teeth like wheel was a cog-wheel 8 feet in diameter and haring |those of wool-cards, and used for currying ani-
forty-four cogs; this meshed into a trundle-wheel mals.

Cur'ry-comb. An implement with projecting serrated ribs, used for grooning horses.

In the sculptures of Nimroud is represented a tent within which a groom is currying a horse.

Cur'ry-ing. The frocess of shearing the green, tanued skins, to ining them to a thickness, and afterwards tressing them by denbing, grwininy, ind surface-hnishing ; transmuting the tanned skins into merchantable leather.
The mechanical part of the process is performed by a peculiar knife (see Cubmer's Kinafe) upon a nearly vertical berm over which the hite is phaed.

The mole of enrrying skins upon a slanting beam or board is shown in the ancient paintings of hourna, Thebes, Slicking with a sharp elge is also shown.

Cur'ry-ing-glove. A heavy glove having a pile of coir woren into a hempen fabrie, and shaped to the hand. lack and palm are alike, and cither may be used for currying.

Cur'sor. A part of a mathematical instrument whieh slites on the main portion ; as, -

The movable lerg of a beam-compass.
The joint of the proportional compasses.
The hand of a barometer.
The bean of the tramuel.
The slide of a Gunter rule.
The adjustable plate of a vermier.
The moving wire in a realing microscope.
Cur'tail-step. (Joinery.) The bottom step of a stairs. when tinished with a seroll and similar to the handrail.

Cur'tain. 1. (Forlification.) That portion of a rampurt which extends between and joins the funks of two lentions. Sce Bastios.
2. (Locks nithing.) A shifting plate, which, when the key is withdrawn, iuterposes so as to screen the inner works from luing seen or reachel by tools.
3. A strip of leather which overlaps the parting of a trunk.
4. A dependent cloth serving as a screen.

Cur'tain-pa'per. A heary paper, printed and otherwise ormmentel, for window-shades.

Cur'tal-axe. A short sword with a curvel blate. The na ne has bem modified from time to time: Coulul-h'uche; contel-ase: curtc-axe; cus-tut-cexc; coute-luce: curte-lesse: cutluss.

Curve. 1. A draftsman's instrument having one or a variety of curves of various characters other than ares, which may be struck by a compass. Some are constructed for specitic purposes, such as shipworight's curves, redii-curves, ete.
2. A bend in rual, cumal, or railway; especially in the track of the latter.

Curved Pump. Unc in which the pistan reciprocates in an arc.

Fir. 15 涊.

Curad Pump.

Cur'vi-lin'e-ar. A drafting-instrument used in descrihing irrugular curves. The various shapes of its marginal outline enable it to le fitted into position so as to project or transeribe the curve required. M. Desalier, of Paris, invented a machine for generating the curves and marking out the patterns. It is capable of making 1,200 varieties of curves.

The illustration shows one adjustable instrument. The Hexible bar A is set to any given curve ly the adjustment of the ordinal rods B in the bar C_{j}. It

has a greater range of capacity than the arcograph, lning adapted for double, irregular, and mixed eurves.

Curv'o-graph. An instrnment for drawing a curve without reference to the center. It is usually an elastie strip, which is auljustable to a given curve, and serves to transfer the latter to another plat or another place on the plat.

Cush'ion. 1. A padded seat, back, or arm of a sofa, lounge, or chair.
An anteient Egyptian cushion, made of linen and stuffed with the fuathers of waterfowl, is preserved in the British Muselum. See Chair.
2. The padded elge of a billiardtable, whieh rebounds the balls.
3. (Engraving.) A flat leathern bag filled with pounce and supporting the plate.

Fig. 1564.

4. (fildiny.)

The pad on which the gilder spreads his gold-leaf, and from which he takes it by a eamel's-hair tool callier a tip.
5. The pillow of the hone-lace maker. Pillowlace is mate by land, and is of several kinds, known as Valenci-nnes, Mechlin, Honiton, ete. Spe Lace.
6. (Electricity.) The rubour smeared with amal-
gam, aml whose friction against the glass cylinder or disk ranses the electrical excitation.
7. (Architecture.) u. The impost-stone on a pier. Coussinet.
b. A capital of a column so seulptured as to resemble a cushion presset down by the weight of its entahlature.
8. (Sterm-engine.) A bolly of steam at the end of a cylinder to receive the impaet of the piston. This is accomplished by elosing the eduction-port a
little before the end of the stroke, or by opening the induction-port on the same side of the piston, a little before the end of the stroke.

Cush'ion-raft'er. (Curpentry.) An auxiliary rafter beneath a principal one, to sustain a great strain.

Cusp. (Arehitecture.) An ornament in stonework of the Gothic order. It consists of projecting points, formed by the meeting of curves, and is the foundation of the peculiar foliation, feathering, tracery, arehery, and panels of the order.
Cut. 1. A term for a certain quantity of yarn.
2. The style of the notches of a file ; as, -

$$
\begin{array}{ll}
\text { Rough cut. } & \text { Smooth cut. } \\
\text { Bastard cut. } & \text { Dead-smootl cut. } \\
\text { Second cut. } &
\end{array}
$$

3. Cut of a letter; its size and slape.
4. Cut of a ponton-bridge; the water-way between the pontons.

Cut-glass. Flint-glass ornamented by cutting away portions.

The decanter, tumbler, or other object, is held against a revolving wheel, whose surface is provided with a grinding material ; and afterwards to another wheel with a polishing powder.

The first, or cutting-wheel, is of iron, furnished with sand and water.

The sceoul, or smoothing-whee,, is of stone, with clear water, to work out the scratches of the griuder.
The third, or polishing-wheel, is of wood, with rottenstone or putty-powder for polishing.

Cut-in Notes. (Printing.) Notes which occupy spaces taken out of the text, whose lines are shortened to give room therefor.

Cu'ti-sec'tor. A knife consisting of a pair of

Tiemann's Cutisector.
parallel blades, adjustable as to relative distance, and used in making thin sections for microscopy.

Cut'lass. Abbreviated from curtal-axe. A short, heavy, curving sword ; especially used by seamen in boarding or rejelling boarders. Rosalind calls it a curtle-axe.

Cut'ler-y. Knives, sworls, chisels, and axes were originally made of material found ready to the band, and this raried with the place. Among the Caribs they were made of shells of the Strombus giyers, which is still fished for off the island of Barbatoes. Flint knives and tools were used in almost all parts of Europe and America; they are found under circumstances which indicate that man was coutemporancous with a number of extinct aminals, such as the Bos lonyifrons, the lrish elk, the Elephas primigenius, and others. The stone knives and hatchets of this prehistoric periol are foums in great variety and number, and in some cases a blade or edge of obsilian was secured to a handle, or a row of arrow-hearls or blades fastened in the grooved edge of a stock, forming a jagged knife or saw. This has been found among the sepulchral mounds of the lraruois, and was also among the weapons of the people net hy Herrera, who says: "The Indians liad swords nnine of wood, having a gntter in the forepart, in which were sharp-edged flints strongly fixed with a sort of bitmmen and thread." Among the Mexicans this tonthel blade was armed with obsidian, and the Spaniards found it a very destructive weapon. Stephens found the same weapon represented in sculpture in the ruins of Central

America and Iucatan. In process of time copper, then bronze, and then iron and steel, were introduced. For analyses of the ancient bronzes, see Allors.

In the Egyptian mode of embalming dead bodies, aud in practicing the rite of circumcision, a kuife of flint, obsidian, or other sharp stone, was nsed. We read of it in Exodus where Zipporah took a slarp stone and used it for the Jatter prurpose. Herodotus and Diodorus Siculus also refer to "sharp Ethiopic stone" as used in disemboweling compes in the process of embalming, no knife of metal being allowed to be used upon the body. The custom of using a shard of flint has descended to our day among some of the nations who retain the practice of circumcision.

Under the head of cutlery are included knives of all kinds, scissors, shears, razors, and torks. It is only by a stretch of the term that it can be made to include edge-tools, such asaxes, adzes, chisels, gouges, plane-bits, etc. These are not cutlery. Sice River ; Scrsors; Shears; Fork; Razor; Sungleal lasthuments; Danaskeening; Foliging ; TemperING: Sword, etc.

Cut-mark. A mark made upon a set of warpthreads before placing on the warp-heam of the loom, to mark otl' a certain definite length, the mark defining the end of which shall appear in the woven giece and afford a measure to cut by:

Cut-uail. A nail cut from a mail-plate, in contradistinction to one forged from a uail-rod, as a clasp, horse-shoe, or llat-head nail.

Mr. Odion, of Massachusetts, invented a marhine for making cut-nails in 1816. Mr. Reed, of the same State, followed with another machine for the same purpose.

Walter Hunt's donble-reciprocating nail-machine was introduced in 1841. See NAll.

Cut-off. The term is applied to that mode of using steam or other elastic Huid in which it is admitted to the cylinder during a portion only of the stroke of the piston ; the stean, after the induction ceases, working expransively in the cylinder during the remainder of the stroke of the piston.

Fig. 1566.

The cut-off in locomotive-engines is efferted by a certain aljustment of the liNk-Motion (which see).
The cut-off, in many steam-engines, is effected by the governor, which is so connected to the valvegear as to vary the throw of the valve-rod, modifying it aceorling to the speet of the engine; the effect being that an acereleration of speed works a diminution of steam indmeted and conversely, the ohject buing to secure miformity of speet.
The Contass cut-off, 1851 (Fig. 1566), has an oscillating dis's n, placed centrally on the cylinder with four $l^{\text {inns, }}$ to which rods are attached, implarting motion to the valves. Two of the rods $b b$ connect permanently with the exhaust, and two c c detachably by springs id and hooks c with the inlet - valves. Cranks f on the ends of the ralve-stems fit into the hooks, and, becoming detached, close the valve by a weight g. A liftingroil h, with rack oprated by a worn-wheel i, and having inclines k bearing against stops, makes the valves aljustable.

Winter's cut-off, 18.59 (Fig. 1567), has a crank on the main shaft, which imparts motion to a revolving shalt, arranged between the nuper and lower steamchests; a cam a on the shaft operates the swinging

Fig. 1569.

Sipeens's Cut-Off. toe b, which is pivoted in a sliding, adjustahle box c in a guide. A recess in lower sile of sail toe allows the cam to clear the toe when working full stroke, and the cormer of the recess has at friction-roller which is struck by the can, cansing the lifters a to operate the valves. The swinging toes clrop when the cam passes then.

In Stevens's cat-off, 1841 (Fig. 15 tis), a rotary shaft a is paced between the upper and Iower steam-chests $b b$, and has two litters e d placed on opnosite sides of its renter, which altemately raise and depress the values by the toes c on the rock-shalt. To adjnst the toes, a slot and pin are provided in the rock-shaft arm. To cut off shorter, the tops must he dropperl, the pin raisel, and the eccentric set aheal. To ont ofl longer, reverse the operation.

Alhen ant Wblls's eut-olf, 1853 (Fig. 1569). Upon the rock-shaft $/ /$ are armageel the loose steam-tors $E B$, with jawls E Et pivoted to their oatcremeds, which are raised by rollers a a on a cross-arm 1 of the rock-shaft arm F, and when they clear the rollers they drop inward, thus opening and closing the valves. To auljnst them, two arms $I / I I$ are providel with a right and left hand screw. The arms, having motion nearly coincilent with the piston, start downards at the same time the rock-
shaft rises. The exhaust-toes $A \mathcal{A}$ ure permanently attached.

In the griliron valre (A, Fig. 1530) the steamchest is divided by a longiturlinal partition b rovided with suitable ports, over which is arringed the ent-off valve a, and in the lower part of the chest is the usual slide-value e.
in the Menitick cut-ofl (b, Fig. 1570) the steanvalve a is provided with jorts throngh its lower part, over whieh the cut-off vilves b slide. They are made ail-

Fig. 1569.

Allen's Cut-OIf. justable by a right and left hand screw on the valve-stem d, by which they may be drawn together or forced apart. In the steam-chest cover are arranged adjustable rings c c , that bear on the back of the valve a to make it a balancel valve. The space inclosed in the rings commets with the condenser.
Sickec's cut-ofl (Fig. 1571). A loek-shaft a operated by the roil b from the eccentric is placed midway of the stema-chests, and provided with the usual toes, by which the lifters c and rods d d of the valves are operated. To seat them without slamming, the valve-stems are provided with dash-pots $e . c$; and to stat them suldenly, a spring-catch is secured on the stems, against which a vibratory wiper

Fig. $15 \% 0$.

q passes, and, when released, the valves are seatel instantanemsly.

I droy cut-utd is one actuated directly by the main value.
2. A value or gate in a spout, to stop discharge; as in grain-spout when the required weight or quantity has been discharged or the receiving ressel is full.

Sickel's Cut-Off.
3. A device in fore and aft suils. The spars are a mast, boom, gntif, a rain-water spout and bousprit. to send the lialling water in either of two directions, as, for instance, to the gutter mutil the rout is clean, and then to the cisterm.
4. A roll on a reaper, to hold up the falling grain cluring the clearing of the fatlen grain from the platform.

Fig. 15i2.

Rain-Water Cut-Off.

Cut-off Valve.

A valve arranged to close the induc-tion-ports of a steam-cylinder at any given period before the close of the stroke of the piston, in order that the stram may be used expansively in the interral. So (Cl'off.
Cut-out. (Telegraphy.) A species of switch weer in telegraph-offices to connect the wires passing through the ottice, and " cut out " the instrument from the cireuit. [Tsually a mare lever, pivoted between the wires leading to and from the instrument, so that, on heing turned in the proper direction, it will connect the wires.
Cut-pile. (Feliric.) A fabric woven in loons, which are subsequently cat so as to give a pile (hairy) surface, such as velvet, push, Wilton carpet. etc.
Cut-splay. The oblique eutting of the edges of bricks in certain kinds of fancy brick-work.
Cut-stoue. A hッun stons. Ashlas reduced to for a ly thisel and millet.
Cut'tee. The box to hold the quills in a seaver's loom.
Cut'ter. 1. (Insbandry.) That portion of a mower or reaper which actually serers the stalk. The varieties are mumerons, but the general verdint of approval has been given to what may be called the stur, - a term which describes generally a device consinting of projpeting teeth or sections affixed to a bar and reciprocated longitudinally of the latter. See Harivester-cltrer.
2. (Nauticul.) a, A vessel with one mast, having

Cutters are usually small, but the fancy has sometimes been to make them as large as 460 tons and 28 guns (the Jiper). They are either clincher or carvel build; have no jib-stay, the jib hoisting and hanging by the halliards alone.
A cutter carries a fore and aft main-sail, gaff-topsail, stay, forestil, and jib.
b. A boat smaller than a barge, and pulling from four to eight oars. It is from 22 to 30 fiet long, and has a bean equal to .29 to .25 of its length. A number are required for the miscellaneous purposes of a large ship, and are known as the first, second, etc., cutters.
3. A onc-horse sleigh.
4. A soft birek adapited to be rubbed down to the required shape for ornamental brick-work or arehes.
5. A wad-punch.
6. A revolving cuttine-tool of a gear-cutter, a planing-machine, ete. See Cutter-heal.
7. An upright chisel on an anvil. A hack-iron.
s. The router or sconper portion of the centerbit, which removes the portion eireumseribed by the nicker.
9. A burin, an engraver's tool ; as a tint-cutter or tint-tool.
10. A filc-chisel.
11. A pey-cuther, or float.
12. (Agriculturc.) An implement or machine for huting feed. Sue Sthaw-cutter; Root-cetter, ete.
Cutter-bar. 1. (Boring-muchinery.) A bar supportel betwen lathe-centers or otherwise in the axis of the eylinder to be bored, and earrying the cuttingtool. By rarions modifications having the same object in view, the tool-stock, eutter-bar, or eylinder may be moved, so as to cause the tool to pass around inside the eylinder or conversely, ant also cause it to traverse from end to end. See Bumsg-nacmane.
2. (Harrester.) A bar, usually reciprocating longitudinally, and laving attached to it the triangular knives or sickles, which slip to and fro in the slots of the fingers, aud cut the grain or grass as the machine progresses.

The bar carrying the fingers is the fingor-bar.
Cut'ter-grind'er. A grimlstone or emery-wheel specially constructeal for grimeling the sertions of the cutter-bars of reaping and mowing machines.

Cut'ter-head. I rotating leaul, either dressed
Fig. 1573.
 having means for

Cutter-Head.
the attaching of
bits or blades thereto, as in the illustrations.
Cut'ter-stock. A head or holder in which a cutting blade or tool is fastened for nse.

Cut'ting. 1. (Failronding.) An excavation for the purpose of a road, railroat, or canal. When the earth is not required for a fill or embankment, it is called wraste.

When the sides are not secure, sufficient slope must be allowed or retaining-walls constructed.

These walls batter towards the bank in order to withstand the thust. See Batteri ; Bheast-wala; Retaining-Wall
2. (Mining.) A poor quality of ore mixed with that which is better.

Cut'ting-board. A boarl for the bench or lap, in cutting out leather or cloth for clothing.
Cut'timg-box. A machine for cutting hay, straw, or curn-stalk into short feed. See STriw-cutter.

Cut'ting-com'pass. A compass, one of whose legs is a cutter, to make washers, wads, and circular disks of paper for other uses.

Cut'ting-down Line. (Shipbuilling.) A curved line on the sheer-plan, which touches the lowest part of the inner surface of each of the frames. It determines the depth of the floor-timbers and the hight of the dead-wood fore and aft.

Cut'ting-down Staff. (Shipbuiluling.) A rod having marked upon it the hight of the cutting-down lime above the keel at the several frames.

Cut'ting-en'gine. (Silk-machinery.) A machine in which retuse or Hoss silk - the fibers laving heen previously disentangled, straightened, and laid parallel by the Hackle, Filling-engine, and Draw-1NG-FliAME (which see) - are cut into lengths of abont $1 \frac{1}{\text { inches, so as to enable them to be treated }}$ as a staple by the carding-machine and the machines which folluw in the cotton process, bringing the fiber to a sliver, a roving, a thread, suitable for weaving.
l'he cutting-engine has feed-rollers, and an intermittingly acting knife, somewhat similar to a chaff or tobaceo cutter.

Cut'ting-file. The toothed cutter of a gear-cutting engine.

Cut'ting-gage. A tool having a lancet-shaped knife (one or two) and a movable fence by which the distance of the knife from the edge of the board is

Fig. 1576.

Cuttins- Gage
arljusted. It is used for cutting veneers and thin wionl. In the West, linn-wool, saweal through aurd through the wilth of the log, $\frac{1}{4}$ to $\frac{3}{4}$ inch thick, is ripped into plastering-lath ly the cuttins-gage, after a straight eplore has been once establishecl.

Cut'ting-line. (Printing.) A line made by printers on a shere to mark the off-cut; that which is cut off the printed sheet, folded separately, and set into thre other folded portion.

Cut'ting-ma-chine'. 1. A machime for reduring the length of staple of flax. See Breaking-mafuine.
2. A machine for cutting out gaments. A reciprocating vertical knife works in a slot of the table
which supports the pile of cloth to be cut. The cloth is fed by the attendant so as to bring the line marked on the upper layer in line with the knife.
Cut'ting-njp'pers. A pair of pliers whose jaws are sharp, and cone in exact apposition. The cutters are sometimes on the face of the jaws and sometimes on the side.
Cut'ting-out Ma-chine'. One by which planchets for coin, or blanks for other purposes, are cut liom ribbons of metal. See Cutring-piess.

Cut'ting-plane. A carpenter's smonthing-plane.
Cut'ting-press. 1. A screw-phess for cutting planchets of metal from strijss. The culling-press of the coining-aplraratus (1, Fig. 157万) has a cast-iron Trame a, which is fixed on a stone basement ; b is the serew, which is fitted through the top of the frame, and actuates a slider e. At the lover end of the slider a stecl punch d is tixed. Its diameter is exactly equal to that of the pieces which are to be cut out.

Beneath is the steel die, which has a hole in it of proper size to fit the steel punch. On the other side is a box with screws for adjusting the die, so that the hole in it will be exactly beneath the punch.
 the hole in the die; a piere of iron is fixes a small distance above the die, and has a hole through it to admit the punch. Its use is to hold down the piece of metal when the punch rises, othervise the picee would stick to the pronch.

On the upper end of the screw, a piece f is fixed, and an anm projects from it, with a weiglit g at the end ; and it is this weight which gives the neeessary momentum to pmoch out the piece; h is a spiudle fixed upon the picce f, in the line of the screw; it is supported in a collar p at the upper end, and above the collar a lever $i m k$ is fixed, and at one extremity of this lever a roller k is placed; this is acted npon by projecting teeth, which are fixed in the rim of a large horizontal wheel, which is turmed round hy the prime nover of the mill, and thus produces the requisite motion in the whole apparatus.

2 (Fig. 1578) is a modified fom in which α is the tail of the weightech swinging-lever f, which is moved by hand, to move the slifer n and the punch. The lower die d is alljusted in position by the system of set screws s, on the bed-piece; p is the holding-down 1)late.
2. A bookhinder's press (3, Fig. 157s) for hold-
ing a pack of folded sheets while the book is sawed previons to sewing, or for holding the sewed book for ellge-cutting. The screws $s s$ pass throngh the side-pieces $c c$, which are stearlied by stiding-guides. The pack may now be plowed or saw-cut on the back for the twines to which the sherots are sewerl.

Cut'tings. (Mctallurgy.) The larger and lighter refuse which is detained by the sieve in the hotching-tub, or hutch.

Cut'ting-shoe. A horseshoe with nails on only on sille, for horses that cut or interfere. A featheredly shoue.

Cut'ting-thrust. A tool like a cutting-gage, employed in grooving the sides of bowes, etc. It has a routine-cutter in a stock, and an aljustable slidinghead which forms a gage for distance from the guideellge of the board.
Cut'too-plate. A hood above the nave or hub of a vehicle, to prevent the strect mad from falling upon the axle and becoming ground in between the axle-box and syindle. Otherwise callet a dirt-borred, or round robbin. It is attached to the axle or bolster.
Cut-vel'vet. (Fubric.) Piled goods in which the loops are cut.
Cut-wa'ter. 1. (Shipuriyhting.) The forward crlge of the stem or prowe of a vessel ; that which divides the water right and left. It is fayed to the forepart of the stem.
2. (Bridge.) The edge of a starling presented up stream, to divide the waters on each side of the picr.

Cu-vette'. 1. (Glass.) A hasin for receiving the melterl glass after it is refined, and decanting it on to the tahle to be rollellinto a plate.

Thpourctecs stand in openinges in the sides of the furnace, and are filled with melted glass from the pots by means of iron ladtes. The naterial remains sistesn hours in the puts amb sixteen in the cumetts. In casting, the curche is lifted by means of a glippingtongs, ehains, and a crane, and the contents are poured upon the casting-table.
2. (Fortificution.) A ditch in the main diteh.

Cy'a-nom'e-ter. Invented by siussure, for determining the depth of the tint of the atmosphere.

A circular hand of thick paper is divided into fifty-one parts, each of which is jrainted with a diffremt shade of hine; the extremities of the scale being respectively deep hlue and uetrly white. The colored band is held in the hath of the ohserver, who observes the parti:ular tint corresponding to the color of the sky. The number of this tint, reckoning from the light end, indicates the intensity of the bhe.
Cy-an'o-type. (Photograplyy.) A process by Sir John Herschel in which cyanogen is employed. One form of the proces is as follows:-
A paper is washerl with ferridcyanide of potassium and dried; placed under a frame, the frarts exposed to light are chancel from yellow to blue (Prussian blue). The picture is washen, then fixed by carbonate of soda, and dried. The picture before washing is lavender on a yellow grouml, but washes ont to a blue on a white ground. It is rather curions than really useful. The process has several variations.

Cy'clo-graph. More properly Abcograph (which see).

Cy-cloid'al En'gine. An instrument made use of by engravers in making what is called machineu:ork npon the plates for bank-notes, checks, etc.

The lines have a general cycloidul form, being generated by a point revolving around a moving center, or; what amonsts to the same, are cut by a graver-point to which a revolution is imparted, the plate traversing below in a straight line, a waved line, a circle, ellipse, or other fignre. The line is thus compounded of two movements, and a wayy or complex interlacing figure of ahsolute regularity is prodnced as a garic against counterfeiting; it being impossible to produce such work by any means other than such a tool. Counterfeiting, being an underhand proceeding and seeking secrecy; is followed ly skillful men, but without the expensive and complicated mechanical adjuncts.

Cy-cloid'al Pad'dle. The name is a misnomer, but is applied to a padelle-n heel in which the board is divided longitudimally into several strij's in a slightly retreating order, on cchclon. The olject of the division of the float is to hing the sections in succession into the water, lesseming the concussion; and by a more complete distrihntion of tloats around the circumference of the wheel to make the resistance more uniform.

Cyl'in-der. 1. (Steram-cnyine.) That chamber of a steam-engine in which the force of steam is intilized upon the piston.

For more than ten years Watt's conception of the steam-engine could not be realizelt in practice, owing to the impossibility, with the applimees then at hand, of constructing a piston and cylinder air-tight. Mr. Boulton of Soho came to his relief with capital and mechanical skill.
2. (Pneumatics.) The harrel of an air-pump, such as used by Hero of Alexandria (see the Spiritatia), and that of Otto Guericke of Magdehourg. Sec Air:PUMP.

Perhaps the earliest use of the cylinder and piston is found in the blowing-machines of native metallurgists in portions of Asia and Africa.
3. The cylinder of the Jaepuard loom is really a square prism revolving on a horizontal axis and receriving the cards.
4. A clothed barel in a carding-machine. Urchins and doffers are clothed cylinders of smaller size.
5. The glass barrel of an electrifying-machine.
6. (Printing.) a. An inking-roller of a pintingmachine.
b. The eylinder of some forms of printing-machines carries the type in turtles.
7. The lore of a gun. The charge cylinder is that occupied ly the charge; the arcant cylinder is the remaining portion.
8. A wooden bucket in which a cartridge is carried from the magazine to the gun.
9. The body of a pump.
10. A garden or field roller.

Cyl'in-der-blow'er. A blowing-mathine for blast and cmpola furnaces, which consists of a piston working in a cylinder. See Brower.

Cyl'in-der Bor'ing-ma-chine'. (Metel-vorking.) A machine having face-plates on which the eylinder is dogged concentrically with the axial boring-bar on which a tool-holder has longitudinal feal, to move from end to end of the cylinders. The bar draws entirely out, to allow the work to be shifted, and independent slide-rests face off the ends of the cylinder.

Sellers's Cylinder Boring-Machine.

Cyl'in-der-cock. (Slecm-ongine.) A falucet in the end of a celinder to allow water of combensation to escape when the piston aproaches the said 'and of the cylinder. Owing to the incompressibility of water, the end of the cylimbry may be driven out, if the water be allowed no means of escape. It is also used to allow the pasage of steam in bowing throngh the cylinder, ete., in warming up. It is then, functionally, a hlow-throngh cock.

When the cylinder-cock is male antomatic, it has a spring to keep, it closed against the normal pressume of stem, but which yields to the excessive pressure in the cylinder incilent to the striking of the piston against a hody of water, the result of the conlensation of steam in the crlinder.
Cyl'in-der-cov'er. (Sterm-onginc.) The lid bolted to a flange roums the top of a cylinder, so as to be perfectly stean-tight. The piston-rod passes througla a stulfing-box in the center.

The term is also apllied to the juchet, lagging, or cionding, which prevents to some extent the radiation of heat.

Cyl'in-der-en'gine. A paper-machine in which the pulp is tak'on up on a cylinder and delivered in a continuons sharet to the dryers.
Cyl'in-der Es-cape'ment. Another name for the lorizontal eseapment invented by Graham. See Ilontzostal Esc.anemant.
Cyl'in-der Es-cape'-valve. A valve in the end of a "ylinder to let ofl' water of condensation.

Cyl'in-der-glass. A mode of making winlowglass, in whill the material is hrought, hy a succession of prextions, to the shape of an open-ended eyliuder, which is split lyy a diamond and llatted in a furnace.

Although this plan hat long been practiced in Germany and Belginn, it was not imported into England mitil ahont 1846 , oning to the vexations ex-cise-regulations, all improvemunts in glass-working leing hampered and well nish prevented. The intposition, however, was taken ofl in time for the manufacture of cylinder-glass for the World's Exposition building in Loulon, 1853.

We are not aware that it has yet been introduced into the United States.

As remarkel, this mode of making flatted glass was no new thing, but is described in the Dirersarum Artium Scheclula, written probably in the thirteenth ceutury.

While crown-gless is blown into a glolve, then whided and blown into an oldate spheroid, pierced and eventually expanded into a disk, cylinder-gluss ar broad-gluss, as it is often called, is made into a hollow huth, which is marle gradually to assume the cylindrical form ; the ends are opened by mans to be described, finally the cylinder is split and flattencel.

The process is as follows:-
The workman colleets a mass of the glass a aromul the end of his blowing-tube, and then distends and
rounds it by blowing and rolling on the marver, or flat, castiron table. The sulisequent operations consist in reheating, blowing, and swiuging until the diameter, and then the length of the cylinder requirel, are attained, the glass successively assuming the forns b c represented in the figure." In the fourth stage, where it has assumed a conoidal form d, the point is wery thin, and the blower, having filled the shell with air at a pressure, places it in the furnace, when the expansion of the air hy heat canses the conoil to burst at the apex c. The edge of the hole is then trimmed with shears, and enlarged by the pucellus, a preculiar handtoul which resembles a pair of sjring sugar-tongs with flat jaws. The cylintrical form f buing then perferted, the cylinder is ready to be removed from the blowing-tube, a circular juece of glass coming away with the tuke so as to make an opening in the other rad of the cylinter.

This sepraration is effected by a red-hot hent iron, in which the cylinder is tumed romed a few times,

Successive Stages of Cylinder-Glass.
so as to exprand the gliss at that point g. A drop of water on the heated line makes an instant fracture.
The cylinder is then split by a dianond or hy means similar to that which removed the disk from the emi h.

Flatting and amealing finish the process. Thene are accomplished in sepmate fumaces, or a partmonts heated by the same furnace. (See Ftatting-firexace.) In the canhineal form it consists of consecutive chambrrs heated hy a furnace beneath. The cylimber is placed on the heated floor of the flattingfurnace, with the cracked side uppermost ; the heat

of the furuace causes it to soften and spread out, when all curves and lumps are removed by a straght piece of wool, fastened crosswise at the end 0 . an iron bandle and wetted before apnlying. The flat-ting-stone is made very smooth, as any inequalities are transferme to the ghass. The sheet of glass is then pashel into the annealing-chamber, where it is set upon edge and left to cool grathatly:

The operations of making crown and cylinder glass are exceedingly interesting, and have sone marked pecnliarities. Wonderfnl is the command attained by skill over the plastic stuff, and in no other art except pottery is there such a growth beneath the hand of the operator.

The illustration shows the men, pach on his platform, one swinging his prolouged bulb above his head, another blowing and swinging it below his feet, while a third is observing the operation of heating the glass, which he keels constantly turuing round by meaus of the roul in his haml, to which it is attacliet.

Cyl'in-der Grind'ing-ma-chine'. A machine for trueing and polishing the insikes of cylimpers. The cylinder is secured to the slide-rost, and mevers along on the ways longitudinally of the mandrel A,

which is mountel on centers, and ratated by the band-wheel ℓ. The inside is fixel, and, as the mandrel A and head D rotate on their axis, the rod G, carrying the grinding-disks, is caused to revolve around the sail axis, and at the same time rotate 0.1 its own axis, earrving the disks.
Cyl'in-der-mill. One form of mill for pulverizing the ingredients of gumpowler, having a cylindia al rimner traversing on a ledstone.

Cyl'in-der-pow'der. That of which the charcoal is made in mon eytim lers.
Cyl'in-der-press. (Priting.) a. A form of press in which the typ is semued on a cylinder which revolves and preseats the form suceessively to the inking-rollens and to tha paper. The ty, merewolving printiny-nachins of Hoe is of this class, and is shown in the full-page cot opposite. These machines are made with two, form, six, or ten print-ing-eylinders arranged in plimetary form around the periphery of the larger type-carrying crlinier. The type is secured in turtles, or the stereotype is h int to the curve of the crlinder. The circumference of the latter has a series of hinary systems, the elements of whi h are an inkiner apparatus and an impresion apparatus, the paper being fed to the litter, and the printed shept earried awny threfrom by tapes to a Hyer, which de livers it on to the thlde.
b. One in which the form is placed upon a bet and the impression taken ly a cy!inder, which takes a sheet and receives an impresion from the form while it is passing under them. These are known as double, singl", smroll, lar re, stop, cylinder-presses.

In the doub'e eylinder-press twa crlinders are nspl, which take sheets alternately. The single has but one, and needs but one attendant feeder; the printed sheets are thrown down by a fly-frame.

The accompanying full-page illustration is of a
press known distiurtively as a single lurg cylinder printiny-muchine, in which the torms russ beleath four rallers. The feed is by fingris on the cylinder, taking sheets from the inclined leed-hoard above, and passing them between the eylinder blanket and the form, the cylimer and bed-rack gearing together during this partion of the motion of eath. The printel sheet is delivered by a tlyer.

The stop-cylinder jress is one in which, after a sheet is printed, the cylinder remains stationary While the bed is rumuing back, during which time a fresh sheet is placed in josition.
lis the stop-eylinder press, designed for woodent printing, special arrangements are male for inking, - by a vibrating eylinder or inking-table, as may be desited, - and the number of form-rotlers may be proportioned to the character and size of the work, being nsinally adapteri to the size of the bed. The impression-cylinder is stationary durjng the return of the bed, and the fingers cluse on the sheet hofore the register-points are withdrawn; the cylincler then revolves, and it gears direetly into the bed, and perfect register is ohtained. The bed is arranged to run once, twice, or thrice beneath the inkingrollers to each impression, so as to secure a more jurfeet distribution of the iuk.

Cyl'in-der-print'ing. 1. (Printing.) A mode of frinting in whith the type is secured to the eylinder, or the pajeer on a eylinder which acts in connection with a rolling-hetl. See C'rlaveli-press.
2. A system of 1 rinting calicoes br engraverl copper cylinders, invented in Scotland and jurfected
in England. These are engraved on the Perkins principle, by which a small roller with the design in camen is impressed against the surface of the revolving cylimele, delivering upon the latter the design in intaglio as many times repeatell as the ciremmference of the small steel cylinder (the mill) is contained in the circumference of the copper cylinder.
This is the princijle of the American system of bank-note engraving. Spe Thassimbisg-Machise.

Cyl'in-der-tape. (Printiny). A talue running on the impression-rylinder beneath the elge of the priper, tu remove the shert from the cylinder after printing.
Cyl'in-der-wheel. A form of scape-wheel, used in the horizontul or cylineder escapement.

Cyl'in-der-wrench. A form of wrench adapted to glasp rouml fols or tubes. Sce Pipe-whearil.

Cy-lin'dri-cal-arch.(Architccture.) One which is a prolongation of the same curve throughout its length.
Cy-lin'dri-cal Boil'er. A hoiler of a cylimirical shape, in contradistinction to the other and earlier forms.
The cylinirical boiler was introdnced into Cornwall, Englant, in consequence of the use of a higher pressure of steam, which rendered the haysfach, hemisphericul, and wayon boilers masale. (ise Cor:-sish-bORLER). Smeaton introduced the flue into the hoiler: The cytindrical return-the bailer was patented he Wilkinsou in 1799.
Cy-lin'dri-cal Lens. A reading-glass whose hack and front fares are formed ly eylinulrieal surfaces, the diameters of which are at right angles to each other: the form being that of two segments of eylinders united at their bases.

A lens having a cylinlrical body

Cylindrical Lons. and convex ends. A Strnhope lens.
The term mar also inchude a lens consisting of a true cylinder which gives a line of tirht ; or of eylindrical segments parallel to each other, which com-

bination also gives a line of light.
Cy-lin'drical Saw. A saw having a cylindrical form and sharpened at one end. Used in sawing staves from the block, giving them a transversely rounded form; for sawing felloes, chairbacks, etc. It is on the principle of the crownsaw, and is variously called a tub-stouc, drum-stuo, barrel-sun, etc.
Cy-lin'dri-cal Valve. (Steam-engine.) A valve in a trumuion or elsewhere having a cylindrical shape

Fig. 1585

Cylindrical Value.
and oscillating on its axis, to open and close ports in the cylindrical case which forms its seat.
Cy'ma Rec'ta. A form of wavel or ogee molliing hollow in its upper part and swelliug below. C'ymatium. See Moding.
The member helow the abaens or corona.
Cy'ma Re-ver'sa. Anogue in which the hollow member of the molding is below. See Molong.
Cym'bals. Disks of bronze, more or less basinshapeed, clashed together or lightly touched in arecord with the rusic. They are very ancient, hoing represented in ditferent forms upon the sepulehral monuments. They were nsed by the Levites in the temple ordinances, and the sons of Asaph excelled in their use. They are mentioned among other instruments, 1043 B. C., when Davil broaght the ark home, 一harps, pseitcries, tindrels, cornets, cymbats (2 Sam. vi. 5).
The loud-sounding and high-soundiny cymbals mentioned in Psalnis cl. 5, were probably the clashing cymbals and rattling castanets.

The accompanying illustration shows the cymbals of ancient Egypt. They have been found in the tombs of Thebes, and those shown are now in the collection of Mr. Salt.

Esypuan Cymbats (Sall's Collection). They are abount 7 inches in diameter, and are of an alloy which does not seem to have been determined analytically: Quite likely they are of hronze, with a possible atdition of some silver.
A small variety of cymbals played with the finger and thumb resemble castanets in the mode of 1 sing to beat the measure of the dance. They are shown in the paintings of Herenlanemm, and were sometimes attached to the ankles of the llute-players. See Castanet's.

Cymbals are also represented in the sculptures of Nimroud.

The cymbals were nsed in religions and patriotic observances by the Esyptians, Assyrians, Jews, Etrurians, Greeks, and Romans; hy the Greeks in the worship of Cybele, Bacehus, and Jnno ; indeed, Xemophon says that the cymbal was invented ly Cybele, and used at her leasts, at a period correspanding to our late of 1580 E . C.
The origin of the cymbal was evidently heroie; swords and shields being clashed in the warlike dances of the semi-harbarous people of the comtries bordering on the Mediterranean.

In a Dersian dance of the times of Cyrus and Canlyses, the movements were perfomed to the masic of the flute, the performers dashing their crescent-shaped shields together, falling on one knce, and rising.

The corybantian dance of Crete and Phryin was a wild, warlike performance, with the same lattling accompaniment. The lyrrhic dance, as describet by Plato, was a frantic exhibition of evolutions and tumblings, representing the modes of dolging and warding ofl the blows of swords, daggers, and spears, and was performed to the jarring music of clashing wealpus. The motem fireeks, who
" have the Pyrrhic dance as yet,"
lave emasculated the performance, whilh threw into the shade anything clse on recorv, inchding the ferocious and disgnsting dances of the retskins of the West.
" My loal called for the lieutenant's cittem, and with two candlesticks with money in them for symhols (sic), we made barber's music." - PEPY:s, 1660.

Cys'to-tome. (Suryical.) An instrument for cutting into a eyst, natnral or morbid, sum as opening the bladder for the extraction of urinary calculi, opening the eapisule of the crystalline leus, etc. Ciystitome.

Dab. An impression in type-metal of a die in course of simking.

Dab'ber. 1. (Printing.) The onginal inking-apparatus for a form of type. it consisted
Fig. ${ }^{155 \%}$.
 of a ball of cloth stuffed with an elantic material. Two of them were used, one in each hant. One of them being dabbed upon the inking-table to gather a quantity of ink, the balls were then rubbed together so as to spread it uniformly. This was done whike the pull was being made, and when the bell was withdrawn from below the platen, and the printed
Dabber. sheet removed, the assistant, working actively with both hands, inked the sumface of the form.

Another form of dabber is a roll of eloth, the end of which is used for inking the engraved coppretplate.
2. (Entraving.) A silk bail, stulled with wool, for spreading tle ground upon the hot plates.
3. (Stereotyping.) la the paper process, the insimuation of the damp paper into the interstices of the letters by dabbing the back of the paper with a hair brush.

The term has also been applied to the rliehé process, in which the form is dabled chown into a shallow cistern of trpe-nnetal which is just setting.

Dab'bing-ma-chine'. (Type-founding.) The nachine rmployed in rasting large netal type.

Dac-tyHi-on. (Music.) (harlyl, (ir., a joint.) An instrmment invented hy Henry Herz for training the fingers and suppling the joints. Sre Hoore's "Eneyeloperlia of Mnsic." Stee also ("hatoplast.

Da'do. (Architccture.) A plain tlat surface between a base and a cap or corona of a plinth. A ric.

The space between the buse and smluse of a roum.
Dag'ger. 1. A weapon with a pinted blade, adapted for stabbing.
Fig. 1588.

Daggers.

The words d.rg amd dagger came into use about the twelfth century, but the knife is as okl as Cain, or Abel it might be said, as he buteheved shecゃ p, and brought them and the fat thereof as a sacrifice.

The Fomans carrieel secreted daggers (rolo) hideten in the handhes of whips and canes.

The lenetians luad daggers of glass with thremerlged blades and a tube to secretu prison. By a sudden wrench the blade was broken off and remained in the wonml, like the ar-row-bead of an Apache. Sier people hoth!

The dergyer was a part of the rifuipment of the Frank warrior, who probably called it a coutel, or something like that. it dois not difler materially from the dirk (durk, duirc) of the Gadhelie branehes of the Celts, or the poniord of those nations who arknowlealge Latin (puagere, Lat., to plick) as the base $^{\text {n }}$ of their motber tongues.

In the fourteenth rentury it was earries by citizens, yromen, sailors, ant ladies. It survives in Fngland in the miushipuan"'s dirk, and in other places as a stitetto, a brore-knife, etc.

The dagger seems to have bern a farorite instmment as an accesoory to the solilier's equipment for close combat. Thu"Highlander, Wustum alusperado, and Chilian, all seem to alpurove of the mode of car-
rying it recorded of Ehud 1336 B. c. : "Ehurl made lim a dagger which bad two edges, of a cubit lengeth, and he did gird it upon his right thigh" (ludges iii. 16). The modern plan seems to be in the garter or the hoot, unless it be worn in the belt, bosom, or down the back; mirabile tictu, such was known on the Mississippi and by "Arknusaw travelers."

Some ingennity has been expended on this weajom in the mode of attaching it to the handle and provirling the latter with a pistol.
2. (Printing.) A chameter (\dagger) to call attention in the text to notes on the foot or margin of the page. As a reference-mark it comes next after the star (*).

A lomble dagger $(\underset{+}{+}$) is another sign for a similar purpose when referenees are numerous.

Dag'ger-piece. (Shipbuilding.) A diugonal piece in a ship's frame; as, clegger-Rnee, duygeruuml, ete.

Dag'ger-plank. (Shipuuilding.) One of the planks which unite the poppets and slepping-up picecs of the eratle on whicll the vessel rests in laum hing.

Da-guerre'o-type. The phostographic process inventel by Daguerre during the rears $1824-39$, resulting in the use of the camera for the exposure of a silver or silvered plate, semsitizet by exposure to fumes of iodine in a dark chamber. The latent image was developed by fumes of mereury and fixed by hyposulphite of soda. in 1529 , Dagnerre was joincl in his experiments by Niepee, who had been experimenting for fifteen years with an allioll process in which a plate coated with asplaltun was exposed in a camera, the image developed ly dismolving away the unalloyed portions ly oil of lavender. The Fremeh government gianted a $\boldsymbol{p}^{\prime \prime} u$ ion of 6,000 franes to Daguerre, one half to revert to his widow ; 4,000 franes to Niepee's som, with reversion of one half to his widow. Niepce lipel in 1833, Daguerre in 1851.

Da-guerre'o-type Etch'ing. A mode of eteling by means of the intluence of liglit on a prepared plate. The plate becomes exproseif where the dark lines of the innge fall, and the plate is comroled at those places by a subseynent opration.

Dahl'gren Gun. Jamoll from the late rear-admiral John - Dahlgren, of the United states nary. A gun in which the front portion is materially lightened and the mutat thansfirned to the rear, giving the "bottle-shape," which causel some surprise on their first appearan en in Europe.
folonel Bomford, chief of ordnance of the [nited States army, commenced making this experinsent previous to the war of 1812 , and gave the name of "Colunlial" to the piece.

Da'is. A raisenl platform at the upper end of a room, of a dining-hall, or room of ceremony. On it the dining-table of relebrities was placed. Its present use is for a throur or rostrum.

Dale. A spout or trougl to earry otf water ; as a pump-dalc.

Dam. 1. A bank or structure across the curent of a strean.

Dams for reservoirs are among the most injortant of all embankments, as their failure entails such extensive disasters.

The dam of the Estrecho de Rientes, in Spain, was situated in a valley a little above the town of Lorea, and was designed to holld the water to a hight of 10% fect. Ifter eleren years' use the wright of water, which had attained a hight of 156 fect, April

30, 1802 , hurst the wall, moking a tumnel 100 feet high and 70 feet broad, diseharging the whole contents in less than an hour.

The catastrophe was cansed by the water finding its way througl the saml and gravel at the bottom of the valley.

608 persons wern drowned, 809 houses destroyed, and the damage to pronerty was estimated at $\$ 700,000$.

The thickness of the erown was 36 feet, and the slope of thr surface away from the water was \& fect in hight to 1 liase.

The dim of the rescrvoir of Alicante is circular, the convex side up, stream. It is struck with a ratius of 350 feet, is 67 feest thick at the top; the masomy batters up stream 10 feet. The thickness at the bottom is 112 feet.

It is executed of a hard primary limestone rork, and the overflow js mate in two streams each 6 feret wide and 7 feet lelow the crown of the dam, which has an inclination from the surface of the dan of 3 feet 4 inches. Notwithstanding the capacity of the overflow water-way, the reservoir has been several times filled to the level of the top, the water washing over.

On September 8, 1792, after a protracted storm, the water rose to a hight of 8 leet 3 inches alrove the top of the dam, pouring over it in a magnificent cascade. Such contidence was given by its stability on that and other oecasions that the overflows wree closed, the waste water tumbling orer the wall.
llerrera, the architect of the Escurial, was the author of this magnificent project, which was executed between 1579 and 1594 . The depth of water, when full, is 134 teet 6 inches, and the storage capracity $131,000,000$ enhic feet.
The Tanks of Ceylon are among the wonders of hydraulic engincering ; as, for instance, the chain of tanks which unite the ancient capital Pollinarua with Tamblegam Bay and Trincomalee. Some of these are artlicial lakes twenty miles in circumference, fommel hy embankments of massive mason'y that seem to defy the hand of time. They form part of a vast system of imigation.

Similas structures are found in Southern India and Arabia, and point to the occupation of those countries by the same race ; a civilized peopte, ohler than the Arabs and Hindoos.

In England the dams of reservoirs are nsmally earthworks, the dependence for tightness being a corre or wall of puchlle, commencing in a trench helow the foundations and carried up to within a few feet of the top. The purdle forms a water-tight wall in the bank, and averages in thiskness about one third the hight of the embankment.

The embankment has an internal slope of 1 hight to 3 base ; the external slope, 1 hight to 2 base ; the wilth on top, 20 teet.
The carthwork is carried up in layers of from 4 to 6 inchas, carofilly rammet.

In Frame the main derendence for tightness has been work in hydranlic lime, in the use of which the French workmen are peeulianly skillful.

The French practice has been to carry up the dam in homogeneons layers, not over nine inches thiek and rammed to six inches, being watered with linewater. The pierre, or stone pitching of the face, is carried wp in independent walls, so that injury to one rloes not entail the ruin of the rest. The French dispense with the pudelle-wall.

The dam neross the Schuylkill River at the Fairmonnt Water-Works, Philadelphia, measures 1,600 fret from bank to lank, fomming an angle of about 45° with the dienction of the strean. Jiy this ex-
tension of length the premenlimbar rise above the top ol the dam is lessened during high water. The

Fig. 1589.

Owerfall Dam across the Schuylkill, Philadelphia.

slack water above the dam extemls alont six miles, and a camal and locks are proviled for overcoming the rise. A part of the bottom consisted of mud, and upon this portion, 270 feet in length, a foundation of rubble was laid, and covered with earth. This protion is 150 feet broad at the base and 12 foret on top, being encased with large stones. The ovorfill dam is 1,204 fert in length, founded on the lare rock, the deepest portion having a depth of 24 fert helow low ticles.

While on the suhject of dams we must not forget that constructed ly Lientenant-Colonel Bailey to rasume the Heet of ginboats on lied liver after the disastrons defeat of the amoy under (remeral Banks in lis ill-starred and worse-managed expedition. As the fleet arrived in the neighborhood of Alexandria it was detained by the low stage of water on the falls at that point. It suemed impossilile to escape from the trap, but Colonel Bailey constructed a wing-rlam 600 fuet in length, which concentrated the flow of water in a marrow chamel, and made it possible for the gunboats to tloat down to the lower level, whence they reached the Mississippi. The oprration is termed flushing.
2. Ot a blast-furnace. See Dam-flate; DamETMNE。
Da-mas'cus-i'ron. Damascus-iron is proluced by the following method:-

Unite by welding twenty-five hars of iron and miln steel altemately, each alout 2 feet long, 2 inches wille, and $\frac{1}{4}$ fuch thick, and laving drawn the lagot into a bar $\frac{3}{8}$ inth h_{1} spuare, ent it into lengths of 5 or 6 feet. One of these pieces is heated to redness, and one end is held firmly in a vice, white the other is twisted hy a wrench or tongs, whirly shortens the rod to half its length and makes it cylimbical. If two of these twisted pieces are to be welled together, they are turned in diverse directions, our to the right and the other to the left ; these are laid parallel to eaeh other, welded aud thattemen. If three rods he used, the outside ones turn in a direction the oplosite of the middle one, and this produces the handsomest figure. By these oprerations the alternations of iron and steel change places at each half-revolution of the square rod, composel of twenty-five laminx, the extermal layers winding round the interior ones; thus forming, when thattened into a jibbon, irregular concentric orals or circles. The fineness of the Damasens depends upon the monber and thickness of the alternations ; and the figure of the ribbon, when brought ont by acids, resemhles that of a curled ostrich feather, but when wonnd into a spiral form and united on its elge by jomping, the edges bend around, and the fignre is completed. Other modes might be mentioned, but all involve the sane pinciples. See Wootz.

Da-mas'cus-twist. A kind of gun-harrel made of a ribhon of Damaseus-iron coiled around a mandrel aml welded. See Damasciss-inon.

Dam'ask. 1. (Fabric.) a. A rich silk stufl originally made at Damascus and thence deriving its nanue. It had raised figures in varions patterns, and
flowers in their natural colors emhossed upon a white or colored ground. The work was probably of the nature of embroidery in the first plaee, hut the tigures were afterwards exhibited on the surface by a peculiar armangement of the loom, which brought up certain of the colors and depuessed others, arcording to the requirements of the pattern.
We read of similar gonils in the year 1305 b. c., when Deborah celebrated the victory over Sisera:-
"Divers colors of needlework on both sides, nect for the necks of them that take the spuil."

The events of the bloorly lattle of Mt. Tabor took place but four days mareli from Damasens, and it is probable that this ancient city was, as early as the times of Alraham ($1996-1522$ R. c.), the workshop of artiele's in metal, silk, wool, and hax, as well as the depot of an extensive trade botwern the Orientals on the east and the Ploenicians, the carriers of antiguity, on the west.
Abahan's steward was a man of Damascus, aud, in default of issue, would have heen heir to his property. Through all the uproar of antipuity Damascus has maintained a prominent position, being geographically well sitnated and rich in the great necessity of a warm clinate, water.
"Are not Abana and Pharnar, rivers of Damascus, be "teer than all the waters of lsrael ?" said the langlity syrian.

Mohammed refiused to enter the city, as it was derpel that a man could enter l'aradise but onse, and he did not wish to exhaust his chances by an entrance on a paradise u!on earth.

The steel, the roses, and the fabrics of Damascus survive in most modern languages.

The rich work of the looms of Damascus opened the eyes of the rugged men of the West, who alternately won and lost the rocky mountain-roal which led to Jernsalem, and the tabric las retained its name and substantially its character ever since.

Silk and worsted damasks were favorite materials with our grandmothers for bed-hangings, curtains, and the upholstering of furniture.

"A bed of ancient damask."

b. A woven fabrie of linen, extensively made in Scotland and lreland, and used for table-cloths, fine toweling, napkins, ete. By a particular management of the warp-threads in the loom, figures, fruits, and Howers are exhibited on the surface, as in the ancient damask. It is known as washing damask, or, when unhleached, as brown damask.
A swall patterned toweling, known as diaper, has a figure produced in the same manner.
c. Stuff with a wavy or watered appearance. Woire.
?. (ICctalluryy.) A wavy pattern shown in artioles forged trom a combinel iron and steel blank. The two metals are mechanically associated, and the bar is then twisted, donblem, wellenl, or otherwise treated, so as to convolve the fihers of the respective metals. When the forging and grinding (and tempering if a sword) are completed, the article is dipped in acidulated water, which conroles the steel and does not affect the iron. The steel waves thus appear black, and the iron remains white.
The demask: is producell by the unequal tendency to oxidation of the two metals.
It must not, however, be supposed that mere ornamentation is the principal olject of the mechanical combination of the metals. The main ohject is quality of the blade or the barrel, as the case may be, and the figure demonstrates visibly the degree and completrness of the assoriation ; not intermixture, as the lines of demareation are well marked, though the lamine are indissolubly welded.

If the steel be drawn lengthwise, the veins of the pattern will be longitudimal; if the metal be ex. tended equally in different directions, the reins will be crystalline ; if it be made wary in two directions. there will be various shatles and gradations, as in the Orimital damask. The orbicular reins or any other pattern is produced by peculiar turns and manipulations, and depends upon the skill of the workman.
Dam'ask-car'pet. Also known as British, a damask Venetian. A variety of carpet resembling the Kilderminster in the mote of weaving, but exlosing the wurp insteal of the wcft.

Dam'ask-een. The name is derived from Damascus, where the art is leld to have originated.

It means to ornament one metal by another by inlaying or inerustation, as, for instance, a swordblade of steel, by figures of goll. The metal to be ornamented is carved or etcherl, and the hollows or lines tilled in with the gold or silver, and united by hammering or by solder. It was practiced as early as 617 B. c. by Glaucus of Chios. The analogons oneration of inlaying bronze and stones with gold or silver was practiced at remote periods by the Egyptians, as the statues and searabrei witness. This mode of decoration of metal is principally alplied to the ornamentation of swords and other weapons, and has three forms among the Persians, where the art is principally practiced.
a. The design is drawn by a brush, engraved, wires laid in so as to project, and fastened at points by golden nails. The surface of the gold inlay is then engraved.
b. The engraved blade is filled even to the surface with gold, Which is pressed in and polished by a burnisher of mephrite.
c. The design consists of a great number of mimute holes, which are filled with gold-wire burnished in.

Dam'ask-loom. A loom for weaving figured fabrics. See Jacquarid.

Dam'ask-steel. The steel of Danascus originally ; the process traveled into Khorassan and Persia, where it prospered long, but decayed as the hordes swept over the country. It is a laminated metal of [ure iron and steel, of peculiar quality, produced by careful heating, laborious forging, loubling, and twisting. See Damascers-hon.
Da-masse'. (Fabric.) A Flan- Fig. 1590. ders linen, woren with flowers and figures, and resembling damask.

Dam'as-sin. (Fabric.) A silk damask containing gold or silver tlowers in the fabrie.

Damp'er. 1. A plate in an air-duct, whether air draft or flue, for the purnose of regnlating the energy of the fire by regulating the area of the passage of ingress or egress, as the case may be.

Dampers are of various forms: like butterfly-valves, as in the illustration; hinged flaps, like elack-valves; slicling or rotating grates, like registers, etc. The damper is to the air-pipe or flue what the valve or fancet is to the duct for steam or liquids.
The register or damper-valye for chimneys is an old English invention, and is referred to as such by Savot, in his book, 1624.

The Laconicum, or stove of Laconia, used in heat-
ing the air of the sweating－npartment of the Roman baths，wats heated by the flames of the hypocuustum beneath the flom．Thie heat of the stove was regu－ lated by means of a brazen shiehd suspended by a chain so as to close entirely or partially the opening of communication between the stove and the base－ ment furnace．In the Baths of Titus a globe at－ tached to a chain acted as a ball－valve in the same manner as a demper．
The dampers of fumaces are either in the door of the ash－pit，to regulate the ingress of air，or in the course of or on tol of the chimney，to close the egress of the volatile results of conlustion．In the latter form they are used in almost all metallurgic fumates．

In Fig．1591，the furnace－loor and flue－loor are respectively furmished with dampers，so connected

Fig．1591，

that when one is opened the other is closed，and vice eversa．
2．（Music．）A padled finger in a piano more－ ment which conmes against the strings and limits the period of the viluations．Its normal position is unon the string，from whence it is lifted by a wire as the key is clepressed by the player．
The dampre has assmed rarious forms：the single action，in wheh the damper－wire a rests on the key；

Fig． 1592.

Damper（Piano－Forte）．
the double action，in whinh the damper－wire b rests our a separate lever below．
lhacom says：＂In spinets，as soon as the spine is let fall to toneh the string，the sound ceases．＂

Damp＇er－reg＇u－lator．A device，by which the
heat of a funace or the pressure of steam is made to vary the area of the air－supply opening of the fur－ nace，or of the flue which carries from the furmace the volatile results of combustion．

In the former case the device is thermosfatic， usually consisting of a rod or combination of rods， which lengthen or shorten as the heat increases or diminishes above a determinate point；the said variation in length acting mechanically by suitable connections to open or close a damper in the ash－pit done or the Hue．
The damper－regulators which act by the pressure of steam are of three or more kinds．
a．A tube is inserted in the top of the boiler，amal its open end descends below the water－level．The pressure of the stemm supports a column of water in this tule，and the hight of the column varies with the pressure of steam．A float in the tube is sup－ porten！upon the water ；a chain from the float passes＇over one or more pulleys，and is carried to the damper which is suspeuded to it．When the pres－ sure of steam is de－ creased by its with－ drawal for the use of the engine or by the slackiness of the fire，the column of water ilpseends， hearing the float with it．The thoat draws upon the chain and raises the damper，so as to allow a greater draft and urge the fire．
b．A device act－ ing lyy the direct 1ressure of steam against a piston or diaphragm，to ac－ tuate a lever which will open or close the draft as a greater or less

Damper－Regulator． amount of heat is requirmd．The lase A is fitted on the boiler，and the stean throngh B acts within the expansible hol－ low disks C a to raise the rod H ，which lifts the lever L ，or，when the pressure slacks，by the col－ lapse of the lisks to let the lever fall．
c．An electro－magnetic device in which a column of mercury is lifted by the pressure of steam，and when above or below its normal or determinate level closes a circuit and brings into action an armature whieln ofrens or closes the furnace－door．

Damp＇ing－ma－chine＇．1．（Printing．）A ma－ chine for damping sheets of paper previous to print－ ing．A certain amount of the paper may be thor－ onchly wetted and built up between dry quires into a pile，ly their own weight or pressure causing an equal distrihution ；or a quire may be quickly passed muder water ant out arain and then built up with others into a pile；or a sparger may be usenl，ass in the perferting presses which print from a roll，whieh simis a tine spray upou the praper as it is rolled oft from one rod and robled on to another．

2．I maehine in which starched goods are mois－ tened previous to running them through the calcon－ dering－machine，to give them a finished and hustrous surface．

Dam－plate．A plate in front of the drm－stom＂ which forms the bottom of the liearth in a blast－fir－ nare．Sce Blast－ftradee．

Dam'sel. A projection on a mill-stone spindle for shaking the shoe.
Dam-stone. The stone at the botom of the herefh of a blast-furnace. See Blant-furnace.
Dan. (Mining.) A truck or sled used in coal-mines.
Da'na-ide. it water-wheel haring a vertical axis and immer and outer dums between which rulial Hoats are attached. The water acts tangentially upon the spirally arrauged radial floats, passes down hetween the said inner and outer cases, and is diseharged at the bottom. The water dashes opon the wheel from a chute, and, the tloats being spiral, the wheel may be said to act by lerenssion and recoil. At tub-ricel.

Dan'dy. 1. (Veutical.) A sloop or cutter with a jizger-mast abaft, on which a mizzen lug-sail is set.
2. (Pryer-making.) A perforated roller emplosed to press out the surplus water and sel the paper. Patented in England by Wilks, in 1830. A partial vacum is obtained in that part of the roller on which the paper rests.

Dan'dy-brush. A hard, whalebone-bristle brush.
Dan'dy-horse. A relociperle.
Dan'dy-rig Cutter. A peenliarly rigged sloop. See Dandr.

Dan'dy-roll'er. (Poper.) A sieve-roller beneath which the weh of paper-pulp passes, and by which it is compacted and partially drained of its water. It may be made the means for uater-murliing the paper. The paper passes thence to the first pair of pressing-rollens. A dendy.

Dan'iell's Bat'ter-y. The double-fluid hattery incented by John Frederick Daniell, F. 1. S., who received the Copley medal from the Royal society in $183{ }^{\circ}$ for this invention; he died in 1545.

A jar of glass or earthenware, in which fits a plate of copper hent into cylindrical form. Withiu the copper is a porons cup containing the zinc. The liquids used are a saturated solution of sulphate of copper in the outpr cell, and of sulphuric acid in the inuer cell or porous cup.

To the copper a perforated shelf or jacket is often attached for holding erystals of sulphate of comper, so that the solution may be kept at the point of saturation. See Galvasic Bartery.

Dan'ish Bal'ance. A form of the steelyard, the inverse of the Roman or Chinese. The weight and load are suspended at the respective ends, aud the suspension-loop is shifted along the heam till equilibrium is attained. The weight of the goods is thus to the weight of the bob reciprocally as their respective distance from the loop. (See Fig. 530.)

Dar'by. (Plastcring.) A iloat-tool used by plasterers in working on ceilings especially. It is $3 \frac{1}{2}$ feet long and i inches wide, with two haudles on the back by which it is nanipulated.

Dark-boz. A closed chamber in which an electric light is placed in orler that experimeut: may be deprivel of all light except the beans issuing at the lens. See Electiac Light.

Dark-glass'es. Shades fitted to optical re-flecting-instruments to intercep, the sun's rays.
Dark-lan'tern. A lantern having a circular shade which may be used to close the aperture and hide the light. (See Fig. 9-2.)
"My father and I with a lark lanthorn, it being now night." - Peprs's Itiury, 1667.

Dark-slide. (Pholugruthy.) The holder for the sensitized plate. See Plate-holiner.

Dark-well. Acell elevated beneath a transparent object in a microscope, to form an opaque background when the said object is to be viewed as illuminated by light from abore.
Darn'ing-last. \& potato, an egg, an apple, or a small gourd, to stretch a portion of a stucking while being darned.

Darn'ing-nee'dle. One of large size for carry. ing a woolen yarn in stoplping holes in knitted or woren fabrics.

Dart. A missile spear or jarelin much in use among the aucients, and yet seen among many of the more barbarous nations. Tlie ('affres of South Africa and the aboriginal inhahitants of Australia are very expert in the use of the asuggit. The darts in asie among the ancients were of two kinds, namely, spearheaded (that is, without barbs), or bearded. The former were often attachell to a long cord, enabling the thrower to recover hin weapon atter having thrown it. Dart-heads are usually made of iron, but among savage natious Hints, sea-shells, fishbones, and other hard substances, have been employed; and among some of the aboriginal inhabitants of Africa and America the dart was merely a sharp-1.inted stick, the end of which was carbonized by fire. The weapon is always very simple in its construction, and is usually from 3 to 5 feet long.
Dash. 1. (Printing.) A short line (-) oceurring in a sentence to mark a significant pause of more moment than that inlicatel hy a comma.

Also used to indicate a consecitive series, as, Johu xir. 1-s. Also nsed as a "ditto", mark.
The em-dash is the length of the "em" of its font : the $c n$-dash one half the formet. The clouble-dash has the length of two em's.
Q. (I'hicle.) Formerly splash-board. A board or fender erected on the forepart of the hed, and standing in front of the driver. A dush-bourd.
Dash-board. 1. The float of a pradlle-wheel.
2. The splash-board of a rehicle.

Dash-pot A contrivance fur tasing the fall of a weight. The falling-rod is connected to the piston, and the latter plunges into the water contained in the cylinder. See Ctt-off (Fig. 1571).

Dash-rule. (Printing.) A rule between articles across a colurnn or page, and shorter than the midthmeasure.

Dash-wheel. (Bloaching.) A wheel with compartnent revolving partially in a cistern, to wash
and rinse calico in the piece, by alternately dipping it in the water and then dashing it from side to side of the compartments as the wheel rotates.
Da-sym'e-ter. An instrument for weighing gases. It consists of a thin glass globe, which is weighed in the gas and then in an atmosphere of known density.
Da'tum-line. (Engineering.) The horizontal line of a section from which all hights and depths are calculatect.
Daub'ing. 1. (Currying.) Or dubling. A mixture of fish-oil aul tallow which is worked into leather after the latter has been shaved by the knife at the currice's leam.
2. (Plastering.) a. A rough coat of mortar thrown upon a wall, and sulposed to give it the ${ }^{4}$ appearance of stone. Rough-ctest.
b. The chinking or elosing of the apertures brtween the logs of a cabin. The daubing is usually mul. The chimneys, made of sticks, are also letenled inside and out.
Dav'it. (Nentical.) a. A beam projecting from a ship's bow, for the attachment of the tackle whereby the anchor-fluke is lifted without dragging against the side of the vessel. The operation is termed fishing the unchor.
b. One of a pair of cranes on the gunwale of a ship, from which are susprended the quarter or other

borts. The boat-tackles are attached to rings in the bow and stern of the boat respectively, and the fatl is lelayed on deck. When the boat is lowered the hooks of the fall-blocks are east off simultaneonsly, or great danger results, when thr ship is mmler way. See Bodt-loweming Apparatus, P. 314.

Dav'it-fall Hook. A hook having a means for instint unclutching or release, and used at the end of a lavit-fall to engage a ring-bolt

Davit-Frell Hook.

Fall-Block Hook.
at the stem or stem of a boat. Sere Buat-herai man: Appalites: Davit.
In Fig. 1596, the hooked ends are kept turnetlow by the suspending-chatin, and ine opromel by theid weighted ams as the boat tonches the water.

In Fig. 1597, the hook is eajsized ly a lever and a corti.
Da'vy-lamp. (Ifining.) The safoty-lamp of Sir Humphy Davy, in which a wiregraze emvelope covers the flanu-chamber amd perents the passage of flame outward to the explosive atmos. phere of the mine, while it allows circulation of air. Sue Safety-hant.

Day. The light of a window in a bay ; the distance hetwern mullions.
Day-lev'el. (Mining.) An redit, or saunh. A dift whose outer end is at the natmal surfice, open to the day.
D-block. (Nauticerl.) A Whack lolteri to the ship's side in the chammels, to reve the lifts through.
Dead. 1. Lustroless; as of some kinds of umpolished or unbarmished metallie surfaces, Jhett. Also of color without brilliancy, as stoed color. Destemper.
2. Felse ; as of imitation doors ami wimbows, put in as architectural deviees to balance parts.
3. Motiontess; as the defd spindle of a lathe. which does not rotate. A decel-lock. Jeced-centire of a crank.
4. Opuque: as a decel-light or slutter orer a cahint window.
5. Solid, without light or apening; as a dicul-uralt, a dead-plate, or unperforated portion of a furnacegrate; the dead-word of a ship.
6. Useless; as derd steam, that is, exhausted. Deud-heud, a feerling-heced or sullage-pipec. Itentweight. Jereds in mining, the nseless substances which enciose the ore.
7. Soumlless; as a dend-floor, which absorbs the solund.
8. Flat; as a deth-smooth file; having the least possible hight of teeth. Dcall-level.
Dead-an'gle. (Fortificution.) The space in front of a parape whish is out of view of the solders in the work, and which they cannot fire upon.

Dead-ax'le. An axle which mins, but tloes not commmieate motion, as distinguished from a drie-ing-axle, which is a five-axle.
Dead-beat Es-cape'ment. This, which is also known as the esectrment of repuse, was invented hy Graham about 1700, and was intended to isolate the going works more completely from the penilulum. The seconds-hand in the dend-bent stands still after rach drop, whereas in the recoil-escuproment there is a brek-lash to the train.

The working surfaces of the prollets of the ewrhor in this escapement are curvel concentrically with the axis of oscillation of the anchor. When a pallet rescapers from one tooth and allows a prartial rotation of the scupp-wheel, a tooth on the opposite side is arrested by the other pallet, but without giving imy backlash to the wheel, which would cause a recoil to the train of gearing.
The term deal-beat is to Dead-Eent Escapement. contradistinguisis it from the rrewil-escapement (sce Fig. 193), in which the working faces ate curvell evecatrically in relation to their axis of ocellation su as to ulfer a slight imperliment to the hution of the where. This inluediment
causes a slight recoil of the scupe-whech, which is communicated to the troin. The pallets in the re-coil-escaprement are both cleck and impulse, but in the derel-beat one is simply chece and the other gives a slight impulse at the noment of escaping. The impulse given to the pallet is communicated to the pendulum, to orercome the friction on the pendulum bearing and the resistance of the air, and thereby keep the beats of the pendulnn isuchronons. The cylimer or horizontal escapement is a dead-beat escapement for watches, and was also invented by Grahan.

Dead-cen'ter. Oue of the two points in the orbit of a crank in which it is in line with the con-necting-rot. The disul-point.

Dead-col'or-ing. (Picinting.) A first layer of color forming a basis for that which sureeeds it. It is called deud hecanse it has no gloss, and is to bee bidden by the finishing coats. Destemper.

Dead-door. (Shipbuilding.) One fitted in exterior rablects, to proteet a cabin window or cover an opening when the lights are carried away.

Dead'en-ing. 1. (Carpentry.) Packing in a floor, ceiling, or wall, to prevent conduction of sounl. Such provision constitntes it a dead-floor, or elead-wall. Pagging.
2. (Gilding.) It thin coat of glue, slightly warmed, smeared over a surface that is gitced in destemper, and is not to be burnished.
3. Roughening a surface to diminish the glitter.

Dead-eye. (Nauticul.) a. A block without a sheare, probably so named from a grotesque Fig. 1599. resemblance to a death's-head or skull.
 Such are those flat, round blocks fixed in the channels, and having eyes for the lanyards by which the shronds are set np. The circumferential groove for the shroud is called the score. The dead-eye is also known as a rum-block:
b. The erow-fect drad-cyes are cylinders with a mmber of holes for the lines composing the crow's foot. A cupheroe or ucrour. c. The ere-bolt or staple on the gimwale of a canal-boat to which the towing-line is bent. The line is retained hy a key of wool, which passes throngh the eye and is cast loose by pulling nut or breaking the key.

Dead-fall. (1/uchinury-) 1. A dump-ing-platform :t the mouth of a mine.
2. A trap in which a falling gate, loard, or \log drops upon the game aud kills it. Used esperially for rermin.

Dead-file. One whose cuts are so fine Drad- anl close that its operations are practically
Eye. noiseless. See Ienid-smontif File.
Dead-flat. The milship beml or frame haviner the greatest hreath

Dead-flue. One which is brickel up at bottom and disentinmed.

Dead-gold. The umburnished surface of gold or gold-leaf, thom the electro bath or the hands of the gikder. Parts of olgects are frequently left unburnished as a foil to the brilliant and lustrous bumished portions. Gilders call it matt. See Gilding.

Dead-ground. (Mining.) A houly of nonmetalliferous rock dividing a vein, which passes on each side of it. The rein is said to take horse, in allusion to its straddling the intervening rock.

Dead-head. 1. (Ordnance.) An extra length of metal cast on the muzzle end of a gun in order to contain the dross and porous metal which floats on the sounder metal beneath. When cooled and solid the dreat-herted is cut off.
2. (Firtuling.) That piere on a casting which fills,
the ingate at which the metal enterel the mold. A jecdiny-hecud or sullaye-piece.
3. (Luthe.) The tail-stock of a lathe containing the doud-spindle and buck-conker; in contradistinction to the lire-head or heud-stock at the other end of the sheers, which contains the five-spindle.
4. (Ňeitical.) A block of wood nsed as an anchorbuoy.

Dead'ing. (Stcan-enyine.) The clothing or jacket around a steam boilper or cylinder to prevent radiation of heat. Cleading; logying.

Dead-latch. A kind of latch whose holt may be so locked by a detent that it cannot be opened from the inside by the handle or from the outside by the latch-key. The detent is usnally capable of locking the holt in or out, so that the device forms a latch, a dead-lock, or is made inuperative, as desited.

Dead-let'ter. (Printing.) Type which has lieen used for printing, and is ready for distribution. Dead matter.

Dead-light. (Nautical.) A shutter placed over a cahin window in stomy weather, to defend the glass against the hlows of the waves.

Dead-lock. (Locksinthing.) A lock operated on one side by a handle and on the other side by a ker.

Dead Met'al. Metal, such as gold or silver, left with dead or lusterless, that is, umbumished or uupolished, surface. Mutt.
Dead-plate. (Fumuce.) An ungrated portion of a furnace floor, on whieh coal is coked previously to pushing into the fire above the grates. It was introluced by Watt in his patent of 1785.

Dead-point. One of the points at which the crank assumes a proition in line with the pituan or the rod which inluls it. ln stenu-engines with vertical cylinders, the dead-points are the highest and lowest prositions of the crank. A dead-center.
Dead-ris'ing. The portion of the ship's bottom formed by the floor timbers.

Deads. (Mininy.) Non-metalliferous rock excavated around a rein or in foming elrifts, levels, slafts, cross-courses, ete. Many veins are too narwow for working, and the walls have then to be cut into to affork space. Sueh work, as yielding nothing, is called dead-work or tut-work, and the proceds are deads or uttle, to he got rid of as economically as possible, by sending up to the surfact, or filling up the gienmies and goufs of ohl workings.

Dead-sheave. (Tautical.) A scored channel for the run of a rope; destitute of a sheave.

Dead-shore. A timber strut worked 11 in brickWork to support a superincumbent mass, till the brick-work which is to carry it has set or become harcl.

Dead-smooth File. A file whose teeth are of the finest and closest quality. The grades are as follows:-

Rough.	Second-cut.
Mlidille-cut.	Smonth.
Bastard.	Dead-smooth.

The number of the teeth to the inch of a deadsmooth file varies with its length in incbes.

Tnches :	4	6	8	12	16	20
Cuts	215	144	112	88	76	64

The angle of the chisel in cutting is about 4° from the perpumicular.

Dead-spin'dle. (Lathe.) The non-rotating spinHe in the luil-stock or dead-head of a lathe.

Dead-steam. Steam destitute of energy, inactive from want of heat, from having attainme its
ultinate expansion，or from being so placed as to have 110 ＋flentive value in any given case．

Dead－stroke Ham＇mer．A power－hammer

Fig． 1600

Dead－Stroke Hammer． which delivers its blow without loeing aflected by the recoil of the slail＇t on which the ram or ham－ mer is stocked． The firame A has a crank－wheel é combected by a roul L to the spring E ，from which the ham－ mer is suspended． The latter moves in suides F ．

Dead－wall

 A watl unrelieved by windows or other openings．Dead－weight． The weight of the rehinde of any kime ；that which must be trans－ ported in addition to the loud．The extent of dead－ weight in milway trattic may lee juigeel from the following estimate：－

Weight of locomotive and tember One baggrage car

Pounds． 104，000

Three 56 －seat passenger－car＇s 2：，000

One sleeping－ciar 84，000 40,000

253，000
These rars，if filled，will cary ahout 194 passen－ gers，which will give 1,304 pounds of deal－weight for eath prrson carrim．

Dead－well．A well dug through at stratum int－ fervinus to water and penetrating a forous strata； usid to allow strlice－water to pass awity，or to carry off by infiltration refuse water of fictories，dye－

Dead－wood．（Shipbuitding．）Thee solid mass of built－ny timbers at the narow portions of the extremities of a shipis frame，lore and aft，above the keel，and continued as high as the cutting－dorn－ liwe．In aretic vessels the dond－eoorl is in unusual quantity，to give solitity to a strueture liable to com－ tact with ire－floes and ilrifts．

Dead－works．The parts of a wessill above the load water－lim．

Deal．A plank 12 fret long， 11 inches wide，and $2 \frac{1}{3}$ inclues thick．Deals are satwel of other sizes，but are reduced to that cubic dimension in computing them．

Platitice may difler in different rountries．The ghowe is the ottawa rule．In England，lumber not experning 3 fuches in thickness and 9 inches wide．

Deal－frame．A treng－stur for slitting deals or balks of pine－timber．

The illnstration shows the English form of the nachine，which has two separate saw－gates ou， worked from dianctrically opposite cranks on one shal＇t b ．The feed is continuons，anil the rate of advance aljustahle from 18 inches to 72 inclues per minute．The lied－motion is by a friction－aink c ， roul h ，worm f ，and wherl f ，and the rate is aljusted

by a lever which raises or lowers the friction－wheel d oll the disk．

Dean．（Miming．）The end of a level or gallery．
Dearborn，A light four－wheeled family car－ riage of moderate pretensions and named after the designer．

De－bage＇．（Falric．）A dress－gools like alpaca， having a＂otton watp and a woolen filling，which is dyed in the wool and mixed is the thead．

De－blai＇．（Fortification．）The excavated earth which forms the remblui or Plevated work．

De－bran＇ning－ma－chine＇．A machine or pro－ cess for decortieating grain．It is accomplished by steaming and rubbing，by a partial grinting，or by a process equivalent to rasping．Soe Derobiticators．

De＇bus－cope．I monlification of the kaleido－

It cousists of two highly polished silvered plates, set at an angle of 70° with each other: When placed before a picture or design, an assemblage of Hower petals, or other small colored objeets, beautiful desigus are lormed by their rellected images. The instrument is held stationary while these are copiect, and by successively moring it over the object, dif: ferent combinations of figures are shown, which may be addel to the first. It is particularly intemed for the use of dratsmen who are required to design ormamental patterns for fabrics.

Dec'a-chord'on. An ancient form of liarp having tell strings.

De-can-ta'tion. The pouring of a clear liquid from the sediment. In starch-making and operations on a similar scale it is performed by siphons.

De-car'bon-izing-fur'nace. A firnace in whieh superthous earbon is burned out of a metal. The term is a very general one, and may include the boiling and pudding furmaces in which cast-iron is heatell to make the metal malleable.

Fig. 1602 shows a decarbonizing and desulphurizing furnace in which the air from the blast-wherd is conducted by chamber A and tuyeres B to the fuelchamber, whence the Hame proceeds to the dome A,

Fig. 1602.

Decarbonizing and Desulphurizing Furnace.
and acts upon the pig-iron F, which is piled upon the hearth E. As the iron mejts it runs thoungh the throat G, and falls down the shaft K, upon the phatform H, where it rebounds in tine particles, and is exposed to the air from the blast-pipe L anl its tuyeres, collecting in the hearth I. I^{-}is the char-ging-hole ; 1/. damper ; J, exit-flue.
Deck. (Shiphrilding.) A floor in a ship above the bottom of the holl. Buats have no perntanent ibeeks, but are sometimes tempranily coverell with a preventer-dech:
The deck is said to have been a Thasian invention ; first, as a protection to the rowers beneatlo. In its jrinary form it was a seaffoll, one at the prow and another at the stern, for the combatants.
berks may run from stem to stimu, or lee but par-
tial. Some fishing-craft have a partial deck forming a cuddy.

Vessels are classed, for some purposes, by the nomber of their decks; as, single-leched, turo-decked, thrce-dected.

In three-deeket ships the decks above the waterline are known as the upper or spur, nuin, midille, gun or lower deck. In two-decked ships, the umper or spar, main, and gun deck.

In frigates and merehant-ressels, the upper and main decks.

The deck next below the water-line is the orlopdeck in two or three deekers, but is known as the lower deck in ressels of the lower grates. The afterpart of the orlop-rleck is the cosh-pit.

A passage round the orlop-leck, to get at the ship's side for repairs during action, is called the wing. prassagc. On this deck are the cabins and herths of ofticers and men.

A complete deck over the main-leck is the spor or thesh deck.

The forecustlc is the foremost part, and the quarterdeck the aftermost part, of the spar-deck; the ruisis is the space amidships.

A small deek at the after end is the poop or roumlhousic, and usually extends to the mizzen. Above it is the poop-deck.

A similar deck at the forward eul is called the topgallunt-fin:ccastle.

A transverse deek extending across the midtle of the ressel is called a hurricane-deck, bridyc-deck, or bridge. It is commun in steam-vessels, covering the space between the paddle-loxes.

Detached buithings on a deck are deck-honses.
The openings in a deck are ladder-ucays or hateldwuys. Tween-decks is the space below the sper-dect:

The former is by a hool or covering called a companion. The coverings of a hutchway are leatches.

Tle raised ledges around the hatchway are coumings in the fore and aft direction; head-ledyes in the parts athwartships.

Classes inserted in holes made in a deck are calheld deck-lieflets, and serve to light cabins brlow.

Deck-bridge. 1. One in which the track oueupies the ulper stringer, as distinguished from one in which the track, whether for ears or carriages, rests on the lower stringer and torms a through bridge.
2. A platform connecting the padlle-hoxes of a side-wheel steamer, or abne and across the deek amidshijs of a propeller.

Deck'el. (Popicr-making.) A curb, which by confining the $\mathrm{p}^{\mathrm{ml}} \mathrm{p}$ tetermines the width of the sheet or roll of paper: In hand-machines it is a loose rectangular frame of wood.

In machine work it is continnous; usually of linen and caontchone along the two margins of the apron. The uncut edge of paper is known as the derkel edge.

Deck-feed Pump. (Vauticil.) A land-pumb used for washing decks, feerling the boiler, ete.

Deck-hook. (Shipluilling.) A thwartshipframe crossing the apron in a nearly horizontal position, to strengthen the how and support the forward end of the deck. See Stem.

Deck-light. A bull's-eye or thick glass window let into an upper deck to light a cahin or stateroom. Side-lights are made in a similar manner, and light the staterooms throngh windows in the side of the ressel.
A has a bull's-eye y and a serew-ring which is foreed into an elastic packing in the face of the glass, whose frame is rotated loy rack f as it moves to and from the olrening.

B ，a light c is held in a frame b ，which is seeured to the post by serews g ．
C has a light c in a bushing b ，secured in the post frame d ．
D has a frame B hinged to frame A ，and secured sy a screw．
ln E the ligrot frame a is secnred to b by hinges abtla swinging amm c ．
F is secured in a somewhat similar manner．
Deck－nail．A iliamond－shapel spike for nailing down the derk－phanks．

Deck－plate．（Steom－cngine．）A plate around the chimney of a marine－engine furnace，to kerp the same from contaet with the wool of the iluck．

Deck－stop＇per．A calle－stopper on leck，to secure the cable forwarl of the windlass while it is heing ovwrbauled；or onp abaft the bitts to keep mure valile from rumning out．

Deck－tran＇som．（Shipuuilding．）A horizontal timber unler a ship＇s commter．

Decti－na＇tion．（Compress．）The horizontal angle which a neetle makes with the meridian．Varia－ fion．

Dec＇li－na＇tor．An instrument．usel in dialing， for taking the deelination aml inelination of a pllane．

De－clin＇ing－di＇al．One which euts eithor the plane of the prime vertical circle or plane of the horizon obliguels．

Decli－nom＇e－ter．An ip］paratus for measuring the derelination of the magnetic needle ；its variation firme tlu trine meritian，

De－coc＇tion．An aqueus solution of the aetive lutinciples of any substance，obtained by boiling．

De－clor－im＇e－ter．A measurer of the effects of blraeling－1 rowler．

An instrument to test the power of chareoal in its divided state in decolorizing solutions．It is a grarluated tube chirged with a test solntion of indigo （H＇molasses．

De－col＇or－ing－style．A methor of calico－print－ ing in which the pince of goods is colorel，and a part of it－fomming a given pattern－is subse－ quently dischargerl．Also known as the discharge－ style．It may be eloue by printing a dyeal pinere with something which canefls a pention of the robor， or by printing an uneolored piece with a substance which keeps the coln fiom penetrating critain
parts．This is called the resist－style．By printing certain parts with a mordant，then coloring，a sub－ sequent washing may remove all trace of dye except at the mordanted parts．See CAllco－pmint－ NG．

De－cor＇ti－ca＇tor．A process or a machine for removing the hull from grain．In the homiuy－mill the filmons envelope is taken from the corn，whirh may be lelt nearly intact otherwist，if desired．The process is sometimes performed by a preliminary steaming，followed ly rubbing or rasping．Decorti－ cating was praeticed by the limans，the whole grain being pountled in mortars with some abradant which rasped off the euticle or bran．Mills for decorticat－ ing are known in England as barley－mills，that grain being prineipally used as human food in the condi－ tion known as parl barley．The barley－mill has a roughened exterior，and revolves in th woolen casing． The niddle portion of the latter is lined with sheet－ iron pierced like a grater with loles，the sharp edges of whicll turn upward．In Gemmany grain is decor－ ticated between stones set at such a distance apart as to rasp the bran off the gran without mashing the latter．

Corn is sometimes decorticated by stepping in lye of wood ashes．The whole hominy thus obtained is then repeatedly washed to extricate the potash．

A Prossian process is a modilication of the cen－ trifugal machine，in which the bran is removed by frietion of its kernels irrespective of any artificially prepared abrading surfaces．A vertical casing has a number of horizontal ammar shelves，amanged con－ centrically with an internal cylindrical drum．This latter has radial vanes，which sweep in the spaces between the shelves．A prortion of the rasing is made of sheet－metal，aml perforatmi in such manner that currents of air，induced in the operation of the machine，pass ont from the casing and thence into a dust or bran chamber，and carry with them the dust and bran as fast as they are lilierated from the grain．The grain being placed upon the sleples， the rotation of the drum canses its vanes to carry the grain around at the rate of about three thousand feet jer minute．The time required to wholly remore the useluss envelopes from the keruels is very short， only from three to four minutes，and by ventilating－ 1 rassages any undne heating is preventrid．

Décus－so＇ri－um．An instrument for depressing the dure mater after trephining．－Tnumas．

Deeps．（Nautical．）The estimated fathoms be－ tween the marks on the hand lead－line．See Marks anir Deeps．

Deep－sea Line．（Nentical．）a．A watar－laid line of 200 fathons，and used with a 28 －pound weiglit in sounding．It is usually marked as fol－ lows in the British service：－

2 and 3 fathoms，black leatler．
5 fathoms，white bunting．
7 ＂red bunting．
10 ＂leather with a perforation．
13 ＂black leatluer．
15 ＂white bmang．
17 ＂red bunting．
20 ＂two knots．
30 ＂three knots．
40 ＂four linots，etc．
A single knot marks the intermediate five fathoms over twenty fathoms．
b．A line for deep－sea fishing．A cod－line．
Deep－well Pump．A pump specifically andapted for oil and brine wells which are bored of small diameters and to great deptlis．From the necessities of thu case，the working parts must be contained within a single tube，which has the lower valves

Fig. 1604 and generally a strainer at the foot. Such wells are sometimes son feet deep; the tube is in sections united by serew-couplings; the lower ent has the foot-valve E; the valved bucket C is on the eml of the long rod D, by which the liguid is lifted.

Def'e-ca'tor. (Sugrer-numufacture.) An apparatus for the removal from a sacharine liquid of the immature and feculent mat-

Fig 1605.

Defecator.
ters which would impair the concentrated result.

The pans are arranged in rows in the sugar-house and heated hy steamjackets. Their use is to clarify the juice from the inill or the partially concentrated syrup from the first racuum-pan, the acility in the liquid heing neutralized by a portion of lime. A frothy scum rises to the surfare, which increases as the hiquid is kept in a simmeriug condition. In the illustration, f is the defecator. The juice is received through a pipe from the reselvoir e, steam from the boilers being admitted by the tubre a. The scum having attained a considerable solidity, the liquid is withdrawn by turning the handle m^{\prime} of the fancet; allowing the liquid to pass by the pipe $m m$ to the trough, which conducts the clarified juice to another reservoir or to the filters.

In other forms, the juise is exposet in a shower to the fumes of sulphurous acill gas, which tenels to arrest the fermentation incillont to the presence of nitrogeneous. matters in the juice. Defecators for sorghmm partake of the character of filters, the action being principally mechanical in arresting the floating matters that render the liquid turbid.

De-file'ment. (Fartification.) The arrangement of a fortification in regard to the hight of its prapet and direction of its faces, so as to secure it from an entilading or reverse fire.

Defla-gra'tion. The surl-

Fig. 1606.

Difiagrator. den combustion of a substance for the purpose of prolucing some change in its composition by the joint action of heat and oxygen. It is usually performeil by projecting in a rel-hot crucible, in small portions at a time, a mixture of about equal parts of the body to he oxidized, and nitrate or chlorate of potash or other energetic oxydizer.
Defla-gra'tor. An instrument tor prolucing intense heat. It is generally a forn of the voltaic battery.

Such was used by Davy in 1807-8, when he decomposed soda, potash, borax, and lime.

In the form invented by Dr. Hare of Philadel phia, it is composed of a single sheet each of copper and zine rolled helically ulon a central cylinder of wood. The two metals are prevented from touching each other by intervening pieces of cloth or twine. It is dipped in a tub of acidulated water, and derives its name from its powerful heating effects.

De'flec-tom'e-ter. Av instrument for measuring the deflection of a rail by a weight in rapid motion.

De-flect'or. A plate, diaphragm, or cone in a lamp, furnace, or stove, to bring the llame and gases into intimate contact and improve the combustion.

Deg'ging-ma-chine'. (Cotton.) One for damping the firbrie in the process of ealendering.

Dek'le. A curb which determines the margin of the sheet of pulp in hand-male paper.

A strip, sometimes of caonthloue, lying on the erlge of the traveling cloth in a Fourdrinier machine, and forming the elge of the sheet. A deckle.

De-laine'. (Fabric.) A lady's hress-goods with a cotton chain, woolen filling, untwilled. It is dyed, figured in the loom, or printed.
All-uool delaines are similar, excepting that the chain is of wool.
"The Gauls have a coarse, long-wooled sheep, from which they weave the thick saga called laines.

De'le. (Printing.) The explunging term of the proof-realer, marked on the margin.
Delft-blue. (Calico-printing.) A mode of printing, also known as Chime blue. See Calico-printine.

Delft-ware. A kind of pottery originally manvfactured at Delft, in llolland, in the fourteenth century. It is now considered coarse, but was among the best of its day, being consitered equal to the Italian in ruality, but somewhat inferior in its ornamentation.

The glaze of the Delft-ware is made as follows: Kelp and Woolwich sand are calcined together, to form a vitreous mass called frit. Lead and tin are calcined to form a gray, powdery oxide. The frit is powdered and mixed with the oxide, zaffire bring added to confer blue color, arsenic for deal-white. This is fused, making an opaque enamel ; ground and mixed to the consistence of cream.

Dellt-ware is made of a calcareous clay of varying color, which is ground in water, strained, and evaporated to a plastic consistence; it is then tempered, and storet in cellars to ripen. Prolonged storage increases its tenacity and plasticity. It is then kneaded, without sand; formed on the wheel, dried, and partially burned. reaching the biscritt condition. The bilmons ware is then glazed, dried, packed in sagyers, which are piled in the kiln and baked.

De-lin'e-ator. 1. (Tailoring.) A pattern formed by rule; bring expansible in the directions where the sizes vary, as indicated by the varying lengths obtained hy measurement.
2. (Surveying.) A jerambulator, or geodetical instrument on wheels, with registering devices for recording distances hetween points; a pendulum arrangement by which a profile line is inseribed on a traveling strip; and certain other data, according to construetion.

De-liv'er-ing-roll. See Deliveni-foller.
De-liv'e-ry. (Founding.) The draft or allowance by which a pattern is made to free itself from close lateral contact with the sand of the mold as it is lifted. Also called draw-iteper.

De-liv'er-y-roll'er. That roller in a carding,
peper, calendering, or othw machine, which conducts the vbject finally from the operative portions of the apparatus.
De-liv'er-y-valve. That valve through which the discharge of a pumpenl fluid oecurs, as the "pper valve of the air-pump in the condensing stean-engine, thongh which water is lifted into the hot-well.

Detph. (Ifydrautic Entineering.) Thee drain on the lame side of a sea embankment. It shoule be? at sulticient distime not to encourage the percolation of water from the outside of the bank, or the slip)ping of the bank from ontside pressure: Thirty-six feet from the foot of the bank, 12 feet wilth at top, 6 fert at hottom, and id depth of 4 or 5 fect, are approved proportionate dimensions.
De Luc's Col'umn. I dry galvanic pile made by ulternating plates or sheets, such as silver, zine, anel pirner.
Dem'i-bas'tion. (Fortification.) A single face and fliunk, resoubling the half of a bastion.
Dem'i-can'non. An old 33 -jwumeder of $6 \frac{1}{2}$ inches bore and a length of 10 or 12 feet. "What's this? a sleeve! "t is like a demi-camon."- Perricinu.
Dem'i-cap'on-miere. (Fortificatiom.) A construction across the ditch having but one parapet anil glacis.
Dem'i-cir'cle. An instrument for measuring and indicating angles. It resembles a protractor, ancl has sights at rach end of its limmeter, also sights at eache emal of a sule or alidade $f g$, which has an axis at c over the center of the circle, so as to sweel the graduated arce c a d. A given olject heing obsicred from astation, through the sights $c d$, the alinade is alljusted so that the other ohject is observable through the sights on $f g$. The point of the rule then indieates the angle. In the midele of the instrument is a compass to show the magnetic lowings.

By froviling the instrmment with teleseopes, a considerable degree of aceuracy may be attained, and more listant points conveniently ohserved.
It is a molest substitute for the theodolite. The plame of the instrment is placed horizontally for taking distances, and vertically for hights.
Dem'i-cul'ver-in. An old 9 -ponner, with 4 inell bore ame a length of 9 feet.
Dem'i-gorge. (Furtificution.) The line formed by the prolongation of the curtain to the center of a bisistion.

Dem'i-lune. (Fortificution.) An outwork of the natare of a ravelin.
Dem'i-par'al-lel. (Fortificution.) shorter entrenchntents thrown up between the main paallels of attack, for the protection of guards of the trenches.

Dem'i-re-lief'. Or lemi-rilievo. A term applied to scnipture projecting moderately from the lace of a wall; half raised, as if cut in two, and half only fixed to the plane. A/e $e=0$-rilinro. A degree between allo am busso rilievo.

Dem'i-ri'li-e'vo. See Demi-melifef.

Dem i-re-vet'ment. (Fortificution.) A retaining wall for a scarp, cosering it as ligh as protected by the erest of the glacis.

Dem'i-tint. A half-tint or medimm shade of col-
or. In studying architectual efiects it is observable that the deni-tint is the shate seen when the sun's Bays strike the side of a house at a certain angle, say 45°, with the ground plane.

De-my': A size of chawing and llat writing paper, varying with different makers unfortnatily, but quoted by kingwalt as 16×20 or 16×21 inches.

Siputre demy is 17×17 inches.
Dem'y-os'tage. A woolen stulf used in Scotlaud.

Den-drom'e-ter. λ_{11} instrument for measuriug the hight and liameter of trees, to estimate the culvic feret of timber therein. It has means for taking sertical ambl horizontal angles, and is momnted on a triprod stand. An upright stem rises from the topplate, at the emul of which is a ball, with a hole perforated throngh it to receive the horizontal stem of the instrmnent ; bcmay be called the base limb, of the instrument, which is brought to an exact horizontal position by means of the level d. The limb c rises on a joint at c, and slides upon

Fig. 1608.
 a vertical, graduated are f. At the joint c is an eye-piece through which the surveyor looks along the side of the bar b, to a small point or rising edge at the end of the bar ; the part of the tree cut by this line of observation will, if the tree is jroperly alljusted, he perfectly horizontal with the ree-piece. Another eyepiece is also placed on the upler sitle of the rising limb, for the purpose ol looking along this limb to a point or rising edge e in its extremity. The surveyor elevates this limb until that part of the tree to which the measurement is clesigned to extend is exactly eut by the line of observation, and the angle subtended between that and the horizontal is shown upun the rertical are f. The gratuations of the are f are not angles of altitude, lint narks or graduations answering to feet and inches of a tangent line, extending from the horizontal point upward, taken at a given distance from the tree; consequently there are two or more rows of divisions, answering to the several distances at whicle the instrument may be planted. These may be 25 leet and 50 feet, and the graduations made accordingly; the longer distance for larger trees, and the smaller tor those of lower stature.
The horizontal angles which are to determine the diameter of the trunk, at the several points of observation, are asertained by the limb g, which shides laterally upon an are or gradmated plate h, divided upon the same principles as the are f. The limbs b or c being fixecd, so as to coincide with one side of the trunk, the limb g is then moved until it coincides with the other side of the trunk, and the angle subtemderl between the two shows by the graduatel plate h the diameter in feet and inches of the trunk at the point of olservation.

The length of the trunk, and its cliameter at the several parts, being thus ascertained by the instrument, wecourse must then be hall to tables, calculations, or the ordinary sliting rule, for the paremse
of obtaining from these measurements the solid conthits of the timber in the tree. Adjusting screws, circular racks, aud pinions afford means for atjusting the limbs of the instrument, and altering thein position, as circumstances may require ; and when rrooked arms or bent portions of the trunk present themselres, the instrument may be turned upon its pin, in the ball at the top of the stema, and usen iu an inclined position.

Den'im. (Fabriu.) A colored, lewilled eotton cloth used for oreralls.
Den'mark-sat'in. A narrow worsted stuff, woven with a satin twill and usell for ladies' shops.

Den'net. A light, open, two-wheeled carriage like a gig, lung by a conbination of three springs; two of which are placed across the axle, at right angles with it, the thirl being suspended from them behind by shackles.
Den-sim'e-ter. An instrumeut contrived by Colonel Hallet, of the French amy, and M. Bianchi, for ascertaining the specific grarity of gunpowder.

It consists of a glass glohe laving a tube which communicates with a quantity of mercury in an opm vessel. The globe is joinell at top to a gratuated glass tube, which may, by means of a flexible tube, be connected with an air-purap. A diaphragm of chamois skin fits over the lower, and one of wireeloth orer the upper orifice of the globe, and the thbes above and below these orifices are provided with stop-cocks.

For ascertaining the density of the gumpowder, the air is exhausted from the globe by means of the airpump, until the mercury rises to a certain mark on the graduated tube, when the globe is detacheel from its support and weighed; it is then emptienl and cleaned, and a given weight of gumpowler introluced, when it is again attarked to the tubes and the air exhausted as before, filling with mercury all the space in the globe not occrupied by the powder, up to the nark before inticated; the stop-cocks are now closed, and the globe nuce more detached aud weighenl.
The absolute specific gravity of the powder is obtained by multiplying the weight of the powder contained in the glohe by the known specific gravity of mercury, and dividing the product by the product resulting from multiplying the difference between the weight of the globe when filled with mercury alone, and its weight when filted with mereury and powder, into the weight of the porder employed in the experiment.
Dent. 1. (Werring.) One of the sylits of the rece, rrhich is fixed in the swiuging lathe and whose office it is to beat the wejt-thread up to the ueb.
2. A tootb of a gear-wheel.
3. (Carding.) The wire staple that forms the tooth of a catd. See Card.
4. A salient knob or tootly in the works of a lock.

Den'tal Ap'pa-ra'tus and Ap-pli'an-ces. sere under the following heads: -

Alreolar forceps.
Amalgam manipulator.
Anæsthetic refrigerator.
Amealing lamp.
Artienlator.
Atomizer.
Antomatic lamp.
Automatic mallet.
Blow-pipe.
Broach.
Bur.
Bur-drill.
Bur-mage.

Bumisher.
Cow-horn forceps.
Creosote-apparatus.
Dental chair.
Dental chisel.
Dental drill.
Dental files.
Dental bammer.
Dental plugger.
Dental pump.
Dentiscalp.
Dentist's flawk.
Denture.

Excavator.
File-carrier.
Filling.
Forceps.
Fulcrum-forceps.
Hoe.
lupression-cup.
Inhaler.
Hallet.
Month-glass.
Nerve-instruments.
Nerve-needle.
Nipliprs.
Nitrous-oxide apparatus.
Pivot-tooth.
Plugger.
Plugging-forceps.
Porte-polisher.
Rubher-gage.
Saliva-pump.
Herodotus says that, in the practice of medicine and sungery, the teeth are committed to ove set of physiciaus.

Den'tal Ar-tic'u-la'tor. An instrument for matching the dentures of upper and lower jaw. See Articleatur.

Den'tal Chis'el. For excavating cavities in the teeth or cutting the natural teeth preparatory to filling. They hare straight or ollique edges, and are used by a pushing action. Tools of other shape's used liy a lateral, rotatory, or drawing action, are Excatitohs, Drille, Behs, etc. (which see).

Den'tal-cut Dove'tail. A dovetail having a mumber of dents on each part fitting within the iuterlental space of the fellow-portions. Drawers aud well-constructed boxes are thus secured at their comers.
Deu'tal Drill. An instrument for cutting out carions portions of teeth; for opening out a nerve.

Fig. 1609.

Dental Drilks.
carity, for plugging, or for the insertion of a pirot. The drills are sized and shaped for their work.

$$
\begin{array}{ll}
\text { a, Scranton-drill. } & d \text {, flat-drill. } \\
i, \text { square-drill. } & e \text {, Forbes-drill. }
\end{array}
$$

c, auger-drill.
A is a drill-stork having a nut a, traversing on a spiral stem b. $\quad B$ has a bor c, whose string operates the whorl d and the tool-socket. C has a separate handlo and flexible coupling u.

Den'tal File. One matw fir use in operative or mechanienl lentistry. Among these may be emmmeatell the lollowing. Their names are indicative of theil purposes.
Bisenspitl tile.
Feather- dued tike.
Finishiner file.
Lateral file.
Knife-edgerefle.

Nolar file.
Plug-finishing file. Separating file. sitump file. Vulcanite file.

Den'tal For'ceps. The dentist uses a variety of operating-forceps. Some are distinguished by their objective rumes, as -

Upinur forceps.
Thider forceps.
Front foresps.
Baek foreeps. Incisor forceps. Bicuspid forceps.

By shape or peculiar conformation:-
Straight forceps. Narrow-beak forceps.
Curved forcels.
Bayonet-shape forceps.
Hawk's-bill foree ןs.
Molar force 1 s.
Dentes sapicntice forceps.
Root forceps.
Alveolar foreeps.
Spicula forceps.

By the kind of cluty:-
$\begin{array}{ll}\text { Excising forceps. } & \text { Nipling forceps. } \\ \text { Sipurating forceps. } & \text { Plugging forceps. }\end{array}$
Den'tal Ham'mer. An instrument for plugFig 1610. ging teeth; operated by the alternate pressure and relaxation of pressure of the stock upon the point. The plugging-tool presses against the filling in the tooth; pressure on the case makes the tool-stock recelle, imparting its movement to the lifting-bar and hammer, until the bar passes the incline of the wedge, releases its hold on the catch, and releases the hammer, which descemts under the influence of the spring. The force is adjusted ly devices operated by an exterior band.

Den'tal Plug'ger. Atu instrument for (ompareting the metallic filling Fig. 1611. of teeth.

Dental
Plugger.
Dental
monts to suit the exigencies ol

Den'tist's Flask. A case in which a molded vulcanite base for dentures is subjected to the heat of the muffle. A clamp holds the parts of the flask in perfect apposition.

Dentist's Flask.
Den'tist's Fur'nace. A furnace for baking and burning porcelain teeth. It is made of fire-clay, and hooped with sheet-iron. The figure S. S. White's Deatist's Furshows the Gurnace arranged
 for two muffles. The latter are ehambers, like those in an assay-furnace, except that they are destitute of the slots which admit the flame to the contents of the muttle. The lower opening in the furnace is for draft, and leads to the ash-pit.
The opening above, with a door, is that of the mriacipal muffle in which the porcelain teeth are burnect. lu these articles, as in the nsual porcelain work, there are several operations. The teeth are molded and then oreked, which forms them into hiscuit. They are then painted with enamel compomel, anel a second operation, with much inceased heat, vitrifies the enamel and completes the operation, which is termed burning.

The upper muttle is for baking and also for annealing, the teeth burned in the lower muffle being suljeeted in the upper one to a lower heat, which is allowed gradually to abate, so that the teeth shall not crack.

The op-ming in the dome is for fuel, and that in the top for a chimney.
These furnaces are oval in form, with hinged doors, the center sections cased with sheet-iron. The muffles are 12 inches long ly $3 \frac{3}{2}$ inches wide, inside measurement. The outside measurement of the furnace is 43 inches high, 21 inches wide, and 16 inches deep.
Den'ture. Au artificial tooth, block, or set of teeth. The former are partial dentures, the latter is a full denture.
They may be classified as fullows : -
A pient-iooth is an artificial crown set upon a natural ront.
Dentures made from dentine or river-liorse teeth, plate and teeth carved from a solid block.

Plates carved from dentine to fit the gims, or the gums and the roof of the mouth, upon which are pivoted natural human teeth.

Plates made of gold or silver fitted to the mouth and mounted with porcelain teetl.

Continuous-yum denturcs. Plates made of platinum and mounted with proreelain teeth, around the necks of which, and upon the lingual sinface of the plate, a silicions compound or enamel is fusel.

Minerol-plate dentures. Made entirely of poreelain ; plate and teeth molder and carved from porcelain mixture, enameled and burned.
Plates made of vulcanizel rubber with porceluin tceth, secured by being embedded previous to the process of vulcanizing, assisted by pins and staples of platinum.
Plates made by casting a base metal alloy, with porcelain teeth secured by being partially embedeled in the casting.
Under the date of March 11, 1664, Pepys writes: "Dly wife come home, and she had got her tooth new done by La Roehe, aud are indeed now pretty handsome, and 1 was much pleased with it."
The Japanese Hadsiifsuan, or "tooth carpenter," is an itinerant artist who makes his teeth of irory, shark's teeth, or stone, let into the wooden hase, and retained in position by being strung on a thread, which is secured at each end by a peg driven into the hole where it makes its exit from the base. Iron or copper tacks are driven into the ridge to serve for masticating purposes, the unequal wear of the wood and metal keeping up the desired roughness of surface. To construct a full upper and lower denture requires about two days' constant work, which becomes five, owing to the trequent chats, naps, and smokes. An impression of the mouth is taken in wax, another impression had from this; the latter is smeared with red paint, and a wooden block fitted to it by gradual trials and approximations.

Among the technical terms appertaining to deutures are: -
Pivot-tooth, an artificial crown secured to a natural root by the insertion of a pirot, or pin.
Plate-tooth, one fastened to a plate.
Plain-tooth, one without any gum.
Gum-tooth, one made with a portion of gum attachert.

Blach, two or more teetl made unitedly.
Sht, a full furnishing for one jaw.
Lisse, that which artificial teeth are mounted on wi attached to.

Iounuting, attaching teeth to a base.

De-o'dor-izer. A drug or pastille applied to, or burued in the presence of, putrescent, prululent, infections, or fetid matter.

Deodorizers are a sanitary provision for the defecation of matter having noxions effluvia ; acting to render the matter inert, to alisorb it mechanically, or only to disguise it, supplanting the fetor lyy superior energy, as in the use of aromatic pastilles.

Sumutory experts (L., sanator, a healer of diseases, a phrsician) have (leviserl these sanitary expedients (L., scenitus, health) to isolate infection and thus prevent the ajereat of disease. See also Disinfector.

De'phleg-ma'tor. A form of condensing apparatus for stills, consisting of hroad sheets of timed copper soldered together, so as to leave namow spaces between them.

Depi-la'tion. A very good term to describe the process which is usually called unhairing. It consists in the loosening and remoral of hair from hides and skins, and is usmally accomplished by lime. It is hence called limeing.

Lime being injurious to leather, other provesses hare beeu suggested and to some extent practiced. See Unilaming.

De-press'or. (Surgery.) An instrument like a curved spatula, used for reducing or pushing into place an obtruding part. Suel are used in operations on the skull involving the use of the trephine, and in conching a cataract. Also used in removing beyond the range of the knife or the ligature needle
a portion intruding within the area of the opreration.
Dep're-ter. Plastering done to represent tooled ashlar-work. It is first pricked up and floated as for set or stucco, and then small stones are forced on dry from a board.

Depth'en-ing-tool. 1. A countersinker for deepening a hole.
2. A watchnaker's tool for gaging the distances of pivot-holes in movement-plates.

Depth-gage. A graduated measuring-tool, or one capable of heing set to a rueasure to determine the depth of a hole.

Dep'u-ra'tor. Anapparatus to assist the expulsion of morbid matter by means of the excretory ducts of the skin. It consists of an apparatus, topical or general, by which the natural pressure of the air is withdrawn from the surface of the body.

The depurator is described in Nathan Smith's English patent, 1802. The chamber is filled with steam and the air exhaustel to the extent required by the patient, "giving aid to the elastic force of the internal air contained within the human bolly to throw out the offensive matter."
De-rail'ment. (Railuay Enginecring.) The condition of a locomotive or car in respect of being off the rails.

Der'by. (Musonyy.) A two-handed float.
Der'mal In'stru-ments. (S'urgery.) Instruments acting upon the skin, such as the acupuncturator, hypodermic syringe, scarificator, artificial leech, cupping-glass, vacuum apmaratus, depmrator, etc.

Der'mo-path/ic In'stru-ment. An acicular instrument userl to introduce a vesicatory beneath the skin. See Acupurctuman; Hypudemmio Sybinge, etc.

Der'rick. A form of hoisting-machine. The peculiar feature of a derrick, which distinguishes it from some other forms of hoisting-machines, is that it has a boom stayed from a central post, which may be anchoreu, but is usually stayed by guys.

A derrick has one leg, a shears two, and a gin three. A creane has a post and jib. A whin or whim has a vertical axis on which a rope winds. The cap-
stur has at verticat drum for the ropu，and is rotaterl by turs．Tlee windless has a horizontal barrel，amb is rotated by henulspikes．The winch has a horizon－ tal hartel，and is fremuently the means of winding川，the tackle－rope of the derrick；it is rotated lyy monks．The crub is a jortable winch and has cranks．
The derrick is more commonly usel in the United States tham in Eluope，and has attainerl what app－ mears to）be：maximum aflertiveness with a given weight．Two sjars，three guys，and two sets of tarkle，－oun for the jib and one for the joad，－eom－ plete the appabatus，except the winch，crab，or cap－ stan，for hoisting．
The invention is mantical，the original leing the sailor＇s contrivance，makle of a spare topmast or a Joom，ami the appromiate tackle．Surlz are used in masting，putting in hoilers and engines，and hoisting letavy merchamdise on board or aslore．
The elerrict－crune is a combination of the two
halance any weight on the oflnoit－side．From the reck of this wessel rises an iron trijoul， 80 feet high， on the top of which revolves a gigantie boom， $1 \geq 0$ feet long，and above the hoon the king－post，a con－ timuation of the tripod，rises to the hight of 50 feet．

One arm of the boon is fumbshed with ten fonr－ fold blocks．The chains attached to these blocks are passed across the kiuf－jost，brought over the other am of the boom，and thence descend to the other side of the vessel，where they are connerteri to crabs worked by two powerful steam－engines，by means of which the weights are raised．

This tloating－demick is eapable of self－propulsion hy means of paddle－wheels，and thus removes its suspended load to a position of safety for repair or other purjose．

The present extensive use of horse hay－forks for hoisting hay in stacking or mowing has given rise to a number of inventions for obtaining an elevated point of supprt for the upper pulley．

Fig． 1616

Jevires，as its name imports，having facility for hoisting and also for swinging the load horizontally．
The machine illustratel was made ly Wightman of Ediuburgh，Scot． liuk，and consists of a vertical post shij］jorterl by two timber bick－stays whose feet are anchored to the earth． The jib or movable splur of the der－ rick is hinged to and near the foot of the zoost，its top being helth ly a chain whech passes over pulleys to it winch on the post，so that the inclanation of the jib may he and－ funterl as reyuired．The fall of the hoisting－tackle is passer over a sheave on the summit of the jib， aml thence down the jib to the hoisting－wimeh． This dervick－crane commands a ralius of from 10 to 60 leet withont beng moved from its position．

Bishop＇s Aoating－deniok was used in 1850 in rasing sumken vessels，mil consists of a flat－hot－ tomel ypsem， 270 feet long and 90 freet hean．It was huilt by the Thames Iron Shiphuilding Company at Blackwall，and hats a number of water－tight com－ parturents，which wat be filled，so as to counter－

Fig． 1617.

Bishop＇s Flouting－Derrick

Somu of these are on portable frames，or wagon－ hodies．Others are true derrich：s，with a jib or sjar stayed by guys．Some more nearly resemble the crane，others the gir．Many minor peenliarities distinguish them，hat in their gemeral features their construction is fairly referable to those described under the varions heads．
Thar floating－derrick of the New York Department of Docks was built muker the supervision of Mr． Newtom，assistant－plginerer of the department．It was constructeld expressly for the pimpose of trans－

FLOATING DERRICK.
porting from the work-yards the blocks of granite and artiticial stone that are to form the river wall. Its lifting and carrying power is 100 tons, and the float which carries the derrick is of rectangular form, 66 by 71 feet, and 13 feet in depth. It is stiffened by sixteen trusses, extending from the deck to the bottom, and running across from side to side.
The tower, which is placed upon the float, and supports the king-post and booms, is made of twelve balks of pine, 63 feet 3 inches in length, and 14 inches square. These balks or legs are stiffered from one end to the other by struts and braces; their lower emls are bolted into a heary cast-ino circle, mhich, in its turn, is held down by numeto is bolts which puss throngh the bottom of the floor. At their upper extremity these legs are brought close together, and are inserted in a cast-iron cap, to which they are bolted. The tower forms a frustum of a dodecagonal pyramid 40 feet in diameter at the base, 52 feet in hight, and 12 in diameter at the top.
The front or laoisting boom of the derrick consists of two wrought-iron box-girders 22 inches deep by $9 \frac{3}{4}$ inches wide. These girders are made of planed plates, are spaced 24 inches asunder, and are held parallel by braces of wrought-iron; on the nipper and inner edges of these girders a track or slide of polishel brass is fastened by counter-screws. These tracks have a projector which extends a short distance downward; the carriage which carries the main hoisting-blocks slides on them. The carriage is composed of two plates of iron $\frac{3}{4}$ of an inch thick, and spaced 10 inches asunder; its length is 8 feet, its depth 3 feet. The iron boom is supprorted by eighteen diagoual roils $2 \frac{2}{8}$ inches in tliampter. These converge near the top of the king-post, and are secured to it by three heary forginge, which straddle the iton cap on the top of the post.
The king-post is of wrought-iron, 40 inches outside diameter. It is hollow, and its shell is $\frac{3}{4}$ of an inch thick. It revolves in a circular casting, swinging the boom completely arounl.

All the machinery is placed on the float under the tower, and the levers which operate it and give the various movements are bronght together on a platform 35 feet ahove the deck of the flont, so that the person operating them acts in fill riew of the loat that is being handled. (See plate opposite.)
De-scend'ing-Iet'ter. (Printing.) One of thase which descend below the line, as f, g, j, p, q, y.
Des'ic-ca'tion. The evaporation or llyying off of the aquents prortion of holles; practiced with fruit, meat, milk, vegetable extracts, and many other matters. It is usually done by a current of heated, dry air, and as such may be considered as distinguished from evaporators, so called, to which furnace heat or steam heat is applied.
De-sil'ver-ing. The process of removing leall from an alloy with silver by means of removing crystals of the former from the cooling alloy. The Pattinson process.

Desk. A sloping table, frame, or case for a writer or reader. In the illustration are several forms of school-desks.
A shows a desk with a seat for the scholars in the row in front of it. A single seat is required for the rear row.
B shows a desk and seat capable of folding for transportation and for sweeping.
C, the seat only folls.
Desk-knife. An craser.
Des-tem'per. A mode of painting with opaque colors, principally used for walls, ceilings, domes, scenes, etc., in which the colors are mixed with chalk or clay and diluted with size. Temperce

painting was practiced in ancient Egypt. The wall was covereal with a coating of lime or gypsum. The outline was sketched in with red chalk and then filled out with black. The painter levigated his colors and mixed them with water, placed them on a palette hung to his wrist, and applied them to the surface on which he was at work.

It was also practiced in Greece and Rome. The cartoons of Raphael are in destemper. It is common for auditoriums. Kalsomine (or calcimine) is a form of it. Sometimes written distempre or tempera.

De-sul'phur-iz'ing Fur'nace. (Mctallurgy.) A roasting-furnace for driving off the sulphur from lyritic ores. There are many forms adapted to the requirements of different ores, facilities of building, kind of fuel, and the more or less perfect result tlemanded by the value of the metal and other commercial and economical incilents.

Ores are desulphurized by roasting in heaps.
ln reverberatory furnaces of the usual kind. See Copper-fursice.

In rotary inclined cylinders exposed to the heat of a fire beneath.

In a flue or stack where it falls through a column of Hame. See Decarbonizing-furince.

On a rotary-table fumace (as in Fig. 1619), where the desulphurizing-chamber is surrounded with flues through which the caloric currents from the furnace are compelled to pass on their way to the chimney.

Within the chamber is a stirer provided with conveyor's and operated by gear-wheels. The pulverized

Fig. 1619.

Rotary-Table Firnace.
ore is placed in the conter of the oven, and carried by the conveyor to the discharge-hole near the outside.

Another form is that in which the ore is placed on movable plates, and, when heated toreduess, is drawn

out of the furnace by the chains, and dumped into water. When removel from water, it is crushed before passing to the cupolia.

In Hagan's process, superheated steam is introduced into the furnace and decomposed, the hydrogen flame attacking the sulphur, arsence, and antinony.
De-tached' Es-cape'ment. The detached escapement was invented by Mudge in the seventeenth century.
Earushaw's detached escapement has two vibrations of the balance for each in-

Fig. 1621.
 pulse, resembling the duplex in this respect. A is the main pallet projecting lrom the halance-arbor, concentric with which is another small pallet, called the liftingpallet, which, when the batance is vibrating from A towards B, lifts a very slender spring B, and with it the detent-spring C, so as to set at liberty or unlock the tooth D, the point of which rests on a ruby pin projecting from the detent-spring C, and forming the detent.

The point E of the principal pallet having passed the tooth F, the wheel moves forward hy the action of the mainspring, white the next tooth G falls upon the ruby pin and is locked. The screw H serves to adjust the position of the detent and the strength of the locking. In the return of the bxance, the pallet A passes easily by the detentspring by forcing back the slender spring B,

This is a chronometer escaproment.
The term detuched is also applied to the ordinary form of lever-escapement with two pallets, which engage the teeth of the scape-wheel, and a fork which engages a pin on the balauce-arhor. The term detached, in this case, is to distingnish it from the anchor-escapement, wherein a segment-rack engages a pimion on the balance-arbor. Sec Leven-escartMENT.

De-tached' Work. (Furtification.) A work included in the defence, but placed outside the body of the place.
De-tach'ing Horses from Car'riages. A means for suddenly releasing an unthanageable teant from the velicle.
The Marynis of Worcester, in his "Century of lnventions," 1655 , describes an apparatus of this kind, under command of the passengers, in which, "by means of a T-ended lever, two or four bolts could be simultaneonsly drawn inwards, and the horses thereby released with the greatest possible ease and certainty."
Hohlield of Saxony, 1711-71, contrived a carriage in which the purson rould by a single push loosen the pole and set the horses at liberty.

Willians's English jatunt, 1802, operates by a cord releasing a bolt, which alluws the stmats to which the traces are attaclied to rotate and the traces to slip off.
Since these, numerons devices have been suggested, but have not come extensively into use.
De-tect'or. 1. An arrangement in a lock, introdnced by huxton, by which an over-lifted tumbler is caught by detent, so as to indicate that the lock has been tampered with,

In Mitchell and Lawton's lock, English, 1815, the motion of the key throws ont a mumber of wards, which engage the key and kecp it from being withdrawn mitil the bolt is moved, when the pieces resume their normal position and release the key. Should the key fail to act mon the holt, it camot be withdrawn, but the lock must be clestroyed to release it.
Chubb hat a detector in lis lock of 1818.
2. A means of indicating that the water in a boiler has sunk helow the point of safety. Sce Lowwatis Detector.
De-tent'. A pin, sturl, or lever forming a stop in a watcll, clock, tumbler-lock, or other machine. It is variously called in specific cases; as, click, pawl, dog, fence, etc. It is usually cajralle of motion, either at certain intervals, as in some escapements, or by operation of a key, as in locks.

A detent-catch falls into the striking-wheel of a clock, and stops it from striking more than the right number of times. The watch-escapenent las also a detent.
The ratchet-wheel has a click, to prevent back motion.
The windlass has a prucl, to fall into the notches of the rim.
Det'on-at'ing-ham'mer. The hammer of a percussion gun-lock.
Det'on-at'ing-pow'der. One which explodes by a blow. The compound used in the priming of percussion-caps and fuses is the fulminate of mercury or of silver, collentel as a precipitate when the metal, dissolved in nitric acist, is poured into warm alcohol. The precipitate is collected, washed, and dried.

Det'on-at'ing-pri'mer. (Blasting.) A primer exploded by a finse, and uscel in blasting operations to violeatly explole gun-cotton, insteal of the former plan by which the charge of gun-cotton was simply ignited.

Det'o-nating-tube. A graduated tuhe used for the detonation of gases, being pierced by two opposed wires by which an electric spark is introduced. The gas is confined orer water or mercury. See Eudiometer.

Det'o-na'tion. Instantaneous combustion with load explosion.
De-vel'op-ing. (Photography.) The treatment of an exposed sensitive photographic

Fig. 1622.
 surface with a solution of a protosalt of iron (generally sulphate of iron), p5rogallic acid, or gallic acid, in conjunction with a small amount of nitrate of silver, either present in the film or added, so as to call into visible existence the latent picture producel in the camera or under a negative ; anoperation always performed in an actinieally dark room, that is, one in which the rays at the violet end of the spectrum are excluded.
The developing-stick has a suctionpad of india-rubher, by which it is made to cling to the glass, allowing great freedom of motion without danger of becoming detached.

De-vel'op-ment. (Shipbuilding.) The process of drawing the figures which given lines on a curved surface would assume, if that surface were a flexible slieet and were spread out Hiat upon a plane without alteration of area and without distortion.
Surfaces not truly developable are drafted on a plane surface by the process termed Expansios (which see).
De-ver'soir. (Hydra'ic Enginesring.) Or a dike, the fall.
Dev'il. 1. A machine for opening out the tussocks of cotton, and cleaning therefrom the clirt and offil. It has rarious other names, such as willower, willy, bcating-machine, ete. See Cotton-cleasing Machine.
2. A rag-engine or spiked mill for tearing woolen rags into shoddy, or linen and cotton rags to make paper pulp.
3. A machine for making wood serews.

Dev'il-car'riage. A carriage used for moving heary ordnance. A sling-cart.

Dev'il's Claw. A grapuel.
Dew-point. The point of temperature at which the moistire of the air commences to condense. See Hyenometer.

Dew-ret'ting. The process of softening and removing the mucilage fro:n the fibrous and cellular portions of the stalks of dax and hemp, by exposure to dew, showers, sum, and air upon a sward. See Rettisg.

Dex'trine. A gummy material made from starch and largely used in the manufacture of calico. Its name is derived from its right-handed rotation of a ray of plane polarized light.
Torreficel sturch; rasted at a temperature of 300° F. British gum.

Potato starch moistenell with mater, acidulated by nitric arid, dried spontaneously and then in a stove at $212^{\circ} \mathrm{F}$.

Dho'ney. A natire coasting-ressel of India with two masts and not exceeding 150 tons.

Dhow. An Arab ressel with a single mast, a yard the length of the ressel, and a lateen sail. They are from 150 to 200 tons burden.

Di'a-caus'tic. A donble-convex lens used in cauterizing parts of the body.

Di-ær'e-sis. (Printing.) A mark (..) placed over the second of two adjacent vowels to indicate that they should both be jronounced; as, uëratal.

Di'a-gom'e-ter. An electroscope invented by Ronssean, in which the dry pilp is employed to measure the amount of electricity transnitted by different bodies; to determine their cumluctivity.

Di-ag'o-nal. (Shapuilding.) 1. A timber brace, knee, plank, truss, etc., crossing a ressel's timbers obliquely.
2. A line cutting the body-plan diagonally from the timbers to the midule line.
3. An ollique luace or stay connecting the horizontal and vertical members of a truss or frame.
Di-ag'o-nal-built. (Shipbuilding.) A manner of boat-building in which the outer skin consists of two layers of planking making angles of about 45° with the keel in opposite directions.

They are built, like elinker-built hoats, upon temporary transverse molds. After setting up anil fixing the molds mon the keel, the gumwale, a shelf-piece, and a series of rih-hands are ti-mporarily fixed in the molds. Two layers of planking are then put on, bent to fit the nolds and rib-hands, and tastened to cach other and to the kee], stem, sternpost, shelf, and gunwale with nails, driven from the ontside, and elenched inside upon small rings, called rores. The gunwale is then shored, to kepp it in shape. The molds and rib-bauds are taken out, and floors, hook, thwarts, ete., ate put in as in a cliakicibuilt boat.

Di-ag'o-nal Eye-piece. Used for solar ohservations. A very small purrentage of the sun's light and heat is reflecterd ficm the first surface of a prisin, the rest being transmitted.
Di-ag'o-nal Fram'ing and Stays. (Stcum. cagine.) The ollique frame and braces whill conneet the $p^{\text {linumber-hlock of the pablle shaft with }}$ the framing of the side-lever steam-engine.

Di-ag'o-nal Lines. (Sheiphuitding.) Lines showing the boundaries of vaious farts, formed by sections which are ollique to the rentical longituilinal plane, and which intersect that plane in straicht lines parallel to the kee]. [sually drawn in red in the draft.

Di-ag'o-nal Rib. A projecting hand of stone or timber lassing diagonally from one angle of a vaulted ceiling across the center to the opposite angle.

Di-ag'o-nal Scale. A mathenatical scale in which the smaller divinions are made ly lines that run ohlinquely across the lareer divisions:

Di-ag'o-nal Tie. An anglp-hrace.
Di-ag'o-nal Wrench. An sishaped wrench allapted to be used in corners where the ordinary wrench will not turn.

Di'al. 1. An instrument for showing the time of day by the sun's shadow.

Since man first looked up and regarded the sun, its apparent diurnal course has heen the measure of time as to parts of days, as the recurrences of his visits have formerl the units of the still greater period which marks his complete circuit in the zodiac.
" jeetween day-break and smin-nu," may be a local expression, but it has its analogues in all idioms, and like its congeners, "an hour ly the sun," and "the sun two hours high," marks the constant reference by those of out-door occupation to the master of day as the measurer of time. In the Diagonal Wrench.

Fig. 1623.

latitule of Ohio, a farmer judges of nom in harvesttime by reaching one foot forwanl to try whether Jie can step on to the shatow of his lead. The tired firm-servant of Mesopotania "earnestly desired the [tastward] sliadow," as he watehed the sun erradually decline in the western sky.

It is useless, then, to exprect to give a date for the invention of the smedial. It was not an inerution, but an observation.

It is evident that the dial having a guomon which makes with the horizontal plane an angle ennal to the latitnde of the place is the invention of the Asinties. It is hootless to inyuire whether it orimimated on the southem slope of the great hackhone of the continent, or in lar Cathay, by the Yetlow sea, Herolotus, whose fane grows edsarer and brighter as years was aml wane, states that the Grerks received the sum-tial from the Chahluans (see that of Burosus, infru). We may farly julge the character of the ancient dials from thuse yet remaining in lurlia, whicli are destitute of mondion innovations, such is ghluss lenses and finely gradnated metallic seales.

Dr. Hooker, in his "Notes in Bumgal, Nepaul, pte," gives sketehes of the sun-dials in the Ohservatury of Renares. This observatory was built by Jey Sing, Rijah of Jayanagar, 1 pwarls of 200 years ago. His skill in mathematical science was so great that the Emperor Mohammed Shah employenh him

Fig 1624.

Equatorial Siln-Dial (Benares),
to refom the calendar. He also built the oloservatories of Dethi, Matra on the Tumna, and Onjein. The Farce-inla, or equatorial sm-ulial, has a tine 26 inchesin diameter ; the Senrat-ifuntu, or equinoctial sun-tial, has a gnomon 30 feet long, and each quatjant is 9 feet long. These instrmments, which are shown in a group in Fig. 309, are prarticularly interesting, as they carry the eye back to the times of the Chaldean astronomers. There is no reasomable doubt but that these instmments, ahsolutely devoid of lenses and tubes, are similar to those usel by the observers of Mesopotamiz ann the valley of the Nile. 4,000 years ago. The dial of the llimoos is li-seribed in the Sûrya Sidelhainta, or Sanskrit text-book of astronomy, translated for the Anderis:an Oriental Society, and publisherl in their journal, Vol. Vl.

Abont 771 years before the Christian Era, the Assyrian king Plu:l invated Samari:c. Thirty-oue years afterward, Pekah of Samaria besiegeal the young Fing Ahaz in Jerusalem, and the latter sent to Tig-
lath-Pileser, the Assyrian, then in Damascus, for help against his enemy. This was given. When Ahaz went to Danascus to greet his hemefactor, lee saw a leantiful altar, and sent working drawings ot it to Urijah, the priest in Jernsalam. An altar was tompleted against his return. Jn the same spinit of enterprise and taste, and jrobibly from the same trip of observation, he set ulp the dial which is nemtioned in the account of the miraculous cure of his son Hezekiah, thirtern years after Alaz was gathered to his fathers. This is perliaps the first dial on record, and is 140 years before Thales, and nearly

Fig. 1625.

400 years betore Aristotle and Plato, and just a little provions to the lmar celipses observed at Babylon, as recorled by l'tulemy.

The phinions as to tha construction of the dial of Ahaz vary comsidmalhy, ant the llebrew word is sainl, by Culonel White of the Bengal army, to signify a stairase, which muchs strengthens the inferener that it was Jike the equinoctial thal of the Indian mations and of Mesopotania, from wheme its patterm is assumed to Jave been Ierived. Cyril, of Alexamlifa, - the murilever of Ilyjutia, amel not very gool anthority, - and brome, a much better man, agreed in smpjosing that it had a gnomon and a graduated circle on which the shatlow of the gnomon was thrown. The dimmal livision of time in the observatories of Chalike was molably a certain fraction of a solitr day : hut witl most hations the natural day was the jerind brtween sunrise and sumset, which was divided into twelve periods, whilh were only the equivalent of our hours at the equinoxes, when days and nights are equal; in summer they were longer and in winter shorter than at the equinoxes. The Chaldeans, Syrians, Hindoos, Persians, Fgyptians, Grueks, and Romans thus divided the daylight into twelve jeriods or lours, while the civil day was the solar day and had twenty-four hours. The dial of Shaz may Jave had a vertical gnomon on the uprer one of a series of steps, the time being determinel by the sladow of the joint of the gnomon on the gravluations of that arc-shajerl step which was dwigmed for that season of the year at which the observation was made. It might thus resemble the anaJemma, duseribed by Vitruvius, which, by marking the length of the sloadows of a fixed gnomon, showed the ditherent altitudes of the sun at the ditlerent seasons of the year. Grotius supprosed
the dial of Ahaz to be a concave hemisphere with a central globe whase shadow fell on the lines engraved on the concavity. This would resemble the Greek scaphe, a semicircular concave dial, or homicyclium, ascribed by Vitruvius to Berosus the Chaldean, 340 B. c. ; this was long in use in Rome, and many have been discovered. it consisted of a semi-splierical horizontal basin with a style erected in sucli a manner that its extremity was exactly at the center of the sphere. The shalow of the point of the gnomon on the concave surface had the same position with regard to the lower spllere that the sun occupiel in the apparent spherical dome of the heavens, eleven converging lines in the concave part diviling it into the twelve hours of the day. So much for the surmises of those whose stadies were of Greece and Rome, but to whom the whole Oriental world was not, or was but as a distant and unintelligible murmur. How little even Alexand er suspected - he who penetrated the farthest into the teeming and contemplative Enst - that the most complex and elabarate language of which the world had any knowledge -the Sanskrit - hand jnist ceased to become a spaken tongne! How nour the astute Greek came to opening the volums whill Providence has given to be the delight anl the: wonler of the philologists of the mineteenth century! We alhere to the suppiosition that the dial of Ahaz was a structure like that of B enares.

It will ba notieed that the elronicler does not state the result in hoars, hat in degrees, - a mathematical mole of state neat which shows that it hatd reached its then form throwgh the hamels of the astronomers, with whom the division of the circle into 360° was ustal at the earliest recorled period at which astronomical iustruments are mentionel. The ancient horary division of the Hindoas was into sixty hours. The Chinese divide the solar day into twelve periols, each equal to two of our hours. The Japznese divil. the solur day in the same namner, but for common custamary purposes the period of daylight into six e 1 nl parts. The length of the divisional portions of inylight would therefore vary with the season, but extreate accuracy is dixpensed with, and the vari tions are regulated four times in a year upon the average of three months. The earliest mention of hours is perlaps in Daniel iv. 19. when the prophet b eame "astonied for one hom:" As Daniel was of the great men, we may assume that his coma lastel about sixty of our minutes, as he probably regurded the horary division of the astrologers, rather than the vulgar and fluctuating term of the populace. It is not insignificant that the worl hour ocenrs bat once in the common translation of the Old Testament, sixty-seven times in the New Testament.
The weekly preriad is mentioned in the oldest laok in the world (Genesis), and dates from the planting of man upon this sphere. The nomenclature of the days, placing them umler the regency of the plauets, is ascribed to the Chaldeans by some of the ancients, but Dion Cassius (XXXY11. 18) says, with as great probability, that the Egyptians were the lirst to refer the dars to the seven planets. They used the hebdomalal division for certain religions etbervances, but also the decales or divisions by tens of days, which is also used by the Chinese. Their twelv, ho:urs of dity and twelve of night were also each dedicated to a genius called Nith (homr). Night was hell to precede day: "The evening and the morning were the first day" (Gen. i. 5).
The Chinese, ancient Romans, modern Europlean nations, and astronomers generally hegan or lurgin the day with miduight ; the Chaldeans, Syrians,

Hindoos, and Persians with sunrise. With the former he is a great fact, with the latter a gol.
"The Egyptians, they said, were the first to discover the solar year, and to portion ont its consse into twelve parts. They obtained this knowledse from the stars. To my mind they contrive their year much better than the Greeks, for these last intercalite every other year a whole month, but the Egyptians, dividing the yeil into twelve months of thinty days each, add every year a space of fire days [and a '1uarter]' besiles, wherely the circuit of the seasons is made to return with miformity." Herodotes 11. 4.
"These [Egyptians] of Thebes sermin most accurately to have olserved the eclipses of the sun and moon ; and from them do so manage their prognostications that they certainly foretell every liture event."- Diodorits Siculus (60 в. c.).
The Egyitians lad the true heliocentric theory of the solar systens, which the Greeks conld not receive, and which was revived twenty centuries afterwards by Copernicns. It was a great event for Enrope when Psammeticus, ahout 650 B. c., oprened the ports of Egypt to the other Meliterranean nations, and encouraged the lonians and Carians to settle there.
The horoscopns, who oceupied the second place in the procession of the Egyptian priests, carried a horologium, or sun-tlial.
The dial is unentioned in the book of Tohit, whicla is suphosell to lave been written by a Jew of Palestine, detailing the experiences of an Israelite of the tribe of Naphthali, who lived in Nineveh in the reigns of Shalmanezer and Semacherib.
Prorlaps the true order of statement would have been better presenved if we had conmenced the history of the dial with the Clinese, who are stated, mo iloubt truthfully, to lave used the gnomon from the earlisst antiqnity ; but the motices attainable are so seatteriug and vague that it is diticult to associate them with the definite details which have been prinucipally referred to so far. The study of astronomy in Clina is as ancient as the time of Alraham, anil the earliest known observations are chinese (see Astroxomical Instrumets), though we have statements of ancient historians that olservations tyluite as ancient were made by the Claildeans. The dials commonly nsed in China are mentioned by Molammelan trave? ers in that connty in the ninth century.
After all this, it seems idle to guote the saying of Pliny, that the sun-dial was originally inverited by Anaximander of Militus (550 B. ©.) ; hit that curious writer, to whose aplyetite fur infomation we owe so much, felt hound to give an origin for everything. Ile might even have real in Honner (950 of. c.), the not very recondite reference to a sum-lial :-

These curious eyes, inscribed with wonder, trace The sun's diarnal and his annual race."

The building in Athens long known as the "Tower of the Winds" is now known as the "Ilorological Monument of Andronicus Cyrrhestes." 1t hat eight faces, each provileil with a gnomon and divisional markings.
The tial in the square court of the Alexandrian Museum was visited by ine angust frocession of philosophers during the seven centuries which separatel Aristarehus from Hypatia. On the instrument, which hat a plane pariulle! to the equator and a guomon prirallel to the earth's polar axis, Hiplarellus, $150 \mathrm{~B} . \mathrm{C}$., learned the length of the year, that the four quarters of the yearare not of equal length, and also observed the prrecession of the equinoxes. See Ahmillatir Sphele.

Before the time of the erection of a sun-tial in the Quirin 1s by h. lepyrins C'ursor, 293 B. c., the time was called ly watelies, which divited the time between the rising and setting of the sun. Ahout thirty years after, the Consul Mareus Valerius Messiala brought to Rome a dial from the spoils of Catania, in sisily, and this he phaced on a pillar ne.u the rostrmm ; but, not being calculated for the latitude of leome, it was inexact.

The obelisk erected by Augustus in the Campus Martius was brought by his orders from Egypt. It was originally hewn for Plaraoh Sesothis, aceording to Pliny, and was $76 \frac{3}{9}$ feet in hight. After luing 1 mg buried in ruins, it was disinterred but not reeresterl by l'ope Benerlict XIV., and was found to be broken. Pliny states that in its position in the Campus Martius it wis " applied to a singular purpose hy the late Empror Augustus, that of marking the shinlows projected by the sun, and so measuring the leugth of the days and nights. With this object a stone pavement was laid, the extreme length of which corresponden exactly with the length of the shalow thrown by the obelisk at the sixth hour (noon) on the dyy of the winter solstice. After this period the shatow would go on day by day, gralually decreasing, and then again would as gradually inerease, corresponding with certain lines of brass that were inserted in the stone; a device well descrvinz t) b known, anil due to the ingenuity of Facundus Novas, the matbematician."

On an ancient bas-relief at Rome, an hour-glass is plaeed in the hands of Morpheus, and Athemens says that the ancients carried portable hoor-glasses with them as incasurers of time.

The ancients had three time-measurers, - dials, hour-glasses, elepsyinas. Alfreal the Great added wax tapers; perhaps Ehn Junis the pulsating lever; Galiko and Huyghens the pendulum. See Clock.

The Spmiards found the Mexicans provided with sun-dials for determining the hour, anl instruments for the solstices and equinozes. Their day hal sixteen hours, commencing at sunrise. The Peruvians had also their sun-dials. One in Quito, in the form of an obelisk in the center of a circle on which was markel an enst anl west line, inlicated the equmox. These were destroyed by the ignorant spuniards, who thought them illolatrous. Their ancestors had stared with the sam: stupid amazement at the Saracenic armils and observatories.

Dials were phaced in the gardens of the Tuileries and Laxembourg, so arranged as to fire a cannon at noon. A mortar is plafeel on the meridian line of the dial, with a burning lens plaed over the touchhole at such a distance and angle that as soon as the sun arrives on the merilian its rays, eoncentrated by the lens, sut fire to the powder, the explosion of whicb anoounces the hour of noon.

> "We take no note of time but from its loss; To give it then a tongue is wise in matr."

The vasee is rathur more energotic than anything which melancholy Yomg lad probably anticipated or would enjoy.

Dials are of varions construction, acoorling to the presentation of the phane of the dial.
The polar-oliot (A) has a plane parallel to the axis of the earth and premmulienlar to the meridian of the place. In this case, the style is parallel to the plane of the dial, and the hour-lines are parallel straight lines, whose distance; trom the meridionall line are respectively proprorioned to the tangents of the angles which the hour-1!anes make with the plane of the meridian.

The common diul (B) has a horizontal plane, and makes with the style an angle equal to the latitude

of the phate, the style preserving its parallelism to thee earth's axis. This becomes a polar dial at the equator, as the plame of the dial is also parallel to the carth's axis. At other latitudes, the hour-lines intersect each other in the point in which the style intersects the phane of the dial. The angles which the hour-lines make with each other and with the meridional line cutting the XII depend upon the latitude.

The vertical dial (C) has a plane fixed to a wall, tower, or house. The determination of the hourlines is similar to the case of the horizontal dial, but the angle formed by the gnomon and dial-plane is the enmidenent of the latitude, the style preserving its prallelism with the eartl's axis as before.

Farieties of the vertical dial are found with those having presentations east, west, etc. When the plane is cast or west, it is in the meridian, is parallel to the vertical plane of the style, and the hour-lines are all paralle!.

When a wall dial is not perpendicular, it is said to be declined.

When it does not face directly one of the four cardinal points, it is called a verlical declined dial.
The dial shows true or solar time, and not the mean time of a well-regulated clock. The dial agrees with such a clock fom days in the year.

An azimuth dial lias a style perpendicular to the plane of the horizon, and marks the sun's azimuth.

The pocket sun-1ial (D) has a little complass for adjustm.nt, and, of course, is oniy moderately exact even at its calculated latitude.
2. The gratmated and num. bered laceplate of a watch or clock. A dier-plate.

Thee old Chinese dials, like the divisions of the clepsyilra, were decimally diviled. The chodecimal division is later than Kung-futze.

The lial (Fig. 1627) is a suggestion for one

Fig. 1627.

Chinese Clork-Dial.
for the Chinese market ; the outer circle has numerals corresponding to Roman numerals. The inner circle has the Chinese horary characters for the periods of two hours each, as they do not indicate these by numbers. The small intervening figures of the imer circle divide the tro-hour periods into hours. The index finger or hand makes one revolution in twent yfour hours.
3. (Tclegraphy.) An insulated stationary wheel having alternating conducting and nonconducting portions against which the point of a spring key is in frictional contact. To the wheel II one of the wires of the hattery is attached, and the other wire to the axis of the springkey ε, whose printer rests on the wheel. As the key rotates, while it passes over the metallic portion of the wheel, the circuit is complete, and when it passes orer the non-conconducting portions i i of the wheel the circnit is broken. Thus are signals given in Farmer's firealarm telegraph.

Another form of telegrapldial is the lettered and

Fig. 1629

Steam-Gage Dial. number dial of the Cooke and Whentstone telegraph, in whose center a pointer rotates or oscillates, aml directs attention of the observer to the letters, which are spelled wl seriatim by this means.
4. A cirenlarly graduated plate on which an index-finger marks revolntions, pressure, or what not, in a register, counter, or meter. The cut shows a steam-gage dial which has two graduated circles, one representing pressure, the other temperature.
5. An instrument for holding the dop on the end of which the gem is cemented while exposed to the lap or wheel. It has adjustments as to inclination, and also axial, with markers indicating degrees in adjustment, so as to portion ont the circminfrence of the stone in facets forming chords of specific ares at given depths. See Angutometer.

Di'al-lock. A lock provisled with one or more dials, having a series of letters or figures on them. Each dial has a hand or pointer connected by a spindle with a wheel inside the lock; on the wheel is a noteh which has to be brought into a certain position before the bolt can be moved. There are
false notches to add to the difficulty of finding the true notch in each wheel. To adjust the notches to their proper losition, a nut on the back of the wheel is loosened, and the pointer is set at any letter or fignre chosen by the user. She l'ermitation-Lock.

Di'al-plate. (Clock:) The face on which the divisions indicating the hours and nimutes are placed.

Di'al-wheel. (Horoloyy.) One of those wheels placed between the dial and pillar plate of a watch. Also called minute-uhcel worls.

Di'al-work. (Horology.) The motion work betwern the dial and movement plate of a watch.

Di'a-mond. 1. (Printing.) A small kind of tyle used in Enclish printing: -

Diamond, sis ems to the forc Pearh IT8 ems to the font
 Peart, ITs ems to the font

2. A lozenge or rhomb. The name is conferred upon nuts and bolt-leads of that form. Also upon gravers which are thombal, and not square in crosssection.
3. A raluable gem, the hardest of all, and of varions colors. It has many uses in the mechanic arts, deriverl fion its extreme harlness; some uses in optics, owing to its high refractive and small dispersive power. Sp. g\%. 3.521.

Among the celelrated diamonds may be noted the following :-

Great Mogut. Found in 1550, in Golconda, and seen by Tarernier. Weighed 793 carats; ent to 279 carats (carat, 4 gains).

Russian. Taken from a Bralminical idol ly a French soldier ; sold to the Empress Catherine for $£ 90,000$ and an annuity of $\dot{む} t, 000$. Weighs 194 carats.

Pitt. Bmangt from India liy Mr. Pitt, the grandfather of the first Farl of Chatham; sold to the liegrent Duke of Orleans, in 1717, for $£ 135,000$. 11 eighed when rough, 400 earats; cut to $136 \frac{1}{2}$ carats. Nipoleon placed it in the hilt of his sword.

Koh-i-noor. Seen hy Tavemier in 1665, in the Jossession of the Great Mlogul. Seized by Nadir Shah, in 1739, at the taking of Delhi. Became the rroperty of Runjeet Sing. Captured by the English at the taking of the Punjal). Presented to the Queen bye the East ludia Compans, in 1850 ; weighed in the rough s00 camats, cut to $186 \frac{1}{10}$ carats ; reent to $103 \frac{3}{4}$ carats. - Brasde.

Austrian. A rose-cut diamond of $139 \frac{1}{2}$ carats.
Sir lasac Newton suggested that the diamond is combustible, but the first to establish the fact were the Florentine Acarlemicians, in 1694 ; they suceceded in burning it in the focus of a lavge lens. Lavoisier, in 1752 , examined the results of combustion, which showed it to be pure crystalline form of carbon. The uses of the diamond include the following:A bradant for various purposes, in wheels, laps, and slicers.

Stone drilling and sawing. See Carbon toolPoLNTS.

Engraver's ruling, and marking graduations on instruments.

Glass-cutting. Lenses. Jewelry.

Di'a-mond-cut'ter's Com'pass. (Diumiond-cutting.) An instrument nsed to measure the inclination of the siles of jewels. It is a morable arma, inselted at an angle of 45° into a metallic base b. It is shown in the lower illustration of Fig. 1630 as measuring the inclination of the collet-side to the girdle and the bizet to the table. See lbinliant.

Di'a-mond-cut'ting. Until 1476, when Louis de Berghem, of Bruges, first discovered this art, the diamond was worn uncut ; the four great stones in the mantle of Charlemagne furnishing an example.

The diamond is cut in three forms, the Bulinaxt
(which see), the rose, and the table, and their respective values are in the order named. The form a diamond shall assume is determined by its shaye in the rough, the duty of the lapidary being to cut it so as to sacrifice as little as possible of the stone and obtain the greatest surfice, refraction, and gemeral beanty. Ilaving decifed upon the form, a model is made in lead and kept before the workman as a copy. The rough diamond is cemented to a handle callecd a dop (a, Fig. 1630), leaving the fart exposed which is to be removed to form one liacet. The projecting portion is then removed by attrition agilinst another dimond simitarly set in a handle (5 , Fig. 1630), or by means of diamond-dust and oil upon a disk, wheel, or wire, aceorling to circumstances. When a facet is tivished, the stone is reset in the

Fig. 1630.

handle and the process repentecl. Several months are expended in eutting large stones, as the work proceeds very slowly.

The polishing is performed unon a rapidly revolving iron wheel d, driven hy a band g, and fed by hand with diamond-dust and oil \{C, Fig. 1630). The diamond is set in a dop as before, on the end of a weighted arm $f e$, and held against the wheel ; the results of the prowess being eollecterl in a box for future operations.

The weight of a diamond is expressed in carats equal to four grains; the term is derived from the Arabie qirat, a hean, a word derived from the Greek keration, signifying of Jitlle hom, the fruit of the ka-rob-tree.

The value of a diamont is commonly increasenl threefold by skillful eutting, and its value is the square of its weirht exprossed in carats multipliend by $\$ 40$ specie. This is hint an approximation to the truth, for the value of dimnonds Huctuates like other things, though to a less extent.

Diamomels with tlaws or imperfections are sawn asunder or split ; the latter (shown at -1) being a sjuedy but risky operation, rermiring great judgment in leternining the plane of cleivage and skill in the nse of the chisel b and hammer. For sawing, a tine wire is used, fed, as in the case of the revolv-ing-wheel, with diamond-dust and oil.

Diamonts are of various colors. They are crystallized cathon, which, not eolor, detemines the chomical ditlerence between the diamond and other gems, such as the ruby, amethyst, topaz, ete., while its hardness expresses its mechanical diflerence.

Di'a-mond-draft. (Wecting.) A method of drawing the warp-threads through the leddles.

Di'a-mond-drill. A drill armerl with a diamond, which cuts its way into the material as the drill-stock is rotated. It was invented by 11 ermamn, and patented in France by him, June 3, 1854. He states that he makes crystals or angular fragments of the black dianond nseful in "working, tuming, and polishing, etce, of hard stones such as granite, porphyry, marbles, etc." The dianom is hroken to obtain angralar fragments, which are embedded by alloys in the metallie stock, to form a cutting-tool ($b l^{\prime}$, Fig. 1631). See Cabibn Tool-polnts, p. 461.

In his certificate of addition, March 31, 1855, he states that the diamonds are to be inserted in holes drilled for them in the end of the drill-rod, the metal being battered down around them to form a bezel.

The drill-bar slides vertically, and is rotated by hevel-gearing. He refers to the need of water on the drill.

Leschot in 1860-64, and Pihet, in 1866, deroted some eare to the matter; the latter introducing

Fig. 1631.

Diamond Tools.
the annular drill-head (sliown at a^{\prime}, Fig. 1631), which is a steel ring studded with black diamonds. The leieds of the drills used at the Mont Cenis Tunnel, and the excavations by Gereral Newton at Hallut's Puint, East River, N. Y., were of this character.

Fig. 1632 represents a prospecting or open-eut Irill detached from the boiler whiell drives it. The two oscillating engines c clrive the bevel-gearing a, Which rotates the drill-bar of from 900 to 1,000 revolutions per minute, boring in orlinary rock from 15 to 20 feet per hour. a is the frame, B the steam connertions.

Fig. 1633 is a mining or tunnel drill. The upright frame $E \quad E$, which shpports the swivel drillhead with its gears and clrill, is attached by linge-

plates to the top and buttom of the driving-shaft F, and may be swung to the right or left, describing it semicircle. This allows the drill to act at any angle of the horizontal are thus described withont moving the machine. The drill-head also slides up and down this adjustable frame $E E$, enabling it to bore a perpendicular row of horizontal holes.
The drill itself, with its feed-gears and slidingguide O, may be turned completely round by loosening a nut on the hack of the swivel-heal so that the point of the drill shall describe a rertical circle, at any angle of which it will bore equally well.
The two uprights $G G$ nsed to support the brivingshaft F are made of common hyrlraulic pipe, and may be lengthened or shortened accorliug to the hight of the tunnel. The driving-shaft F has a sliding-gear attached by feather and spline, adjustable at any position. The sliding brace just beneath this gear is used to steady the driving-shaft. Motion is communicated to this shaft by means of the gear D. The posts E ' E are set firmly against the upper wall by means of extension-screws $\mathcal{N} N$, which may be rmn up two or three feet if desiren. The steam or compressed air is brought through rubber hose from any convenient distance, and introluced into the engine by pipe $L . M$ is the exhanst-pipe. The feed may be varied at pleasure, and accorving to the hardness of the rock fom 90 to 340 revolutions per inch; that is, from 2 to 10 inches per minute. The machine is balanced on its axle ly depressing the handles H, and trundled abont like a wheelbarrow. Operated by either compressed air or steam.

In Fig. 1631, a a are front and side views of diamond-chisels nsed in turning rubies for watchjeweling.
b is a diamond-drill for making the hole in the ruby plate.
d is a tool of steel wire to be used with diamonddust in drilling jewels.

c f are two views of a triangular fragment of diamond mounted for drilling china or porcelain.
g is a square stone mounted for the same purpose.
h is a metallic tube for drilling amular holes in jewels with diamond-dust.
i is a diamond-joint mounted for etching or ruling in engraving.
$j k$ are diamonds monnted for ruling graduations of mathematical instruments.

Di'a-mond-gage. Employed hy jewelers in estimating the sizes of small diamonds. In the staff are set small erystals of graluated sizes by which jewels are compared. The crystals are from to $\frac{1}{6 \pm}$ of a carat.
Di'a-mond-head'ed Bolt. See Bolt. A bolt Whose head has a lozenge or rhomblal shape.

Di'a-mond-knot. A kind of knot made at equidistant intervals on a rope, to give support to the hand or foot.

Di'a-mond-lens. The diamond-lans, owing to its high refraetive and snall dispersive jower, reIfuires much less currature than glass lenses of the same focal length. It therefore arlmits of the employnent of a larger ${ }^{\text {encil }}$ of rays, and gives more light. A diamond and a plate-glass lens of similar form and radius are in their comparative magnifyingpowers as 8 is to 3 .
Diamond lenses were made by Andrew Pritchard in 1824. One was recently made in London at a cost of $£ 250$ sterling.

Di'a-m ond-mor'-

 tar. Diamonils for the use of the lapidary are crushed in a mortar, which consists of a cylindrical bux a and a pestle b, both made of hardened steel. Asmall rough dianond is placed in the mortar, aud the Diamond Martar and Grinder.
pestle driven down by a hammer. The pieces of brokend diamond are examined for the detection of fragments suitable for gravers, chills, and etchingpoints. The remainder is mashed to an imprapable powder ly several hours continued work, rotating the pestle between blows.
When suflicient fineness is not attained by the mortar, the dust may be gromd between the concave and convex surfaces c d of a lardened steel mill, a little oil heing added to the dust. The particles will grind each other.

Di'a-mond-nail. A nail having a rhombal head, used for some jurposes. The acute angles of the rhomb are sometimes mate to clinch.
Di'a-mond-plow. A sinall plow having a moldboard and share of a diamond shape; that is, rhomboidal. One side of the rhomb runs level on the ground, anotlur forms the breast, and the other two are the maroinal lines of the backward extension of the mold-board.
Di'a-mond-point. A stylus armed with a diamond, cither ground conical or made of a selecterl fragment of the desirel shape. Wilson Lowry introduced the diamond-point into engraver's rulingmachines. Etchims-tools have been pointed wit? diamonds. Diamond-points are used in ruling the gradnation of the fincer kinds of instrmments, also lyy Nobert, it is supposal, in ruling the wonderful scries of lines that form the tests of the microscopes of hither jowers.
Di'a-mond-point Chis'el. A chisel whose corners are ground off obliquely.
 Di'a-mond - tool. (ilitalworking.) A metal-turning tool whose cutting edge is formed by facets.

Di'a-mond-work. (IIasonry.) Reticulated work formed by courses of lozenge-shaped stones, very common in ancient masonry.

Di'a-pa'son. (Music.) A stop of an organ having pijes or reeds extiming throughout the scale of the instrmment.

Diaprason-stops may be open or stopmed, as the pipus are open above or are closed by fompions.
Double-diupason is an octave graver than diopreson. See Stor.
Di'a-per. 1. (Fubric.) A linen toweling with a small ligure thrown up, as in damask.
2. A panmer or that recessed surface covered with carving or other wronght work in low rellef.
Di'a-per-work. (IInsonry.) A pavenent checkered hy stones or tiles of iliflerent colors.
Di'a-phane. (Fubric.) A woven silk stuff with transparent and coloned fignres.
Di'a-pha-nom'e-ter. An instrnment for measuring the transparen'y of the air.
Dia-phan'o-scope. (Optics.) A dark box for exhibiting transparent pictures with or withont a lens.
Di'a-phan'o-type. (Photngraphy.) Another name for the hellextype, in which a diaphanums or pale positive on a paper remdereal transincent by varnish is colored on the back aml plared over and in exact correspomlence with a duplicate positive of strong character.
Di'a-phragm. 1. A partition in a ehamher, tube, or othri olject.

Flexible diaphragms are used in steam-pressure indicators, fancets, gas-regulators, pumps, ete.
2. (Optics.) An anmular lisk in a camera or telescope, or other opitical instrument, to exchude
some of the marginal rays of a beam of light. The original form of this lieantiful contrivan'e is the iris of the eye, which shnts out strong light and rucnulates the quantity almitted. The use of the iris was known to Leonardo da Vinci.

Di'a-phragm-fau'cet. One which closos its aperture by the depression of the diaphragm upon the end of a pipe loy means of it screw-plunger.

D i / a

phragmplate. A pliate bencath the stage of a comfond micros"opre,torestrict the amount of light rellented from the mir-

Diayhragm-Faucet. ror. The phate Las a mumber of holes of varying sizes, either of which may be brought to bear.

Di'a-phragm-pump. A pump in which a diskfiston is attached ly an clastic diaphragm, usually of leather, to the sides of the bantel. It was described by Desaguhers in 1744 as "a piston without friction." It is mnch older than the time of this philnsopher, however. It has been again and again re-invented, and brought out with a flourish of trumpets. See Bag-prap. Its application may have been suggested by the human diaphagm.

Di'as-tim'e-ter. A philosophical instrument for measuring distances.

Di'a-style. (Architecture.) A system of columniation in which the width of the intercolumns is equal to three cliameters of a column.
Di'a-tom-prism. (Optics.) A triangular prism used for illuminating small objects in the field by oblique light.
Di-at'o-ni. Anglestones in a wall, wrought on two faces, and projecting beyoud the general face of the wall.
Dib'ble. A pionted implement with a spade-handla nsell to make a hole in the gromul to receive seed. In the East of England Wheat-erops are pint in by

Diatom-Prism. this means. It is slow, but sure. A man takes a dilble in each hamb, and gores hackwarl across the field ; children following hime drop the grains into the holes. It is economical of serd, but the primeipal motive is to condense the soil aromd the seed, so that it may retain moisture in that sandy country which onee was a rabbitwarren, and where a certain duchess told the proprictor, Coke of Norfolk, that she salw two rabbits quarreling for one hate of grass.
Dib'bling-ma-chine'. One used for making holes in rows for potato sets, for luans, or other thinges which are planted isolated in rows. It may he adap,ted for form by instituting the proper proportion between the parts; conn requiring a greater distance apart in the rows, muless it is only to be tended one way. The machine shown is adapted to be pushed ly one man, and may be a nsefnl auljunct to gardening.

Dice are referred to in several places in the "RigVeda," the most ancient of the Sanserit religions loooks:-

Fig. 1639.

Ancient Egyptian Dice.
"Let man far Him who holds the four dice, before He throws them down." -Figh-T゙cdu, I. 41, 9 (в. с. 1500).

Rhampsinitus is said by Herodotus to have played with the godiless Ceres, and Mercury is fabled to have played dice with the moon, winning from her the five odd days of the year.

The game of cherkers alsn was played ly Rameses, with two sets of men or dogs (latrunculi), or comnters (calculi), of tifferent colors. Sie ('herkers.

Whilp the statement of Herodotus posstsses a certain historic interest, we camnot eredit that dice, knuckle-bones, and hall were invented by the Lydians to white away the alternate days of fasting to which the people were sulijectel in a time of bitter scarcity. Neither can we crellit Sncrates when he avers that Palamedes, son of the King of Eubeea, invented dice to serve instenl of dinner during the siege of Troy, $1200 \mathrm{~B} . \mathrm{c}$.
"Herolotus is mistaken when he says that these sports were inventel in the time of Atys, to amuse the people daring the famine, for the iferoic times are older" than Atys." "1n Homer the suitors amused themselves in front of the dom with dice [to determine by the chances who should claim Penelope]." - Atheneus, A. d. 220.

Plato is more probably correct in aseribing them to the Egyptians, though the Sanscrit book is as old] as the Pentatench and the Pharaoh who knew Joseph.
The Greek dice were cubec, and were numbered like our own, $6-1,5-2,4-3$, so that the opprosite fines should add 7 . They usually thew there dier. The otiginal dice are supposen to have been knucklebones, and they still maintained their pormarity after the more perfect numbered cube had been introduced. The bones were called teli, and were used five in number. The astrag ti were probably cubes withont numbers, and played like the knucke-bones; they were made of bone, stome, metal, ivory, or glass. The number of pieces used was similar to the number of the lines on the Greek abacus, or the digits
of the hand. (See Abactrs.) The game of astragali is represented in ancient sculpture and in a painting in Herculaneum. Pliny mentions a group in bronze by Polycletus of two naked boys at play, then in the Atrium of Titus. The same subject in stone is in the British Mlusemm.

In the gane of duodecim scripta the motes were determined by dice; the game of tali and tesecra was blayed with dice. Dice similar to ours were found at Herculaneum, and the convulsion which overwhelmed Pompeii surprised a hazard-party at their amusement ; 1800 years aftelward the dice were fonnd in their bony hands, and the game yet unsettled.

At an entertainment given in 1357 by the Lord Mayor of London, the Kings of France and Scotland being prisoners and the King of Cyprus on a visit (temp. Edward 111.), the lost challenged all to dice and hazard. - Stuw.
The dice-hox of the ancients (fritillus) was of a cylindrical form, and had paraliel indentations to turn the dice as they were sbaken.

To descend one step lower luings us dorn to the game of "odd and even" (par ct impar), a puerile amuement played by the honan ragaloonds with theans, nuts, alnonds, or coin. It was played with the fingers in ancient Egypt, in Greece, and in Rome, al. 1 still survives in the Mexican morr.

Pitch and tess was not so ecmmon, lut pitching coins or hones within a sing or into a hole was common in ancient Greece.

Thimble-rig was understood and practiced by the ancient Egyptians, much as by the vulgar of the present day: It consisted of four inverted cups hiding an oljeet, such as a pea or other " little joker," ant is described by Kenrisk and Wilkison.

Di'chro-scope. (Oplics.) Au instrument to exlibit the two complementary colors of polarized light. The quality called the dichroism of crestals consists in transmitting different colors when viewed in different directions.

Fig. 1640.

There are several vari-
eties of this alparatus invented by Arago and Brewster.
As constructed by Prewster, it consists of a tube about two inches long, blarkemed on the interior, and attached to a laill and sorket.
The ball contains two pri-ns of calcareons spar, separated by a film of sulphate of lime, so placed that each pair of the four images is tinged with the complementary colors. A lens is arrangel unon or near the prisms either at lront or lack.

On viewing the sky or any luminous object, four brilliantly colored images of the aperture will be sern, the color of the two middle ones being complementary to that of the outer ones. By moving the ball in the socket the colors will constantly change, and the images will sometimes overla 1 and sometimes separate, exlibiting a great rariety of haes, pleasing the eye by their combinations and hy the soft harmony of their contrasts.

Many beautiful rariations may be obtained by using several films of sulphate of lime having their axes variously inclined to one another.

For other forms of this instrument see "Encyelopedia Ediuensis," Yol. XV. 111. 053,654 , and plate cecexlii.
Dic'ing. A mode of ornamenting leather in squares or diamonds by pressure, either of a bhunt awl or an edging-tool, or in a machine ly jressure between dies.

Dick'ey. A seat behind the body of a curriage for servants. In the old-fashioned English stagecoach it was occupied by the ghard and some pis. sengers.

Die. 1. (1fetul-working.) a. In punching-machines, a bet-piece which has an opening the size of the punch, and through which the picee is driven. This piene may be a planchat or blank, or it may be mercly a plug driven out of the ubject to form a bolt or rivet hole. In nut-machines the nuts-hinks may be male by one die and punched hy another.
b. (Forging.) A device consisting of two parts which coact to give to the piece swaged between

them the desired form, as in the example (Fig. 1641), which shows a set of hammer-forging cameo and intaglio dies, which ict successively upon the blank.
c. (Shect-netal.) A formerand punch or a cameo and intaglio die between whiel a picce of sleetmetal is pressed into shape by a blow or simple pressure. See Drop-piess.
d. (Coining.) Botll dies are intaglio, so as to make a cameo or raised impression upon each face of the planchet. The upjer die has the obverse, the fuct, which is often the bust of the sovereign or national emblem. The lower die has the reverse, with an elfigy, legend, value, escutcheon, as the case may be.
Owing to the random way in which ornaments are disjosed on coins, any general definition will no longer ineet all cases.
A die for coining, mechanically considerel, is mate by the following pocess:

Fig. 1642.

Coining-Dies. A piece of softened steel called a hub is prepared, and upon its end the design is cut. The steel is then hardened, and is used to make a matrix. in which the impression is intaylio, that is, sumken. A plug of softened steel alittle larger than itsultimatesize, and with the center a lit. tle raised, is flaced on the bed of a screw-press, and, the hartlened matrix being placed upon it, pressure is bronght to bear on the matrix, which delivers its inpression on the face of the plug. The result is a salient impression,
and forms the punch. In all cases where metal is condensed it becones heated and hardened, and in this case it becomes necessary to withdraw the imperfect punch and anneal it, after which it receives mother pressure from the matrix. 'This is repeated until the inpression is fully developect. The punch, ly a similar operation, is then employed to make a dic. The die is then hardened, amal may be used for coining or for making a new hueb if thee formes shouht become injured. The tirst perfect die is generally setained for the purpose last mentioned.
The date is put by hand into the dics to be used in coining, as it repuires to be changed; and the list die and the hub nay be preserved for many years and may make hundreds of dies. For the apjulication of the clies, see f(ansisg.

A mode of procedure which sabes onte step in the ahove process is to engrave the design in intaglio in the first phace. This, when hadened, forms a mutrix, from which the punch is made; the punch being used to form the die for coining.

A die will sometimes deliver 250,000 impressions before it is necessary to remove it from the coiningpress; and sometimes a die will crack at the first impression.
c. (Enyrucing.) An engraved phate or small roller of steel, subsequently hardened ind used to deliver an impression upon the surface of a soft steel roller, Which in turn is hardened and fonns a mill. The die is intuglio, and the mill is comro. The latter is used to impress a plate or a roller to be used for bank-note printing or calico-printing respretively. See Thansferhing-Machine ; Clamming-machine.
f. One of the pieces which combine to form a hollow serew for cutting threads on bolts and such

like. The two portions are fitted in a stock: In some, the dies are set up by serews, in others by scrolls.
2. The cube or dado of a pedestal.
3. A cube marked with figures on its respective sides and used in games of chance. See Dice.

Die-sink'ing. The art of making dies for coins, medals, etc. It is a branch of engraving, but in-

Fig. 1644.

\square
Stock and Dies.
volves turning, tempering, and the use of other tools besides the graver. See Die.
Di'e-sis. (Printing.) The double-dagger (\pm), a reference-mark.
Die-stock. A frame to hold the dies for cutting external serew-threads. The dies are detached pieces of steel, containing the thread
 on their inner cursed surfaces, and these fit into groores or upon ridges in the slot of the die-stock, being closed upon the bolt to be threaded hy means of a set screw.
Plier die-stocks are made by setting removalle dies in the jaws of pliers.

Diffe-ren'tial Block. A double block haring sheares of different sizes. See Differentlal Pclley.
Die-Stock.
Diffe-ren'tial Coup'ling.
A form of extensible conpling, to rary the speed of the driven part of the machinery.

Diffe-ren'tial Feed. An arrangement by which a regular powerful and slow morement is ob-

at the same time the two θ worm-wheels $a b$; the lower one has filteen teeth and rotates the tool, the upper has sixteen teeth, and by the difference between the two, the odd tooth ad-
Differenial-Feed Drill. rances the tool gradually by the rotation of the axial screm.
Diffe-ren'tial Gear'ing. A form of gearing first introduced by Dr. W'ollaston in his trochiometer; for counting the turns of a carriage-wheel, in which two cog-wheels of varying sizes are made to travel at the same absolute surface-rate and in the same direction, and communicate motion equivalent to the difference betreen the circumferences of the two. See, for an illustration, Differential Feed. See also Eqcational-box.

Differen'tial Pul'ley. This, in a somewhat clumsy furm, has been known for centuries under the name of the Chinese windlass, and one was found by the allied English and French armies to be in use for raising one of the drawbridges in the city of Pekin. It was described by Dr. Carpenter in his "Mechanical Philosophy," etc., 1844.
The chain winc's over two drums of different

diameters, winding on to one as it unvinds from the other; the effect gained is as the difference between the two, the smaller the difference the greater the power and the less the speed.

In the geared differential pulley the effect is produced by making one more tooth in one of the wheels the chain passes orer than in the other.

Diffe-ren'tial Screw. Invented by Hunter, the celebrated surgeon. Two threads of unequal pitch are upon the same shaft, one unwinding as the other winds. The etfertive progression is equal to the difference of the pitches of the two threads. By making this difference very small, great power may be attained withont the weakness fine to a very fine screw.
$A B$ is a plate of metal in which the screw $C D$ plays. This screm is hollow, and receives the smaller screw 1) E, whirh is free to move longitudinally, but is restrained from ro-

Differential Screw. tating by the frame $A F G B$ of the press. The larger screw has ten threads to the inch, the smaller one las eleven.
Diffe-ren'tial Ther-mom'e-ter. A thermomcter laving two air-bulbs connected by a bent stem occupied by colored sulphuric acid. When one leg

Differential Ther. is exposed to heat, the air in the bulb is expanded, and the liquid in that leg of the instrument is depressed.

Diffe-ren'tial Wind'lass. A windlass whose barrel consists of two portions of varying diameters. The rope winds on to one as it wiads off the other, the elfect of a revolution being governed by the difference between the ciremmerences of the two portions. If it wind on to the larger and off of the smaller the load is ratised, and conversely. See C'mnese Winhmass.
Dif-fu'sion-ap-pa-ra'tus. (Suyur-пиние ture.) A molle of extracting the sugar from cane or heet-root by dissolving it out with water. It is adopted in some extoblishments in British India and in Austria. The sugar-yielding material is fed in at the hopper a and cut into slices in the cylinder b hy knives driven by hand-wheel r, anti issues at the opening o into the hopper c, where it is carried down the central pipe d and diseharged into the lower

Fig. 1652.

Robert's Diffusion-Apparatus for Sugar.
chamber e_{1} and, gradually ascending through the series of chambers $f g h i$, is carried off by a rake p driven by gearing q. As the slices of cane rise in the dilfusing-chanbers, they meet water, which is supplied from ahove through small pipes, the water meeting first the most exhansted slices as they rine to the discharge-level, and passing through to the richer material as it becomes more and more saturated. At the bottom it issues through perforations or outlet-phes k, and is carried off to a cistern l, where it is heaterd, and is then returned non the cane thongh the pipe m and the cistern n and the central freeding-tube, by which the cane or beet is sulphimed to the diffusing-chamber.

Dif fu'sion-tube. Au instrument for determining the rate of diffusion of different gases. It consists of a graduated tube closed at one end by plaster-of-paris, - a substance which, when moderately d:y, possesses the required porosity. - Thomas.
Di'gest-er. Invented by Dr. Papin, abont 1690.

A strong boiler a with a tightly fitting cover b, closed by a screw c, and usel to exprose foorl to a heat almove 212^{\prime}. By a certain increment of heat the gelatine is separated from the phosphate of lime of the bones; the earthy partieles sinking to the bottom. It has a sufety-valve on top to allow steam to escaple when it begins to acpuite a daugerous tension. It was in contriving this boiler that Dr.
 l'apin invented the safety-valve.

The lard and other grease tanks used for working up, poor careasses and the oftal of slanghter-houses belong to this class of apparatus. Thonsands of carcasses of cattle and sheep too poor for the market are thas worked up yearly in the United States, and the larl-tank is a regular feature in
 the hog-slaughtering centers, Chicago, Cincinnati, ete., where the entrails and other offal yielling grease are thus treated on a large scale.

Tlie tanks have also beem introducel into Enenos Ayres and probably into Texas, where bepves are siaughtered for their hides and tallow. The carcalsises, after removing a few choice $ן$ arts, are dumped into the tanks, when stemm is apllied, resolving them into fat, water holding soluhle matters in solution, and mud, the latter containing the earthy and some other particles.

Of this class is Wilson's tank for rendering lard and tallow, patented in 1844. The tank is preferably a vertical cylimler, and is calculated for ligh-pressure steam. It has a perforated steam-pipe below the pertorated false lotom which sustains the charge, and allows the water of condensation to percolate into the lower chamber. A discharge-hole at hottom is provided for renoving the residum. A ummer of try-cocks at ditferent hights afford means for letermining the levels of the fat and waterreprectively ; and discharge-cocks permit the thoating fit to be decanted or the water withlrawn, as the contents and state of the pocess may require.

The figure on the right hand slows an apyaratus in which tamin is extracted from the vegetable sub. stances which yiell it, - say, for instance, nut-galls, It is an elongated glass vessel A, having an orifice at top which is fitted with a gromml-glass stopper, and contracting at its lower extremity so as to fit into the neek of a bottle or matrass B, which receives the extmet. The matiass cumeets ly proper orifices and a caonteloue-tube D with the vessel A, so that the ether which lies upon the nut-galls in the upper vessel and forms the menstrum of the extract in the Jower one shall not evaporate.

Dig'ger. A name alplicel to some forms of spadelike implements in which the soil is lifted and turned by other than the usual modes. More curions than useful.

Dig'ging-ma-chine'. (Agriculture.) A spad. ing-machine for loosening and turning the soil. There are many forms, which may be classed under two heads, reciprocating and rotary.
Fig. 1654 represents one kind in which the spadehandles pass through guide-slots in an upper bar, and receive their motion by attachment to cranks revolvel by connection with the shum. The depth

is regulated by the vertical auljustment of the tiltingframe which carries the crank-shaft.

In the rotary wachine (Fig. 1655) the groundwheel b drives the spale-wheel L^{\prime} through the intervention of gearing. The wheel B is in the advance, and the depth of penetration is regnlated at the rear

Rotary Digging-Muchine.
of the frame above the caster-wheel N. The shares II II are removable.

Other forms of spaders have hlades thrnst out and retracted as the machine adrances.

Digue. A sea-wall or breakwater. An artilicial construction opposing a barrier to the sea or preventiny the temulation of the land thereby. See Dike.

Dike. 1. A levee or wall of earth, gabions or car-

Fig. 1355.

Rouen Quay. pentry, to prevent the encroachment of water, or to serve as a wharf or jetty.

The structures vary extremely, according to purpose, exposure, and the nature ol the fomedations. The mure superior class consists of a timber structure strongly braced, founded on piles, filled in with stone, and faced with planking or masonry. See Sea-wall ; Jetty ; Bheakwater.

The dikes of Holland are the most memorable of their class, and protect from the sea that wonderfnl land which is so largely below the high-water sealevel. The dikes in some parts of Holland are thirty feet abore the ordinary level of the country, and have sufficient width at top to form a roadway. They are founded on timbers and piles filled in with stones faced with clay and revetted with gabions of rushes,
willows, etc. The slope to the sea is from 1 rise to 4 base down to 1 in 13.

The history of these works is one of gradually increasing strength and solidity, with heroisn and pertinacity wonderfnl to relate. The accidents by which the sea has again anl again claimed its own have swept away whole jrovinces and commmnities. A flood in 1277 formed the present Gulf of Dort and overwhelmed lorty-four villages. The llood of 1287 overwhelmed 80,000 persons, and gave the Zuyder Zee its present bounds. Another storm in the sixteenth century destroyed 100,000 persons.

The llarrlem lake is the latest ol the great reclamations. The cost ol rendering habitable and cultivable the 51,300 acres was $\$ 3,330,000$, abont $\$ 65$ jer acre. Previously to undertaking this colossal work, the Zind Plass, of nearly 11,500 acres, had been reclained at a cost of $\$ 1,250,000$, not far from $\$ 110$ per acre.

Among the most celebrated of dikes was that of Menes, which tomed the Nile from its course to accommodate the new city of Dlemplis. "lts lofty monnds and strong embankments turmed the water to the eastward, and effectually confined the river to
2. (Mining.) A non-metallic wall of mineral matter occupyiug a former fissure in rock, intercepting and disturbing the order of ore-bearing strata.
3. A stone fence (Scotland).
4. A ditell for water.

Di-lat'or, An instrument for extending parts, such as the eyelids, or dilating the walls of a carity, the urethra, vagina, auns, itc. See the fullowing:-
Anal dilator.
Eyelid-dilator.
Lachrymal-duct dilator.
speculum.
Sphincter-muscle dilator.

Stricture-dilator.
Uretlura-dilator.

Dil'i-gence. A French stage-coach. It was the national velifile on the recrular routes; had four wheeels, two compartments, a deck, and a dickey; was drawn by from four to seven horses, and engineered by a postilion.

Dil-lu'ing. A Cornish worl for the operation of sorting ores in a hand-sieve. The sieve has a lair bottom of close texture, and contains abont thirty pounds of stamped tin ore. The sieve is immorseil in water and moves the ore ul and down and circularly, so as to cause all the particles to be in a state of suspension in the water.

By inclining thre sieve the lighter particles are allowed to run off into the kecre, while the richer particles are laid aside for rousting.

Di-Iut'ing Rol'ler. A roller in paper-making macbinery, which conducts an additional sulply of water into the pulp-cistern to reduce its density.

Dim'i-ty. (Fabric.) A heary, fine, white cotton goods, with a crimped or ritgid suface; plain, striped, or cross-barred.
The Greek dimitos (double warp-thread) is believed to have been a kind of twilled falric, and was equivalent to the Latin bilix.

Di'men-sion Lum'ber. Inmber sawed to specific sizes to order, in contradistinction to stuck-lumber which has the usual market-sizes. See Stock-gang.

Di'men-sion Stone. Ashlar (which see).
Di-min'ish-ing-staff. (Shipbuilding.) Planking wrought under the wales, and thinned to correspond with the thickness of the bottom plank.

Ding-dong. (Horology.) A striking arrangement in which two bells of different tones are used and struck in succession to mark the quarter-hours.

Dinged-work. Work embossed by hlows which depress one surfice and raise the other. See C'nasNis.

Din'gy. 1. A row-loat of the Hongly, which probably give the name to the little jolly-hoat of the merchant-service, mentioned below.
2. A hoat of Bombay, propelled by paddles, and having one mast and a setter-sail.
3. An extra hoat of a ship for common uses. It is elinker-built, from 12 to 14 feet long, and has a bean onv third of its kength.

Di-op'ter. An ancient altitude, angle, anl leveling instrument; said to have been invented by Hippitehus. Dioptra.

Di-op'tric Light. The dioptric system of lighting, used in lighthouses, as distinguished from the catoptric, which is by reflectors. Refraction instead of reflection.

Lenses were used in the South Foreland light in 1752, and in the Portland light, England, in 1789. The system fell into disfarar, owing to certain mechanical difficulties in the construction and arrangement of the lenses.

It was revived and improved by Fresnel ahont 1810, and has been generally adopted thronghout France and Holland, and partially in England. It is convidered superior to the eatoptric, and was readopted in England in 1834, being placed in tha Lundy Island Lighthouse, Devonshire, Englanl.

The Fresnel dioptric lamp consists of a mechanical, four-wicked oil-lamp, placed in the center of an octagonal glass prism ; the center part of each of the sidms being forned of a plano-convex lens of about 15 inches diameter, which is suroundeel by a series of glass rings of a spherical triangular form, so as to prorluce the same effect upon the rays as is prodnced by the central lens. Allan Stevenson, Arago, and Faraday are credited with improvements in the details.

The thane is placed in the focus of the lenses, and the beams are bent parallel to each other, so as to form a solid beam of light proceeding from rach

Fig 1657.

Presnel's Dioptric Lighe.
lens. The lenses, after careful and persistent attempts, were merged into a cylindrical hoop which formed the central zone around the flame, as seen in the elevation a. The rays striking above and below were bont so as to assume a position parallel to those proceeding from the hop, as seen in the section b.

Di-op'tric Mi-crom'e-ter. A form of the double imang micrometer, introduced by Ramslen (1735-1800), in which the divided lens is in the eye-tube. In the orlinary form it is the ohjectglass which is dividel.

Di'o-ra'ma. A mode of scenic representation in which the spectator and picture are placed in separate rooms, and the picture viewed through an
aprerture the sides of which are continued towards the picture, so as to prevent the distraction of the eye by other oljgects. All light arlmitted passes throngh this aperture from the picture, which is illumind by light from above at such an angle as to be refleetell through the aperture towards the spectators. By means of shutters, sereens, and reflectors, the light is mollified to represtint changes of sunlight, cloud, and moonlight. Transparent portions of the picture admitting light from behind brilliantly illuminated certain portions.
M. Daguerre wats one of the artists of the diommic exhibition at legent's l'ark, lomdon, in 1823. He is justly famous in connection with his heliographic: discoveries. He died in Paris, Jamary 10, 1851. ager] 62. M. Bouton was associated with Dagneire in the invention and exhibition.

Dip. 1. (Compass.) The vertical angle which a freely suspended needle makes with the horizon. Inclination. See During-nimbe.
2. (Mining Engincering.) The inclination or pitch of a stratum. The point of the compass towards which it declines is the print of dip. The angle with the horizontal is the anount of dip or the angle of dip. The stritir is the extension of the stratum at right anghes to the dip. Dip is also known as lutde, slope, underlic.
3. The depth of submergence of the float of a pradde-wheel.
4. A candle made by repeated dipping of the wick in melted tallow.
5. The slight downward inclination of the arms of an axle. Suring.
6. (Fortification.) a. The superior slope of a parapet.
b. The inclination of the sole of an embrasure.

Dip-cir'cle. A vertical graduated circle, in the 1 lane of which a delicate magnetic needla is suspended on a horizontal axis, which rests uron two polished agate sul!uorts. The circle is set in the plame of the magnetic meridian, and the needle indicates upon the graduated circle the angle of inelination.

In the improved form shown at Fig. 1658, the needle is insulated from other metal, and the readings are effected ly two telescones fixed on opmosite ends of an arm traversing a
 graduateul circie.

Dip-head Lev'el. (Mining.) The gallery procereling right and left from the engine-pit bottom. The minin-level.

Di-plei'do-scope. An optical instrument for indieating the passage of a heavenly body over the meridian by the coincilence of two images formed by a single and double refraction from a triangular prism which has one transparent and two silvered planes, one of the latter being in the plane of the meridian. - Brande.
Dip'per. (Photogronhy.) An instrument used
for inmersing negative plates in upright baths containing nitrate of silver, hyposulplite of soda, cyanide of potassium, etc., and withlrawing the same after sensitizing or fixing. They are slender that strips of hard rubber, wrod, glass, porcelain, and sometimes silver wire, having short projectious upon which to rest the edge of the plate, which stands nearly upright in the bath while the chemical changes take place.
Dip'ping. 1. The process of brighteniug ornamental brass-work.
a. The grease is removed by heat or lye.
b. The work is pichled in dilute aquafortis.
c. Scoured with sand and water.
d. Washed.
e. Dipped in a bath of pure uitrous acid for an instaut.
f. Washed. g. Rubbed with beech sawdust.
h. Burnished.
i. Laequered.
2. Plunging sleet-iron plates in the pickle or the tin-hath in tinning.
3. Wicks in the tallow-rat.
4. The wool or fabric in the dye-tub.
5. The paper form in the pulp.

And so on of various operations in the arts, mechanie and fine.
6. The Scotch term for the dubling of American and English curriers. It cousists of boiled-oil, tishoil, and tallow.
7. (Photoyruphy.) 1mmersing the collodionized plate in a sensitioing bath.

Dip'ping-frame. 1. A frame from whicir can-de-wieks are suspended while dipping into the vat of melted tallow. See Candle.
2. (Dyciny.) A frame on which the fabric is stretched and immersed in ryeing with indigo.

Dip'ping-nee'dle. The inclination or dip of the magnetized needle was not known to
Fig. 1639.
 the Chinesp, who had disrovered its variation during the twelfth century.
This element of terrestrial magnetism appears to have been discovered by Robert Norman, a compass-maker of Ratcliff, London, who detecterl the dip and published the fact in 1576. He contrived the lipping-needle, and found the dip at London to be $71^{\circ} 50^{\prime}$. Dipping-Needle. See also Dip-checter.

Captain Sir James Ross, the celebrated Arctic narigator, reached the magnetic pole, latitude $70^{\circ} 5^{\prime} 17^{\prime \prime}$ north, and longitude $96^{\circ} 40^{\prime \prime} 45^{\prime \prime}$ west, on the 1st of June, 1831. The amount of dip was $89^{\circ} 59^{\circ}$. Horizontal needles refused to work, showing wo sensitiveness. He erented a cairn of limestone rocks, inclosing a tin case containing the record. The eairn may remain, unless the Esquimaux Indians have removed it in search of plunder, but the magnetic pole has moved away.

The dipping-needle is one of the instrments furnished to the clain of observatories which are dotted over the earth. See Magsetometer.

Dip'ping-pan. (Stereotyping.) A siquare, castiron tray in which the floating-plute and plaster-cast are placed for obtaining a stereotype cast. The floating-plate is to form the back of the sterentype, and the mold the face ; the dipping-pan forms the Hask, and is plunged beneath the surface of the metal in an iron pot. The metal runs in at holes through the lid anil forces apart the plate and mold.

Dip'ping-tube. A tube for taking microscopic objects out of a liqnid. See Fishing-tide.

Dip-pipe. A device, also known as a secil, in the hydraulic main of gas-works. In the illustration, the seal-cup a is charged with tar, which per-
mits the morable dippipe b to be lifted into or out of the main. The lid c cannot be remored from the mouthpiece until the handle is raised, which removes the lock and seals the dip. When the retort is again charged, and the lid fastened by bearing down the handle of the lift, the lidis locked and the dip is again raised.

Dip-roll'er. (Print-

 ing.) A roller to dip

Dip-Pipe. ink from the fomntain.

Dip-sec'tor. A reflecting-instrument. One was invented by Dr. Wollaston, and one by Troughton. It is used for ascertaining the true dip of the horizon; the principle is similar to the sextant.

Dip'ter-on. (Architccturc.) A temple having a double row of columns on each of its four sides. Sarh an editice is said to be dipteral.

Di-rect'ing-cir'cle. A ring used in giring the proper shape in making gabions.

Di'rect-ac'tion Steam-en'gine. A form of stcam-cngine in which the piston-rod or cross-head is connected directly by a rod with the crank, dispensing with rorking-beams and side-levers. They may he classed generally under three heads: those which obtain the parallelism of the piston-rod by means of the system of jointed rods called a parallel motion ; those which use guides or sliding surfaces for this purpose ; and those denominated oscillatingengines, in which the cylinder is hung upon pivots and follows the oscillations of the crank. Nore specifically as follows : -

Annular cylinder steam-engine (Maudslay's).
Double-eylinder stram-engine (Maudslay's).
Double-piston steam-engine (Maudslay's).
Gorgon steam-engine (Seaveards).
Inclined cylinder steam-engine (Bruncl's).
Inverted cylinder steam-ellgine (Galloways).
Inverted donble-cylinder steam-engine (Hick's).
Oscillating crlinder steam-engine (W^{\prime} itty's).
Sliding-cover stean-engine (Parkyn's).
Steeple steam-engine (Trevethich, Nopier).
Trunk steam-engine (Humphery's).
See under the respective heads.
In Napier's direct-action steam-engine, the beam is retained, hat only for the purpose of working the pumps.

The cylinders are arranged alongside of each other, and work the cranks on the main shaft, the cranks being set at 90° with pach other; but one of the cylinders shows in the side elevation. The cwlinders a are tixed to a framing, which is bolted to the bottom of the hoat. The piston-rods are keyed at the upper ends to cross-heads c, to the exterior ends of which are attached the connecting jods d. The lower ends of the latter are inserted in the fork ends of the beams ϵ, which vibrate upon a shaft f, the bearings of which rest on the top, of the condenser g. In the same forks are inserted the ends of other con-necting-rods h, which are keyed at their upper ends to cross-heads $i i$. In the center of these cross-heads are basses large enough to receive the rods $j j$, which extend to the crank-pins of the cranks $k k$. These cranks are fixed to the main shaft, which rests upon the bearings $l l$, upon the arches m, which are bolted to the cross-beam.

The side-beams ce are not straight, but have two
bends, the ends near the cylinder being much farther apart than the opposite ends, which are alongside the air-pump, so that they conform somewhat to the shape of the machine, and take up as little room as possible. The beans $e c$ are also forkerd at their ends nearest to the air-pump o, in order to admit the insertion of the pump-rods p, which are connected at their upper ends with the cross-head q, in a bush in the center of which is keycl the air-pump rod 2 . Connecting-rods s are

Napier's Direct-Action Steam-Engine.
attached to the side beams c, and at their upper ends t to cross-heads, which are connected to two rods which work the plangers of two feed-pumps for supplying the boiler. The rod and lever x are for the purpose of regulating the quantity of injection water which enters into the condenser, hy a pipe from the outside of the vessel, and can be increased anl lessened in quantity by turning a cock to which the rod x is attached; y is a hot-well, into which the condensing water is discharged from the air-

Fig. 1662

Penn's Marine Steam-Encine.
pump. The feed-
punips are suppliell with water from this hotwell, throngh the medium of a pipe, the overplus being discharged throngh the site of the vessel by another pipe (not shown).
ln Penn's di-rect-action steamengine, u is the cylinuler; δ the piston-rod, cartying the cross-head cc; this latter consists of four arms, branching diagonally from the center. On each side two side-rods $d d$ are suspendied from the extremities of
the arms $c c$ of the cross-head, and are attached at the lower cud to a cross-bar, in the center of which is a pin, to which the forked end of the arm g of the connecting-rod h is coupled ; $i i$ are two guiderods, upon which the bar e slides, the rods passing through brass bushes attached to the side of the bar ; h: is the crank, and on the side frame; u the slide-casp, and p the steam pipe.

Di'rect-draft. In stenm-boilers, when the hot air and smoke pass ofl' in a single dircet the. In contradistinction to a reverfing, a wheel, or a split draft.

Di-rect'or. 1. (Electricity.) A metallic instrnment on a glass handle, and connected by a chain with the pole of a battery or Leyden jar. It is applied on that part of a body to which a shock is to be seut.
2. (Surgical.) A grooved instrument for guiding a bistonry, bullet-extractor, etc.

Dirk. A dagger. The name is Celtic (diurc), and the weapon forms part of the equipment of a Scotch highlander and an English midshipman.

The scalping-knife, stiletto, and bowie-knife are similar implements in favor with other people.

Dirk-knife. A knife with a hinged dirk-hade.
Dirt-board. (Carriage.) A board for warding off earth from the axte-arm. A cuttoo-plate.

Dirt-scrap'er. A grading-shovel. A road-scraper. An implement drawn by a pair of horses, managed by one man, and used in Teveling, banking up,

or grading ground. In the example, the shovel turns upon pivots in the frame, and its rear end is engaged by spring catches, which are retracted by levers beneath the handles. Pressure on the triggers d ahows the shovel to capsize and Jump its load.
Dis-charge ${ }^{\prime}$. 1. The issuing direction of water from a reaction or turbine wheel: as, the outuard discharge, or Fourneyron turbine; the vertical discharge, or Jonval turbine ; the conter discharge, etc.
2. An ajutage.

Dis-charg'er. 1. (Calico-printing.) A material with which cloth is printed, in order that the color in which the cloth is subsequently dipped may be removed from those portions printed with the dis-

charger.

The discharger acts either upon the coloring matter, or on the mortant before the cloth is exposed to the dye. It acts chemically by converting the coloring-matter into colorless or soluble products; or upon the mordant by remoring its eflectiveness in setting the color.

It differs from a resist in this, -
A resist is an applieation to prevent a color taking upon a eloth. A discharger is to remove it.
2. (Electricily.) Se Discharging-ron.

Dis-charge'-style. (C'alico-printing.) a. A mode of calico-printing in which thickencl acidulous matter, either pure or mixed with mordants, is imprinterl in certain points upon the cloth, which is afterwards padded with a dark-colored mordant, and
then dyed, with the effect of showing bright figures on a darkish ground. Also known as the rongeantstyle.
b. A mode in which certain portions of color are remored from dyed goods by the topical application of chlorine or chromic acid. See De-coloning-style; Bandaña.

Dis-charge'-valve. In marine engines, a valve covering the top of the air-pump, opening when pressed from beneath.

Dis-charg'ing-arch. (Architcture.) One built above a lintel to take the superincumbent pressure therefron.

Dis-charg'ing-rod. A instrument to discharge a charged electrical jar or battery. It has a glass handle and a pair of hinged rods with balls on the ends, which are brought into connection respectively with the two surfaces or poles of the jar or battery.

Dis'en-gag'ing-gear. (Mrchinery.) Contrivances by which machines are thrown out of connection with their motor, by disconnecting the wheels, chains, or bands which drive them. See Clutch; Cocplisg.

Dish. 1. (Vehicle.) The projection outwardly of the tire beyond the plane of the insertion of the spokes in the hub.

This is not necessary when the spindle of the axle is cylindrical, but when the spindle is tapering, it is necessary to give a guthor and swing to the spindle, and a dish to the wheel.

The guther is the setting forward of the end of the spindle so that the wheel may run freely, not pressing inordinately either on the nut or the buttingring.

The swing is the setting downward of the end of the spindle so that its lower edge may be horizontal. The load resting thus, the wheel has no special tendency to slip in or out against the butting-riny or the nut.

The swing tips the whecl outward at top, leaning it away from the wagon, and, to cuable the bearing on the spokes, fillics, and tire to be vertical, the wheel is disherd: so that each spoke is rertical as it comes to the lower or working pisition. The fellics being set square on the spoles, the tread of the wheel is Hat on the ground.
2. A thit open vessel in which foor is serred on tahle, as distinguished from a plate in which it is served to guests.
3. A box having a capacity of 672 cubic inches, in which ore is measured.

Dished. (Machinery.) Haring a central depression. Hollowed, cup-shaped.

Dished-out A term applied to the sunk cradling employed in vaults, coved ceilings, and domes which arc formed ly wooden ribs (bracketing) apon which the lath and plastering are secured.
Dish-heat'er. I warming-closet attached to a stove or expozed in front of a fire to heat dishes.

Dish-hold'er. A grasping-iniplement for hot dishes, or for holling them while washing in very hot water.

Dish'ing. (Of uhecls.) See Drsh.
Dish-rack. A frame in which dishes and plates are placed to drain and dry.

Dish-wash'er. A device by which dishes are cleaned by agitation, in some cases assisted by cleaned by agitation, in some cases assisted by in the figure. The grain is fed in at the center,
brushes or sponges. Among the numerous varieties and in falling is caught hy the horizontal bars may be citell the circular rack rotated in a tub with water sufficient to submerge the dishes and plates.
Dis'in-fect'or. An apparatus for disseminating a gas, vapor, or fine spray for the purfication of the air and the counteraction of contagious influences.

The modes are various: Atomizers for spraying; vessels in which gases are eliminated by chemical action; rapors generated by the heat of lamps beneath ressels containing the ingredients ; blowers by which a medicated atmosphere is diffused; trays in which the materials are exposed to the ordinary currents of air ; pastiles for burning; odors and perfumes for disguising; earth and charcoal for absorbing.

Among disinfectants may be cited chlorine, chloride of lime, carbolate of lime, carbolic acid, chloride of zinc, chloride of iron, permanganate of potash, sulphurous acid fumes, roasting cotlee.
Dis-in'te-grat'or. 1. A machine for grinding or pulverizing hones, guano, etc. for manure.
2. A mill in which grain is broken into a fine. dust by beaters projecting from the faces of parallel netallic disks revolving in contrary directions, as

Disintegrator. and in falling is caught hy the horizontal bars which project from the rapidly rotating disks. The grain acquipes a rortical motion which by centrifugal impulse is caused to run the gantlet of the beaters, which are in concentric series and run in alternate directions and at high velocity. See Flour-mill.

Disk. One of the collars separating and fastening the eutters on a horizontal mandrel.

A flat circular plate.
Disk Steam-en'gine. A form of rolary steamengine which was invented by Eriesson and inproved by Bishopp and others.

In the Ericsson cngine the disk revolves, and in the Bishopp cnyine the tisk wobbles.
Ericsson's disk stean-engine (A, Fig. 1666).

The steam-chamber a is the segment of
 fastened by flanges to the head b. e is the engine-slaft, having a gearwheel p On the end of the shaft is a flat cone d, having packing i arounil its circumference and a spherical knol at its end, which works in a corresponding cup or socket in the center of the disk g, which has a packing around its periphery. The disk y has strength. ening rilss s and an axis ruming in a conical bearingm, which is adjustel by a set surew. A brass hearing l agrainst the end of the axis forces the disk against the coned the lower side of the disk remaining in constant contact with the lower side of the cone throughont the revolution; the twacontacting ofjects revolve in different planes by the action of the steam on the sectors $c c$. These sectors are attached to the cone and form the piston, and the point of contact of the disk and cone forms the abutment. The sectors pass through slits in the disk, stiding bark and forth; occupying the whole width of the stean space at the upper portion of their stroke, and then receding as the surfaces of the disk and cone come in contact at the lower point, on the resprective sides of which are the induction and eduction stem-ports.

The stean prasses throurg the neck t into the spherical chamber through an opening v cut througl its side; this opening is of triangular shape, and made as wide at top as the circular phane is there distant from the base of the cone, and grachally tupering off downwarl; 2 is the opening throngh which thee steim eseapes into the atmosphere, or into the condenser, as the case may be,
througl the neck y. The dottel line x shows whero the cone and cirenlar plane come in contact.
Steam admitted intu the spherical chamber by tho nerk t and opening v, and being there prevented from passing the line x by the pressure of the disk against the cone at that place, it presses against the upper leaf c, which, together with the cone and lisk, is thereby carried round in the direction of the arow. When the leaf has prassel the ulper part of the opening u, the steam that has heen acting upon it escapes, fint at the same time the opposite leaf has passed the toll of the steam-oluening v, and is carried round in a similar manner.

The engine has no valves, the action of the piston is at all times direct, and the engine can be stopped, started, or reversed at any position of the piston.

Bishopp's disk steam-C Iqine (English), (C, Fig. 1666). The piston of this engine has the form of a disk b attached to a shaft c, which has a squere d on its mid-length occupying a space between two frustums of cones whieli form the cylinder-heads. The ecnter of the sphere occupies the position that would form the point of mecting to the ajpexes of the two cones, were they prolonged. The disk and shaft do not revalve on their axis, thongh the emds of the shaft describe circles, as the disk woblles on the cones, keeping one radius on each side in constant contaet with then respectively. An abutment is formel by a plate e, which divides the amuiar spare in which the steam works, the lower protion of the disk having a radial slit which enables it to slip back and forth on the abutment-plate c. The steam is admitted on one side of the ahutment and exhausted on the other, the live stean pushing the disk before it by crowding between it and the conical huad, and causing the outer end of the arm to connmunicate a rotary motion to a wheel f, to whiel it is commected by a unirersal joint.
Disk-tel'e-graph. One in which the letters and figures are ananged around a circular plate and are brought consecutively to an opening, or otherwise specilically indicated.
The first of this class of telecmaphic apparatus srems to have been that of Romald, England, 1816. At each end of the line he hald clueks beating in exart unison: at least, such was the requirement of the invention. Each clock-work rotated a disk having the letters and numerals on a circular track, and these were exjmsenl in consecutive order at an opening in the dial, the two ends of the line showing the same letter coincidently. The sender of a message watched till the requircu letter came in view, then made an electric connection which diverged a pair of pith balls and dew attuntion to the letter. This was repeated for each letter, the praties waiting till the required

Fig. 1667. letter came in its turn to the openings in the respective dials. It was a slow business, and came to nanght.
Fig. 1667 shows a form of this instrument in which the armature of the magnet has two spring picces, which act uron the ratchet-wheel as the armature vibrates to and fro, when the connection is mate and broken. The picces are respeetiscly a clewher and driver, that is, a pulling-hook and a pushing-arm, so that each motion of the armature is made effective in moving the ratehet, aus also the littered disk.
Disk-valve. A valve fimmed ly a perforated disk which has a rotation, partial and reciprocating,

Fig. 1665.

Disk-U7zet.
or complete, upon a circular seat whose apertures form ports for steam or other fluid.

Disk-wheel. Thisdiffers from the usual wormwheel in the mode of presenting the spiral to the cog-wheel. In the illustration the spiral thread on the fice of the disk drives the spur-gear, moving it the distance of one tooth at each revolntion. The shafts are at right angles to each other.

Dis-part'. (Gummery.) The difference between the muzzle and breech thicknesses of a piece of ordnance. A piece of metal is cast on the muzzle to bring the line of sight paralle] to the axis of the piece, and is known as the dispert-sight or muzzlcsight.

Dis-part'-sight. A gun-sight, to allow for the dispart, and bring the line of sight and the axis of the piece into parallelism.

Dis-patch'-boat. A name given to a swift ressel, formerly a fast sailer, now a small steamboat, used in dispatch duty.

Dis-patch'-tube. A tube in which letters or parcels are transported by a current of air induced by a jlenum or vacuum. See Psevalitic Tubulaf Dispatcif ; Atmospheric Railway.

Dis-place'ment. (Of a vessel.) The weight of water clisplaced, which is equal to her own weiglit and that of her lading.
Dis-played'. (Printing.) Said of matter when lines are put in type more prominent than the body letter.

Dis-sect'ed Map. Au educational device to teacl geography. A map is pasted on to a thin board or veneer, and thus monnted is sawed apart into pieces, following the national lines of demarcation. The piecesbeing mixed, ingennity and study are required to fit them all together in order.
Dis-sect'ing-for'ceps. A pair of long tweezers used in dissecting.

Dis-sect'ing-knife. The knives of the Egyptian embalmers were of an Ethiopic stone, probably tlint. Herodotus describes them. A flint knife was

Fig 1669.

Disspeting-Knives.
also used by the Hebrews, Egyptians, and Fthiopians in performing the operation of circumcision. See Kife.
"Then Zipporalı took a slarp stone and ent off the foreskin of her son, and cast it at his [lloses] feet." - Exorlus iv. 25.

The dissection of the human body for purposes of science was ordered by Ptolemy Philarlelphus in the college of Alexandria. He wen authorized the virisection of criminals condemned to death. Herophilus of Cos was among the first of the professurs
in this great school of medicine. The practice of dissection was very repugnant to the prejudices of the Egyptians, where to touch a corpse was defilement, as we see it also to have been among the Hebrews, who became habituated to many of the Egyptian modes of thought.
Vesalius, born at Brussels 1514, died 1564, was among the most noted of the school of modern anatomists who have pursued the study of dissection. His distinguished 1 rofessional career was terminated by an unfortnnate affair, which turned out to be a rivisection, as the supposed cadaver proved to be living. The relatives who had granted the dissection denounced Vesalius to the huquisition, who would have burned him but that Plilip 1I. stepred in and had the sentence commuted to a pilgrimage to Jerusalem. Decidedly preferable.
Dis-sect'ing-mi'cro-scope. The stage of the upper figure has rack-adjustment for focus, spring clips to hold olject-slide, diaphragm, movable arm for carrying the lenses, separate jointed stand

on which any of the sets of lenses can be placed and used for rough or preliminary examinations ; mirror on joint, three sets of doublets, of low, medinm, and high power.
The lower figure is of a hinocular microscone of moderate power, for anatomical and botanical investigations. It is made to close up in a hox the tol and front of which contain loops to hold the knives, scissors, tweezers, needles, etc. Beneath the eyeglass is a gntta-percha stage and a circle of glass illuminated ly a mirror below.
Dis-solv'ing-views. Produced by the magiclantern or the stereopticon.
Two magie-lanterns are placed side by side, their lens-tubes slightly convergent, so that each will deliver its picture upon the same portion of the screen. A tapering plate slides in front of both tules, and is so arranged that it may shat off the aperture of eitluer or allow a portion of the image from each to pass to the screen.
One being closed, the other is fully displayed.

Now, by moving the shutter, the image from the exhibited picture is gradually dimmed and that of the other as gradually develops. When the shutter is midway, the pictures are equally prominent and are therefore confused. The shutter contimuing to move, the new picture commences to predominate, and eventually oceupies the screen entirely, the other image being excluded. A change of pictures now being mate in the darkened lantern, it is ready for the return motion of the shutter, which makes a similar clange to that just described. The name is well given, as the pictures gradually dissolve into earh - other, there being no sudden removal, change, or substitution.

Dis'taff. A cleft stick about 3 feet long, on which wool or carded cotton was wound in the ancient mode of spinning. The distall was leth under the lelt arm, and the fibers of cotton drawn from it were twisted spirally by the forefinger and thumb of the right hand. The thread as it was spun was wound on a reel which was suspended from and revolved with the threal during spinning.
"A virtuous woman layeth her hands to the spindle, and her bands hold the distaft." - Solomos.

The figures in group a, annexed, show a party of
 Stul.
ing is used as the basis of the colors, the liqnid medium being size; it is much used for ceilings and walls. See Destemper.

Distil-la'tion. The volatilization of a liquid and condensation in a separate vessel.
Zosimus, the Panopolitan, described the operation for the purification of water, and the Amabs called the instrument an alembic. Djafar, eighth century, obtaincd nitric acid and aqua regia, and Rhazes absolute alcolol and sulphuric acid. See Alembic ;

Dis-trib'ut-ing. (Printing.) The operation of returning from the column to the case the letters, e.tc., which made up the matter.

The compositor wets a page or yart of a column of natter, and takes up a number of lines on his dis-tributing-rulc. The wetting causes the types to adhere slightly together. He takes a lew worls between his finger and thumb, and, reading the purport, by a dexterous slackening of his grip, so as to loosen the type scriatim, he throws the several letters into their various boxes. Distribution is said to be four times faster than composition. See TYpe-distribvering Machine.

Dis-trib'ut-ing-res'er-voir. A small reservoir foi a given district, capable of containing a volume of water equal to the whole excess of the demand for water during those hours of the day when such demand exceeds the average rate, above a supply during the same time at the average rate. The greatest hourly demand for water is ahout double the average hourly demand. The least that a distributing-reservoir should hold is half the daily demand.

Dis-trib'ut-ing-roll'er. (Printing.) A roll-

Distributing-Roller and Inking-Table.
pressed up against the distributing table is an inktrough which is presset up against the distributingroller by balance-weights. The distributing-roller presents a line of ink to the printing-roller, which is then run back and forth on the table to spread the supply of ink evenly around it.
The arrangement was invented by Professor Cowper, aml is described in his Englisil patent of 1818.

The distributing-roller in printing-machines carries ink from the ductor-roller to the inking-roller. To secure an even distribution, it is found necessary to give an endwise motion to the roller.

This is speured in one of two ways.
Professor Cowper's plan was to give a longitudinal motion to the axis (English patent, 1818).

Applegarth's method was to place the axis of the distributing-roller obliquely to the surface against which it moved. It thus had a relative endwise mo-
tion, which distribnted the ink along as well as around the rollers involved in the combination
Dis-trib'ut-ing-rule. (Printing.) A rule used in senarating the lines of type in distribution.
Dis-trib'ut-ing-ta'ble. (Printing.) The slab on which the ink is spread and transferred to the rollers.
Distri-bu'tion. The application of steam in the engine in respect to its induction, eduction, cxpansive working, ete.
Ditch. 1. (Forlification.) A trench or fosse on the outsile of a fortification or earthwork, serving as an obstacle to the assailant and furnishing earth (diblui) for the parapet (romblai). It is from 90 to 150 feet broad, in regular fortifications, much narrower in mere earthworks or catrencherl positions. The side of the ditch wearest the place is the scurp or csarp, and the opposite sile, the countersarp, is usually made circular opposite to the salient angles of the works. See Bastios.

Under the ancient system of fortification, the ditch was frequently dug on the inside, thus anticipating by some thousands of years the improrempnt of Pillow, during the Mexican war, -
" He who dug for Polk and Sarcy,
Ditch and rampart ti-ce var-sy"."
The object of the sarages is evident. It was to obtain shelter for the bodies of the archers with the least amount of labor; and by this system they most readily obtained the required shelter, having the benefit of the ditch and the bank. The Mandan Indians adopted this plan. The system is seen in the modern rifle-pit.
The fossa around a Roman encampment was usually 9 feet broad and $\overline{7}$ feet deep; but if an attack was apprehenden, it was malle 13 feet wide and 12 feet deep. The agycr, or parapet, of the encampment was raised from the earth of the fossa, and was erowned with a row of sharp stakes. Valli.
The ditch outside the rampart on the western side of Rome was 100 feet wide, 30 deep. The work was constructed by Servius Tullius.
2. An artificial water-course for drainage.
By the laws of Solon (594 B. C.), no one was allowed to dig a ditch but at the same distance from his neighbor's land that the ditch was cleep. This was the same in the Roman laws of the twelve tables. The Grecian law compelled one who planted common trees to place them no mearer than 9 feet from his boindary ; olives, 10 feet. The law of the tirelve tables made it, olives and figs 9 feet, other trees 5 feet.
The agricultural ditches of the Romans were open (fossa patentes) or closed (fossa cacca) ; the latter usually 3 feet broad at top, 18 inches at bottom. The lower portion was filled with stone or gravel, a layer of pine leaves or willows, and then the earth replaced. Sometimes a large rope of withes or a bundle of poles was placed in the bottom.

Ditch'ing-ma-chine'. One adapted to excavate a deep trench and deposit the earth at the side of the same. In this gonse a plow may be a ditching-machine, and in fact is often so used in running shallow ditches for sur-face-1mining, but it will onlr make it single-furrow depth. There are many modifications of the plow for attaining extra depth.

Rotary Ditcher.

Of a different trne is the rotary ditchinc-machine, in which the earth is taken up in circumferential recess between the sectional rim-plates of the wheel, being hound therein by the radial spates which are projected to engage and retracted to free the earth by lixed cams upon the frame. The inclined scraper removes the earth from the recess, and deposits it beside the path of the machine. The excavatorframe is alljustable on the wheel-frame.

Ditch'ing-plow. A plow having a deep, narrow share for cutting drains and trenches, and means

for lifting the earth and depositing it at the side or sides of the excavation. In Fig. 1675, the forward carriage straddes the diteh, and the rear suphort-ing-wheel runs in the ditch behind the cutting and elevating mechanism. The share is supported by colters, which cut the sides of the ditch, and deliver the furrow-sliee to the guides upon which it rises, and to the mold-boards which deliver it on the side of the ditch. Adjustments for varying depths are recited in the claims.

Ditch'ing-tools. Spades of various shapes for different forms and depths of ditches. Scoop-shaped for clearing out the bottoms; paring-spades for removing the turf. Level and reel-line for laying out the work. Plows, ditching-machines, and excavators for reducing the amount of hand-work.

Di-ver'sion-cut. A channel to divert past a reservoir a stream of impure or turbid water which would otherwise How into the reservoir. A by-wash.

Di-vid'ed Ax'le. One bisected at its minJength. In some instances the parts are coupled together, in others they are independent. See Caliaxle.

Di-vid'ed Ob'ject-glass Mi-crom'e-ter. Another name for the chublc-imutyo micrometri. The object-ghass of the telescope or microscone is bisected thametrically, the straight edges being ground smooth so that they may easily slide ly each other. The halves of the bisecterl lens are movable in a direction perpendicular to the line of section by means of a screw ; the distances b+ing determined by the number of revolutions necessary to bring the points to be measured into optical coincitence.

Di-vid'er. (Husbandry.) The prow or wedgeformed piece on a reaping-machine, which divides the grain to be cut from the standing grain.

Di-vid'ers. A form of compasses, usually with an aljusting and retaining arrangement. Its name

is derived from its specific use in dividing lines into any given number of equal parts. The legs are driven apart by a spring as the mut is retracted on the screw, anil closed by contrary motion of the said nut ; the fine threal of the screw admitting of a very delicate adjustment.
a, dividing compass.
b, dividers with are.
c, steel spacing-dividers.
d, steel spacing-dividers with pen-log.
c, bow-dividers.
f, spring-bow dividers, with landle.
g, hisecting-dividers.
Di-vid'ing-en'gine. A machine for diviting a circle into a mumber of parts of equal proportions, either for the purpose of graduation, as the circles and ares of astronomicul, surveying, and plotting instruments, or for spacing off and cutting the cilcumference of a wheel into teeth.

The first notice we find is in connection with a mode of originating screws by Pappus Alexandrinus,
a Greek mathematician of the fourth century. His process was by a thin templet of brass of the form of a right-ingled triangle, the angles of which were made in accordance with the pitah of the proposed screw. The prepenticular being wrapped around the roh at right angles to the axis, the hypoteneuse gave the spiral of the screw, and the base the pitch.

The sulject of originating serews, which is closely connected with the dividing-engine, may be pursued in lloltzapffel (Vol. 11. pp. 635-655).

The methods of graduating instruments receivel much attention from Tompion (1660), Sharp (1689), the Sissons, and Bird (1745), the latter receiving $£ 500$ from the Board of Longitude for his method of dividing. Hindley, in 1740, constructed an engine for dividing circles, which also served to cut clock-wheels.

Ramsden, in 1766, contrived his dividing-engine, and in 175 received a reward of $£ 615$ from the Board of Longitude. Following Ramsden were the Troughtons, father and son, the latter of whom received the Copley medal of the Royal Society of England for his improvel method of graluation.

Ramsden's circular dividing-engine consisted of a large wheel moved by a tangent screw. The wheel was 45 inches in dimmeter, and had 2,160 teeth, so that six turns of the tangent-screw moved the circle one degrec. Thr serw liad a miciometer and ako a ratchet-wheel of sixty teeth, therefore one tooth equaled one sixth of a minute of a degree. The diamond point always moved on one fixed radial line, by means of a swing-frame. The circumference of the 45 -inch circle was originally diviled into five parts, each of these into three; these were then hisected four times, dividing the wheel into 240 parts, each of which was designed to contain nine teeth.

The first application of the tangent-screw and ratchet to the purpose of graduation is stated by Holtzapifel to have been by Pierre Fardoil. See plate 23 of Thiout's "Tmité d'Horlogerie," etc., Paris, 1741.

Fig. 1677 illustrates Ramsden's application of the principle of the engine just described in originating the serew of his dividing-
 engine for straight
lincs. The guide-screw G is turned by the winch, and in each revolution moves the larger tangentwheel one tooth, winding on to the hoss p a slip of watch-spring which carried the slide on which the tool t was fixel, thus cutting the screw C, which was at the same time rotated by the gearing $c y$ from the prime shaft. The oljeect was to cut a certain mmber of threads to the inch, and this was obtained by a tentative process by gradually rculucing the diameter of p until 000 turns of the handle gave a motion of 5 inches to the tool-slide.

In the application of the serew to the graduation of mathematical scales, it is employed to move a platform which slites freely and carries the scale to he graduated, the swing-frame for the diamondpoint being attacherl to some fixed part of the traming of the machine.
Donkin followed up the matter in 1823 in devising correctional methods for Maudslay's devices,
to which we cannot devote room. See Holtzapffel, pp. 651-655.

In 1843 , Mr. Sims applied self-acting apparatus to Troughton's circular divinling-eugine, and an instrument of their manufacture may be seen at the Coast Survey building, Capitol Hill, Washington. It has been somewhat moditied hy Mr. Wiirdemann, of Washington, and is now driven by a smatl turbine in the stand. See Graduating-machise.

Di-vid'ing-sink'er. (K'nitting-machinc.) One of the pieces interposed between juch-sinkers, which, being advanced while the latter are retracted, force the yarn between the needles of each pair, so that by the joint action of the jack-sinkers and the divied-ing-sinkers the yarn is looped on each of the needles.

Div'ing-bell. An apparatus, having some amalogy in shape to a bell, in which persons may descend amil remain for a while in safety beneath the surface of the water.

The analogue, in the natural world, of the divingbell, is found in the contrivance of the diving-spider, whose submerged habitation has been described by De Geer. These spiders spin in the water a cell of strong, closely woven white silk, in the form of a diving-bell or half a pigeon's egry. This is sometimes quite submergel, at others partly abore the water, and is ahrays attached to some objects near it by a number of irregular threats. It is closed all round, but has a large opening belor, which is closed when the insect is hibernating.

The diving-bell is said to have been used in Phenicia 320 B. C. This was about twelve years after the capture of insular Tyre by Alexander, and perhaps was used in the recovery of valuables thrown into the sea to prevent cagture by "young Ammon."

Aristotle (350 B. c.) speaks of a kind of kettle by which divers conll supply themselves with fresh air under water. It is related by Jerome that Alexander the Great entered into a vessel, called a colymphe, having a glass window to it, and in which he descended to the botton of the ocean.

The application of the tliving-bell in Enrope is moticed by John Tasnier, who attenled Charles V. in a voyage to Africa. He relates that he saw "at Toledo, in Spain, in the year 153S, in the presence of the emperor and sereral thonsand spectators, two Greeks let themselves down under water in a large, inverted kettle, with a light burning, and rise up again without being wet.

After this perioil, the use of the diving-bell became generally known, and is noticed in the "Novun Organnm" of Sir Francis Baron, published 1620 ; in which the device is referrell to as being in use in his time. It is described as a machine used to assist persons laboring under water upon wrecks, by affording a reservoir of air to which they may resort whenever they require to take breath. "A hollow metallic vessel was let down evenly to the surface of the water and carried down the air it contained. It stood upon three feet like a tripod, which were in lengtis somewhat less than the hight of a man, so that the diver, when he was no longer able to contain his breath, could put his head into the vessel, and, having breathed, return again to his work."

The next use of the hell was in 1642, in America, when Bedall of Boston used submerged wrighted "tuhs," in which he descended to the "Mary Rase," which had sunk the previous year. The lifting-arrangements were completed by means of the diving-bell, and the loated vessel transported to shoal water and recovered.
In the year 1687 , the sum of $£ 300,000$ was recovered by a diving-bell, at a depth of 7 fathoms,
from a Spanish ship which had been wrecked near the Bermudas. The brill was the invention of William Phipls, an American of Pemanuid, in that part of the Colony now known as the State of Saine. Phipps was brought up as a ship-carpenter in Boston, and made many msuccesstul attempts to interest parties in the work. When he succeeted, James 11. was urged to contiscate the $£ 16,000$ which came to the share of William Phipps; for once in his life the king refused to do a mean thing. Phipps was afterwarls mate high-sheritl of the Colony, was kuighted, and subsequently was governor.

The English patent oi Joh Willians, 1692, is for an "engine for carrying four men 15 fathoms or more under water in the sea, whereby they may work twelve hours together without any danger." It is stated to be useful in raising sunken vessels. It lad a submerged chamber, communicating with the suriace by a rigid tube, up and down which persons might pass. Projecting sleuves and hooks afforded means for directing grajnels to sunken property.
Beckmann mentions a print in Fegetius on War, published in 1511 and 1532, reprementing a diver with his cap, from which rises a long leather pipe provided with an opening above the surface of the water. Lorini on Fortification, 1607, shows a square box, bound with iron, furnished with windows and a seat for the diver. Kessler in 1617, Witsen in 1671, and Borelli in 1679, gave attention to the subject and contributed to the efficiency of the apparatus.

A diving-bell company was formel in England in 1688 , and the operators made some successful descents on the coast of Hispranioh. ln 1664, cannon were recorered from wrecks of the smanish Armada by the Laird of Melgim, near the Isle of Mlan, but not sufficient to pay. Previous unsuc[eessfu] attempts had heen made by Colyulioun, of Glasgow, who dependel for air upon a leathern tube reaching above the surface of thr water. Dr. Halley, in 1715, improved the cliving-bell by a contrivance for supplying it with fresh air by means of harrels lowered from the vessel, from which the bell was suspended, the foul air escaping by a cock. This also allowed the bell to be completely filled with air, rendering the whole of its interior space available. Halley also invented a waterproof cap to which pipes leading to the bell were attarhed, so that an operator confd leave the bell and walk on the bottom outside, being supplied with air by the pipe. This resembled in some respects the molern sumarine armor, hemet, and diving-dress, which hall been in occasional use since early in the sixteenth century (ut supru). Spalding, in 1774 , made farthpr improsements by suspending a balance-weight from the bell that on striking bottom took off the weight of the bell, which with its included air, being too light to sink, was more readily raised or lowerel ly the admission of air or water into an upper compartment, placing it completely under the control of those within it. For this the British Govemment decreed him a reward. The celebrated engineer Smeaton, about the year 1779, first used it for engineering purposes, and in 1758 , having to prepare the foundation for the pier in Ramsgate Harbor, he contrived a bell by which the work was very greatly facilitated. This consisted of a nearly conical box of cast-iron, of great weight and solidity, capable of containing 50 cubic feet of air, or sufficient for two persons one hour ; this was constantly charged by means of a pine leading to a force-pump above. The diving-bell has been subsequently applipd with great success to many important submarine engineering operations, and for the purpose of recovering valu-
ables from shipurrecked vessels, ete., but of late year's suems to be nearly superseded by the recent improvennts in submarine armor. The principle of the diving-bell may be illustrated by taking a tumbler, inverting it, and pressing it down into a vessel of water, when it will le seen that, although the water will rise in the tumbler to an extent proportioned to its alegree of immersion, yet the upper part of the tumbler will remain perlectly dry, and if a lighted tapur be placed within, it will not be extinguisheu, but will, on the contrary, burn with even increased energy, owing to the condensation of the air by pressure. Mr. Brunel fonnd that at the depth of 30 feet he cound hold his breath two minntes, or donble the nsual time, the amonnt of air taken into the Iungs at one inspiration being in fact double what it would have been at the surface.

Dr. Faralay relates the curious fact, that the hungs are, in their natural state, charged with a large quantity of impure air; this being a portion of the carbonic-acill gas which is formed during respiration, but which, after such expiration, remains lodged in the involved passages of the pmemonary vessels. By lureathing hard for a short time, as a person does after violent exereise, this impure air is expelled, and its place is supplied by pure atmosplerie air, by which a person will he enabled to hold his breath much longer thau without such precaution. Dr. Furaday states that, although he conld only hold his breath, after breathing in the ordinary way, for about three quarters of a minute, and that with great diffenlty, he felt no inconvenience, after making eight or ten forced respirations to clear the lungs, butil the month and nostrils had been closed more than a minute and a half ; and that he continued to hokl breath to the end of the second minute. A knowletge of this fict may enable a diver to remain under water at least twice as long as he otherwise conth do.

The exprerience of a French diver, who descended for the purpose of examining the wreck of a steamer sunk off Ushant in 1865, is interesting. He founcl that at the depith of 195 feet the general pressure over the whole body was so great that the bladder was involuntarily emptied. At this depth he rested on the sands in which his feet sunk. He detaches one end of the guide-cord ; he can distingnish this cord, the weights, and his hanls, and he advances a few steps. He has great difficulty in withdrawing his feet from the sands, to which he feels rooted. All at onee his sight is obscuren, his head turns; he returns instinctively to the ladder, and asks to be raised. He becins to ascend as well as his strength will allow, feels himself impal 1 by his guile-cord, which he euts, and then rises alone very rapilly, having lost his senses. A violent shack brings him to ; he recognzes the side of the ship from which he ham descemied, against whieh his mask has struck, and regains his courage. He waves his hand above the surface of the water, and feels himself simking. His mask having got displaced, the collar ahmost chokes him. He feels himself grasped by the arms, and grasps a rope which his hand happened to tomeh. Ile again loses conscionsuess for a moment in the slip's boat, and asks to be raised on deek as soon as his mask shall be unscrewed. He suffers muilh from his right hand, and hreathes with difficulty; his extremities are cold and neck painful. Twice he nearly faints and ceases to breathe. His sight appears troubled, everything turns round with him, and his gaze has no steadiness. This, as the idiom shows, is the French account, and is preferably given without impairing its graphic charucter. The conelusion arrived at on this oecasion was, that it was imprac-
ticable to work for any length of time at a depth exceeding 130 feet.
ln 1869, however, the ship "Hamilla Mitchell" was lost on the leuconia rocks, near Shanghai ; and two English livers, provided with the ajparatus of Siebe and Gorman, were subsequently sent from Liverpool to attemjet the resene of the treasure on board. One of these succeeded in remaining four consecutive hours under water at the depth of 23 fathoms upon one octasion, during which he recovered 64 boxes of sjucie.

The engraving on the opposite prge illustrates submarime operations at the anchorage ofl' Gibraltar, as conducted with the diving-bell in coujunction with divers arayed in the apparatus of Ronquayral and Denayronze. In this, whether the man le naked of covered with impervions clothing, his respiration nay he made to depent on the exercise of his own will and the power of his lungs, or the air-supply reservoir may be supplied by air-pmps above, as shown in the figure. The artificial lung or air-supply regulator consists of a strong metallic reservoir, jueftrably steel, capable of resisting great jressure, and surnounted by a chamber so constructed as to regulate the efflux of air. This is carried on the diver's back. A respiratory tube issues from the chamher, and is terminated by a mouthpiece of sheet caoutchouc, which is held between the lips and teeth of the diver. This pipe is furnished with a valve, which permits the expmlsion of air. but opposes the entrance of water. The stcel reservoir is separated from the air-chamber by a conical valve oprening from the air-chamber toward the reservoir, so as to open only under the influence of an exterior pressure, the teadeney of the pressure of the air in the reservoir being to keep it closed.

This apmatus dispenses with the mecessity for keeping the air-1ump in continual operation. The air whieh the diver inhales is stored up in the steel reservoir, and from this he supplies himself without fatigue in the following manner. The air-chamber is closed by a morable lid, to which is attached the stem of the value before referred to. The diameter of the lid is somewhat less than the interior diameter of the chamber, and it is covered with caoutchouc, to rencler it air-tight. It yields to both interior and exterior pressure, the forner causing it to rise and the latter to fall. When exterior pressure is exerted on this lid, the valve is opened, establishing a commumication hetween the reservoir and the air-chamber, allowing a protion of the rompressed air in the reserwoir to flow into the chamber. If the latter contaius an excess of air, its pressure against the movable lid keeps the valve closed.

The apparatus, when under water, works in the following mamer. In the act of inhalation, the diver withdraws a certain amount of air from the chamber; exterior pressure is then exerted on the movable lid, which falls, cansing the conical valve to open. Air passes in from the reservoir, reeestablishing an equilibrium of pressure between the interior of the air-chamber and the surroming water, and the conical valve returns to its seat, intercepting the communication between the reservoir and chamber until another inspiration causes the operation to be repeated. As the air is expelled from the lungs, the valve of the respiratory tube before describel permits its escape into the water.

It is evident that the uniformity of action in this apparatus ilppends entirely upon the respiration of the diver, however irregular may be the action of the air-pump; the workman receives precisely the puan, tity of air he requires, and at a pressure exactly elpual to that of the medium by which his body is sur-

DIVING-BELL AND CORAL-DIVERS.
rounded. The pump which supplies air to the res ervoir is so constructed that liability to leakage diminishes with the pressure, and the air is compelled to traverse two layers of water before entering the reservoir, rendering it much cooler than it would otherwise be in its greatly compressed state ; it is farther cooled by expansion in passing from the reservoir into the air-chamber.
An important advantage possessed by this apparatus is that the expired air rises in bubbles to the surface. So long as the diver breathes regularly, the intervals between the appearauce of the bubbles is sensibly equal. If they come more rapidly or more slowly than usual, it is a sign that something abnormal is going on. If they cease altogether, the diver inust have ceased breathing, and should be hauled up immediately.
In the old forms of diving-dress the air filled the space between the body of the diver and his impervious clothing, the expired air escaping by a small valve in the helmet, through which any excess of ain also escaped. Trregularity in the action of the pum; caused also irregularities in the escape of the bubbles, and thus the assistants might for a long time unconsciously continue to send air to a corpse. In the new apparatus, the appearance of the bubbles indicates the safety of the diver, and the assistants on the watch are at any time warned of his danger by their nonappearance.
The armor employed in connection with the breath ing-apparatus only serves to defend the diver from cold, and may therefore be made much lighter, allowing greater freedom of motion. See Armon, Sobmarine.
Div'ing-bell Pump. A pump having a casing divided by a vertical partition into two chambers,

which are provided with inwardly and outwardly opening valves. The chambers are kept partially filled with water, which, together with air, is admitted to each through the in wardly opening valves, and expelled through those opening outwardly, to supply the bell with fresh air. This is effected ly the alternate reciprocations of a piston working in the open-enderl cylinter', which, at each stroke, draws a portion of the water from one of the chamhers into the eylinder, lowering its level in that chamber, and permitting the air to enter through the inwardly opening valve; the return-stroke causes the water to rise, forcing some of it, together with the air,
into an exterior chamber, whence it is carried to a condenser, and thence, through a tube, to the bell.
Div'ing-dress. A waterproof clothing and helmet for those who make submarine explorations. See Ahmor, submarine.
Di-vis'ion-plate. The disk or wheel in the geareutting lathe, which is pierced with various circular systems of holes ; caeh circle represents the divisions of a circumference into a given number of parts.

Dobe-rein'er's Lamp. An instrument invented by Professor Dolhereiner, in Jena, in 1824, for oltaining light by the projection of a jet of hydrogen upon a piece of spongy platinum. See Hydno(ien Lamp.
Dock. 1. (Hydraulic Engincering.) An artificial excavation or strueture for containing a vessel for repairs, loading, or unloading.

Docks are of various kinds. See

Wet-dock.
Dry-dock.
Graving-dock.
Screw-dock.
Sectional-dock.
The docks (naralia) of Rome were used for lonilding, laying up, and refitting ships. They were attached to the emporium outside of the Porta Trigemina, and were connected with the Tiber. They were included witbin the walls of the city by Aurelian.
The Athenian docks in the Piræus cost 1,000 talents.
"They have a desion to get the king [Charles II.] to hire a dock for the herring busses to lie up in." - Pepris, 1661.
"Sir N. Crisp's project of making a great sasse [sluice or lock] in the king's lands ahout Deptford, to he a wett dock to hold 200 sail of ships."-1 Bid, 1662.

Of the doeks of London :-
Pitt laid the foundation-stone of the "West-lndia" August 15, 1800 ; opened in 1802. "London" docks, built 1802-5. "Victorja," 1855. The Liverpool and Birkenhead docks, 1si0-57.
2. (Harness.) The divided piece forming part of the crupper, through which the horse's tail is inserted.
Dock'er. A stamp for rutting and piercing dough in making crackers or sed-biscuit.
Doc'tor. A part in a machine for regulating quantity, adjusting, or feeding:-
a. (Puper-making.) A steel edge on the pressureroll of a paper-machine to remove any adhering fibers.
b. (Stcam-cngine.) An anxiliary steam-engiue to feed the hoiler.
©. (Calico-printing.) A scraper to remove superfluous coloring-matter from the cylinder.
The color-doctor of a calico-printing machine, which wipes superfluous color trom the face of the engraved roller.

The lint-doctor, which remores fluff and loose threads from the sait roller.
The cleaning-doctor, which wipes clean the surface of the rollirir.
Dod. (Tile-making.) A piece affording an annular throat through which clay is forced, to make drain-pipe. See Tile-machine.

Dodg'ing. Said of mortises, when they are not in the same plane at the hnl, By sprearling the butts of the slokes where they inter the hub, dodging on each side of a median line, alternately, the wheel is stiffened against lateral strain. The wheel is saill to he stuggored.

Doe'skin. (Fabric.) A single width fine woolen cloth for men's wear; not twilled.

Dof'fer. A comb or revolving card-covered cylinder in a carding-machine, which strips the fleece or sliver of fiber off the man card-wherl atier the filaments have passed the scries of smaller cardingrollers and the llat cards.

It is usually a comb with very fine teeth, which penetrate slightily between the wire teeth of the card as the comb moves downward.

Doff'ing-cyl'in-der. A cylinder clothed with cards which are presented in such direstion and at such a rate of motion to the main card-cylimer as to memove the fibers from the teeth of the latter.

The dofling-cylinder assumes one of three forms:-

1. C'mulimuous clothing; removing a perfect Hecece of the width of the machine. Such is the doffer of the seribbling-machine, which yields a continous lap or flece.
2. Longitudinal bands of card clothing; removing slivers of is width determined by the breadth of the lands and of a length equal to that of the doffer. Such is the doffer of the slabbing-billy. Sce Slub-Bheg-manhine.
3. Circumferential bands or rings of card-clothing; removing narrow, continmous slivers, which pass to the condenser, whrerely they are coupacted and brought to the condition of slubs. Such is the doffer of another fom of Slebbing-machine (which see).

Doff'ing-knife. A blade of steel toothed at its ellot like a tine comb, and vertically recipronated by a crank tangentially to the teeth of the cloffer in a carding-machine, in order to remove therefrom a fine theece of earded wool which is gathered into a sliver. Sce Doffer.

Dog. A hold-fast.
A device with a tooth whieh penetrates or grips an object and detains it. The analogy and inference of the name is that the device has a tooth and bitcs.

1. (Pile-driving.) A grappling iron or grab, usually with jaws, and allapted to raise the monkey of a juile-driver. When the jaws open, the object is dropped or released. See Prle-mitveri.
2. (Wcll-boring.) A grab for clutehing well tubes or tools, in withdrawing them from bored, drilled, or driven wells. See Grab.
3. (Tuming.) A clamp fastened to a piece suspended on the centers of a lathe, and by which the rotation of the chuck or face-plate is imparted to the piece to be turned (n. b, Fig. 1679).
4. A click or pallct adapted to engage the teeth of
a ratchet-wheel, to restrain the back action. A click or pawl. See Winilass; Ratchet.
5. (Mrhinery.) a. The converging set serew's which rstabish the bed-tool of a punching-press in direct eoncilence with the punch.
b. A contrivance for holding the staff to the rest, chuck, or carriage, while being cut, sawed, planed, or drilleil.
c. An adjustable stop placed in a machine to clange diection of motion, as in the casp of feed-motion, or in jackiny, shapiny, or planing machines.
6. (IVvistiny end Hauling.) a. A grappling-iron (c) with a fang which is driven into an olject to be raised or moved.
In the continuous system of feed in saw-mills, the chain has a mumber of dogs attached to different portions of its length. Dogs are also used for sccuring and towing floating logs and in shifting or loading logs on the ground or carringe.
7. A ring-dog or spum-dog (d) ; two dogs shackled together by a ring, ame used for lauling or lowisting.
c. Sling-dogs (e) ; two dogs at the end of a rop: and used in hoisting barrels. A spen-shackle.
8. A bench-dog (f) is a clamp, and holds the timber by its tusk.
9. (Soruing.) A rorl on the head or tail block of a saw-mill carriage, by which the \log is secured in position. The dog (g) is piroted to the hlock, and its tooth is driven into the log. It varies in form on the hearl and tail blocks respectively.

In h and i respectively are shown other forms of the saw-mill dog. See also Circulare Saw ; HeadвLock.
9. (Shipbritding.) The last detents or supports knocked away at the lamehing of a ship. A clogshorc.
10. (Lochsmithing.) A projection, tooth, tusk, or jag in a lork, acting as a detent. Especially used in tumbler-locks.

11. An andiron.

Dog and Driv'er Chuck. A chack having two parts. The \log slips upon and is fastened by a set screw to the object to be turned. The driver is attached to the lathe-mandrel, and has a projecting arm whieh comes in contact with the dog, and canses it and the work to revolve with the mandrel. See Dog (a b, Fig. 1679).

Dog-bolt. The bolt of the cap-square over the trunnion of a gun.

Dog-cart. A sportsman's vehicle having slafts and two wheels, with a box beweath the seat for setters or pointers.

Dog'ger. (Nautical.) A two-nasted fishingressel with blutf hows and used on the Dogger Bank, an extensive shoal in the center of the North Sea. It is about 80 tons burilen, and has a well in the middlie to bring fish alive to shore.

Dog-hook. 1. A bar of iros with a bent prong to ilrive into a log. See Dos.
2. A wrench for unscrewing the coupling of iron boring-rods. A spuaner.

Dog-leg Chis'el. A crooked-shanked chisel used in smoothing the hottoms of grooves.

Dog-legged Stairs. A flight of stairs without any well-hole, and used in confined situations. The Hight goes up, winds in a semicircle, and then mounts again in a direction parallel to the first.
Dog-muz'zle. A wire cage over the nose and jaws, to keep a dog from biting; or a strap around the jaws, to keep them shut.
Dog-nail. A large nail with a projecting tooth or lug on one side ; used under eertain circumstances by locksmiths and carpenters.
Dog-nose Vise. (Lockismithing.) A hand-rise
with long, slender, pointed jaws. Called also pignose vise.
Dog-pow'er. A machine by which the weight of a dog in traveling in a drum or on an endless track is made to rotate a spit, or drive the dasher of a churn.

The turnspit-logs of the last and previous centuries ran on the inside of a hollow tread-wheel, which rotated with their weight and communicated motion by a hand to the spit. See Roasting-Jack.
In the modern dog-powers, as in the example, the animal walks on au endless chain-track, which slips

to the rear, rotating a drmm which oscillates an arm, and vertical reciprocation is given to a lever and the ehurn-dasher.

Dog-shore. (Shipbuilding.) One of the two struts which hold the cradle of the ship from sliding on the slip-ways when the keel-blocks are takn out. The lower end of each doy-shore abuts against the upper end of the rib-band of the slip-vay, and the upper end against the dog-eleat, which is bolted to the side of the bilge-way. Beneath eacla dog-shore is a small block called a triyper.

In lannching, the triggers are removed, the dogshores knocked ilown, ani the ship-eradle freed, so that, carrying the vessel, it slides down the slip)wrys. The sigmal for lamehing is, "Down dogshores." See haunch.

Dog's-tooth. A sharp steel punch used by mar-ble-workers.

Dog-stop'per. (Fautical.) A stopper put on to the cable to enable it to be bitted, or to perwit the messenger to be ficeled.
Fig. 1631.
Dog-vane. (Nautical.) A small vane, made of cork and feathers, placed on the weat her-rail as a guide to the helmsman when sailing on a wind.

Doi'ly. (Fabric.) Formerly, a species of woolen stuff; now, a table-napkin.

Doll. A child's toy-baby. Ilade of stuffed cloth, woot, inulia-rubber, etc. The jointed woolen dolls are a marvel of eheapmess, and are made by the peasantry of Europe. See Toy.

Among other curiosities of the former inhabitants of Egypt are a number of dolls which are found in the tombs, and also are represented on the painted walls. Just as with us, some are rough, some comical, and some are made as nearly symmetrical as the artist was able.
Dol'ly. 1. (1fctallurgy.) A perforated board placed over a tub containing ore
to be washed, and which, being worked by a winchhandle, gives a circular motion to the ore.
2. (Piling.) An extension-piece on the upper ent of a pile, when the head of the latter is beyoud the reach of the monkey. Otherwise called a punch.
3. A hoisting-platforn.
4. A tool with an indented head for shaping the head of a rivet. A suap-hcad.

Dol'ly-bar. A block or har in the trough of a grindstone which is lowered into the water to raise the latter against the lace of the stone by displacement.

Dol'ly-tub. (Metallurgy.) A vertical tub in whieh metallilerons slinu's are washed. It has a vertical shaft and vanes turned by a crank-handle, like some kinds of charns.

Dol'phin. 1. (Orelnence.) One of the handles of an old-fashoned brass gun, nearly over the trunnions, and by which it is lifted.
2. (Nreutical.) a. A bollard post on a quay to make hawsers fast to.
b. An anchored spar with rings, serving as a mooring-buoy.
c. A strap of plaited cordage acting as a preventer on a yard, to sustain it in case the slings are shot away.
3. (Ifydraulics.) The induction-pipe of a watermain, and its cover, placed at the souree of supply.
Dol'phin-strik'er. (Nautical.) A spar deprending from the end of the howsprit. It afforls a strut for the martingales of the jib-boom and flying-jibbuom.

Dome. 1. (Architceture.) A vault on a circular plan. It is usually hemispherical in form, but is susceptible of a prolonged or oblate spheroidal variation.

In the data following, the light given is that of the apex above the gromad.

The dome of the l'antheon at Rome is a hemisphere 142 feet in dianeter, 143 feet high above the Hoor of the rotunda.

The dome of St. Sophia at Constantinople is an oblate semi-spheroid 104 feet in dianeter, 201 feet high. It is said to he built of earthenware and pumice-stone, not of cut stone. It was built in the sixtl century.

The dome in the Dnomo of Florence was built ly Brumelleschi in 1417. It is of brick, oetagonal in plan, 139 feet in diameter, and 310 feet in hight.

The dome of St. Peter's, at Rome, was built at the close of the sixteenth century, from designs left hy Michael Angelo. It is 139 feet in diameter, 330 feet high.

The dome of St. Jianl's, at London, by Sir Christopher Wren, is not masoury, but a shell inelosing the brick cone which supports the lantern. It is 112 feet in diameter, 215 feet high.

Internal Internal Diameter. Hight.
Mosque of Aehmet, Constantinople $92 \quad 120$
Duomo at Milan . . $57 \quad 254$
Hall aux Bles, Paris, by Moulineau $200 \quad 150$
St. 1saac's, Petersburg . . . 96
Baths of Caracalla . . . 112116
The dome of the Capitol, Washington, is 287 feet, 11 inches above the base-line of the east front. The greatest diameter of the dome at the springing is 135 feet 5 inches. The weight of iron in the dome and tholus is $8,009,200$ pounds. The rotunda is 95.5 feet in diameter, and its hight from the floor to the top of the canopy is 180.25 feet.

The central rotund of the Vienna Exposition building, $1 \leqslant 73$, springs from a circular façale of piers $426 \frac{1}{3}$ feet, English, in liameter ; within which is a gallery covered with its own roof; from the interior Derimeter of the gallery rises a conical roof
surmonnted by a lantern 105 feet in diameter, and this by in second lantern and cupola rising to a hight of 300 feet above the ground.
2. (Stcam-cnyine.) The steam-chamber above some lorms of builers, as the locomotive. It frequently bas an arehed crown.
3. (hrailroad.) The elevated upper section of a passenger-car projecting above the general level of the roof, forming a space lor ventilation, light, and ornament.

Dome-cov'er. (Sicam-cngine.) The brass or copper cover over the dome of a locomotive, which serves to prevent the radiation of heat.

Do-mes'tic. (Fabric.) Bleached and unbleashed, unprinted and undyed cotton cloths of the ordinary grades for common use.

Do-mes'tic Ap-pli'an-ces. The implements and conveniences appertaining to the honsehold. Among them are the following, which are considered muder their respective heads:-

Almond-neeler.
Andiron.
Apple-corer.
Apple-parer.
Apple-quarterer.
Ash-leach.
Ash-sifter.
Baby-jumper.
Buby-walker.
Baker.
Basket.
Bean-sheller.
Bel.
Bed-bottom.
Beisteal.
Bedsteal-fastener.
Bird-cage.
Biscuit-machine.
Boiler. Culinary
Boot-jack.
Bottle-cleaner.
Bottle-screw.
Bread-cutter.
Breal-making machine.
Broiler.
Broom.
Bronm-handle.
Broom-head.
Brush. See Brushes.
Butter-dish.
Butter-mold.
Butter-tongs.
Butter-worker.
Cake-cutter.
Cake-mixer.
Candle-snuffers.
Can-opener.
Carpet-beater.
Carpet-cleaner.
Carpet-fastener.
Carpet-stretcher.
Carpet-sweeper.
Caster.
Carving-table.
Chair.
Chamber-closet.
Charcoal-furnace.
Clieese-cutter.
Cherry-stoner.
Chopping-machine.
Clothes-brusil.
Clothes-dryer.
Clothes-frame.

Clothes-horse.
Clothes-line.
(lothes-line hook.
Clathes-line reel.
Clothes-pin.
Clothes-press.
Clothes-sprinkIer.
Clothes-tongs.
Clothes-wringer.
Coal and ash sifter.
Coal-scuttle.
Coat-hook.
Coffee-mill.
Coffee-pot.
Colfee-roaster.
Colander.
Comb.
Comb-brush.
Cooking-range.
Cooking-stove.
Corer and slicer.
Cork-press.
Cork-pull.
Corkserew.
Conn-cake eutter.
Corn-grater.
Corn-popper.
Couch.
Cracker-machine. Cradle.
Cream-freezer. Crimper. Ilair Crimner. Ihufle
Crumb-remover.
Curling-iron.
Desk.
Dish-heater.
Dish-holder.
Dish-rack.
Dish-warmer.
Dish-washer.
Docker.
Domestic-press.
Door-mat.
Dongh-kneader.
Dough-mixer.
Dough-trough.
Dredging-hax.
Dumb-waiter.
Dust-pan.
Earth-closet.
Egg-assorter.
Egg-basket.

Egg-beater.
Egg-boiler.
Egr-carrier.
Egg-detector.
Egg-tongs.
Extinguisher. Fan.
Feather-renovator.
Fender. Fire-irons.
Fire-screen.
Fish-kettle.
Fish-slice.
Flat-iron.
Flat-iron heater.
Flour-sifter.
Fluting-iron.
Fluting-machine.
Foat-stool.
Fork.
Freezer. Fruit-jar.
Frying-pan.
Furniture-pad.
Furniture-spring.
Furniture-tin.
Gong. Grater.
Griddle.
Gridiron.
Hastener.
Hat-rack.
Head-rest.
Hearth-brush.
Honey-strainer.
Hospital-bed.
lce-chest.
lee-cream freezer.
Iee-erusher.
Iee-cutter. Ice-pick.
Ice-pitcher. Ice-plane.
Ice-safe. Jee-tongs.
Ironing-board.
Ironing-machine.
Italian-iron.
Jar. Fruit
Kneading-machine.
Knite-board.
Knife-cleaning machine.
Kinite-polisher.
Knife-rest.
Kuife-sharpener. Sieve. Sifter.
Knock-down chair.
Ladle.
Lamp-chimney cleaner.
Lamp-chimney tongs.
Lamp-stove.
Laundry.
Laundry-stove.
Lenion-squeezer.
Line-clamp.
Looking-glass.
Mangle. Mat.
Matches. Match-safe. Stoves and heating appli-
Mattress.
Meal-sieve.
Meat-chopper.
Meat-crusher.
Meat-cutter.
Meat-hook.
Meat-mangler.
$\begin{array}{ll}\text { Meat-mangler. } & \text { Vegetahle-entter. } \\ \text { Meat-saw. } & \text { Meat-spit. Vegetable-grater. }\end{array}$
Meat-tub. Vegetable-slicer.
Milk-can. Yegetable-washer.
Milking-machine.
Mincing-knife.
Mincing-machine.
Mop.

Mop-head.
Mop-wringer.
Music-stand.
Musizuito-bar.
Muspuito-eanopy.
Night-chair.
Nut-cracker.
Nutmeg-grater.
Oyster-opener.
Palliasse.
Peach-prarer.
Peach-stoner.
Pea-sheller.
Percolator.
Fiano-stool.
P'ie-board.
Pillow.
Pinking-iron.
Piping-iron.
Plate-rack.
Plate-warmer.
Pliant.
Portable furnace.
Portfolio-stand.
Potato-masher.
Potato-washer.
Press.
Pressing-board.
Preserve-jar.
Quilting-frame.
Raisin-seeder.
Refrigerator.
Rimmer. Pie
Roasting-jack.
Folling-pin.
Sabotiere.
Sad-iron.
Sad-iron heater.
Safe. Meat
Sausage-machine.
Sansage-stutter.
Scoon.
Scrubling-brush.
Scrubbing-machine.
Scuttle. Settee.
Sewing-box.
Shaving-eup.
Skillet.
Skimmer. Slicer.
Smoothing-iron.
Smoothing-stone.
Snuffers. Sofa.
Spittoon. Sjoon.
Steak-crusher.
Steam-cooking apparatus.
Steamer.
Step-laulder.
Stool.
ances (which see).
Table.
Toaster. Tongs.
Tray.

Waiter.

Tumbler-washer. Urn.
Vegetable-chopper.

Waftle-irons.
Warming-pan.
Wine-cooler.

Washboard.	Water-cooler.
Wash-boiler.	Wire mattress.
Washing-marhine.	Work-basket.
Washing-shield.	Wringer.

Do-mes'tic Boil'er. One for heating water on a somewhat large scale for the household. Such are made of sheet-metal, to set upon the top of a stove occupying two of the stove-holes; or, made of castiron, they form reservoirs as a permanent attachment to the stove. See Wash-bulleli ; Reservoinstove.

Dioscorides meutions timned boilers. Pliny also treats of tinning copper vessels. Boilers with faucets have been disinterred at Herculaneum.
Do-mes'tic Press. One for household use for pressing honey, lard, tallow, cheese, sausage, or fruit.

The press shown in the example has a sausagestuffer r farthest from the pivoted end of the lever f. A lard-presser next, with a perforated tin hoop b. On the bench is also shown a platform and hoop c for fruit, which is substituted for the lard-hoop when required. d is a crank which operates the tackle and depresses the lever f.

Dom'ett. (Faliric.) A plain cloth, with cotton chain and woolen weft.

Do'ney. (Ncuticrl.) A one-masted native ressel on the Coromandel coast, 70 feet loug, 20 feet beam, and 12 feet hold.

Don'key-en'gine. (Stcam-cnginc.) An auxil. iary engine for working the feed-pump, hoisting in freight, etc., - work uncounected with the propelling engines, and which may thus proceed when the main engines are stopped.

Don'key-pump. A steam-pump for feeding stearn-engine boilers; frequently used for pumping in water during the cessation from working of the principal engine. It is used as a substitute for the feed-pump portion of the large engine; also used in breweries, distilleries, gas-works, tanneries, chemical works. One of the pumps is shown mounted on legs, another adapted to be bolted to a post or wall.

Doo'dle-sack. (Afusic.) The bagnipe (Ger. dudelsack).

Dook. A wrooden plug or block inserted in a brick or stone wall for the subsequent attachment of the finishing pieces.

Door. 1. Anl opening in a wall for a passageway.
2. A frame or barrier closing said opening.

The word forms a part of many compound words,

Door-alarm.
Door-bell.
Door-case.
Door-fastener.
Door-knob.
Door-lock.
Door-nail.
Door-plate.
Door-spring.
Door-stone.
Door-ston.
Door-strip.
Door-way plane, etc.
The doors of ancient Egypt and contemporary nations swung upon vertical pintles which projected from the top and bottom of the door into sockets in the lintel and threshold respectively. The commonest form of door had the jintle in the mildle of the width, so that, as it opened, a way was afforded on tach sile of it for ingress or egress. This is much hetter than the villianous system of making the doors of churches,
 theaters, and assembly-rooms open inward, forming traps to catch the people when a stampede occurs from a fire or an alam. It is but recent in our recollection, the account of the hurning of a cathedral at Callao or some other city on the South American coast, when the building, decked out with paper and ralico, in all the frippery of a saint's gala-day, was lumed, with 800 miserable peonle, - women and children chiefly, tor such are the principal patrons of churches in that land of Mestizoes.

It is not to be inferred that a simple valve swinging on a central axis was the only form of door, for in other structures we find the sockets near the posts, showing that the door turned upon an axis in the line of one of its vertical edges. Such loors, among the Romans, were fastened by bars or chains. Doorlocks were known in Thebes centuries previons to the Angustan era of Rome, and some are to be found in the museums of Enrope. See Lock.
The strect doors of Greek and Roman houses opened outward when formed of a single leaf, and an issning citizen rang a hell to warn passengers in the street ; or sometimes of a pair of leaves, each swinging on its own pintle and forming a double door. When doors were made to fold, they were swung inward; in this case one valve was hinged to another and swing back against its principal, the latter having pivots which turneal in the threshold and lintel. Such doors were known in ancient Greece.

The doors of the residence of the Inca Huayna

Capace, in the vicinity of Cotopaxi, were similar to those of the Egyptim temples.

The doors of the oracle of Solonton's Temple were of olive-tict, and were "a fifth part of the wall." As the width of the honse was 20 cubits, the dourway was ahout $6 \frac{1}{2}$ fere wide. The door was double. The outor door of the temple was of fir, and lonig upu olive-tree posts. the doorway was abont eight feet wide, and the double doors had each two Jeaves.
"The two leaves of the one door were folding, and the two leaves of the other door were folding.'

It is not casy to find in any other very ancient author so chear a desmiption of the proportions anm construction of a buikling as is found in 1 Kings, vi.

A pair of dours have figured somewhat largely in the history of Last lndian conquest. It is selidon that so much fuss has been made about a pair of doors since Samson took those of Gaza from their hinges, alont 1120 B. C., and carried them to the tup of a hill before Hebron. He took them "har and all," not condescenling to unlock them, lut tearing them firom their fommations.
The doors of the Temple of Siva, at Sommanth, a town of Guzerat, in Mindostan, were of sandal-wood, clahorately carved in correspondence with the other prortions if the temple, which was an ohlong hall 96×6 feet, crownel hy a dome. When Mahmond, of Ghizni, at the heal of his Mohamedan hordes, invaded lutia (A. O. 100t), on a mixed mission of phunder and conversion, he mingled avarice with enthusiasm ind lust, no as to aftori a first-rate model for a demon to master Anacreon Moore, some 800 years afterward: -
> " ${ }^{\text {'T }}$ is he of Qhizni, fierce in Wrath Ite comes, antl India's thadems Lie seattered in his ruinous path Mis bloodhounds he adorns with gems Torn from the violated necks Of miny a young and lovel sultana; Maidens within their pure zenima, Priests in the very fine he slaughters, And chokes up with the glittering wrecks Of golden shrines the sacred waters "

of the Gangrs, of comse. It must not be understoon, however, that he failed to strip off the gold before lee piteled these things into the muddy waters of the river, which delivers yearly into the Bay of leneral $534,600,000$ tons of solicl matter.

Mahmoud, ahout 1024, after desolating Northern Inlia for some years, came to Somnanth, and onitting the ilctails - phundered from the Temple of Niva "the destroyer" the rich offerings of centuries, carrying them and the doors of the temple to Afghanistan, where the latter were made the doors of his tomb.

Here they rested till 1842, when the Euglish, stung to manluess by the massacere of 26,000 soldiers and camp followers in the Kyber pass, in the month of Janary of the same year, invaled Atghanistan in force, and conquered Ȧkbar Khan. Lord killenborough, inflated with an august desire for poetical, historical, and every other kind of retribution, spized upon the doors of Nahmond's tomb as representatives of the suceess of Mohammedan domination, and earried then back to lndia proper, chanting a prem whose refnuin was "the insult of cight huendred years is avenged," and commanting that the doors should be "transmitted withe all honor" to the Temple of Siva. The British government, goadid on the one hamb by Exeter Hall, and on the other ly its fear of the two ummingled races who oceupy Hinlostan, found itself with an elephant on its hatuls, and stopped the gates at Agria, where they x.main.

A, batlen-iloor.
B, puncl-door.
a, top-rail.
b, mildhe or lock rail.
c, bottom-rail.
d, hanging style.
c, lock style.
f, mumion or muntin. g, parels.
In u six-panel door the rail next to the top rail is called the fricue-rail.

A panel wider than its

Fig. 1684.

Doors. hight is a lying-pencl. If of equal hight and wilth, a square paned. If its hight he greater than its width, a staming panel.

Double-toor' ; two pais of Solding-loors, hung on the angles of the apretures and opening toward the reveals against which they arm hung.

Folding-doors; a pair whose respective leaves are hung on opposite comers of the aperture in the same planc, so that the styles meet in the echiter when closed.

Iouble-maryin doors are made in imitation of folding-doors, the middle style being made double with an intervening bead.

Slicling-toors are an improsement on folding ; they slip into grooves in the partition.

A proper-lediged door is one made of boards placed silue hy sille with battens called ledges at the back. With a diagonal picce at the back, in addition, it is saill to be frumed and ledged.

Door-a-larm'. A device attached to a door, to give an audible notice when the door is opened or tampered with. See Burglah-alarm.

Door-bell. A bell attached to a door or doorpost, or lung by a handle exposel outside of the door. In the example (Fig. 1685), the end of the lever, attachel by a wire to the bell-pull, strikes a spur on the canl, one end of which, as it turns, forces down a bar attached ly a bent wire to thu hammer, till, the sinur being released, the rebound canses the gong to be struck.
ln other instances,

Door-Gong. the bell or gong is sounded ly the simple turning of the handle.
Door-case. The frame of a door, in whicle it swings and fits.

Door-fast'en-er. A portable contrivance for fistening a doon. It usually consists of a piece jammed in between the door and the easing, laving spurs which catch in the latter and a turn-button which engages against the door. In one example shown, it is a toggle-strut which thrusts against the door and the floor.

Door-frame. (Carpentry.) a. The structure in which the prinels are fitted. It is conplosed of : -

The stiles, or upright pieces at the sides.
The munnions, or central upright pieces.
The bottons rail, the lock or central rail, and the toj-1ail. Sie Doos.
b. The case into which a door is fitterl.

Door'i-ahs. (Fabric.) A cotton clotll made in India.

Door-knob. The bulb or handle on the spindle of a door-lock. It is made of metal, glass, .porcelain, or clay of various colors. lngenuity is employed in devising means of attaching the knob to its shank, and the latter to the spindle. With glass knobs, the shank of thin iron may be passed into the congealing glass in the mold. With clay and porcelain the leat of baking is too great. and the shanks are fastened to the knobs by cement or fusible metal.
Door-lock. A doorfastening whose bolt is retracted by a key; differing from a latch or catch, in which the holt is worked by the knob or handle.

Door-locks are of various kinds, known usually by certain characteristic features of construction, sometimes from their purpose : -

Janus-faced lock.
Lever-lock.
Mortise-lock.
Permutation-jock.
Reversible lock.
Rim-lock.
Safe-lock.
Sliding-door lock.

Alarm-lock.
Box-lock.
Car-door lock.
Cell-lock.
Closet-lock.
Cross-holt lock.
Dead-lock.
Front-door lock.
Jail-lock (see Lock).
Door-mat. A texture for wiping the feet; made of tussocks of hemp, flax, or jute woven or tied into a fabric; also made of sedge, straw, rushes, or other common material.

Door-nail. The plug (or plate) on which a doorknocker strikes.

Fig. 1687.

Door-plate. A name-plate on a door.
Door-roll'er. A suspension device for a sliting door. The roller a of the door-hanger b runs on a track plate or rod c. Used for doors of barns, warehouses, freight-cars, etc.

Door-spring. A spring attached to or bearing againsta door, so as to automatically e cose it.

Of this nature are the elastic bands of vulcanized rubber, which reach between the top of the door and the lintel, being extended by the opening of the door, and, by contraction, closing it. In another
 is attached to a rod b on plate a of the doorpost, and bears against a plate C on the door. As the door opens, the spring is coiled more tightly on its rod, and thus opposes a force which shuts the door when the person las passed. Another form is a torsion-spring; a wite whose ends are attached to the door and jamb so as to be tristed by the opening of the door.

Door-stone. A threshold stone.
Door-stop. (Carpentry.) A knoh or block on a skirting-board or Hoor, against which the door sluts. The object is to hold the door open or to catch it wben opened clear lack, and prevent the door-knoh from bruising the wall.

Also a pad or strip on a door-case, against which the door shuts, to prevent slamming.

Door-strip. A strip attacked near the lower edge of a door, to shut down tightly upon the threshold belleath when the door is closed. See Weather-sthif.

Door'way-plane. The space included between the intrados of a large archway and the actual door of entrance.

Dop; Dopp. The copper cup in which a diamond is soldered when it is to be polished npon an iron lap or skive charged with diamond-powder. See Diamond-cutting.

Dor'mant-bolt. A concealed bolt working in a mortise in a door, and usually operated by a key, sometimes by a turning knob.

Dor'mant-lock. A lock having a bolt that will not close of itself.
Dor'man-tree. A large heam lying across the ceiling of a room, and serving as a joist. A dormond or dormant-trec.

Dor'mer-win'dow. (Building.) A window piercing a sloping roof, and having a vertical tiame and gable of its own. The gable is sometimes in the plane of the wall, or is founded upon the rafters, sometimes a succession of stories in the roof are prorided with dormers, as is commonly the case in some houses of Northern France, Belgium, and the Ne1herlands.
Dor'nock; Dor'nic. (Fabric.) A stout figured linen (damask), said to be named after the town in Scotland (Dornock) where it was made, but prolnbly deriving its name from Tournay (Flenish, doornic), a frontier town of Belgium.
Dor'sel. (From Latin dorsum, the back.) 1. A pannier or basket to carry on the back.
2. a. A cover for a chair-back; hence,
b. Tapestry, or a screen at the back of a throne or altar.
c. Tapestry or wall hangings around the sides of the chancel of a church.
d. A canopy for a throne. A lambrcquin.
3. A kind of cloth, used for the purposes stated.

Dor'sour. (Fabric.) Scotch cloth, used for langing on walls of chapels and halls.

Do'ry. (Nautical.) A small, sharp, flat-bottomed boat, with very sloping sides, extensively employed in the British fisheries.

Dos'el. See Dorsel.
Dos'sil. (Surgical.) A small roll or pledget of lint of a ey lindrical or ovoid form, to keep open a wound. A tent.
(l'rinting.) A roll of eloth for wiping off the face of a eopper-plate, leaving the ink in the engraved lines.

Dotch'in. The Chinese steelyard. In Hong Koug, and other ports where Europeans trade, the beams are doubly graduated

Fig 1689. with cireles of brass pins to mark and Chinese weights.

Dots. (Plastering.) Nails driven into a wall to a certain depth, so that their protruding heads form a gage of depth in laying on a coat of plaster.

Dot'ting. A form of engraving in which grographieal divisions on maps are shown by interrupted lines or series of dots. Done by a roulette.

Dot'ting-pen. A pen having a ronlette which makes dots or detached marks on the paper over which it is drawn. See Roulette.

Doub'le-act'ing Bal/ing-press. One Dutting. which has two boxes in Pen. which the material is compressed ; sometimes a single follower acts upon them alternately, in other cases two followers act simultaneonsly.

In the first example shown, the press is double-ended, each follower forming an abutnent f.s. the other as they are forced together by the toggle-levers. The toggle-levers D are susprended upon the cords or chains $F H$, forming dexible suspension-points, whereby bales of unequal size are pressed with equal force by the platens C. The view is a plan, seen from above. The rope winds upon the central post G to which the power is applied, and it thence passes over the sheaves $c e$ on the ends of the eross-beam.

In Fig. 1691, a single follower D is used for two
Fig. 1690.

Double-Toggle Ealing-Press.
 press-hoxes $C C$ alternately, and is operated by fou:r screws $B B$ simultaneously drisen, one at rach corner, two showing in the illustration, which is a side clevation.
Doub'le-act'ing En'gine. (Steam-engine.) An engine in which both motions of the piston are produced by the action of live steam, which bears upon

the faees alternately. In contradistinetion to singleacting, in which live stemi is only admitted to one side of the piston, the weight of a pump-rot or the pressure of the atmosi here giving the return motion.

This form of engine was invented by Watt. The piston of the Neweomen atmospheric-engine, on which Watt was inproving, was raised by steam at a moderate pressure, and depressed by the pressure of the atmosphpre when the stcam beneath the piston was condensed by a wa-ter-jet. Watt alded the seperate condenser, air-pump, and the steam-jacket to the cylinder, and then sought for means for keeping the atmosphere from the inside of the cylinder when the piston was depressed. He added the cyliniler-cover, adopted the stuff-ing-box inventel by Sir Samuel Morland, and admitted steara above the piston to oceupy the space formerly filled with air. The steam retreated as the piston rose, and was after. wards ntilized beneath the piston. Eventually the steam was regularly inducted above and helow the piston alternately, in each case giving a positive pressure; here we have the double-ucting engine.

[^7]K, main-shalt.
L, Hy-wheel.
I ', governor.
a, steam-induction pipe.
ℓ, valve-chamber.
c, valves.
d, steam-eduction pipe.
ℓ, condenser.
g, injection-cock.
h, air-pump.
i, discharge-valve.
Doub'le-act'ing Pump. One which throws

Fig. 1693.

Doub.'e-Acting Pumps.
l, hot-well.
m, feed-pump.
n, pipe to leed-pump.
o, valves to feer-pump.
p, feed-pipe to boiler.
r, air-pump cistern.
s, eccentric-rod.
x, band to governor.
y, bell-crank to valvemotion.
z, governor-gearing. water at each stroke; contradistinguished from the ordinary liftpump, in which the bucket only raises water at the up-stroke.
In the upper punp (Fig. 1693), the side chambers have each of them induction and eduction valves.

In the lower pump (Fig. 1693), the eylinder has induction and eduction ports on opposite siles $E F$.

Doub'le-ac'tion. (Music.) In a pianoforte movement, an arrangement of a jointed upright piece at the back end of the key, used to lift the hammer insteal of the stiff wire or lifter of the single-action. The piece iscallerl a hopper, and engages in a notch on the under side of the hammer to lift it, but, escaping or hopping therefrom, allows the hammer to fall away immediately from the string.

Doub'le-bar'. reled Gun. One having a pair of parallel bartels on the same stock; sometimes one is a rifle-barrel and the other a smooth-bore for shot. See Fowling-fiece; Fire-Arm.

Double-bass. (1fusic.) The largest and lowest hass instrument of the stringed instruments phayed with a how. A contrabasso.
Doub'le-bead. (Joinery.) Two beads placed si le by side and separated by a quirk. Sce Molding.
Doub'le-beat Valve. A valve so arranged that on opening it presents two outlets for the water, one at a and the other at b; in closing, the valve c drops upon the gun-metal rings $d c$, fixed in the seat f, which is of cast-iron ; this is cast with a cytindrical portion g, which serves as guide to the valve, as do also the ribs $h h$. i is a cap which limits the throw of the valve.

The doublc-bcat valce is extensively used in England for deep, wells and for high lifts, such as the pumps of mines and water-works. It is so ealted from the Fuct that its lower edge beats upon a circular seat on the lower ring d, and a flange on its uprer edge upon a ring c, on the upler plate of the valve-seat.
C is all external valve having inclined seats destitute of rings ; D is an internal double-beat valve. In the double-beat or equilibrium valve of the Cornish steam-engine, steam is conducted hy a branch pipe into a larger perpendicular pipe between two conical valves placed in it and connected by a stem. When the valves rest on their seats, the stean will

exert a pressure on the under side of the upper valve, tending to raise it; and on the upper sille of the lower one, tending to keep it down; these two pressurcs in opposite directions thus neutralizing rach other. It is therefore evident that, the pressures heing nearly balanced, but a small amount of powir is necessary to raise the valves from their seats, and by a slight opening a very large steam-way is afforded.

Doub'le-bit'ted Axe. The axe has two oplosite hits or blades. It is an aucient form of hattleaxe, being a favorite weapon with the Franks in the time of Clotaire, seventh century, and with the Danes in the time of Alfred the Great, ninth cen-

Double-Bitted Are. tury.
It is also shown in the sculptures of liarnak, in Egypt.
The battle-axe of the Scythians in the time of Herodotus was double-bitted. It is the Sacan sngaris.
Scylax, an historian of an age precerling that of Herodotus, compared Egypt to a double-bitted axe, the neck which joins the two heads being at the narrow part of the valley in the vieinity of Memplis.
The double-bitted axe is foms in the tumuti and harrows of North America. It is in three forms: 1, with a circumferential groove for the occupation of the withe or split handle to which it is lashed : 2 , with an eye traversing the head; 3 , with a socket for the handle. See Axe; Battle-axe; Hatcuer.

Doub'le-block. (Nautical.) A block with two sheaves which are ordinarily placed on the sane pin, but rotate in separate mortises in the sheil.

Other double-blocks have the sheaves arranged one ahove the other. See Long-tackle: Block; Shoe-bliofk; Fiddifemiock; Sister-block.
Doub'le-bod'ied Mi'cro-scope. A microscope inventel by Nachet, to enible several observers to view the same olject simmitaneonsly. The rays from the oljective are divilled by a prisin: the separated rays received ly two other prisms, and tbe respective pencils directed through the respective bolfies of the instrument. The principle is similar to that of the Binocular Dicroscore (which see).
Doub'le-cap. A flat (unfolded) writing or book paper, 17×28 inelurs.

Doub'le-chis'el. A tool with two chis. Fis tij3. ci-e.Jges to cut the emis of a mortise simultaneously, while the chip extends into the depression between the bits. It is used in mortising sasl-bars for windows.
Doub'le-cloth Loom. One for weaving two sets of webs simultaneonsly. These may be connected at certain parts, and cut apint subsequently, and so form a series of under-garments.

In another form, the two welis are so $D_{\text {nuble- }} \mathrm{knitted}$ as to form a tube, heing joined at
Chisel. their elfges. At certain intervals, both webs are thrown into one flat web of donble thickness, and then again separated, forming a tube as befure. The completed web is then cut apart midlength of the donbled portion, and also mid-length of the tubular portion, and the result is a number of bars with closed bottoms.
Doub'le-com'pass. An instrument whose legs are prolonged each way beyond the joint, so that either pair may be nsed; when the legs on one pair are double the length of the others, it answers as a bisect ing-compass.

Doub'le-con'cave Lens. A lens both of whose faces are concave. See Lens.

Doub/le-con'vex Lens. A lens both of whase sides are convex, though they may differ in the radii of their curves. When the difference is as 6 to 1 , it js a crossed lens. See Lexs.

Doub'le-cut File. One which has two rows of terth, crossing each other at au angle, in contradistinction to the single-cut or float, which has but one row.
Double-cyl/in-der Press. (Printing.) A press with one form, and receiving paper from two cylinders.
Doub'le-cyl'in-der Print'ing-ma-chine'. A printing press in which the form is phaced on a flat bed and the impression taken by two cylinders. each of which alternately takes a sheet and receives an impression from the form while it is passing onder them.
Doub'le-cyl'in-der Pump. One having two cylinders in which the pistons act alternately. They may be single-acting or double-acting, that is, the cylinder may receive and deliver water at and from eaclı end. The pumps of Hero of Alexandria, 150 B. c., were all single-icting, but one of them at least had a double cylinder.

Dou'ble-cyl'in-der Steam-en'gine. A form of engine having two communiating eylinders of varying capaeities; there are many modifications in the arrangements and modes of application of the steam.

The first engine of this character was that of Hornblower, in which two liston-rods were connected to the same arm of the walking-heann, but at different distances from its center of oscillation. As usually understood, the double-cylinder engine involves the use of the same steam in two cylinders
consecutively; first at a relatively ligh pressure in a smaller cytinder, and then at a lower pressure in a larger cylinder.

Working steam expansively was invented by Watt and introduced in 1778.
Homblowr's expmasive engine, patented in 1781, had two cylinders, of different sizes, their respective piston-rods being connected to the working-heam. An amount of steam of the capacity of the smaller cylinder was expended at each stroke, the upper part of the said cylimler receiving live steam from the boiler, and the luwer part communicating with the space above the piston of the larger cylinder, where it was used expansively.

Horublower's engine occupies one notable point in the history of the steam-engine, but was not adopted to any great extent.

Wolf, in his English patent of 1804, inproved the arrangement, and his may be considered the pragenitor of the numerous compound and duplcx steam-engiues which have proved so successful. See also Tippett's English patent, 1828.
This form of engine is extensively used in France, and the monster pumping-engines, with 144 -inch cylinders, erented for draining the Haallem Mere, from the designs of Gibbs and Dean, have double cylinders, one within the other, the outer being fitted with au annular piston. See Draining-Exgine.

Maudslay and Fiell's double-cylinder steam-engine (English) is a form of engine having two cylinders, each of half the area necessary for the intended power, conibined so as to form one engine, and placed so far apartas to leave a sprace between them for the connectingrool, and the lower end of the T-shared crosshead, to which the connecting: rod is attached. The piston-rods are attached to the horizontal extremities of
the T cross:
 head, whereby the combined action of both pistons is applied to one crank of the paddle-shaft.

In the illustration, of a are the twn connected working-cylinders, worked simultaneously by one slide-valve in the chamber $k . \quad b \quad b$ are the pistonrods, the upper ends of which are attached by keys to the crass-head $c c c$. At the lower end of the cross-head is a slider d working between guiles fixed on the onter surfaces of the cylinders. To this slider d one end of the comnecting-rod f is attached, the other end of that rod heing attached to the crank of the propeller-shaft. The air-pump i, feerl-pump, and bilge-prump are worked by the lever, which is connected to the slider d by the rod. on is the skylight of the engine-room. n is a deck-heam.

This is one form of dircct-action stcam-cngine, and was designed to obviate the use of a beam.

Fir. 1698 shows an arrangement in which two cranks on the same shaft and of different radii are

Huntoon's Engine.
within the larger. The outer piston is a cylinder whose two beads are packed in the main cylinder. The steam is received through a hollow fixed piston within the larger piston. An axiai pipe conducts the steam thereto. The steam lirst acts on the inner side of the outer piston-head, aml exhausts to act expansively on the outer end of the onter piston. It then passes through the annular sjace betwea the side of the outer piston and the main cylinder to the exhaustports.

In another form the steanı, after acting at a
respectively attached to pistons of varying diameter working in cylinders where the steaun is used directly in one anil afterwards expansively in the other.
In Fig. 1699, the cylinders are alongside each other. The rods of the pistons of the respective cylinders are united to the cranks, which have a relative angle of 150° on the same shaft. Steam ad-

Washburn's Steam-Engine.
mitted above the smaller piston is used directly, and, the valve being raised, is cut ofl'; and the annular space between the two disks forms a means of conveying the steain helow the said piston, where it is egualized as to its effeet on that piston, and above the harger piston, where it is utilized expansively.

In Fig. 1700, the smaller cylinder is contained
Fig. 1700.

Davenport's Steam Engine
der, is allowed to escape to work against the liuger piston at a less relative pressure ler square inch. The valves are connected so as to time the movements, and the stean acts alternately cebore hoth pistons and theu beloue both pistons to combine the effects of the stean in the respec. tive cylinders.

In Ellis's bisulphide of carbon engine. the heat of the exhauststram from one cylinder is made to boil the bisulphide of carhon, whose rapor is used in the sepond cylinder. See also Compolindmegine; Duplex Steam-engine, etc.
Doub'le-dag'ger. (Printing.) A reference-

Prase's Steam-Engine. mark (\ddagger) next to the dagger (t) in order. Otherwise called a dirsis.

Doub'le-door. Two pairs of folding-doors, hung upon the angles of the aperture and each swinging inward so as to open against the reveal. The inner pair is frequently covered with haize.
Dou'ble-dor. A French style of jewelry ; a plate of gold is soldered upon one of copler, the respective thicknesses being 1 and 11 ; the plate is then thinned by rolling, and worked np into the requirel form.

Doub'le-drill. A drill with two cutters, making a comntersunk ho'e, so that the head of the screw or rivet phaced therein shall not protrude.
Doub'le-draw'ing Pen. A draftsman's pen to rule two lines at once.

Doub'le-drum. (Music.) A large drum beaten at both ends. In contradistinction to other drums in which but one head is lrenten; as, side, suare, and kettle drums. Spe Drum.

Doub'le-el'e-phant. A size of drawing or flat writing-paper, measuring 26×40 inches.
Double-ended Bolt. A holt having a serewthread on earli end for receiving a nut. It is used for hinding together three parts or pieces independently of each other. (See 5, Fig. 768.)
Doub'le-ex-pan'sion Steam-en'gine. A form of pngine in which steans, admitted to act upon a piston of relatively small area and cut off at a certain part of the stroke, so as to work expansively
from that point to the end of the stroke, is then admitted to the face of a larger piston, where it undergoes a liuther expansion. Such is the Allen engine (English), whish has a large trunk-piston having two annular steam-spaces between the trunk and eylinder, affording two anmular pistons of relatively slual. area ; the ends of the trunk, which are of larger arra, constituting two other piston-heads to receive the force of the steam at the second expansion. See also Double-cylindel Steam-engine.
Doub'le-faced. (Joincry.) A term applied to an architrave, or the like, having two faces.
Doub'le-file. A compound file (a) matle of two files riveted together, one edge

Fig. 1702.

Double-Files. projecting heyond that of the other. Used ly cutlers and gun-makers in check ering their work, as on the small of the gun-stock.

Cooper's double-file (b) is used for sharpening pencils, te.

Doub'le-flu'id Bat'ter-y.

 A galvanic battery in which two fluids are used as exciting liquids. They are kept apart by a porous cup, as in the Daniell's battery, or by gravity, as in Calland's (see infru). Daniell was the inventor of this form of battery, and received therefor the "Copley" medal of the Royal Society in 1837. He used sulphuric acid ing a porous cup placed in a glass cup containing sulphate of conper.Bansen's, Grove's, and Callaud's are also douhleHuid batteries. The name is used in contradistinction to the 'single-fluid batteries, such as the original Volta, the Cruikshank, Babbungton, and Wollaston.
The gravity-battery is a double-fluid battery in which the porous cup is dispensed with, the difference in the specitic gravity of the fluids nsed keeping them separate. Often called the "Callaud battery," after the name of the inventor.

Doub'Ie-floor. (Carpentry.) One in which both binding and bridging joists are employed. A doubleframed floor.
Doub'le-fur'row Plow. One striking two furrows at once. A gang or double plow.
Doub'le-fut'tocks. (Shipbuildiny.) Timbers in the cant-bodies extending from the deadwood to the run of the second futtock-head.
Doub'le-gear. The nests of variable-speed gearwhels in the heul-stock of a lathe. Back-gear.
Doub'Ie Gear-wheel. A wheel whirh has two

Fig. 1703.

Double Gear-Wheel. sets of cogs of varying diameter ; these may drive two pinions, or be driven of one and drive the nther. In the example, the wheel j drives the two pinions $f g$. The cover k is shown as partially broken away to expose the inner gear and the pinion f.

Doub'le Half-round File. A tile whose sides are curved, the edges forming cusps; the ares of the sides being mueh less than 180°. Used for dressing or crossingout balanee - wheels. and hence known as a cross-file.

The eonvex edges have usually different curvatures. See Filf:.
Doub'le-ham'mer. (Metallurgy.) A forging deviee for operating upon a bloom or puddler's ball, striking it upon opposite sides simultaneansls. Act: Griner's "Manufacture of Steel," Van Nostraul, 1872; page 152 et scq., and phates v, vi.

Doub'le-head'ed Rail. (Railroading.) A mil whose edges are bulbons and counterjarts, so that when one is worn the other may be placed uppentost.
This rail does not rest so securely on the slevpret:, having no flat base like the foot-rai', or bridger-reit, but requires a chair on each sleeper. This greatly increases the expense in fastening to the slee $1+1$.
Doub'le-head'ed Shot. (Ordnance.) A projes:tile formerly used, consisting of two shot muited at their bases.

Doub'le-head'ed Wrench. One having a pair of jaws at each end, one diagonal the other right-angular. The shank of each outer jaw is comuected to the sleeved imer jaw of the other pait, the sleeves slipping on the shanks of the jaws to which they are opposed. The double threats act in conjunction, to expand or elose each pair simultaneously.

Double-hung Win'dow. One with two sashes, each haviug its complement of lines, weights, and pulleys.

Doub'le-im'age Mi-crom'eter. Suggested by Ruemer about 1678 ; lrought into use hy Bonguer about 1748 . It is formed by dividing dianetrically the object-glass of a telescope or microscope, thestraight edges being ground smooth so that they may easily slide by one another. The parts are selarable by a serew, which moves an index on a graduated scale. A double image

Fig. 1504.

Double-Hended Wrench. of the oljeet in the field of view is produced lyy the separation of the segments; and by bringing the opposite elges of the two images into contaet, a meatsure of the diameter of the olject is obtained in terms of the extent of the separation. A heliometer.

Doub'le-im-pe'ri-al. A size of printing-paper 32×44 inches.
Doub'le-joint'ed Com'pass. One having, in addition to the main joint, additiunal joints hy which legs may be bent to secure a proper Fig. $1: 0 \mathrm{j}$. presentation of the feet to the paper.
Doub/le-knife. A knife having a pair of blades which may be set at any regulated distance from each other, so as to obtaiu thin

Double-Enife.
sections of soft bodies. One form of this is known as Valentin's knife, from the inventor.

Doub'le-let'ter. (Printing.) Two letters on one shank, as $f f, f f$.
Doub'le-light. A variety of light as dis. played for the warning and instruction of mariners from lighthouses. The light indicates land, rock, or shoal, and, hy varying the characteristics of the light, the seaman is informed of the part of the eoast he is on, and of his bearings as to his port or course. Compass

The other characters of light are known as fuxcd, revolving, intermittent, flashing, colored. These are variously combined.

The double-light is usually exhihited from two towers. One of these is sometimes higher than the other. The duplication of the lights affords a leading line as a guide to a channel, as well as furnishing another node of varying the lights on a coast where they are numerous. See Light.

Doub'le-line. (Harness.) a. A form of driv-ing-lines or reins in which supplementary reins are allorded, which may be brought into use in emergency, such as an attempt to bolt. In some cases it is an extra rein to pull the horses' heads together ; a rein to pull a hood over the eyes of a horse; a gagrein to pull the bit violently into the corners of his moath; a choking-rein around the throat; a gripper on the muzzle; shutters on the nostrils, etc.
b. A description of driving reias or lines in which each main branch has a check-line to the bit of the other horse. Distinguished from the Western teamster's single-line.

Doub'le-lock. A canal-lock having two parallel chambers conneeting by a sluice. Each chamber has a gate at each end connecting with the upper and lower pounds respectively. The object is to save one half the water that would be used in looking hoats.

Doub'le-mar'gin Door. (Joinery.) One framed in imitation of folding-doors, the central style being made double with an intervening bead.

Doub'le-me'di-um. A size of printing-paper 24×38 inches.

Doub'le-mold'board Plow. (Agriculture.) A plow hasing a moldboard on each side of the
which may be produced from either the wasp or weit. See Crompton's patent, January 31, 1871.

Doublle-pis'ton Pump. One which works two pistons from a single lever or handle. It may be double or single acting as to the separate pistons.

In Fig. 1708 the pistons are effertive altermately, each upon its up stroke. One bucket sliles on the rod of the other. The lever gives reciprocating rotation to the pinion a which works the racks b, which back against rollers $d d ; g h$ are the upper rod and bucket, p and ef the lower pair. i is the lower valve; j the induc. tion-pipe.
Another form is shown in Fig. 1709;

Fig. 1 io7.

Double-Moldboard Plow.
sheth, so as to throw the soil away right and left. It is used in hilling up erops, such as potatoes and cabbages. Not used for corn ; the rows are too wide apart.

A double-moldboard plow was used by the Romans in ribbing the ground for wheat. This left the ground in ridges whose summits were seeded by hand-drilling.
Doub'le Pi'ca. (Printing.) A size of type double the hight of Pica.

Double Pica. Great Primer. English. Pica. Small Pica.

Doub'te-piled Fab'ric-loom. One in which a pile is formed on both sides of the foundation, and
in which the pistons are fast on the same rod and reciprocate in their respective cylinders, which are divided by a dia. phragm. Thepumps are independent, therefore, except as the pipes may connect; and may be ntilized for pumping fluids from two sources and delivering them together or separately.

Doub'le Pis'. ton-rod En'gine. A direct-action steam-engine invented by Mandslay and Field, London, and designed for

vessels of low draft and shallow holds, without exposing the machinery above deck. It is one of the numerons attempts to avoid the use of a beam or side-lever. Sec Direct-action Steam-engine.

The double piston-rod engine has two piston-rods to each piston, the center of the cylinder-cover is main, and this allows the crank when lowest to barely clear the said cover, thus saving the depth of a stuffing-box. The two piston-rods issue from opposite apertures, but neither in the longitudinal nor transverse line of the ship. It is said to afford the shallowest arrangement yet known with no beam above deck, and is used on the Rhone, the lndus, an 1 the Sutledj.
Doublle-pis'ton Square-en'gine. An engine

having two square pistons at right angles to and one within the other. Fig. 1710 shows the arrangement; the larger or extemal is in the form of a rectangular frame, working horizontally within a hox of similar form, and is marked E. The smaller, marked F, works vertically within E. Through the renter of F passes the erank D, which is carried around by the simultaneous action of both pistous. The smaller piston F and crank D are shown separately. T is an outside view of the cover which closes the steam-hox or cylinder, the circular chamber being the valve-box I, which is closed by another plate screwed over it. The steam is admitted at K, passes by a hidden passage to the valve-box I, and to the cylin-
der through openings G, whenever they are uncovered by the valve A. Through the same openings the exhaust-steam escapes, not into the valve-box, hut into the annular channel H through the annular countersink M. The exhanst-steam escapes by passages indicated by dotted lines leading to the openings $H I$, and thence by passages to a common eduction-pipe. The valve-plate X is fitted to the eccentric L on the center-pin D, and this cccentric is carried around by a stud S in the end of the crank, which enters an arm on the other side of the plate, for which space is made in the central circular recess of the smaller piston. The valve is in contact by its circunference with the interior cylindrical surface of the valve-box, on which it rolls during its revolution, and it opens and closes the steam-ports successively as it passes.

Doub'Ie Plane-i'ron. (Wood-working.) A smoothing-plane iron having a counter-iron to bend up, the shaving in working cross-grained stuff.

Doub'Ie-plow. 1. The donble-plow, in which a shallow share preceded the deeper-running, longer plow, originated in England, where it is known as

the skim-colter plow. This has a share attached to the colter to turn down the top soil with its weeds and trash, to be covered with the main furrow-slice, which is turned over by the larger plow following.

In England and in the United States another form of this plow has been used in which the precedent nortion is not merely a flange on the colter, but is a regular moldhoard plow of small proportions, higher than and in front of the main plow. This is known in Ohio as the "Michigan double-plow," and is an efficient implement requiring four horses.
2. The double-plow, having two plows to one stock, or two stocks framed together so as to have but one pair of handles and be operated by one man, is mentioned by Walter Blythe, who wrote during the protectorate of Oliver Cromwell. See Ganc-plow.

Doub'Ier. 1. (Elcetricity.) An instrument to increase the least conceivable quantity of electricity by contimually donbling it, until it hecomes perceptible upon a common electrometer or is made visible in sparks.

It was first invented by Bennet, improved by
2. (Dislilling.) A part of the still apparatus, or an appendage to a stitl in which the low wines, one of the products of the first distillation, are re-distilled. The operation is a turning back and repeating, and is known as doubling. A part of the still is arranged to condeuse and then intercept and return the less rolatile vapors, while those of greater tenuity pass on.
3. (Fiber.) A machine in which slivers, stricks, or filaments of wool, cotton, Hax, or silk are laid together, to be drawn out and again doubled and drawn to renore inequalities, or, in the case of silk, to increase the thickness of the strand. See Doubling.
4. (Calicn-printing.) A blanket or felt placed between the cloth to be printed and the printing-table or cylinder.
Doub'le-re-frac'tion Mi-crom'e-ter. The Abbé Rochon first applied the principle of double refraction to micrometrical measurements. His instrument had tiro prisms connected together so as to form a single crystal. The prisms are so disposed that the face of the first is perpendicular to the axis of the crystal, while in the second the axis is parallel to the line of intersection of the two faces, so that the axes of erystallization of the two prisms are at right angles to each other. The prisms are placed in perfect contact and cemented by mastic, and together form a plate, the opposite sides of which are parallel.
As the ray enters the second prism the ordinary ray passes on, and the extraordinary ray is refracted. The angle of divergence of the rays is constant in the same prism, and is determined by experiment.
The apparatus is placed in the tube of a telescope, where it may be slipped back and forth. The determination of the diameter of the object is obtained by bringing the images in contact.

Doub'le-roy'al. A size of printing paper 26×40 inches.

having two blades at a regnlated distance, adapted to cut kerfs and space the intervals, as in comb-cutting. See Cumb.
Doub'le-seam'ing Ma-chine'. A tool or machine for lapping the edges of sheet-metal one over

Double-Scaming Maciune.

the other, and then doubling over the lapred portions so as to preclude the possibility of the portions slipping apart. The seaming process appears in Fig. 1713, where a represents a can top and lid simply laid together; b shows the two parts turned over; c shows the outer portion recurved aver the imer one.
d, in the same figure, shows the parts of a seam
Fig 1715.

Roof-Seaming Machine.
with an intervening strengthening strip; ef are two farther conditions of the same joint, with a rivet to secure the parts in position; g is a view of the machinc on which the hending $a b c$ is done hy a succession of disks, cone-rollers, and clamping-rollers.

Fig. 1714 is another donble-seaming machine in which the compressing disk $I I$ is journaled on top of the standard, and is brought into conjunction with the vertical disk G on which the $p^{\text {an }}$ or can rests, and is revolved by the crank E.

Doulle-seaming machines for rooting have a number of consecutive pairs of rollers which are run along the upturned edges of the adjacent sheets so as to lap, one over the other, bend the two and press the folded-over part against the standing part. In Fig. 1715 a shows the machine in isometric projection, a series of transverse sections being made to show the different pairs of rollers in the suecession. b shows one of the rollers detached and also sectioned to exhibit the structure. $c d$ efg h is a serius of the pairs of rollers on an eularged scale, and showing the successive shapes assumed by the edges of the tin plates.

Doub'le-seat Valve. Perhaps another name

Double-Seat Valve. for the donble-beat ralve, and the more appropriate term of the two.

The aperture a is bevelerl around to form the nsual valveseat. $c c$ are two of tive or six thin vertical plates radiating from the center and supporting the tlat disk b, the edge of which is also beveled conically to form a second sent. The valve itself is a bulging cylinder d, open-ended, and shuts down upon bath these sents. The effeetive pressure oa the valve is only as the difference in the areas of the two seats. A bar across the top receives the valve. rod, which passes through a stuting-box. The valve being oproned, the steam enters at two ways, and 2 large effective opening is instantaneously afforded. See Duuble-beat Valve.
Doub'le-shov'el Plow. A plow for tending crops, and having two small shovels on as many sheth. They are arranged a little distance apart,

Fig. 1717

and one a little behind the other. The left-hand plow is a little in the rear when the right is specially engaged in working the erop.
Doub'le-speed Pulley. A contrivanee for giving what is termed double spoed to the spindles of the self-acting mule. On the spindle a, whieh receives the motion, are three drums, $b c a ;$ of these, b is fast on the spindle, c is loose, and d also
loose, but connected with the pinion e, which works into the spur-wheel f, fixed on the spindle g, to

which the motion is to be communicaterl. On the spindle a is fixed the spur-wheel h, which works into the pinion i, likewise fixed on the spindle g. When the belt from the driving drum k is on b, it communicates a fast motion to the spindle g; when on c, the machine is ont of gear, and when on d it implarts a slow motion to g.

Doub'le Su'per-roy'al. A size of pintingpaper 27×42 inches.

Doub'le Steam-en'gine. A steam-engine which has two eylinders acting coincidently or alternately. Two double-acting oscillating eylinders, acting upon a two-cranked shaft, work coincidently, and form a double-engine. Leoj old's engine, athout the middle of the last century, was a double-engine, a duplication of the Neweomen almospheric-engine. It had two cylinders, each working its own pump, and operating altemately. The double steam-engine (Leopold's) preceded the doulle-aeting (Watt's). See Double-cylinder Steam-engine; Duplex Steam-exgine.

Doub'let. 1. (Optics.) An arrangement of lenses in pairs, invented by Wollaston. It consists of two plano-convex lenses having their focal lengths in the proportion of one to three, or nearly so, and placed at a distance determinable by experiment. Their curved sides are plaeed towards the eye, and the lens of shortest foeal length towards the ohject.

It is a reversal of the Huyghenian eye-piece, and its ohjeet is similar, - to coireet spherieal aberration and chromatic dispersion. The st p placed hetween the lenses intercepts extreme rays that might mar the perfection of the image. An anplification of the idea is called a Thlplet (which see). See also Lens.

Sir John Herschel's doublet consists of a double convex lens having the radii of curvature as one to six, and of a plano-concare lens whose focal length is to that of the convex lens as thinteen to five. It is intended for a simple microscope, to be used in the hand. See Lens.
2. A factitious gem made with a colorless front and a eoloreal back, cemented together by clear mastic on the line of the girdle.
Doub'le-tang File. A file with a tang at each end. to adlapt it to receive the handles.

Doub'le-tree. The bar which is pivoted to the tongue of a earriage, wagon, or sled, or to the clevis of a plow or other implement. To the ends of the double-tree the single-trees are attached, and to the ends of the single-trees the traces are connueted.

The donble-tree varies in shape with the description of vehicle, but has such a length that its ends are immediately behind each horse, so that the traces of the animal may pull spuarely upon them through the medium of the single-trees.

In wagons, the double-tree is attached to the tongue by neans of a bolt called the wayot-luammer, upon which it swings as one or the other horse pulls the nore strongly upon it.

Near the ends of the double-tree and behind it are loops for the stay-chains, which are connected to

Double and Sing'e Trees.
hooks in front of the fore-axle, so as to limit the sway of the ciouble-tree.

For powing and similar duty, the double-tree is sometimes arranged with three clevises; by the midde one it swings from the clevis of the plow or cultivator, and by the end clevises the single-trees are attarhed

Doub'le Wa'ter-wheel. An arrangement of two water-wheels on one shaft, as iu the case of a double-headml turbine, which has a wheel at each end of a lorizontal shaft.

Doub'le-win'dow. One having two sets of sash, inclosing a body of air as a non-conductor of heat and to de don noise.

Doubliag. 1. The second distillation of low uincs. These are the product of the tirst distillation, and contain about one fifth alcohol.
2. The double course of shingles or slates at the eave of a house.
3. (Cotton or Wool.) Bringing two or more slivers of fiber together and forming theminto one of greater thickness, to beagain reduced by drawing ; thus obtaining a sliver of uniform thickness.
The slivers from the card-ing-machine, each in its separate can $a n$, are conducted betreen one pair of rollers b, which causes them to coalesce: then through a second pair c, revolving at an increased spreed, which draws out and lengthens the sliver, and then through a third pair d, which still attenuates the sliver. The operation is repeated as often as may be necessary to correct every inequality in the thickness of the sliver.
The next process is roving, which is also performed by drawing-ro'lers; but as the sliver has become so
reducel in thickness, it receives a slight twisting. to enable it to hold togrther. This was formerly olstained by giving a rapid revolution to the receivingcan e. See Rovisg; Drawing.
4. (F'ax-manufacturc.) The process with flax is similar to that described as pertaining to cotton.

In the first place, the strick's or handfuls of hackled hax are spread on a traveling-apron and condur ted to drawing-rollers, which bring the filaments to an attenuated sliver and deliver it into cans. The slivers from a number of caus, from six to fiftern usually, are then conducted to drawing-rollers, luing thereby doubled and drazen; the process is repeated, as with catton, until the sliver is equalized and reduced to the retuired degree. See Drimwis:
5. (Silk-manufucturc.) The twisting together of two or more filaments of twisted silk. This process follows the first spinning of the filaments of silk, anm precedes the throuting, which is a farther combining, of threads and twisting then together. First, the twisted filaments; then the doubling, forming dumbsingles; then the throuring, forming thrown-sinyles.

The process of doubling silk differs from that of doubling cotton and flax, inasmuch as the silk filaments are continuous and cannot be draven. The doubling of Hax or cotton fibers is for the purpose of equalizing the thickness of slivers, and the drawing which accompanies each operation is for the purpose of lengthening the combined slivers so as to make an attenuated sliver. By this means any triHing irregularity in the thickness of a sliver is lost by causing it to coalesce with others and elongating the bunch; the process being repeated again anil again, as may be necessary.

In the doubling of silk, as there is no re-attenustion by drawing, the number of tilaments are combined into one threal of the aggregate thickness of the several tilaments.

The bobbins of thread to be doublerl are monnted on a small frame, and the ends, being collected, are passed through a loop and attached to a bobbin, upon which they are wound. The parallel thruals are then transferred to a horizontal reel, from whence: each set of combined threads is carried through the eye of a rotating flyer and wound upon a bobbin, the combined threaids or strands being twisted into a cord. The latter operation is known as throuri.g.
The direction of the twist is varied for different qualities and varieties of silk goorls.

In ordinary spinning of the silk filaments the twist is to the right.

For tram; the spinning of the filaments is omitted; when doubled, the thread is twistel to the right.

For organzine the filament is twisted to the left, then doribled and twisted to the right.

The twisting of the thread is sel or made permanent by exposire to steam.
6. (Nrutical.) a. Of the bitts. A piece of fir timber fitted on the back of the cross-piece. Fir-lining.
b. Of a wil. The double-seamed lorder for receiving the bolt-rope. The edging or skirt.
7. (Shipurighting.) Strakes of plank fastened on the onter skin of a ship; used as a fender against floating ice.

Doub'ling and Twist'ing Ma-chine'. One hy which a mumber of slivers of fiber are associatedi, drawn out, and partially twisted; or one in whith strands are laid together and twistel into a thread or cord. Sep Doubling ; Drawing-fiame.

Doub'ling-frame, (Silk-mannfacture.) A wiud-ing-engine for double silk threats.

Doub'ling-nail. A nail used in securing sheathing, lining, or supplenuentary covering to an object ; such as the lining of gun-ports, etc.

DOVETAIL.

Douche. (Surgical.) Aninstrunent for inject. ing a liquid into a cavity. They are usually known

by the name of the part to which they are applicable.
a is a catheter donche for drenching the urethra, or reaching the interior of the bladder.
l is a douche for the vagina, having one tube for the water injected, and another for the etflux.
c is a uterine douche, with a cup to fit the cervix while the point enters the uterus.
d is a holder to be used with the vaginal or uterine donche.

Other louches are specially constructed for the nose, the poterior nares, the eyc, ear, etc.

Dough-knead'er. A pair of rollers, one corru-

Dough-Kineader. gated lengthwisc and the other transversely, workinginaframe with two inclined boards and a disk below the lower roller propelled by a crank, and the rollers geared together by elastic cross-bands. There are other forms, such as a roller swiveled to a post, like the brake of a cracker-maker, which is also a dough-kneader.
Dough-mix'er. A kneading-machine consisting of a vessel having two pipes entering through its head and a discharge-pipe at the bottom. The flour is placed in the vessel, and the yeast and water,

Dough-Mixer.
highly charged with carbonic acid and mixed with a proper quantity of salt, are prassed into the vessel through one of the upper pipes, and the whole incorporated by the revolution of a vertical shaft with stirrers; when thoroughly mixed, the contents of the vessel are discharged through the pipe at the bottom. It is a kind of pug-mill.

In another form of machine, the rotating annular trough C has two pairs of rotating beaters $I I I$, to which are attached scrapers b for its bottom, while the sides are cleared by stationary scrapers I, and on the shafts are rods liaving screw-blades $J J$, reaching nearly to the bottom, to raise up and knead the dough.
Dough-rais'er. A pan in a bath of heated water, to maintain a temperature in the dough favorable to fermentation.
Dough-trough. A baker's or household receptacle, in which dough is left to fer-

Fig. 172s. ment. ln Fig. 1724
it consists of a wa-ter-tight, covered vessel of tin or other suitable material, with a jrerforated shelf across the center. The receptacles containing the
 dough arc placed upon this perforatel shelf, and then covered with a cloth to prevent the condensation of moisture upon the surface of the dough. Warm water is then poured into the lower part of the vessel, after which it is closed by means of a cover.
$\mathrm{Fi}_{6} .1725$ is on a larger scale, for the use of bakers, and consists of a box made with tapering side. and provided with a steampipe extending around the sides at the bottom. Inside of the box is the bread-

Dough-Trough. chest, which is provided with feet, so as to elevate its bottom above the steam-pipe. The box is also provided with a thermometer, and with perforated plates.

Dous'ing-chock. (Shipbuilding.) One of several pieces fayed across the apron and lappeal on the knighthead, or insite stuff above the upper deck.

Dove'tail. (Joinery.) A flaring tenon adapterl to fit into a mortise with receding sides, to prevent \square

withdrawal in the direction of the tension it will be exposed to in the structure.
The ancient Egyptians used dovetails of wood
(jougles) to connect stons at the comers of their editices.
a shows the ordinary dovetail with the parts detached; b the parts put tagether.

Concealed dovetails are made in two ways:-
$c d$ show the lap-dovetail, in which a fin of wood
Fig. 1727.

on the return erge hides the ends of the tenons and mortises.
e shows a miter-joint, locked by oblique keys of reneer. The ordinary mitcr-dovetail shows only a single line on the edge.

The series of illustrations to Fig. 1727 show the The series of illustrations to Fig. 1727 slow the
several modes of dovetailing the edges of boxes and drawers.
o is a miter and key joint.
p, the common dovetail-joint.
q, the hulf-lop dovetail.
r, the secret dovetail.
s, the lap-doretail.
t, the miter-doretail.
Fig. 172s.

Dovetail Masonry.
\qquad

\qquad
.
\qquad
\qquad

Dovetailing of ashlar-work was ocuasionally adopted in olden times, but was first reduced to a regular system by Smeaton in the construction of the Eddystone lighthouses. The solid lines in the illustration show the 24th course of the mason-work.

Dove'tail-box Plane. (Joinery.) A form of rabbet-plane for dressing doretails.

Dove'tail-cut'ter. A rotary cutter with a flaring bit used for boring dovetails.

Fig. 1 129.
Dove tailfile. A thin file
with a tin or brass with a tin or brass stiffener of a dovetail or tenon saw.
Dove'tailhinge. A hinge whose leaves are
 wider at their outer edges than at their binging edges.

A hinge whose attaching portions are branching and divergent, like a swallow's tail.

Dove'tail-ing-ma-chine'. A machine having a grang of chisels or saws for cutting dovetail-mortises or the kerfs therefor. In Fig. 1730, the horizontal base supports a block B whose upper surface consists of two equally but oppositely inclined planes $B^{\prime} B^{\prime \prime}$, whose slope corresponds with the chamfer of the desired dovetails. C C Care standards guiding to a rertical path a gate D, in which is fixed a series of chisels whose cutting-ends are at such an unequal elevation as to correspond with the obliquity of the planes $B^{\prime} B^{\prime \prime}$. These chisels are readily adjusted to any hight and degree of separation, and are fixed to their proper positions by screw-bolts.

White's Mortising Doretail-Machine.
The gate is elevated and depressed by means of a lever F, and is gaged or arrested in its descent hy a stop or shoulder. Stops on the jlanes $B^{\prime} l^{\prime \prime \prime}$ gage the stuff. I is a gage for the edge of the stuff.

The hoard containing the heading-pins already sawed is placed on one of the inclines $P^{\prime \prime} B^{\prime \prime}$, and the chisels, being caused to Ilescend, operate to excavate on one side the intervening stuff hetween the pins. The stuff being then placed on the other incline, and the gate again depressed, the excavation is completed by the cutting awny of the opposite sides.

For excavating the mortises, the doubly inclined Hock B is removed, and another gate substituted for the gate D, in which substitute gate the chisels are so secured as to have their lower ends in a horizontu! lime. The stuff being placed on the horizontal bed amd the chisels depressed, the surplus timber is excavated at a single stroke.
In Fig. 1731 is shown a machine in which the work is done by a gang of saws on a mandrel. 'i'he mortise-cutting portion is the right-hand part of the lower figure. in it the board is secured on

lower figure, and is also shown in end elevation in the upper figure. The board is secured with its end projecting over the edge of the carriage, to whichit is clamped; the angle of the tenons being determined by the angle of the bed, as seen in the upere figure. The hoard and its bed are then raised to the cutters, one side of the tenons being cut at a time, together with a portion of the wool between them, which being done, the opprosite side of the tenon is cut, and the remainder of the wood hetween them, hy changing the position of the carriage.

Armstrong's dovetailing-machine has two disks mounted on axes inclined to each other as well as to the main driving-shaft, one inclined to the right and the other to the left. Each disk has on its outer circurnference a spiral groove, making one complete turn, into which is fitted a saw composed of segments, so arranged as in one complete rrvolution to give both the longitudinal and transverse cut necessary to finish a dovetail, one laalf being made by one disk and the other half by the other.

Other kinds operate by means of cutters, of form corresponding to that of the recesses to be made. The work is presented and fed on a table with the required aljustments.

Dove'tail-joint. The junction of two pieces by means of splayed tenons and corresponding mortises of the respective parts. See Doverail..

Dove'tail-mark'er. A device for marking the dovetail tenons or mortises on the respective boards. The two plates of the frame are set at right angles to each other, and each has a scribing edge adapted to mark its side of the dovetail ; one plate is adjustable to regulate the widths and distances, the ad-

justable gage-plate affording a guide in setting the marker for the next scribe.

Dove'tail-plane. (Joincry.) A side-rabbet plane with a very narrow sole, which may be
the carriage S, in such position that the edge of said board projects under the saws or cutters nore or less, according to the depth that the dovetailing is to be cut, which will be governed by the thickness of the stuff. The board, on lieing properly adjusted, is then hrought in contact with the saws by elevating the table, therehy carrying the board upward to the saws $D D$, cutting the sides of the mortise, and of any angle that may be required, by adjusting the stays in which the cutters are hung to the remuired angle.

The central eutter H, as will he sepn, cuts into the board at a right line between the side saws, and as it leads in the cutting, the central portion of the mortise is cut away ; the side saws, as they follow, eat away the remainder, leaving a clean, angular mortise for the admission of the tenon.
The tenoning portion is on the other side of the
made by inclination in dress the sides of dovetail tenons or mortises.

The side-rabbet plane may have an under-cutting hit with a flat lower edge, so as to conform to the shape of the mortise.

Dove'tail-saw. 1. One for eutting the dove-tail-tenon on the ents of boards; or entting the dovetail-mortises in the faces or ends of hoards to receive the said tenons. There are several varieties. One consists of a pair of circular saws rumning in planes, bearing such angular relation to each other as to sive the required obliquity to the kerfs. In dove-tailing-machines rotary cutters work to a given line, aud also remove the material brtween the cheeks of oplosite doretail-tenons. Gangs of circular saws on a mambel are constructed and arranged to do the same. (Sere Fg. 1731.)
2. A :m.ill tenos-saw adapted for cutting dove-
tails. It has 15 teeth to the inch, and is usually about 9 iuches in length.
3. A saw haring two cutting edges, one at right Fig. 1733.

Dovetail.Saw.

angles to the other: one edge makes the side kerf, the other the botion kerf.

Dove'tail-wire. A kind of wire, wedge-shaped in cross-section.

Dow. A two-masted Arabian vessel. See Dhow. Dow'el. 1. A pin used to connect adjacent pieces, penetrating a part of its length into each piece at right angles to the plane of junction. It may be permanent and glued into each

Fig. 1734

Dowe!. piece, as in the boards forming the leaf of a table. Or it may serve as a joint to hold detachable pieces in position, as the parts of a Alsk.

The s!abs of calcareotus g.jpsum or " Mosul marble" which line the alobe palaces of Nimroud were united by woolen and bronze dowol-pins. The several blocks in each layer of masonry in Sueaton's EIIdstone lighthonse were cramped together, and the layers were prevented from slipping on each other by oaken dowcls.
2. A piece of wood driven into a wall, as a means of n nilins liuing or finishing work thereto. A dook.
Dow'el-bit. A wood boring-tonl adapted to be used in a brace. The semi-cylinder which constitutes the barrcl of the bit terminates in a conoidal cutting-edre. It is also called a spoon-bit. See Brr.
Dow'el-ing-ma-chine'. (Coppering.) A machine for buring the dowel-holes in the maeting edges of the pieces, which form the heads of tight casks.
Dow'el-joint. A junction formel by means of a dowel pin or pins, such as the beading pieces of a tight barrel-h ad.
Dow'el-pin. A pin or peg uniting two portions, as the pieces of hoading for a cask. A dowel.

Dow'las. (Fabric.) Probably named from Doullen», a town of Picardy in France. A coarse linen cloth for household uses.
"Filthy dorlas," says the Burd of Avon.
Down-cast (. Mining.) The rentilating-shaft of a mine, down whith air passes to the working:; as oppased to the up-crst.

Down-haul. (Nitufica'.) A rope for hauling down a stays zil, jib, or otber fore-and-aft sail. With stay sails it passes along the stay through the cringle; of the sail, and is attashed to the upper comer.

Down-share. A turf-paring plow, usel in England, where the rolling treeless tracts are called doons. These tracts in Sussex are the homos of the Southdown sheep. (A. S. Dun, dure, a hill.) The sand-banks which lie upon the sea-shores of Hollan'l are called dienes; hence Dunchurch in England, Dunkirk in the Low Countries. Hence also the Downs, the famous anchorage off the coast of Kent, England, where the Goodwin Sands form a break. water:-
"For whilst our pinnace anchors in the Downes."
2 Hevri VI. iv
2 Hevrt V'j., iv. 1.

Dows'ing-chock See Dorstrachork.

Down'ward-dis'charge Wa'ter-wheel. One for:n of the turbine or reaction water-wheel. The water is admitted at the periphery, from a spiral chute

Doventeard-Discharge Water-Wheel.
which surrounds the wheel, and, passing inward in a radial direction, curves and descends rertically.

Drab. 1. (Fabric.) A thick woolen cloth of a dun color, inclining to reddish-brown.
2. A wooden box used in salt-works for bolding the salt taken from the boiling-pans.
Drab'bets. (Fabric.) A coarse linen duck.
Drab'Ier. (Nautical.) A piece of canvas laced on the bonnet of a sail, being an extension of the bonnet, as the latter is of the sail proper.
Dradge. The inferior portions of ore detached from other portions hy the cobbing-hanmer. The better parts are known as prill.

Draft. 1. The curreut of air which supplies a fire.
When this is not mechanically aided, it is called a natural draft. When driven mechanically, it becomes a forced draft or blast. See Bellows; Blast ; Blowisg-machine; Fas, ete.

It is also known as cold or hot hlast, according to the temperature; that of the external atmosphere, cr artificially heated.
2. (Strani-boilcr.) The course or direction of the hot air and smoke; as, -

A dircet, a revcring, a split, or a wheel draft.
3. A plan or lelineation.
4. The drawing or pulling of a load or rehicle. In this connection the word forms a part of many compound words; as, -
Draft-bar.
Draft-rod.
Draft-hole.
Draft-spring, etc.

See also Draw ; Diag.
5. (Masoniry.) ('hisel-dressing at the angles of stones, serving as a guide for the leveling of the surfaces.
6. (Pattern-making.) The amount of taper given to a rattern to enable it to be withdrawn from the mold, without disturbing the luam.
7. The depth a ship sinks in the water.
8. The combined sectional area of the openings in a turbine water-wheel; or the area of opening of the sluice-gate of a fore-bay.
9. (H caving.) The arrangement of the heddles so as to move the warp for the formation of the kind of ornamental figure to be exhibited hy the fabric. linown also as drazeing, rceding-in, cordiny of the loom.
In every species of weaving, whether direct or cross, the whole difference of pattern or effect is produced, either by the succession in which the threads of warp are introduced into the heddles, or by the suceession in which those heddles are mored in the working. The heddles heing stretched between two shafts of wool, all the hedd'es connected by the same shafts are called a leaf; and as the operation of introducing the warp into any number of leaves is called dracing a uearp, the plan of succession is called a draft.
Draft-bar. 1. A swingle-tree, double or single.
2. The bar of a railway-car with which the coupling is immeriatcly connested.
Draft-box Invented by Parker. An air-tight
tube by which the water from an clevated wheel is eonductel to the tail-race. It is a means of availing the whole fall without placing the wheel at the bottom of the same.

It is sometimes used to ayoid extreme length of wheel-shaft ; at orher times to conform the arrangemonts to the peeuliar location, rendering it necessary to nlase the wher at a distanse above tall-water.

Draft-en'gine. (Miniug.) An engine (usnally steam) for plevating ore, coal, miners, etc., or for jumping ont water.

Draft-e'qual-iz'er. A treble tree; a mole of arranging the whiffletrees when three horses are pulling abreast, so that all possess an erpual leveruge.

Draft-fur'nace. A reverberatory air-furnace ; one in whick a blast is employed.

Draft-hole. The hole whereby a fnmace is supplisel witlı :ir.

Draft-hook. One of the hooks on the checks of a gun-earritge to maneuver it, or attach additional dralt-grar in strep places.

Draft'ing In'stru-ments and Ap-pli'ances.

Arongriph.
Bow-pen.
Bow-pencil.
Campra (obscure and cidet.
Cecograph.
Centrolinead.
Chiragon.
Compasses (varieties, see Pen-maker

Compass).
Copying-instrument.
Crayon.
Curve.
Curvilinear.
Curvograph.
Cyelograph.
Diagonal scale.
Dividers.
Dotting-pen.
Double drawing-pen.
Double jointed compass.
Drafting-board.
Dralting-scale.
Drawing-compass.
Drawing-pen.
Drawing-pin.
Eidograph.
Elevation.
Ellipsograph.
Everpoint-pencil.
Fountain-pen.
Froude's compass.
Geometric pen.
Gold pren.
Hair-peneil.
Helicograph.
lnk-well.
Isometrical projection.
Lead-pencil.
l.g.g.

Lengthening.pen.
Manifold-writer.
Map-measurer.
Micrograph.
Music-pen.
Music writing-machine.
Napier's compass.
Netdle-holder.
Optigraph.
Pilette.
Pantograph.

Pen-knife.
Parallel ruler.
Pistel.
Pen.
Pencil.
Pencil-ease.
Pencil-sharpener.
Pen-holder.

Pen-rack.
Perspective instrument.
Perspectograph.
Pillar-compass.
Plan.
Planimeter.
Plotting-scale.
Polygraph.
Port-crayon.
Profile.
Proportional compasses.
I'rotracting-bevel.
Protractor.
Quill-pen.
Reticulation.
Right-line pen.
Roulette.
Rule.
Ruler.
Ruling-pen.
Scale. Drafting
Sciograph.
Scorer.
Scotograph.
Section.
Sector.
Silhouette instrument.
Slate.
Slate-pencil.
Sliding-rule.
Spirals. Jnstrument for drawing
Syuare.
Station pointer.
Strel-nen.
Straight-edge.
Tablet.
Tangent-scale.
Tracing-instrument.
Trammel.
Triangle.
Triangular compass.

T-square.
Tube-compass.
Vertical plan.
Whole-and-half compass.
Universal-compass.

Draft'ing-scale. A straight edge graduated with scales of cllains and tenths, or inches and twelfths, for platting surveys, or drafting plans or elevations of machinery or other structures.

Draft-reg'u-la'tor. A means for opening ancl elosing furuace-doors, of danıers in the air, Iraft, or discharge flue, so as to urge the fire or morkerate its intensity respectively, as it may lag below or !uicken above the desired standard.

Automatic devices for this purpose are actuated by arrangements known as thermostats. These usnally depend upon the expansion of metal by leat and its consequent contrartion asit cools. The lengithening or shortening of a metallic rod is the actuating force which is communicated by levers or other mechanism to the door, legister, or damper. As a certain relation exists-under ordinary conditions - hetween the heat of steam and its pressure, the heat or pressure of steam acting on a column of mercury may be made by electric eonnection to actuate a magnet, and so operate the device which governs access of air to the furnare, or determines the area of the the by which the volatile results ol combustion are discharged. See Damperi.

Draft-rod. (Plow.) A rod extending beneath the beam from the clevis to the sheth and taking the strain off the bam.

Draft-spring. A spring intervening hetween the tug or trace of a draft animal and the load, whereby a jerking strain upon the animal is avoided. It was invented aul used by Sir Alexander Gordon. Draft-springs are eonnected to the draw-bars of railway cars, to lessen the violence of the jerk in starting.

Drag. 1. (Husbandry.) A heavy description of harrow.
2. (Neutical.) A floating anchor, nsually a frume of spar's and sails, to keepra ship's head to the wind and lessen the speed of drifting. See Dhag-anchor.
3. (Velicicle.) a. A shoe to recrive the wheel of a vehicle to stop its revolution, and by triction on the ground lessen the speed of the vehicle down hill. Sec Wagon-lock.
b. A rough, heavy sled for hauling stones off a field, or to a fommation. A stone-boat.
c. A kind of four-horse vehicle used by sporting characters.
4. (Molding.) A, the bottom part of a mold, as distinguished from the cope.

5. (Hydraulic Enginccring.) B, a scoop having a long flexible handle and operated by a wiuch, for
decpening a chamnel, scraping a place for a submerreel fonndation, or removing the mud, etc., from the inside of a coller-dam. A form of dredging-machine.
6. (Saving.) The carriage on which a \log is dogged in a veneer saw-mill. The drag has two motions, one past the saw to yield a vencer, and the other at right angles to the same and equal to the thickness of the veneer, plus the width of the kerf. See Yeneer-saw.
7. A net or four-clawed grapnel used in dragging a pond or harbor to recover the hody of a drowned person, or property which has been lost overboard. A creeper.
8. (1fusonry.) A thin, indented phate for scraping and finishing the surface of soft stone.
9. (Morine Engincering.) The difference between the speed of a screw-ship under sail, and that of the screw when the ship outruns the latter. See Surp.

The difference between the propulsive eflects of the different floats of a padille-wheel.
10. A frame of iron with an attached net to scrape up and gather oysters by dragging upon the bed. See Dredge.
11. (Hisboundry.) An implement with hooking Fig. 1737.

Manure-Drag.
tines to haul manure along the surface. A manuredrag.

Drag-an'chor. (Nautical.) A frame of woorl, or of spars clothed with sails, attached to a hawser, and thrown overboard to drag in the water and diminish the lee-way of a vessel when drifting, or to keep the heal of a ship to the wind when unmanageable by loss of sails or rulder. It was patented uader the name of a drag-shect, by Burnct (English) 1826. It is sometimes made, in an emergency, of spars lashed together to form a triangular or rectangular frame, which is then covered with a sail. When constructed and carried as a part of the shin's equipment, it is malle to serve as a raft or drag as may be required; but the peculiarities are generally contined to means for compract stowage anel to spilling-lines for their recovery, either by collapse or reversal of position to euable them to be readily drawn in and hauled on board after having serverl their purpose. Treatises on navigation give illustrations of a variety of devices for this purpose, and a number are patented. One edge of the drag may be weighted, as it is essential that it he submerged, and that it should assume a position at right angles to the taut cable which conncets it to the ship.

In the upper view (Fig. 1733), the dract is a wooden frame whose corners are secured by bridles or anglelines to a cahle which is made fast to the bitts on board. A buoy is attached to the upper edge of the drag, and a spilling-line enables the drag to be canted
over, so as to diminish its resistance when being drawn in.

In the lower riew the ribs of the wings are hinged to a hub ou the shaft, so that they may expand when

brought into nse and may contract when the drag is uset by the spilling-line while it is heing drawn in. A buoy is used, as in the drag described above, to show the position, and to keep the drag in its effective position. Brares connect the ribs to a slicling collar on the shaft, and the frame is covered like an umbrella with heavy sailecloth lashed to the ribs.

Drag-bar. (Railuay-cngincering.) A strong iron rol with eye-holes at each end, connecting it locomotive-engine and tender by means of the elragbolt and spring.

Drag-bench. A bench on which fillets of golld or silver are drawn through an aperture, to hring them to even and exact proportions. See Draw. bexir.

Drag-bolt. The strong removable bolt coupling the drag-bar of a locomotive-engine and tender together.

Drag-hook. The drag-honk asid chain are the strong chain and hook attached to the front of the engine buffer-bar, to connect it with any other loco-motive-engine or tender ; also attacherl to the draghars of other railroal carriages on the English system of connection.

Drag-link. A link for connecting the cranks of two shafts ; it is used in marine engines for connecting the crank on the main-shaft to that on the inner palldle-shaft.

Drag'on-beam. (Cormpted from diagomal beam.) (Building.) a. A horizontal timber or diagonal plate used in hipped roofs and on which the foot of the hill-rafter rests. Drenging-beam.
b. A diagonal brace which stands under a breastsummer and whose foot rests on a shoulder of the king-post.

Drag-saw. A cross-cut sawing-machine in which the effective stroke is on the pull motion, not the thrnst. In the illustration it is shown as operated by horse-power. The log is clamped hy levers. The saw is held aloft by a stirrup while the \log is feel forvard for another cut.
Drag-sheet. (Noutical.) A snil stretched by spars and thrown over to windward to drag in the

tion covered in by stones and carth.

In the fen lands of Cambridgeshire, England, and other lands of the same description in adjoining counties, the main drains have generally been made $7 \frac{1}{2}$ feet deep, or more
water and lessen the lee-may of a drifting vessel. See Dhag-aychor.

Drag-spring. (Railroad.) a. A spring attached to the drag-Uar to lessen the jork when starting up or increasing slued.
b. A strong spring placed near the back of the tender. It is attached by the ends to the draco-bar which connects the engine and tender, and by the center to the drag-bar which connects the train to the tender, according to the English mode.

Drag-staff. (I'chicle.) A pole fivoted to the hind axle and trailing behind a wayon or cart in ascending a hill or slope. Used to hold the velicle from rolling backward when temporarily stopuing on a hill to rest the team.

Drain. 1. A water-course to remove surface water, or so much from the subsoil as interferes with the fertility of that above it.

Covered drains are made in a rariety of ways :a. A layer of stones in the bed, covered by the earth which had been removed in digging.
b. Where Hat stone is obtainable, two side stones and a cap, covered in with the soil.

Fig. 1740.

Drains.

c. A duct formed with a flat tile i and an arched semicylindrical tile, covered in with stones, to allow percolation of water, and closed with soil.
d. In tenacious soils a shoulder may he made in the drain to sulpport flat stones which bear the superincumbent earth.
c. Assorted, large stoncs in the bottom, covered in by smaller stones and a filling of soil.
f. ln peaty soils the drain may be corered in with blocks of the peat or by turfs which will preserve their position for a considerable time if laid properly.
g. A bed stone and side stones to form a triangular duct covered in by stones, a layer of turf, and the filling of soil.
h. A luct formed of two semicylindrical tiles, respectively ahove and below a flat tile; the whole covered in by stones and the earth as before.
i. A perforated drain-pipe of circular or oval sec-
in larger districts, so that the water may never rise higher than within 18 iuches or 2 feet of the surface of the ground. The lalles or float-boards of the scoop-wheel dip 5 teet below the surface of the water, leaving a foot in depth below the dip of the whecl, that the water may run frcely to it. The main drain brings down the water to the engine with a descent of 3 inches in a mile; 5 to 18 imhes is better. Sulplosing that the wheel dips 5 fect below the surface of the water in the main drain, and that the water in the river into which this water must be raised and disclarged has its level 5 feet above that in the drain, the wheel in such case will be said to have 10 feet head and dip, and onght to be made 30 fect in diameter:

The largest quantity of water delivered by one engine is from Decping Fen, near Spalding; this fen contains 25,000 acres, and is drained by two prigines, one of 80 and one of 60 horse power. The 80 -horse engine has a whec of 28 feet in diancter, with float-boards or ladles measuring $5 \frac{1}{2}$ feet hy 5 feet, and moving with a mean velocity of 0 feet per second; so that the section of the stream is $2-\frac{1}{2}$ feet, and the quantity discharged per second $16 \frac{3}{3}$ cubic feet, - equal to more than $4 \frac{1}{2}$ tons of water in a second, or about 16,200 tons of water in an hour.

It was in 1825 that these two engines were erected, and at that time the district was kept in a half-enltivated state by the lelp of forty-four windmills, the land at times being wholly under water. It now grows excellent whent, proulucing from 32 to 48 bushels to the acre. The land has increased in valuc fourfoll. See Scoop-witeel.
2. (Founding.) The trench which condncts the molten metal to the gate of the mold.

Drain'ing-au'ger. A horizontal auger occasionally used for boring through a bank to form a chan-

Fig. 1741.

nel for water. It is also used for cutting an opening for laying lead-pipe or drain-pipe. In each case it is intended to save the labor of opening a trench. It is also used for draining marl-pits or cellars, when the circumstances of the level suit."
The mode of operation is as follors: the lerel having been determined, a spot is leveled on the down-hill side for placing the machine. The horizontal axis abore is tnmed by two men at the hand.
cranks, rotating the vertical shaft and bevel pinion which turns the larger wheel on the shaft of the auger.

When the pod of the auger is full, it is withdrarn by rotating the other handle. If hard stones be encountered, the auger is withdrawu and a chisel or drill snbstituted.
Drain'ing-en'gine. A pumping-engine for removing water from mines, lowlands, etc. See Curitsh Evgine.
The scoop-wheel and the baling-scoop are much uset in England. The contrifugul pump is used in England and the United States. The pmoping-engines used in Holland at the Haarlem Mere are vertical double-cylinder condensing-engines, one cylinder within the other, the outer oue being annular.

All other drainage enterprises sink into insignificance beside those of Holland.

These great public works, since their commencement in 1440 , have gradually extended until they include an area of 233,062 acres drainel by mechanical means. See Weale's "Dictionary of Terms of Art," pp. 277-253.
One of the latest, and the largest, of these enterprises, was the drainage of the Haarlem Lake, 45,230 acres, which was tinished a few years since.
The average level of the boezen, or eatel-water basin, of the district is 10 inches below the ordinary low-water, and 27 inches below high-water mark in the I' or Zuyder Z'e ; and 7 inches above low water, and 57 inches below ordinary high water, in the North Sea.

The bed of the Harrlem Lake is 14 feet below the wiuter level of the boezem, and the maximm lift may be therefore assumed to be 27 iuches +14 feet + 18 inches, - the last being the required depth of the water surface below the ground surface, to render the latter tillable, - amounting in all to 17 feet 9 inches.

The water contents of the Haarlem Mere to be pumped out, inchuling the adlitional quantity arising from the surplus rain and infiltration during the draining, was estimated at $800,0.10,000$ tons.
The greatest quantity of monthly drainage when the mere is propped ont is estimatel at $36,000,000$ tons, and the anmual average surplus of rain-water, ete., at $54,000,000$ tons, to be lifted, on an average, 16 feet.

The three engines were named the "Leeghwater," erected abont 1847, the "Cruquius," and the "Lynden," after three celebrated men who had at different periods proposed plans for draining the Haarlem Nete.

The "Leeghwater" was the first erected, to work eleven pumps of 63 inches diameter, with 10 feet stroke in pumpis and steam-cylinters; and the "Cruquius" and "Lynden" were afterwards constructed, to work eight pumps each, of 73 inches dianneter and with 10 feet stroke; each engine is calcnlated to lift ib tons of water per stroke.

In testing the capacity of the engine for working in emergencips, using the eleven pumps simultaneously without recrand to the consumption of fuel, the engine was found to lift per stroke 109 tons net of water to a hight of 10 feet. At an economical working-rate the encine performed a duty of $75.000,000$ pounds, raised one font ligh by a consumption of 94 pounds of Welch coal. The net effective force was 350 -horse power, the consumption of fuel $2 \ddagger$ pounds of coal per horse-power per hour.

The accompanying aketch is a representation of the interior of the "1,ynden" engine and enginehouse, on the upper floor; the "Cruquius" is on the same model; but the "Leeghwater" has the
inner ends of its eleven pump-beams arranged under the great cross-head, instead of over it.

Each engine has two steam-cylinders, placed concentrically, the one within the other, the outer of 12 feet dianeter, and the inner one of 7 fert diameter; both are secmred to one bottom, and corered by one cover, bat the inner cylinder does not touch the cover within $1 \frac{1}{2}$ inch ; there are two pistons, 20 inches deep, the compartments of which are fitted with cast-iron plates; the outer piston is anmular, and has a packing on both sides; beneath this annular piston a constant racuum is maintained when working; the two pistons are connected by live piston-rods, as shown in the sketch, to a great cro-s head or cap, the whole mass weighing abont 5. tons, and by eight connecting-rods the cap-pistons

The "Lynten" Engine, Haarlem Mere, South Hulland.
are suspended from the inner ents of eight cast-iron halance-beams, to the outer ends of which are hung the eight pump-pistons.

The action of the engines is very simple; the steam, heing applied under the inner biston, lifts both the pistons, the great cross-heal, and inner ends of pump balance-beams simultaneously, and the pump-pistons descend at the same time; by an bydraulic apparatus attached to the great crosshearl, the dead weight of the pistons, etc., is arrestel at the point to which it has been thown up by the steanr, and time is given for the valves of the pump-pistons to close before the down-stroke of the steam-pistons is male; then, the equilibriumvalve being opened, the lyydraulic apparatus is liberated at the same moment, and the steam lassing from beneath the small piston above hoth pistons, the pressure on both sides of the small one is equal. ized, while nearly two thirds of the steam acts upon
the annular piston against a vachmm, and in aid of the deal weight helps to make the down-stroke in the strim-cylinder and the up-stroke in the fumps. The use of the two celinders enables the engineman, ly judicionsly alterng the expansion in the small cylinder, to command his work at all times, withont stupling the engine to take out or put in deand weight, ats would he necessary for a singleacting one-cylinuler engine, where dead weight only is used for lifting the water. It has frempently occurred that the load of an engine has been added to or diminished by ten or twelve tons in the course of half an hour, by the action of gales of wind on the surface of the mere and hoezem. Each engine has two air-pumps of 40 inches diameter, anl 5 feet stroke. The steam is cut ofl in the small cylinder at from one fourth to two thirds of the stroke, accorling to the loul; and after expanding through the remainder of the stroke, it is still farther expanded in the large eylinder.
The engines were designed and constructed by Gibbs and Ibean, English engineers, and the proot of quality is that upon occasion the engines lave worked up, to a duty of $87,000,000$ poumls. The cost of the machinery and building was about $\$ 750,000$.
The mere is now a tract fully subdued to the purposes of agriculture.
For elevation and plans in details of the engines, see "Civil Engincer's and Arehitect's Journal," Vol. X.: Lonion, 1847.

Drain'ing-ma-chine'. A form of filter or nachine for expediting the sejaration of a liquill from the magma or mass of more solid matter which it

saturates. 1t consists of a revolving ressel with perforated or wire-gauze onter surface, which allows the fluid portion to escape while it retains the solid particles. It is much used in draining sugar. See Centhifugal Marmine.

Drain'ing-plow. A ditching-plow. A favorite English kind has thee colters, two moldhoards, and a slare. It is shown at $1 B$ (Fig. 1744). The middle colter is rertical, and splits the soil in the midhle of the furrow ; the two side cutters are inclined, to cut the sloping sides of the ditcle; the share cats the bottom of the ditch, and the moldhourds lift the soil in two slices, which are deflected laterally and delivered on the respective sides of the diteh. The usual dimensions of a diteh thas made are 12 inches deep, 15 inches wide at top, and S inches at the bottom.

Fowler's draining-plow (Euglish) was exhibited in 1850 , and was peculiar in the respect that it laid the drain-tile in its rear. The plow had a mole at the

end of the sharp, broal stanlard, and attached to the mole was a rope upon which the sections of draintile were strung. As the mole advanced, it drew in the string of tiles.

When it is desirel to cut a trench deeper than ean lie effected by the orlinary mole of using the plow, the arrangement shown at C (Fig. 1744) is employed.

An anchor or look l is inserter in the ground, affording a fixed point of resistance to the pulley k : Foree is applied to the handle at the top, which communicates motion to the wheel h, with a very great increase of power, and the acting portions of the plow ec d are forced through the soil. The arrangement at $a b$ enables the conductor to give the required dejoth to the furrow. A roller g, resting on the ground, stupports the forwarl portion of the plow. See Excayator.

Drain'ing-pot. (Sygar-manufacture.) An inverted conical vessel in which wet sugar is placed to drain.

Drain'ing-pump. A pump (punpe custraise) for elevating watur containing sand and gravel. The single cylinder is open hoth at top and bottom, and is traversed by a piston without a valve. The cylimber is inclosed in a larger ressel, water-tight, which is itself fillerl with water. This larger vessel is divided into two equal parts vertically, by a partition which joins the working cylinder, so that the eylinder itself forms a part of the division. One extremity of the cylinder communieates with the cavity on one side of the partition, and the other with the opposite. The four valves are large balls of indiarubber, loaded in the interior with lead. They are contained in separate boxes by the side of the principal box, and are in communication by pairs with the two carities into which that box is divided.

The figure given shows a section of the cylinder, and a view of the arrangement of the pair of valves corresponding to the neares half of the cylinder reserroir. The piston is represented as at the bottom of the stroke; as it rises the lower valve is raised ly aspiration and water enters; as the piston descends the lower valse closes and the upler one rises to allow the water to flow ont. The other pair of valves (not shown) have their induction and elluction by the depressiou and elevation of the $\mathrm{p}^{\text {is }}$ ton respectively.

Drain-pipe.
Fig. 1it6.

Pipe-Machine.

1. (Ercuing.) The pipe throngh which the wort is drawn from the mash-tub to the under-buck:
2. (Husbandry.) Clay pine, known as drain-tiles, laid heneath the surface of the soil below plow depth, in order to carry off superfluous water and increase the fertility and ease of working the soil. See Tiles.
The tempered clay being placel in a cylinder, the piston is depressed and the clay exules through the annular throat of the dod, forminer a continnous cylinder which is cut by a wire into sections of the required length.
Drain-tile. Drain-tiles are of many forms. See Tile.

They are usually lail by opening a cutting in the ground as narrow at top as can be conveniently worked, and at bottom forming a smooth bed in which the tile fits. The spades for this purpose are made tapering, and of different sizes. See Srade ; Dratis.

Gibbs's plow for opening the ground was nsed in England abont twenty years since, and made a trench with vertical sides, of the width for the tile to lie in.

Fowler's machine for laving drain-tiles was a mole-plow for making loles in the ground at a depth of from 2 to t feet, and drawing into the hole thus made a rope upou which a succession of draiu-tiles was strung.

It has an apparatus attached for raising or sinking the plow, so as to lay a level drain under an uneven surfice ; it is drawn by the power of a windlass, and one horse's porser exerted there will move the plow a yard in twenty seconils at a depth of 2 feet 6 inches. Three horses, four men, and six hoys will keep, two plows going, and lay 4,000 feet in a day at a depth of 3 feet. Sce Drain-plow; Mllele-rlow:

A hole remuires to he dug for the machine at every bunilrell yarrls, or six for an acre.

Drain-trap. A device for allowing water to pass off withont admitting the passage of air through the duct. See stesch-trap.

Drain-well. A pit sunk through an impervious stratum of earth to reach a pervions stratum and form a means of drainage for surface water, or a means of discharge of such liquid waste from manu-
factories as would foul the running water of streams. Such wells are properly termed absorbing-itells (which see), and by Arago are called negative artcsian-ucells, - a term more curious than profourd. In former times the plain of Palnns, near Marseilles, was a morass, hut was drained by means of absorling. wrols dug by King Rene ; the waters thus carrind ofl are said to lave formed the fountains of Mion, near Cassis. The lake of Jonx is supplied from the riser Orbe in the Jura and the lake of Rousses, and has no visible ontlet. lt, howerer, maintains about au evenlerel, and has evidently, as observed ly Saussure, "subterrauean issules by which the waters are engulfed and disappear." The inhalitants of this valley keep up their absorling-wells with care, and open new ones 15 to 20 leet in depth whenever the surface water appears to be too slowly carried off. The waters reap'pear in a large spring called Orbe, two miles below the southern extremity of the lake, issuing at a point 650 feet below the level of the surface of the lake.

A potato-starch manufactory at Villetanense, three miles from St. Denis, France, is tid of 16,000 gallons of fetid waste water jer day, with what eflect upon neighboring or distant wells or springs daes not appear: The town of Alexandria, Virginia, is situated upon an impervious clay of fiom 10 to 15 feet thickness, and a common mode of house and closet drainage is ly wells which reach through this stratum into the sand substratum beneath. Gool for the honses, bad for the wells of drinking-water.

Drap-d'été. (Fubric.) Summer cloth twilled like merino.

Draught. See Draft.
Draughts. See Checkers.
Draw; Draw'ing. A tension. The term forms part of compound words concerned in the draft of railroad-cars. Snch are draw gear, head, link, spring, etc.

It also describes other attenuating processes, as the pulling of wire through an aperture in the Draw-plate (which see).

The leugthening of a heated rod by hammering.
The action of rollers and other tension on slivers or rolls of tiber. See Drawthg-flame.
2. (Founding.) Saill of a pattern whose shape is such that it may be withulrawn from the sand without breaking the nolded form. Delivery; dreft, tuper.
3. (sipinainy.) The gaining of the mule-carriage; its progress after the feed is stopped draws ont the yarn.

Draw-bar. An iron rod to connect a locomotive witl a tender.

Draw-bench. A machine for drawing slip's of metal though a gaged opeuing. See DlawnisBEXCH.

Draw-bore. (Camentry.) A bole so made through a temon and mortise that the in will chaw up the shoulder to the abutment. The hole through the tenon is bored at a distance from the shoulder less than the thichness of the cheeks measured between the hole through the mortise and the face of the abutment against which the shoulder is drawn.
Draw-bor'ing. The operation of polisling a musket-barrel after it has been ritled.
Draw-boy. (IFcaring.) Formerly the boy who pulled the cords of the hamess in figure-wearing. A term sometimes applied to the meehanical device which forms a substitute for the boy. See JacQLALE.
Draw'-bridge. A form of brilge in which the span is removahle from the opening to allow masted vessels to pass, or to prevent crossing.

The earliest mention of these is in the Egyptian monnments, where Rameses 11. celebrated his victorics over fortified cities, 1355 в. c. He is supposed to be the Sesostris of Herodutus and Diodofus. The sepulchal and palatial juintings represent the brilges as crossing the moats around castles and fortified towns.

Drawbridges are used in crossing canals, rivers, and dock entrances, which are occasionally traversed by masted vessels.
They are also usel in crossing the ditches, fosses, and moats of tortifications.

They are of four kinds: -

1. The lifting.
2. The siving.
3. The buscule.
4. The rolling.
5. The lifting-bridge is used in Holland upon the canals and in fortifications, in places where the roadway is near the Jevel of the water. The bridge is lifted bodily and supported by a heavy framework, while the vesse? passes. See Lifting-bildege.
6. The turning-bridge or swing-bridge moves on a vertical pivot, being sometimes in two seetions which meet half-way across the water-course. The portion on land is a counterpoise for that projecting over the water, and the bridge moves in arc-shaped tracks resting on cannon-balls. See SWing-mbinge.
lt is sometimes supported by a central post and swings 90°, opening two passages for vessels, one on each sille. This is a pivot-brilge.
7. The basculc-bridyc turns on a horizontal pirot, standing in a vertienl position on the side of the wa-ter-way while the vessel passes by. The inmer end is in excess of the weight of the roadway and descends

Draw-fil'ing. Drawing a file longitudinally of a piece of metal without giving the file any movement in the direction of its length.

Draw-gage Cut'ter. A harness-makir's tool for cutting strips of leather of any set width. See Gage-KNHe.

Draw-gate. The valve of a sluice, either of a canal, a flushing arrangement, or a tlume or jenstock of a water-whecl.

Draw-gear. The coupling parts of railroad-cars. See Cali-cuetling.

Draw-head. 1. (Railway.) The projecting part of a draw-bar in which the coupling-pin comects with the link. See Cal:-colplisg.
2. (Spinning.) A device in spinning in which the slivers are lengthened and receive an adilitional twist.

A form of draw-head which lengthens the roving and twists it simultaneonsly is slown in Fig. 1748.

into a pit bnilt with hydraulie masonry. This pit is not material, rerhaps, in fortifications, but is not desirable in ordinary road or dock work. The bascule may be seen at Havre and Hull. See BisculeBHIDGE.
4. The rolling-Lritge has been introlucel on some English railways. The bridge passes Jaterally upon a carriage until it has passel the junction of the line of rails, and then rolls inward to leave the water-way clear.
In the example, the movable cars or platforms are suspended by rols and form traveling trucks, which run upon rails laid on the top of metallic tubes supported on pillars, and which serve also as vialucts, by which means the crossing of streams is afforted to traffic and travel. The tubes are to be elevated sulficiently to allow vessels to pass muder the same.
Draw-cut. An oblipue motion of a knife, so as to move lengthwise across an object as well as cutting into it.
Draw'er-lock. A form of inside or mortise lock which projects its bolt upwardly into the strip above.

The proress is effected in small space at one operation by means of the comhined condensing-tulte c and draw-rollers $m m$. These latter are aljustably journaled in a box a at the end of the tulue c, so that they revolve with the tube on a common axis passing through the center of the tule and between the rollers. This revolution is cffectel by belt and pulley. They have, however, an independent motion on their own axis, at right angles to this common axis, which is derived from independent bevel-gears o g. The roving from the spool F is drawn by the first set of take-up rollers a $a^{\prime} a^{2}$ into the condensing-tube, thence passing through the drawing-rollers $m m$, whose speed of rotation on their independent axis may be so adjusted relatively to their rotary motion in common with the tube c as to give any required degree of twist. The yarn then passes to the second set of take-up rollers, and thence to the spinille D as nsnal.
Drawing. 1. (Fibcr.) Extending a sliver for the purpose of drawing its fibers parallel and increasing its length. The drawing aud doubling
process first draws out the slivers as produced by the finishing eard by means of drawing-rollers, and then unites several of these into one. The object of the first operation is to draw each fiber past the next one, thus placing them still more completely paralle] to each other; while that of the second is to nentralize the inequalities in eael seprarate sliver, and to strengthen them after haring been extended. See Drawing-frame.
The drawing of long wool for worsted is somewhat similar to the operation with cotton. The slivers are combined, attenuated, and twisted ready for the farther operation of spinuing.

Flax is drawn in substantially the same manner as cotton, some modifications in the arrangements alapting the machinery to the material.
The hackled flax, having been carefinlly sorted into grades of quality by the sorter, is spread upou a feeding-cloth by hand, in sueh a manner that the fonward euds of each strick reach to the middle of the preceding one, so as to preserve a uniform thickness on the feed-cloth, the stricks of hackled tlax being sinaller at the ends than in the midele.
The flax is thus fed to one pair of rollers, which deliver it through gills or haekle-points to a second pair of rollers revolving at a greater speed. It is then conducted to a can.

These slivers are next taken to the spreading-frame, where a number of them are laid together and drawn into one length by passing between consecutive pairs of roll. ers, each pair rotating at a rate above that of its predecessor.
The arrangements vary in the production of dif-
Fig. 1749.

Draving Flax.
ferent yarns, but in a given case eight slivers may be drawn into one in the first fiame, twelve into one in the second, fifteen into one in the third.

The sliver when sufficiently equalized and attenuated proceeds to the roving-machine, which gives it a slight t trist and winds it on bobbins ready for spinning.
2. (Wearing.) The arrangement of the heddles in accordanee with the requirements of the ornament to be exhibited. The druft or cording of the loom.
3. The making or copring of plans, and views of buildings, machinery, and other structures.

In this connection we have the compound words :-

Drawing-board.
Drawing-compass.
Drawing-paper.

Drawing-pen.
Drawing-jeneil.
Drawing-slate, etc.
4. (Metal-worhing.) The operation of hammering, rolling, or drawing through a die, by which a bar or rod of metal or a wire is extended in length to form a rod, tube, or plate.

Draw'ing-awl. (Lenther.) A leather-worker's awI, having a hole near the point in which the thread is inserted and pushed through in sewing, etc.
Draw'ing-bench. An apparatus invented by Sir John Barton, formerly comptroller of the British Mint. Strips of metal are brought to an exact thiekness and width by being drawn through a gaged opening, made by two eylinders in the required proximity and prevented from rotating.

The cylinders are fastened in a head a at one end of a beneh, and the sharpened end of the metallic strip is thrust through them so as to be grasjed liy a pair of jaws on a earriage b, which is retracted by an enuless chain. When the strip has passed through the throat, it is automatically disencaged from the jaws, and the earriage returns. The operation is similar in prineiple to that of drawing wire through a draus plate.

Draw/ing-board. A square frame, with either a continuons surface or a sliftable panel, for holding a sheet of paper while plotting, projeeting, ete.

Draw'ing-com'pass. An instrument with two legs, used for striking circles and curves. One leg has a pen or pencil, and it has several modifications, sueh as bow-pen, bov-pencil, beam-compass, ete.
Compasses for measuring and transferring measurements are ealled dividers, bisecting-compass, proportional compass, ete. See Compass.

Draw/ing-frame. 1. A machine in which the slivers of cotton or other wool from the carding-machine are attenuated by passing through consecutive pairs of rollers, each successive pair rotating at a higher speed than its predecessors.
The derice was first inrented by Leon Paul, patented 1738; and perfected by Arkwight, patent
1769. It was called a water-frame, from the circumstance that Arkwright's marhimery was driven by water-power:

It was mamel a throstle from the brisk singing or bumming sound made by it. See Thiostle.
It is nsed in the process of doubling slivers (sce Duvibeni), and is indispensable in the bobbin-entfly mechine and the mule (which see).

The drutiny-frume, disconnected with any spinning operation, is a machine to elongate the spongy slivers proluced by the carding-engine, to straighten the filaments and lay them parallel.
The drawing-frame is also used to equalize slivers by condensing a number into one (see Doubling), and then rlongating them so as to overcome special defeets. Filaments which have become doubled over the teeth of the carding-machine are also straightened in the process of doubling and drawing.
The druwing-frume consists of three pairs of roll-
Fig. 1751.

ers, the upper ones being covered with leather and the lower ones fluted loogitulinally. The upper ones have an imposed weight, anl the lower ones are driven by power, and carry those above. The rollers are driven with varying degrees of velocity ; the second b, say, at a speed double that of the first \boldsymbol{c}, and the third or delivery rollers a at a speed five times that of the second b.
The delivery-rollers, called the front-rollers, turn in hrass lushes in fixel iron bearings, but the other roller-brasses are alfustable in grooves towards aml from each other and the front roller, to adapt their distances to the length or staple of the cotton operaterl upon.
The curel-cnels or slivers $n \mathrm{~m}$, from separate cans, are united and pressen together between the rollers (doubling), ant by the increased speed of the suecessive pairs are drawn out into a Hat sliver, two of which are combinell, passed through a fumel I, between compacting rollers $K K$, and thence to a can. A hoard above the upper rollers has flannel on its lower surface, and acts as a wiper.
The operation is as follows:-
Suppose six slivers from the carding-machine, or aurd-ends, to be inserted and passell through the first pir of rollers, the second pair, traveling at double the rate of the former, will elongate every inch of the compound sliver into two inches, and the third will make it ten inches, so that the combined sliver is formed into one of ten times the length and proportionate size ; this process is repeated again and again, so that in very fine yarn the fibers are lail parallel to each other many thousands of times, and with coarse yarns as many as a thousand times. For instance : -
Ten carlonds formed into one ribbon of the same size and six times the length; six of these ribbons similurly treated and formed into one; six of the latter. by a thirl operation, formed into one sliver; and five of these drawn into one, - will have the ef-
fect of placing the fibers parallel to each other 1080 tines $(6 \times 6 \times 6 \times 5=1080)$.

The drawing-frame for long-stapled wool is for drawing out and extending the slivers which have already been operated upon by the Bheaking-frame (which see). This is a repetitive operation, and it is usual to pass the wool through the breuking-frame and four tines through the drawing-freme before roving. These slivers are united at each drawing, and are extended to, say, four times the length. The result is an actnal extension and an oft-repeated laying of the slivers alongside of each other, so as to blend them and reduce inequalities.
2. (Silk-machincry.) A marhine in which the fibers of tloss or refuse silk are laid parallel, preparatory to being cut into lengths by the cutting-engine, to be afterwards worked like cotton.
The orler of the machines is as follows:-
Ifuckiling.
Filling-engine (which see).
Iruring-frame; the filaments are helil firmly by one end, and a comb travels over the surface to remuve inpurities and short fibers.

C'utting-cngine reduces the filaments to a staple about $1+$ inches in length.

Scutcher.
Clcanser and dryer.
Carding-muchine.
From whence the staple is treated like cotton. Ace Cahdigg-machine; Drawing; Dudbling; Ruying-machine; Thiostle; Bobin-ani-Fly Fhame, etc. See list nuder Cotros, ete., p. 631.
Draw'ing-in. (Weraving.) The process of arranging the yarn threads in the loops of the resplective heldeles.
Draw'ing-knife. 1. A blade having a haudle at pach end, and used by coopers, wagon-makers, and carpenters. 1t is usually operated in comection with a shaving-horse, which lolds the stave, spoke, slingle, axe-handle, or other article whieh is being shaved.
2. A tool used for cutting a groove as a starting for a saw-kerf.
Draw'ing-ma-chine'. 1. One for elongating the soft roving of fiber. See Drawing-frame.
2. One for drawing a strip of metal through a gagerl opening to equalize its size. See DhawisgBENCII.
3. A form of spinning-machine for ductile sheetmetal.

Draw'ing-pa'per. A variety of large white paper, made preferably of linen stock, and ol 14 sizes.
The sizes of drawing-paper are, -

These are about the usual sizes, but the scales of different makers vary to some extent.

Draw'ing-pen. A pen for ruling lines, consisting, in its most usual form, of a pair of steel hlades, between which the ink is contained, the thickness of

Fig. lise the line being determiued by the adjust-

Draving-Pens. ment as to distance of the said blades.

The ends of the steel blades are elliptical, sharp, and exactly even. A rul-ing-pen. A straight-line pen.
a is a single-drawing pen.
b, a doublc-drawing pen, for ruling two lines at once.
A dotting-pen makes a succession of dots, being formed of a roulette rotating in a stock. See Dotting-pes.

Draw'ing-pen'cil. A black-lead pencil of hard quality, made especially for drawing lines. See Lead-pescil.

Fig ${ }^{17} \mathbf{3} 3$.

Draw'ing-pin. A flat-headed tack for temporarily secuing draving-paper to a board. A thumbtack:

Draw'ing-pli'ers. (H'ire-drawing.) The nip)pers whereby the wire is grasped when pulling through the draw-plate.
Draw'ing-point. A steel toal for drawing straight lines on metallic plates. A scriber for metal. The draw-point or dry-point of an engraver makes its mark directly upon the metal, and not as the etching-point, which makes a mark through a ground, the line being subseruently eaten into the metal by acid. See Etcuing.

Draw'ing-rol'ler. The fluted roller of the drawing-machinc, elongating the sliver. See Draw-ING-FRAME.
Draw-kiln. A lime-kiln arranged to afford a continuous supply of lime from belorr, fuel and limestone being fed in abore from time to time. Also called a running-kiln, or continuous kiln.
Draw-link. A connecting link for railroad cars. See Car-cotpling.

Draw-loom. (H'caving.) The draw-loom was the predecessor of the jucquard. It is used in figurewearing. The number of the heddles being too great to be worked by the feet of the weaver, the warpthreads are paised through loons formed in strings, arranged in a vertical plane, one string to every warp-thread; and these strings are arranged in separate groups, which are pulled by a drau-boy, in such orler as may be required to produce the pattern. The grouns are drawn by pressure on handles, the required order being determined by reference to a design, painted on paper, which is divided up into small squares.

A mechanical draw-boy has been contrived, to disprense with human assistance. It consists of a half-wheel with a rim grooverl so as to catch into the strings requiring to be pulled down. The halfwheel travels along a toothed har, with an oscillating motion from right to left, and draws down the particular cords repuired for the pattern.
Drawn-brush. Oue in which the tuft or knot is drawn into the hole in the stock by a loop of copper wire.
This generic description includes hair, scrubbing, shoe, clothes, nail, and tooth brushes.
Draw-plate. A drilled steel plate or ruby through which a wire or ribbon of metal is drawn to reduce and equalize it.
a represents a ruby draw-plate for gold or silver mire.

b a draw-plate for erening the peadulum springs for chronometers.
e is a draw-plate of metal for tube drawing.
d are sections of wire of various shapes drawn through plates.
e represents forms of pinion wire.
f shows fancy forms of wire
nsed with others as pins in the surface of a wooden block used in calico-printing.

The essential feature of wire-drawing is the draxplate. This was probably known at Nuremberg early in the fourteenth century, and how much hefore is not apparent. The "History of Augsbnrg," 1351, and that of Nuremberg, 1360 , mention the "wire-drawer" (Drahzicker). The draw-plate Was imported into France liy Archal, and into England by Schultz (1565). The dranplate is 1 robably an Oriental invention.

The draw-plate is made of a cylindrical piece of cast-steel, one side being flatted off. Several holes of graduated sizes are punched though the plate from the flat side, and the holes are somewhat conical in form. The wire is cleaned of its oxide in a tumbling-box, and is then anncalecl. It is then drawn through as many of the holes in succession as may be necessary to bring it to the required size. The wire is occasionally ammealed to remove the hardness incident to compression in the plate, and the wire pickled to remore scale.

The sharpened end being passed through a hole in the plate, the wire is drawn through sufficiently to attach it to the wheel. This, being revolved, draws the wire through the plate and reels it up as drawn. The coil from which it is drawn is dampened with starch-water or beer-grounds as a lubricatol. The Hindoo Sonârs, who are noted for their dexterity in drawing gold-wire, use castar-oil as a lubricator. Wiax and tallor are commonly emplosed.

Strips and angle-iron of metal are made by passing through draw-plates of the required shape. The pinion-wire for watches is thus made, and also strips aud rods of various forms, which are cut in sections and driven like pins into the hubs of calico-rollers, forming the dots, leaves, etc., of patterns.

For fine work, such as the drawing of gold and silser mire, the draw-hole is made of a drilled ruby: The wire for pendulum-springs of watches is drawn through a pair of \#lat rubies with rounded edges.

Tubers for telescones are drawn mpon a mandrel.
Gun-barrels, boiler and conlenser tubes, leadpi ue, slips for music-type, window-lead, etc., are also drawn, or may be.
French druev-plutes are described as being made by the following process : -
A piece of wrought-iron is prepared 1 inch thick, 2 broad, and 12 long. This is furrowed on ane side by the preen of a hammer, so as to receive a layer of parti:dly decarburetted cast-iron, called polin. This potin is made by breaking up pieces of a mew irou pot, fusing them again and again with charcoal, and quenching in water. The iron partially "comes to wature," assinming the condition of steel, and is eventually melted on to the wrought-iron plate and welded thereto.

The holus are made by a punch while the iron is loot, and are very ummerous in a single plate. The holes are tapered, the base of the cone being on the side of the wrought-iron.
Brockerlon's English patent, 1819, specities the nse of dianomds. rubies, sapphires, and other hard grans, drilled for draw-eyes and mounted in iron ${ }^{\text {Hates. }}$
Draw-point. (Engrazing.) The etching-ncedle used on the bare plate. Dry-point.

Draw-spring, The spring of a draw-hcad. A spring coupling-device lor railroald cars.

Draw-tube. The ad-

Fig. 1755.

"Clam-Shell" Dredge. justable tube of a compound microscope, having the eyepiece at its outer end, and the erecting-glass (if any) at its imer end.

Dray. A low cart of an ancient type. The shafts are prolougrd to form the rails, and the load is rolled upon the rear of theinclined bel.

Dread'naught. (Fubric.) a. A heavy, woolen, felted cloth, nsed as a lining for hatchways, etc., on boarl ship.
b. A heary goods for sailors' wear.

Dredge. A scraner or drar-net for gathering mud, sand, or oysters, as the case may be, from the bottom. Mul is dredged to improve the channel, sand for making mortar, oysters from their beds, for food.

A lneket or scoop for scraping unud, sand, or silt from the bed of a stream, pond, or other bolly of water. Such are usnally on endless chains. See Dredg-ng-macmine.
The "clam-sliell" dredge used for removing the excavated material from the working-chamber of the East River, New York, bridge caisson, consists of a pair of scoops which are hinged to an axis and close apon the load, whether a mass of mud or gravel, or boulter of moterate size. The dredge ascends and
descends in a vertical water-shaft in which the water rises as ligh as its natural level on the outside of the caisson. The view shows a portion of the work-ing-chamber through which the dredge-shalt passes, and the mumerous layers of timbers which form the roof of the working-
chamber and snipport the masonry of the pier. Thedredge is lifted with its load by the tackle above, and, being suspended above the car, the contents aredumped into the latter by shifting the points of

Fig. 1 ins.
 suspension of the
latter to the clains which are connectel to its outer comers; this causes the scoop, to gape open and suill its contents. The car is then run down an incline, and dumps its load into a lighter alougside the caisson.
A rake and bag dragged over an oyster-bed to detach and gather the bivalves. The dredge is towed

Fig. 1757.

Oyster-Dredge.
by a sail-boat, and by hand or tackle is lifted by a lever swung from a davit, and is cased over the side by a roller mounted on the gunsale, as shown in Figs. 1756, 1757. See Net ; Tliawl.

Dredge-boat. A form of dredging-machine in Which the loat becomes its own grubber, the depth at which the mud-fan shall operate being regulated by introdnction of water into compartments of the vessel. The dredger may opreate ly plowing a channel through a sand or mud bar, the latter presumably, as it has been constructed to keep open the months of the Mississippi, allowing the current to carry of the loosened matter. A scooj, is, however, to be rigged forward to plow into the mud, when the dredger will back ofl with its load, carry it out to sea, and dump it. The length of the ressel is 154 feet S inches ; depth of holi, 30 feet, and about 23 feet heam. She has a serew at the after end with 3 hlades, 12 feet diameter and 14 feet pitch, for propelling exclusively; and one at the forward end with six blades, 14 feet diameter, and weighing 23,000 pounds. This serew performs two offices: impelling the vessel through the water liy a draw-ing-on process, and digging into the mud and sand. It is worked by two oscillating engines, 40 -inch bore and 4 -feet stroke. The three-liladed propeller is driven by a similar single oscillating engine. The steam is generated in five tubular boilers amidship. Besides the six-bladed screw for ligging, there is also a large scoop or drag, in the shape of a halfcylinder, 12 feet deep, 20 feet loug, and will drag
away fifteen tons of mud or sand at a load. This other end commences whirling to pull the boat off. scoop is suspended from two davits overhanging the The six-bladed propeller loosens up the mud and how, and is mauaged by a pair of hoisting-
engines forward.

Fig. 1758.
The usual mode of working is this: The boat is first driven, light, as far into the nudbank as possible. Then the seoop, which hangs suspended from the davits, is let go on the ron. lts great weight carries it far into the mud. Then the big six-blated serew is set in motion, and at the same time the propeller at the adds to the impelling jower, which, when both are working, is tremendons, dragging the great scoop, with its freight of filteen tons of mud, out to sea.
The dredre-boat is registered at 1,000 tons capacity, yet sle has power sufficient for a ressel of 4,000 tons, or four vessels of her own size. As the mud is workel away, the sinking tanks are gradually filled, the boat

Dredse-Boat for Excavating.
settles deeper in the water, and the digging-apluaratus works in deeper mud.
Dredg'er. 1. (Hyltraulic Engineering.) A bal-last-lighter. A barge or scow which serapes silt from the bottom of a stream. See Diedging-machine.
2. (Domestic.) A box with a perforated lid for sprinkling flour upon dough or a dougl2-board. A diectgi-hines.
Dredg'ing-ma-chine'. (Ifydrautic Eirginecr. ing.) A machine for raising silt, mul, saml, and gravel from the bed of a stream or other water, to deepen the chamel or to obtain the material for ballast or for filling low gromids.
The dredging-machiue with a box shovel on the end of an oscillating arm is supposed to have origimatel in Venice. It had a beam 50 teet in length, moving on a pivot-post erected in a barge whose length was 50 feet and breadth 22. The beam was hooped with iron, and worked by a perpendicular screw of beech 30 feet long amil 15 inches in diameter, traversing in a nut in the beam, and movel by bars in the manner of a capstan. A large iron spoon, hohling $2 \frac{1}{2}$ cubie yards and provided with a lid, was fixed to the outer end of the heam. To this spoon a certain rotation was given by means of ropes and

Fig. 1759.

pulley, the lid opening by one motion and the spoon tilling with mud by a seeond motion. Rotation of the screw then depressed the inner end of the bean, raising the outer end. It took fifteen minutes to raise a single scoopful. Eight men in a day would raise 60 eubie yarls.
A common and cheap form of this machine, by which sand is procured from the bottom of rivers,
consists of a large shovel on a long handle, suspented ly a rope either from a craue or a sweeppole. The shovel, being lowered, is thrust into the sand by one man, when the assistant proceeds to raise it and swing it round over the boat, where the contents are dumped.
This is something similar to the bag and spoon (Fig. 517), whicl consists of an iron ring with a steel lip, and a bag of strong leather laced throngh holes in the ring. The means for working it is a long landle, a suspending rope, and a crane or sweep-pole from a post in a large, as in the last example.

About 1680, Meyer, a Dutch engineer, had a dredging-machine on the principle of the French chapelet ; a long trough being lowered to the mud, and traversed by an endless chain provided with boards at intervals. The boards scraped up the mud and carried it up in the trough, from whose upper end it was discharged into lighters. A horsewheel was employed.

In the reign of Charles I., Balme made a vertical wheel with six buekets, which worked between boats and raised mud. It was employed in the fens of Lineolnshire.

Alont 1708, Savery patented a steam dredgingmachine for raising ballast from the Thames.

In 1796, Watt nade a steam dredger for deepening Sunderland Harbor.
The dredging-machine deseribed by the Marquis of Woreester was "a water-screw, but the bottom made of iron plate, spade-wise, which at the side of a boat emptieth the mud of a pond or raiseth gravel."

The dredging-machine described in the Theatrum Instrumentorum of Machinarum, 1578 , was rather an elevator than a dredger. The buckets were atfached to endless chains, which passed over two drums, driven by winch-power. Laborers filled the buekets.
The chapelet, used by Perronet and other French engineers in the last century for dempening clammels and removing the mud from the interior of collerdans in preparing foundations for bridges, was composed of three rollers, two of which tonched the ground, and the other was placed upon an elevated timber scattold, where the mul and silt were deposited. Round these rollers worked an endless chain lormed of large links, to which were attached four or more sheet-iron scoops or seuttles,
distances. These scoops were pierced with holes to allow the water to run off', and had strong projecting

Fig. 1760.

Steam-Dredger.
beaks whiclu dug into the mud or earth below. The chain was mosed by cylinders whose projecting spikes entered the links of the chain ; the cylinder was rotated by a winch. As the buckets became inclined after turning over the upper roller, their con-
tents were discharged into a trough which conveyed away the mul.

The steam dredging-machine, now so commonly in use in harbors liable to become silted up, has a succession of buckets on an endless chain, which traverses on a frame whose lower end is rertically auljustable so as to regulate the depth at which it works, like the French chajelet.

It was first successfully used in England by Huges in 1804, who succeeded, after repeated trials, in making a machine, costing $\$ 40,000$, which raised 2,000 tons per day from a depth of water of 30 feet.

The machine is driven by a steam-engine throngh the intervention of gearing, steatied by a tly-whecl. A long shaft amidships conveys the motion from the gearing about the engine to the upper drum, aromed which the endless clain works. The buckets discharge at the stern of the ressel, dropping the murl into a lighter: The lower end of the swinging-frame is adjnsted as to depth by means of a suspensory chain, which is wound uion a drum rotated by clutch-connection with the spur-gearing when necessary.

The illustrations show a longitudinal vertical section a; a transverse section b, on a larger scale, aflording a view of the gearing; a plan of the link c, and an elevation of the bucket d. Each alternate link carries a bucket, which is of sheet-iron riveted to a link. The lucket and link are shown on a still more enlarged scale.

The liest working-angle for the frame is 45°.
The dredging-machine used in excavating the

South Boston flats has a scow 80 feet long, 40 wide, anl a dredge-shovel and chain of elevating-buckets on each side. They are advanced by chains running to anchorel scows, the shovel beneath each elevator raising the mud and silt, and the buckets elevating the scooped-up mass, which is deposited in a scow attached to the iredger.

Duncan's dredrer, used on the Clyde in Scotland, has an iron hull 161 feet long, 29 feet heam, 10 feet 9 inches depth ; has water-tight compartments, en-gine-room, and quarters for the crew. It has one bucket-chain, thirty-nine buckets having a capacity of 13 culic feet each; driven by gearing from a ma.
rine engine of 75 nominal horse-power. It is mored forward by a steam-winch and a chain to a mooring. Sixty dredging-machines have been at work at one time in excavating the Suez Canal. They are of two kiuls, as shown in the cuts, which need but little description to make them perfectly intelligible. The hulls are of iron, are 72 or 82 feet long; one form has a lighter which gives stability, and forms a rest for the chute, 230 feet long, which deposits the excavated material on spoil-banks, whose crests are 197 feet distant from the center line of the canal. The transjorting-buckets have a capacity of about 5 cubic feet, and the delivery is twenty buckets per
minute. In the other view the chute rests on a carrage traveling a track on the camal-bank. In each case the buckets are loaded by the dredging-spoons, travel along the chute, capsize at the end, and return for another load. The spoil not deposited on the banks is dumped into lighters, and carried out and disgorged into the deep waters of the Mediterranean.

Another form of dredger, used at Chatham Dockyard, England, is of the rotary-pump class, having

Fig. 1762.

Chatham Dockyard Dredger.
a revolving disk A with an excavating screw B, an up-cast shaft E, and a spout F which discharges the material into a lighter alongside. The up-east shaft is telescopic, and is stayed by guys D. The upwardly projecting rod G is the shaft of the revalving wheel, and is extensible coincidently with the telescopic tube. H is the steam-engine connecting by band-wheel and belt with the shaft G of the screw which excavates the mud $C . K$ is a transverse beam of the frame which rests on twin boats I.

Another mode of raising same, silt, and mol is by an exhausted receiver in the barge, connected by an adjustable pipe and flexible connections with a
proposed. It differs in no substantial respect from the water-ejector. See Eisectur.

Drench'ing-ap-pa-ra'tus. A jaw-opener and head-lifter by which drenches may be administered to animals without their being able to bite the bottle or horn, or the arm of the operator.

Drench'ing-horn. A cow's horn, closed at the butt-end and perforated at the point-end (like a powder-flask), to administer drenches of medicine to ailing animals.

Dress. Applied to the system of furrows on the face of a mill-stone. See Mill-stoxe Dress.

Dres'ser-cop'per. A vessel in which warps or threads are passed through boiling water.

Dress-guard. A wing on the side of a carriage entrance, to prevent the brushing of the dress against the wheel.

Dressing. Sizing of fabric, yarn, or thread.
Teuseling, or raising the nap' on woolen cloth.
Preparation of mineral ores for the furnace.
Preparation of the surface of a millstone.
Smoothing the surface of plank or of stone.
Glossing of crape-warp.
Arranging symmetrically the form in the chase.
The complete planishing of sheet-metal ware into symmetrical form, on a stake or anvil.

Dress'ing-bench. A bricklayer's bench having a cast -iron plate on which the surt-dried brick is rubbed, polished, and beaten with a paddle to make it symmetrical.

Dress'ing-ma-

 chine'. (Fur yam.) I machine invented le Johnson, England, in 1800 . The hardtwisted yarn is sized, scraped, brushed, and dried by heat and a

Dressing-Eench. blast of air. The object is to remove the fuzz and give it a slight gloss.

Dressings. The moldings and sculptured decorations used on a wall or ceiling.

Drift. 1. (Machinery.) A round piece of steel, made slightly tapering, and used for enlarging a hole in a metallic plate by being driven through it.

The drift may have a cutting edge merely upon its advance face, or it may have spirally cut grooves which give the sides of the drift a capacity for cutting, as in
two of the examples annexed.

Fig. 1765.
\qquad
spout, which is adapter to suck in the mud, upon which it rests, and discharge it into the receiver for removal and subsequent discharge at the lower valve.
The steam jet or ejector has also been used, or
2. (Mining.) a. A passage in a mine, horizontal or nearly so, forming a road for the extraction of ore, or a drain for carrying off the water. The name is derived from its being driven in. Driving is horizontall work; sinking and rising refer to the direction
of work either in shafts or in following the course of a vein. See Adit; Galleley
b. The course or direction of a tunnel or gallery.
3. (Architcturc.) The push, shoot, or horizontal thrust of an arch or vanlt upon the abutments.
4. (Shipbuilding.) a. Drifts in the sheer draft are where the rails are cut off and ended with a scroll. l'ieces fitted to form the dritts are calleal drift-pieces.
3. The difference in size between a treenail and its hole, or a hoops and the spar on which it is driven.
c. The prart of the upper strake between the coach and the quarter-leck. Drift-rail.
5. (Gunncry.) A priming-iron to clean the rent of a piece of ordnauce from buruing larticles after each discharge.
6. A stick used in charging rocket-cases.
7. (Fiulticicl.) The direction of a current. The leeway of a ship.

Drift-an'clor. (Neutical.) A triangular fiame of wool, or other similar contrivance, laving just suffient buoyancy to float, to which a line that leads from the bows of the ship is attached. It keeps the vessel's head to wind when dismastel, or when it is impossible to earry sail. See DreagANcior.

Drift-bolt. A rod nsel to Irive out a bolt.
Drift-net. A fishing-net about 120 feet long anul 20 feet deep; corked at the upper edge. Several of these may be counected lengthwise and attached to a drift-rope. Meshes $2 \frac{1}{2}$ inches and upward, according to the size of fish.

Drift-piece. (Shiphuilding.) One of the upright or curved pieces of timber that connect the plank-sheer with the gumoule.

Drift-pin. A hand tool of metal driven into a hole to slape it; as the drift which makes the square socket in the watelh-key. Holes in casting; which are aude by cores may be trued and trimmed in this way better, sometimes, than by drill or tile. The tool is of steel, shaped to suit the work, and gromen siuare on the face. See Drifr.
Drift-sail. One dragging overboard to diminish leew:y. A Drag or Diag-anchor (which see).

Drift'way. (Mining.) A passage cnt nader the earth from shaft to shaft.

Drill. 1. A metallic tool for boring a hole in metal or hard material such as stone.

Its form varies with the material in which it works. The action in metal is nsually rotative, and the tool has two or more cutting edges.
lu stone drills the action is rotative or reciprocating; in the latter case the tool is alternately lifted and droppred. see Ruck-drill.

To ilcill a hole the Japanese have a short awl inserted in a round piece of stick eight or nine inches long. They take the wood hetween their toes, squat on the ground, and make the hole by rubbing the handle of the awl between their hands.

The bone neerlles of the ancient tumuti builters of Europe were drilled with stane drills; the eyes are small, round, and regnlar. The New-Zealanders, in the time of Captain Cook, were able to drill holes thronglh glass with bone tools.

Or form of drills : -
a affords tivo views of the ordinary doublc-cutting drill usel with a how; the two ellges forming the point meet at an angle of from S° to 100°.
b is a dill for cast-iron with two circular chamfers.
c is a flat-ended urill for llattening the bottoms of holes.
d is a duplex expanding drill for inlaying escutcheons on knife-landles, etc.
e is a drill formed of a cylimetrical wire filed ofl to the diametric line and having two facets on the end. f is a sipuare countersiuk drill, having a guidepin in the center.

Fig. 1766.

g is a drill for cutting in one direction.
h, a drill for horn and other objects liable to agglutinate, and requiring great elearance.
i is the usual form of iron drill.
j is the cone countersink.
k is the half-round or cylinder lathe-bit.
l is the rose-hit for the lathe.
m is the flat-bit for the lathe.
n is the twist-fliml.
See under the following list : -

Air-drill.
Archimelean-drill.
13ench-drill.
Bone-Urill.
Boring-drill.
13ow-drill.
Prace-drill.
Breast-drill.
Burr-drill.
Cat-rake.
Center-dilill.
Centrifugal-drill.
Cherry-drill.
Clurra-drill.
Corner-driil.
Colter-drill.
Cramp-drill.
Dental-drill.

1) iamond-Urill.

Ditlerential-feel drilling-
machine.
Double-drill.
Drill.
Drill-barrow.
Drill-bit.
1)rill-bow.

Drill-chuck.

1) rill-extractor.

Drill-grinding machine.
Drill-gage.

Drill-harrow.
Hrill-holder.
Drilling-jig.
Drilling-attaclument for lathe.
Drilling-machine.
Drill-jar.
Drill-pin.
Drill-plow.
Drill-press.
Drill-rod.
Drill-rol grab.
Drill-spindle.
Drill-stock.
Drill-tongs.
Expranlinge-drill.
Fly-drill.
Grab-drill.
Grain-drill.
Mand-brace.
FTand-drill.
rallette.
Persian-drill.
Piercer.
Pin-drill.
Pneumatic-drill.
Ratchet-luill.
Rock-drill.
Socket-drill.
Tapping-drill.

Drill-Clamp.

Vertical-drill.
$\begin{array}{ll}\text { Traverse-drill. } & \text { Well-drill. } \\ \text { Twist-drill. } & \text { Wimble-drill. }\end{array}$
Traverse-drill. Well-drill.
Twist-drill.
Wimble-drill.
2. A machine for sorring grain in roms. See
3. (Fabric.) A heary, cotton twilled goods, used

Drill-clamp. A fastening derice a for attaching a drill-holder or stock b to a work-beneh.
Drill-bar'row. A seed-ing-machine, driven by manual power in the manner of a wheelbarrow. A hand-driven grain-drill.

Drill-bow. The how wherely the drill is reciprocally rotated. See Bow. drill.
Drill-chuck. A chnck in a lathe or drilling - machine for holding the shauk of the ilrill. See Chtck.

Drill-ex-tract'or.

tool or implement for extracting from deep borings a broken or a detached diill which in-
Fig. li6s
 tares with rarthes loring. Artesian - well; Well-boring; Grab.

Drill-gage. A tool for determining the angle of the basil or edge of a drill. In the example, the angular piece C slides by means of the thumbscrew E upon the part D, and the angle subtended by the tro parts is the proper angle for the drill-point. The set-screrr allows its adjustment to any sized drill.
Drill-grind'ing Ma-chine'. An emery-rrleel a and a clamp consisting of a stationary part b and a movable part c by which the drill d is held near the point, while the shank is supported by the rod and extensible socket g. The machine is arranged to grind twist and fy drills, making cutting edges of uniform angle and leugth, thus insuring equality of cut upon both sides. Twist-drills up to 1 inch in diameter are held in the jaws of the clamp; split thimbles hold drills over 1 inch in diameter. Fast and loose pulleys on machine, 6 inch diameter, 3 inch face, which should run 500 revolutions per minute.

Drill-har'row. A
harrow whose tecth are adapted to traverse in the balks betreen the rows of plants in drills.

> Drill-hold'er. A stock for holding a drill. See Chrce.

Drill'ing - jig. A
portable drilling-ma-
chine which may be Sellers's Drill-Grinding Machine.
dogged to the work, or so handled as to be readily presenterl to it and worked by hand.

Drill'ing-lathe. Adrilling-machine on horizontal ways or shears, and thus resembling a lathe. See Drilling-machine.

Drill'ing-ma-chine'. A machine carrying a rotating tool and a means for chucking the object to be bured. These machines differ greatly in size and appearance, in the morle of presenting the tool, presenting and chucking the work.

The larger machines are frequently known as bor-ing-machincs (which see).
Fig. 1770 has a rertical drill-stock e and rertical adjustment $d b c$ to the bed-plate. The driving portious $h i j k l$ and feeding derices $m n$ are evident.
Fig. 1771 is a radial drilling-machine in which the tool, in addition to the horizontal and vertical

Fig. 170.

Vertical Drill.
adjnstment of the orerhung-beam b, has a circular adjustment of the drill-stock op in a vertical plane, so as to present the tool obliquely to the work. The whole machine swings around a stationary post in the center of the hollow column α, and the overhung-beam is rertically adjustable on the latter by means of a screw c, actuated by power, bronglat into action by tbe lever d seen at the top of the column. As it is desirable that no belts sbould interrene to mar the complete revolving sweep of the machine, the driving is applied through the center direct by shaft c, pulley f, and gears $g h$, and transmitted to the upright shaft, whence the horizontal shait carries it to the spindle by means of two pairs of miter-gpars, one of which is shown at j. This arrangement also

The table q is for the convenience of the smaller class of work.

Fig. 1772 shows Scllers's horizontal drilling and horing machine for car-boxes, with self-acting variable

speed to drilling-spindle. See also Bonivg-Machine.
Drill-jar. A form of stone or well-boring tool in which the tool-holder is lifted and hropperl successively. The drill-rod is raisel sufficiently between cach impulse to loosen the tool from its impression in the stone, and is then dropped to give a blaw to the tonl. The tool-shank serews into the socket at the lower end of the picee f^{\prime}.

Drill-pin. (Locksmithing.) The pin in a lock which enters the hollow stem of a key.
Drill-plate. A breast-plate for a liand-drill.
Drill-plow. A plow for sowing grain in drills.
Drill-press. 1. A drilling-machine in which a screw is made to feed the drill to its work. In the ilhustration, the press is shown in elevation and vertical section. It has feet for bench-work, and a

sling chain and adjustable sockets when used for tapping pipes.
2. A dillling-machine of large size. Sce Drild-ing-machine; Bomag-machine.

Drill-rod. The long rod, made of sections coupled together, which reaches to the surface of the ground and carries the well-boring tool on its lower enl.

Drill-rod Grab. A clutching-tool lowereil into a hole to pugage with and fomm a means of withdrawing a drith-rod whose upher portion has been broken off or become detachel.

Drill-spin'dle. The axis in which a drillingtool is stocked and on which it rotates in a drillingmachine or lathe.

Drill-stock. a. A handle or holder for a drill, in
 uniform llirection.
b is a drill with a breast-plate and a stock rotated by bevel-gearing and crank. See Ratchet-drill; Persinv-ntill, etc.
Drill-tongs. A tool in which one jaw forms a
bearing below the object, and the other carries the tool and rotative apparatus. The pressure is obtained hy pressing the handles together, and an adjustable rest allows the purchase to accommodate itself to oblique surfaces.

Drip. The projecting edge of a molding or corona, channcled beneath.
Drip-joint. (Plumbing.) A mode of uniting two sheets of metal in roofing
Fig. 17it6.

Drip-Joint.

 where the joint is with the current, so as to form a water conductor.Drip'ping-vat. A tank be. neath a boiler or hanging frame, to catch the overflow or drip, as that which receives the solution of indigo running from the boiler in indigo-factories.

Drip-pipe. A small copper pipe leading from the waste-steam pipe inside, to carry off the condensed steam and other hot water which may be blown into the "trap" at the top.

Drip-stick. (Stonc-srwing.) A wooden stick whi h forms a spout to lead water slowly from a bar rel to the stone, so as keep the kerf wet.

Drip-stone. 1. A corona or projecting tablet or molding over the heads of doorways, windows, arch-ways, niches, ete. Called also a label; weather-molding; water-table; hood-nolding.
2. A porous stone for filtering.
on the hoops of casks, its tooth resting on the hoop.
2. (Machinery.) α. The wheel of a loeomotive to which the power is communicated. A prair of drivers are arranged on an axle, their cranks or wrist-pins being at an angle of 90°, so that one is always in an advantageous position for duty, relatively to the piston. Several pairs of drivers are coupled together by connecting-rods.
b. In gearing, the main-wheel by whieh motion is imparted to a train of wheels. A master-urhecl, as in the example, where the tread-wheel of the har-

Drive. (Forging.) A matrix formed by a steel punch, dic, or drift.

Drive-bolt. A drift. A bolt for setting other bolts home, or depressing the heads below the gencral surface.
Driv'en-well. A well formed of a tube driven into the gromm

Fig. 1777.

Fig. 1778. until its perforated end reaches a stratum containing water. When the tube is driven to the desired depth, the outer tube is elevated sufficiently to expose the slots of the tube, which is seeured to the barbed point.

When the proper depth has been reached, a plunger is placed in the tube, which thus forms a pump-stock of limited bore.

Driv'en-well Pump. A pump of proportions and construction adapted to occupy a tube Driven-Well Tube. which has beeu driven into the ground till its lower end has reached a watery stratum.

Drive-out. (Printing.) To space widely, to make a line of copy fill out the line, as when a mass of solil matter is divided into several takes, each being required to begin and end a line.

Driv'er. 1. (Coopering.) A to. 1 used by coopers in driving

Drizen-Well Pump.
vester is the agent in driving the miter-wheels and crank of the cutter-bar.
3. (Milling.) The term is applied to that which conmunicates motion, as the cross-har on the spindle loy which motion is communicated to the runner of a grinding-uill. A peg, eateh, teppet.
4. (Blasting.) The copper bar hy which the tamping is driven aromd the pricker on to the charge in a blast-hole. A tamping-iron.
5. (Naztical.) A four-cornered forc-and-uft sail, on the lower mast of a ship; its head is extenuled by a gaff, and its fool by a boom. or shect. A spanker.
A ring-tail is a sail added at the lee-leech of a driver.
6. (Turning.) A hent piece of iron fixed in the center-chnck, and projecting so as to meet the carrier or dog on the mandrel to which the work is attached.
7. (I'crving) The piece of wood which impels the sbuttle through the shed of the Joon.
8. A drift for enlarging a hole or giving it an angular shape not attainable by a drill. See Driff.
9. A stamp or puneh; the salient tool which acts in conjunction with the bed, botlom, or bolster, through whose aperture the excised piece of plate is driven.
10. (Shipbuilding.) The foremost spur in the bulge-ways, the heel of which is fayerl to the foreside of the foremost poppet, and the sides placel to look fore and aft in a slip.

Driv'ing-ax'le. (Machinery.) The axle of a driving-wheel ; the bearing portion rests in the driving-box. The weight of that portion of the engine is supported by a driving-spring upon the box.

Driv'ing-bolt. A wheelwright's tool used for driving in nave-hoxes.
Driv'ing-chis'el. A chisel basiled on each face.
Driv'ing-gear. That portion of a machine whith is especially eoncerned in the motion; as the parts from the cylinder to the wheels, inclusive, of a lncomotive ; the ground-wheel to the cutter-bar pitman, inclusive, of a harrester ; the hand-crank and gearing of a winch or crab, etc.
Driv'ing-rein. (Saddlcry.) A rein which is buckled or snapped to the bit-rings and passes back
to the driver. Driving-reins are known in the West as lines.
Driv'ing-shaft. A shaft communicating motion from the motor to the machinery.

Shafing transmits power, but the driving-shaft is more immediate to the power ; the motor.

Driv'ing-springs. The springs fixed npon the boxes of the driving-axle of a loeomotive-engine, to sulport the weight and to deaden the shoeks cansed by irregularities in the rails.

Driv/ing-wheel. 1. (Steam-engine.) One of the large wheels of a locomotive to which the connectinglorls of the engine are attaehed.

In the American practice the conneeting-rod is usually coupled to a wrist on the driver. This may

Fig. 1780.

be couplerl hy ontside connecting-rorls to other wheels of the stme size', so as to make drivers of the latter. In the English practiee, with eylinders inside of the frame, the eommeting-rods are eoupled to eranks on the axle of the drive-wheels.
2. (IIarrester.) The wheel whieh rests upon the gromnd, and whose tractional adherence thereto, as the frame is dragged along by the team, is the means of moving the gearing and giving motion to the cutter and reel.

Drog. (Nautical.) A buoy attaelied to the end of a larpoon line.

Drogh'er. (N゙autical.) A West India cargo-boat, employed in coasting, laving long, light masts and latern sails. Droger.

Droitzsch'ka. A Russian traveling-carriage. Ste Druskr.

Drone. (Music.) The base-pipe of a bagmine (which see).

Drop. 1. A machine for lowering loaded coal-ears from a high staith to the vessel, to avoid the breaking of the coal by lropping it from a hight. It is a perpendienlar lift in which the ear is received in a movable amel counterpoised eradle whieh is lowered and returned. A falling leaf is projected ontward, to lring the wagon over the hatchway of the ves. sel.
2. A swaging-hammer which drops between guides. See Drof-hammer.
3. (Architecture.) An ornament depending from the triglyphs of the Doric orter, gutta.
4. A supplementary gas-tube to lower a gas-jet. See Droj-Licht.
5. A theatrical stage-curtain.
6. The depth of the hanger by which shafting is supported overhead.
7. A prismatie pemlant for a chandelier, to increase the brilliancy of the display by the refraction of the rays of light. It is made of a glass lump molded in a pinching-tongs.
8. (Nautical.) The ilepth of a sail amidships.
9. (Fortification.) That part of the ditch sunk
deeper than the rest, at the sides of a caponniere or in tront of an embrasure.
10. A falling trapi-door, or hateh.

Drop-box (Wreaving.) A shuttle-box used in tigure-weaving looms in which each shuttle carries its own eolor. The box is vertically arljustable by nueans of a pattern-ehain or otherwise at the end of the slied, and, ly antomatic adjustment, the shuttle holding the required color is brought opposite to the shel aud so as to be struck by the picker.

Drop'per. 1. One form of a reaping-machine in which the grain falls upon a slatted platform, which is dropped oecasionally to deposit the gavel upon the ground. (Sieherling's patent.) Simultaneously with the bringing into action of the dropper, a cut-off is brought lown to arrest the falling grain till the platform is reinstated.
(Mining.) 2. A divaricating vein, which leaves the
Fig. $178 i$

Harvester-Dropper.

main lode; or a lode which assumes a vertical direction.

Drop-flue Boil'er. One in which the caloric eurrent daseents by one or more steps or gradations, bringing it into eontact with parts of the boiler in deseenting series; the object being to cause it to leave the boiler at the lower part, where the feedwater is introduced.

Drop-ham'mer. A hammer in which the weight is raised ly a strapor similar deviee, and then released so as to drop upon the object below, which rests upon the anvil. It is used in swaging, dic-work, striking up shect-metal, jewelry, atc. In Fig. 1782 the hammer-strap is drawn upwarl by means of two pulleys, which are lrought together so as to compress the strap between them. One of these, the drivingpulley, is fast uponits axle rind turnsin fixed hearings, while the other tirns loosely
 upon an eccentrically jomrnaled axis, arranged also in fixed bearings, but so as to be incapable of turning therein except as foree is applice to it to effeet that objeet. To one eud of the latter shaft there is attached a horizontal arm, the outer end of which is connected to a hand-lever or treadle

by a connecting-rod.
By means of these appliances the eccentrically journaled shaft can be turned at will, so as to remove its roller from contact with the strap, and allow the hammer to fall through any length of space desired, within the limits of the machine.
In Fig. 1783, the hammer is raised by a strap which winds on to the main-shaft. By meaus of a clutch, the loose pulley is engaged with or disengaged from the driving-shaft, to raise the hammer or let it fall. An elliptical pin is journaled in an arm keyed to the shaft, and works in an annular groove in the side of the pulley. In one position of the pin it will bite between the walls of the groove and hold the pulley fast, and when turned on its axis it will release it.
Drop-light. 1. A means for placing the gas-hurner at such elevation as may be convenient for reading or work, and supporting it in place without extraneons help. In Fig. 1784, a gas passage being formed

Drop-Lighe.
through the arms of the lazy-tongs, the bell-light is either raised or lowered by the cord and pulley attached.
2. A stand for a gas - burner and chimney, adapted to be placed on a table, and connecting ly an elastic tube with the gaspipe.

Dropme'ter An instrm. ment fur measuring out liquid drop by drop. Otherwise named a droppingbottlc; dropping-tube: burette; mipette.
Drop'ping-tube. A tube open at both ends, the lower aperture being quite small. The tube being charged with liquid, the finger is closed upon the upper end, and is then relaxed to such extent as to allow
the liquid to exude in drops from the lower end. It is a small velinche.

The dropping-bottle, mipette, burctte, and dropmeter have a similar purpose.

Drop-press. A form of jower-hanmer, not uncommonly called a press, and used for swaging as well as for ordinary forging. The machine represented has a hammer-block a, swung by a spriug $d c$ from a

wrist on a disk f, which is rotated by the wheel g on its axis when the idler-pulley h tightens the band k against the wheel. This is done by pmling on the swinging rod $j i$, and, as soon as the rout is released and the idler falls back, the loose hand runs over the wheel without rotating it. is the anvil. See Drop-Hammer; Dead-stroke Havmer.

Drop-roll'er. (Printiag.) A roller dropping at intervals to draw in a sheet of paper to the press.

Drop-ta'ble. A machine for lowering or raising weights, as in the hatchways ankl cellar-ways of city warehouses.
A machine for withdrawing car and locomotive wheels from their axles.

Dros'ky. A Sclavonic four-wheeled vehicle in which the passengers ride astradule of a bench, their feet resting on bars near the ground. A droitzscheic.

Dro-som'e-ter. An instrument for measuing the quantity of dew that collects on the surface of a body exposed to the open air during the night.

Weidler's instrument was a bent halance, which marked in grains the additional weight acquired by a piece of glass (or a pan) of certain dimensions, owing to the globules of dew adhering thereto ; on the other end of the balance was a protected weight.
Another drosuncter is substantially like a raingace.

Wells's drosometer was a tussock of wool reighed dry, and again after the accession of dew. Giteon on one oceasion wrung out of a fleece "a bowl full of water" which was collected in this way.

Dross. The scum, scaria, slag, or recrement resulting from the melting of metals combined with xtraneons matters.
Drove. 1. (Musonry.) a. A broad-edged chisel for stone-masons.

DRUM．

b．A morle of parallel tooling by perpendicular fluting on the fitces of hard stones．

2．（IIydructic Engincering．）A namow istigating chmmel．

Drowned－level．（Jining．）A lepressed level or dramarergallery in a mine．which acts on the prineiple of an inverted siphon．A bliul－lcvel．

Drown＇ing－bridge．A sluice－gate for overflow－ ing mealuws．

Drug＇get．（Fibbria）A coarsc woolen fabric， filted or woven，selfeolored or printed on one side； used to protect carpets．

A similar but finer article forms piano and table covers．

Drug－mill．One for grinding medicines；vary－ ing in size and construction according to the kind of arug and the resonrces of the establishment．The Chilian mill is used for some purposes；in the more usual form it has a rotating cone in a serrated case， like it coffee－mill，or adjacent disks，like a paint－ mill．see GıiからいさG－MILL

Drug－sift＇er．A perforated tray or sieve either reciprocating or rotatury，inclused in a casing，and having a hawer bencath for receiving the powder． It is usually opruated by a crank．

Drum．1．（Mechinery．）A cylinder over which a belt or bami jusses．

When the cylimeler bears a load，it becomes a roller．
A roller frepuently has gudgeons to allow it to be draged，as the aypicultural and garden rollers． Sinch a roller（having gudgeons or axle），by the diuinishing of its length sulliciently，becoures a whest．

A narrow druin（belt－bcaring cylinder）becomes a sherve，pulley，or rigyer．
＇The barrel of a crane，windlass，wineh，or capstan on which the rope or chain winds．
The cyliuler on which wire winds，and whose rotation pulls it though the craw－plate．

The grinding－cy？inder or cone of some mills，as the eotlice or the plamtation mill，ete．

2．（Piper－mukiny．）A washing－drım for rags consists of a framework covered with wire ganze，in the interior of which，connected with the slaft or spindle，which is hollow，are two suction－tubes by which the water，after cirenlating through the rags， is carried away in a constant stream．

3．（Calico－printeng．）One name of the cask in whinh steam is applied to printed fabrics in oreler to fix the colors．It consists ol a hollow wooden cylin－ die with interior conveniences for suspending the clotlos and covering them with flannel；after which the cover is andied and steam admitted for twenty or thirty minntes．

4．（Architecture．）The hell－formed portion of a Corinthian or eomposite capital．

5．（．Wusic．）A musical instrument，formed by stretching parchment over the ends of a cylinder of wool or over a bowl－shaped metallic vesse］．The skin of the ass is a very superior article for the pur－ 1ose．If it were very sonorous，it would not he sur－ prising．The Greeks used the bones of the ass for making flutes，so the animal has almost as great a co mpas in leath as in life，which is saying a great deal．His range inchudes，

＂The ear－piercing fife，the spirit－stirring drum．＂

The drum was a martial instrument among the ancipnt Eryptians，as the sculptures of Thebes testify．Their long lrum (a) was like the Indian tam－tim，anl was beaten by the hand．It was ahont 18 inehes long，has a case of wond or metal，and heals of prepared skin，resembling parchment． These were braced by cords in a manner somewhat
similar to the modern．The instrument was carried by a belt，and was slung behind the back on a mareh．

An instrmment similar to the duraboohe of modern Egypt is found represented in the tombs of Thebes．It consists of a parelment－head staniner］ over a funmel－shaped body of pottery，and is played like a tambouriue．
The cuts $e \varepsilon$ slow a drum which was found in Theles by D＇Athanasi，and show how the strings were braced．The sticks d ，accompanying，slow tlat it was beaten in the modern manner．

The derbch\％eh of modern Syria is similar to the Egyptian durabooze，as their names indicate．Much ormament is lavished upon the cases of the Syrian instruments，as may be seen in Thomson＇s＂Ther Lamd and the Book．＂Oriental mutions have very imperfect ileas of melorly and harmony，hot are very industrious players on the drum，castancts，and

tambourine，accompanied by the twanging of guitars and the clapping of hands．

The invention of the drum is ascribed to Bacchus， who，according to Polygernms，gave his signal of battle by cymbal and drum．It was，howroer， known in very early ages，and in some form or other among almost all nations．

Drums of the barrel and kettle rariety were used in Ancient Greece，and were beaten by hand and ly sticks．The instrument came from Egypt，anit passed from Greece to Rome．

After an interval，in which the classic civilization nrade a pause，the drum was re－imported into Europe ly the Saracens about 713 ；its Arahic name， altambor，becoming tumbor in Spain，tambour in France．

The native drums or tam－tams of the Asiatics are made of sonorous hronze with a skin covering， meferahly a lizard skin，and are benten by the hand． They are alliel to the darabooka of Egypt and the Syrian drum．
The Chinese and Mandshu words for drum are onomatopoetic，and are respectively kain－kion and tung－tung．

The forms of drums among the Japanese are various，－kettle－drums，table－drums，tam－tams，sus－ punded tambourines．
The drum of the Yucca Indians of Sonora is about 20 inches in diameter，and consists of a skin stretched on a wooden hoop．The skin is apparently that of a buflalo calf，amd is tightenel by cords．It has but one head，like a tambourinc．

John Ziska, the Hussite, died of the plague, and before he expired ordered that his skin be made into the covering of a drum, to be beaten in the advance.
"His name shall beat the advance, like Ziska's drum."
This noted Pole fought the Emperor Sigismund, 1420-22. The latter hal given a safe-conduct to John Huss, who was cited before the Comeil of Constance. Huss was abandoned by the Emperor to his enemies, and was burned by the Roman Catholies, July $6,1415$.
The modern drum f is a cylinder of brass or wood, over the ends of which purchment heals are stretched. The tension is obtained by a system of cords, and is regnlated by sliding knots of leather. The head which is beaten is called the batter-head, and the opposite, across which two cords are stretched, the srare-lead.
The snare drum lias a catgut string stretched across its lower head to impart a certain quality.
The smaller drums are beaten with sticks. The larger, bass drum, is beaten with padded drumsticks.
The large drum, beaten at both ends, is called a double-drum. Those langing by the side of the drummer are called side-druns.
The kettle-drum g is so called from its resemblance to a hemispherical kettle. It is formed of thin copper, and has a hearl of parchment or vellum.
The small military drm is frequently callei by this name. They are still used in pairs, in the English and Prussian armies and elsewhere, slung on each side of the withers of a cavalry horse. One drum was tunel to the key-note, and the other to the fifth of the key. The tuning is by a hoop and screws.
They are now usually supported upon a tripotl and used in orchestras. The tum-tum is the original kettle-drum.
6. (Mcchenics.) A chamber of a cylindrical form

Fig. 1787.
 used in heaters, stoves, and flues. It is hollow and thin, and generally forms a mere casing, but in some cases, as steam-drums, is adapterl to stand considerable pressure. The drums in Fig. 1787 are radiators, and the caloric current is compelled to follow a sinuous course through the drum.
7. A small cylindrical box for holding fruit. A keg with straigbt sides.

Drum-curb. A cylinder of wooll or cast-iron inserted in a hole which forms the commencement of a shaft, to support a brick stmeture or shaft lining. The earth is dug away below the edge of the drum, and as the latter sinks the courses of brick are continually adderl at the top.
Drum Cyl'in-der-press. (Printing.) One having a large hollow cylinder. A feature in several furms of piesses.
Drum-head. (Nautical.) The head of the capstan, having square holes to receive the bars.
Drum'mond Light. luvented by lieutenant Drummond, Royal Engineers, during the progress of the Orinance Survey in England, about 1826, to supply a deficiency which was found to exist in the means of making distant stations visilhe from each other. It is made by exposing a small ball of quicklime to the action of the oxy-hydrogen blow-
pipe, or the lime may be placed in the flame of a spirit-lamp fed by a jet of pure oxygen gas.

Drummond's apparatus was so construetel that the lamp fed itself automatically with spitit and with oxygen, supplying itscif with halls of lime as they were gradually consumed, and was frovided with a paraholic silvered copper mirror: With this apparatus the light prorlucell by a lall of lime not larger than a boy's marhle, at Londondery, was visible at Belfast, a distance of nearly serenty miles, in a direct line. Suhserpuently, Colonel Colliw made a lime-light signal wisible from Antrim, in lieland, to Ben Lomond, in Scotland, a distance of ninetytive miles in a straight line.

1t is stated that, intensified by a paralolic reflector, it has been observed at a distance of 112 miles.
It is understood that the first application in practice was when it was required to see Leith Hill, in Surry, from Berkhampstead Tower, in Hertfordslire.
The practical application was described in two lapers publinhed in the " 1 'hilosophical Transactions of 1526 and $1831 . "$
The apparatus consists of a lamp whieh admits oxygen and hydrogen gas at the resprective apertures o h. Thie gases come from separate holders, and do not mix till they reach the chamber c. Here they pass through several thicknesses of wire-gauze,

Drummond's Lamp.
which prevent explosion by the reflex aetion of the flame, and then issue at two points, being projecterl upon the ball b, which revolses once in a minute to prevent wasting at the two points where the flame impinges upon it. A ball of lime lasts ahout fortyfive minutes, and a reserve of them is kept upon the wirea m, one being released perionlically, and, falling upon the curved sulphort t, is held in focal prositim, the former ball having dropped into the eistern helow. b represents the focal ball in position; the ball at g falls into a position where it hecomes gradually heated; at the end of that time the curved support i, moving on a pivot, is temporarily thrown out of its nommal position by means of the weight $I V$. The exhausted ball falls away, and a fresh ball falls into the focus. The wire $a \quad b$ 1rasses
theongin the focus of the parabolic reflector, and holes are cut in the reflector for the passige of the balls and for the curved jet-pipes, which are piroted to the stand-pine.
Drum-saw. A cylindrical saw for sawing curved stuff, staves enpeejally. A cylinder-suw; barrel-saw.
Drum-wheel. A very ancient Oriental form of water-raising wheel which was originally drumshapent, but atterwards had scoop-shaped buckets which dipped up water and conducted it towards the axis, at or near which it was discharged. See Tympaves.
Drunk'en-cut'ter. An elliptical cntter-head, placed at such oblipuity on the shaft as to revolve in a cireular path. A wabbler.
Drux'ey. Timber in a state of decay, with white spongy veins.
Dry-arch. (Building.) An arel employed in the foundations of buildings for the purpose of keeping them dry.
Dry-cast'ing. The process of easting in which the molds are made from sand, and subsequently drienl.
Dry-dock. A dock from which the water is withdrawn after the vessel has floated into it. Advautage is generally taken of the flow-tide to introduce the vessel, and of the ebh to withdraw the water. The water Hows ont by sluices, and the gates point untward to resist the re-entrance of the water. A greviaty-tuck:

After the great ship, of Ptolemy Philopator was atloat, "a Phenieian devisel a new method of docking it by digging a trench close to the harbor, equal to the ship in length. In this trench he buit props of solill stone, 5 euhits high, and aeross them he lail beams erosswise running the whole wilth of the trench at four cubits distance from each other ; and then making a elamnel from the sea he filled the excavaterl space with water and floated in the vessel. Then reelosing the entrance, he drained the water ofl by means of engines; and when this had been done the vessel rested securely on the crossbeams." - Callinenus's Account of Alexandrif, quoted by Atheneus in his Deipnosophists, A. D. 220.

This ship was 200 eubits long; 33 culits beam; 45 cuhits milship-higlit.
Of the United States dry-docks at Sonth Brooklyn, No. 1 is 500 feet long, 60 feet wide at hottom, and caprable of receiving vessels of 12 feet draft at low water, or 18 feet at high water. No. 2 is 447 feet long, and receives vessels drawing 17 feet at low water, and 22 feet at high water. By means of a central gate this doek may be divided into two separate parts, each forming an independent dock. The punping is done by means of a superior horizontal engine of 100 -horse power, and two oseillators of 50 -horse 10 wer and 30 -horse power respectively. The former of these engines connects with a donble centrifugal pump of mammoth proportions, and with a capacity for pumping and diselarging $40,000 \mathrm{gal}$ lons of water per minute. At this rate the average time reguired for completely relieving the docks from water is about three and a half hours ; the docks when full eontain $8,000,000$ gallous of water. The oscillators are attached to centrifugal pumps used for drainage, or keeping the docks free from water when occupied by vessels. Their average capracity is about 1,000 gallons each per minute.

Dry'er. A machine or apparatus for evaporating, driving off superfluous moisture, desiecating. The term is applied to a certain class of machines, and yet no absolnte line ean be drawn between it and ovens, kilus, etc. Sce:-

Bagasse-dryer:
Barrel-diyer.
Cloth-dryer.
Feather-renovator.
Fruit-dryer.
Grain-dryer.
Kiln.
Lumber-diyer.

1. The heated tables or cylinders which expel the moisture from the just-formed paper, in the machine.
2. The oven which evaporates the moisture from ceramie work, giving the jipees a certain degree of rigidity and desiecation, when they are fit for the subserfuent operations, according to their purpose and quality. See Potrery.
3. An oven for drying fruit.
4. A kiln or heated cylinuler for drying grain.
5. A closet for drying clothes or cloth.
6. A core stove.
7. In painting, a preparation to increase the drying and hardening properties of paint.
a. Litharge ground to a paste with drying oil.
b. White copperas, or sugar of lead, and drying oil.

Dry-gild'ing. A mode of gilding, by steeping tinen rags in a solution of gold, burning the rags, and then with a piece of rag dipped in salt-water rubbing the ashes over the silver intended to be gilt.

The methorl was invented in Germany, and is first described in Englaul in the "Philosophieal Transactions" for 1698.

Dry-grind'ing. The eutles's mode of sharpening and polishiug steel goods on a grindstone, without water.

It is very injurious to the health. Two remedies, or rather protections, are afforted: 1. Abrabam's magnetic-respirator, which arrests the particles of steel. See hespirator. 2. Exposure of hut a small portion of the stone, and a tube in the immediate vicinity of the work to carry off all the dust.
Dry'ing. The exposure of crystallizing magma sirup in a centrifugal machine, where the molasses is drained from it ly mechanieal action. See Ces-thiflgal-machine.

Dry'ing-

 house. An apartment in which anything is exposed to a current of air moderately heated; it is not easy to draw the line between an oven, a dryer, and a kiln: the words are used with some degree of carelessness, and have become teelinical in trades. Cores are dried in ovens; pottery in ovens or bis-cuit-Kilus; fiuit, lumber, and woolindryers: grain in dryers or kilns: malt in ousts; clothes in hot-Fig. 1759.

Drying-House.
closets; feathers in renovators. The illustration shows a dryer which lias a drying-chamber comprising a central ehamber and one or more wings hinged thereto, and mounted on wheels or casters for the purpose of ready access to the chambers and for removal from place to place. On one side is a suitable provision for drying clothes, and on the other for drying fruits. In the central chamber is a stove and apparatus for heating.

Dry'ing-ma-chinet. The machine for drying printed calicoes is shown by a vertical longitudinal section at A, Fig. 1790. The apparatus is in a hot room, and has a series of heatedsteam chests and cyl-

inders with upper and lower rollers, over which the cloth is exposed to the drying air of the apartment. The arrows indicate the course of the cloth.
B, Fig. 1790, is a prerspective view showing a series of heated eylinders upon which starched cotton or linen cloth is successively wound, drying and ironing it.
Similar drying cylinters are used in paper-making machines, both the eylinder machines and those of the Fourdrinier pattern, in which the sheet of pulp is felted on an agitated horizoutal web.
Dry'ing Off. The operation in gilding by which the analgam of gold is evaporated.
Dry'ing-room. The apartment in which articles or materials are dried; as, gunpowder, calico, cores, and what-not. Sometimes a kilm.
Dry'ing-stove. A place where cores for casting are dried.

A stove for desiccating friit, drying clothes, etc.
Dry-me'ter. A form of gas-nieter in which no liquid is used. See Gas-meter.
Dry-pile. A voltaic battery in which the plates are separated by layers of farinaceous paste comhined with a deliquescent salt. Kuown as De Luc's Column.
Dry-pipe. (Stcam-engineering.) A pipe which conducts dry steam from the boiler. The steam is collected in such a manner as to be free from priming.
Dry-point. (Engraving.). The work of all etch-ing-point upon a plate, unaccompanied with the use of acid, to deejen the line so made.

Dry-press. (Printing.) One in which the printed sheets are pressed smooth.

Dry-sand. (Casting.) A mixture of sand and loam which are employed in making molds subsequently dried in an oven.

Dry-stove. A hot-house whose atmosphere is adaptel hygrometrically for preserving the plants of arid climates.

Du'al-ine. Carl Ditmar's patent, No. 98,854 , January 18, 1870. The composition is: -

Compared with dynamite, it is, 1. More sensitive to heat, and also to meelianical disturbances, especially when frozen, when it may even be expluded by friction; 2. The sawdust in it has little affinity for the nitro-glycerine, and at best will hold but 40 to 50 per cent of nitro-glycerine, and on this account very strong wrappers are needed for the cartridges; 3. Its specific gravity is 1.02 , which is 50 per cent less than that of dynamite, and as nitro-glycerine has the same explosive power in each, its explosive power is 50 per cent less than that of dynamite ; [bulk for bulk ?] 4. The gases from explosions, in consequence of the dualine containing an excess of carbon, contain carbonic oxide, and other noxious gases. Lithofracteur and dualine, however, can be exploded, when frozen, by means of an ordinary fulminating eap, which is not the case with dynamite. - Journal of Applicd Chemistry.

Dubbing. 1. (Ľather Manufucture.) A mix. ture of fish-oil and tallow which is used to protect leather against the action of water. It is rubled into the hide after currying, and is also freely used upon the hose of fire-engines and the boots of persons exposed to wet. Drubing.

Another recipe: Resin, - pounds; tallow, 1 pound ; train-oil, i gallon.
2. (Plustering.) Filling up with coarse stuff irregularities in the face of a wall previous to finishinge it by plaster.
3. Dressing off smooth with an adze.

Dub'bing-out. (Plastcring.) A system of bringing an uneven surface to a plane by attaching pieces of tile, slate, lath, or other matters, to the wall beneath.

A projection may be made on a wall by the same means ; pieces being attached to the wall and covered with plaster brought to shape by the trowel.

Dub'bing-tool. An instrument for paring down to an even surface. An adze.

Du-cape'. (Fabric.) A rich silk.
Duck. (Felrie.) A flax fabric lighter and finer than callvas.

Duck's-bill Bit. A wood-boring tool adapted to be used in a hrace.

It has no lip, but the screw-cylinder which forms the barrel of the tool teminates in a rounded portion whose edge is sharpened to form the cutter. See Bitt ; Borivg.
Duck's-foot Pro-peller. A collapsing and expanding propeller which offers but little resistance in the non-effective motion, but expands to its full breadth in delivering the effective stroke, forming a kind of folding oar which opens to act against the water when pushed outward, and closes when drawn back at the end of the stroke.
The idea was taken from the foot of a duck, and was first tried by the celebrated Bernoulli, afterwards by Genevois, a Swiss clergyman, abont 1757; then by Earl Stanhope ahout 18C3. It was used on the river Thames about $1 \$ 30$.

Nalian's propelling apparutus, English pratent, 1828 , has the contractile retreat and expanding advance, the advonce being understood to mean the eflective stroke.

Duc'ti-lim'e-ter. An instrument invented by M. Regnier for astertaining the relative ductility of metals. The metal to be tested is subjected to the action of blows from a mass of iton of given weight attached to a lever, and the effect produced is shown upon a gralluated arc.

Duc-til'i-ty. The quality of adaptedness for drawing into wire; as malleability is for being beaten into leaves.

The order of metals in these two respects is as follows : -

Ductility.	Malleal ility.
Gold.	Goll.
Silver.	Silver.
Platinum.	Copller.
Iron.	Tin.
Copper.	Platinum.
Zinc.	Lead.
Tin.	Zinc.
Lead.	ron.
Nickel.	Nickel.

Duc'tor. A gage or straight-edge to remove superilhous material, as one on the color-roller of a calico-printing machine, inking-rollers, etc. See Duetur.

Duc'tor-roll'er. (Printing.) A roller to conduct mit to another roller or cylinder.

Duf'fels. (Fabric.) A thick, coarse kind of woolen cloth having a thick nap or frieze.

Dug-out. A canoe formed of a single \log hollowed out, or of jarts of two logs thus hollowed out anl afterwards joined together at the bottom and emls. See Canoe.

Dui'ci-an'a. (Music.) A metallic mouth-pine stop tuned in unison with diapason, and laving relatively long and narrow pipes which produce a certain sweetness of tone. See stop.

Dul'ci-mer. The dulcimer is supposed to be illentical with the psaltery of the Hebrews. It is fremuently mentioned in Scripture. The molern delcimer consists of a hox with a cover which forms a sounding-board, and has a number of wire strings stretched over a bridge at each end. It is played by elastic rods with pellets of cork at the ends. The number of strings is usually about fifty.
"Ilere [at the puppet play in Covent Garden], among the fildlers, 1 first saw a dulcimere played 012 with sticks knocking of the strings, and is very metty." - Perys's Diary, May 24, 1662.
"The Javanese g cmbing has wonden and brass bars of diflerent lengths placel crosswise over a wooden trough. They are struck hy small sticks with a ball of pith at the end."-Bickmore's Trace's in the Indian Archipelago.
Du'ledge. The dowel-pins of the fellies of a gun-carriage wheel.
Dum. (Mining.) A frame of wood like the jambs of a door, set in loose ground in adits and places that are weak and liable to fall in or tumble down.

Dumb-bell. An exercising weight consisting of a handle with an oblate sphere at each end.
a is the ordinary dumb-bell.
b is a dumb-bell in which the weight is graduated by constracting it of a series of shells, one over the other, which may be removed at pleasure.
c is Windship's dumb-bell, which has a number of weights slipping on a tube, and having washers and keys to hold firmly any number that may be desired.

The halteres of the Romans and Greeks were weights used for exereising and leaping. One was grasped in cach hand and they were swayed to increase the momentum of the body when vanlting.
The discus was a circular stone or plate of metal, and was thrown from a fixed spot to a distance.

Fig. 1791.

Our quoits are rings which are thrown on to or as near as possible to a stake, being a game of skill rather than of strength. In country places horseshoes are often used.

The Scotel game of "putting the stone." or throwing the hammer, resenibles the hurling of the lump of iron in the funeral games of the Greeks. A heayy mass of a spherical form (solus) was perforated at the center to receive a thong or rope which formed the handle. In the form of the discobolia it is yet used by the mountaineers in the canton of Appenzell, in Switzerland.

In the Scotch game of curling, the stone or iron block is propelled along the ice to a stake or base, called the "pee," the object being to land it as near "home" as possible and dislodge opponents.

Dumb-fur'nace. A ventilating furnace for mines, so contrived that the foul inflammable air from the more remote parts of the mine shall not be brought in contact with the fire at the mouth of the up-cast shalt a. This

Fig. 1792.

Dumb-Furnace. is effected by cansing the air from those parts to be introduced into the shaft by a separate passage b entering the shaft some distance above that from the furnace.

Dumb-plate. (Sicam.) The dcad-plate or portion of the furnace bottom close to the doors, which has no air apertures or spaces.

Dumb-wait'er. A movable frame for conveying food, etc., from one story or room of a building to another.

The ordinary form is a suspended, counterpoised cupboard a, moving within a vertical clute, which has openings at the respective stories, at which the dishes may be placed on the shelves and removed therefrom.
The dumb-waiter of the Pentonville Prison, England, consists of a cupboard b hoisted by means of a winch, and containing trays which are removed from the cupboarl and placed on a carriage c which runs on the haml-railing d^{*} of the balconies on opposite sides of the corridor. This prison is conducted on the separate, silent system, and as the carriage trav-

Dumb-Waiters.
erses along the corridor, attend. ants at each end stop the carriage opposite the doors of the cells in succession, and distribute the fool to the inmates.

Dum'my. 1. A locomotivewith condensing engines for city travel, and consequently avoiding the noise of escaping steam. See Street-locomotive.
2. A floating barge connected with a pier.
3. (Hat-making.) A tool of box-wood, shaped like a smoothingiron, and used by hat-makers in glossing the surface of silk bats.

Dum'my-car. A jassenger-car having an engine and boiler in an end compartment.

Dumb-sin'gles. Silk thread formed of several spme filaments, associated and twisted together. Several dumbsingles combined and twisted to. gether form throun-singles.
Dump-bolt. (Shipbuilding.) A short bolt driven in to loold planks tenporarily, matil the through bolts are driven.
Dump'ing-buck'et. (Mining.) A hoistingbucket in a shaft so swung as to be tipped for the discharge of its load, or having a botton which is closell by a latch, but may be swung open for dropping the contents.
Dump'ing-car. Dumping-cars are userl in constructing and ballasting railroals, excavating and filling in, canal and dock building, for carrying ores, etc.

Fig. 1796.

English Dumping-Car.

Dumping-Cart.

Dump'ing-cart. One having a bed hinged to the axle and capable of being tipped to discharge its laad. ln the example, as the cart or wagon body is tipped up to dump, the load, the tail-board will be raised antomatically, and will drop, back again into place and tasten itself as the said body is again raised into a horizontal position.

Dump'ing-reel. An arrangement in a harvester for dropping the gavels of grain. The cut grain falls against one of the reel-bars, which hold it up till a gavel is collected. The reel then makes a partial rotation, dropping what has been collected iu the rear of the cutter-bar, and bringing another bar into position for collecting another gavel.

Dump'ing-sled. One with an arrangement for sliding back the bed so that it may overbalance and tip out the load. The box is hinged to the rear

Dumping-Sled.

bolster so as to tip and dump the contents when the bed is run back. This is done by removing a catcl, when the draft of the team on the tongue draws upon a rope and runs the box to the rear.
Dumping-wag'on. One with an arrangement for discharging the contents. In Fig. 1799 the linged sectious constituting the bottom may be

Fig. 1799.

Dunping-Wagon.

Gravel-Wagon.
Fig. 1800.

swung down to dump the load. Each section is independently held by a latch, and each latch may lee operated by its appropriate lever at the right hand of the driver, so as to deposit the coutents of the wagon-bed in three separate piles.

Fig. 1800 has a wagon-hed which runs back on rollers by power applied through a winch and ropes. By a change of the tackle the bed is replaced.
Dump'y-lev'el. Gravatt's level. A spirit-level having a short telescope with a large aperture, and a comprass ; used for surveying purposes.

The telescope is made of sufficient power to enable the surveyor to read the graduations on the staff witho'at depending on an assistant.
Dun'der. (Sugar-moking.) The distillable lees and dregs of the cane-sugar boiling.
Dung-bath. Used in calico-printing works. Sce Dunging.

Dung-fork. A 4-tined fork for jitching and spreading manure.
Dung-hook. (Agriculture.) An implement for dragging
out manure or scattering that which has been previously dumped in heaps.

Dung'ing. (Calico-printing.) Removal of the superfln-
 ons mordant by passing dried calico through a warm mixture of cow-lung and water. It is passed through two cisterns 6 feet by 3 and 4 feet deep, the first of which has two gallons of dung to its contents of water, and the other a solution of half the strength. It is quickly passed through them in succession, washed in a wincc-pit, and then in a dash-uchecl.

A solution of phosphate of lime, phosphate of soda, and gelatine, is sometimes substituted for the cowdung.

Dun'nage. (Nautical.) On shipboard, the name applied to loose wood at the bottom of a hold to raise the cargo above the bilge-water, and also to chock it and keep it from roll.
ing when stowed.
Du'o-dec'i-mo. (Printing.) A sheet foldel so as to have 12 leaves, $-2 \pm$ pages. Generally written "12mo."

Du'plex-es-cape'ment. The duplex-escapement is so called from the double character of its scape-wheel, which has

Fig. 1802.

Duplex-Escapement. spur and crown teeth. it was invented by that wonderful mechanician, Dr.

Hooke, abont 1658. The duplex-escajement was improved by Dyrer and Breguct.
The brlance-arbor carries a pallet which at each oscillation receives an impulse fron the crownteeth. In the arbor is a notch into which the spurtecth fall in succession as the crown-tecth consecutively pass the impulse-pallet.
Du'plex-lathe. A lathe invented by Fairbairn for

Fig. 1803.

Fairbairn's Deplex-Lathe.
thus balanced, and time is saved.
a, tool in front.
b, inverted tool at back.
c, bed and standard.
d and d, two compound slide-rests.
c, a right and left screw for moving the two sliderests simultaneously toand from the centerot the lathe.
In another form the stationary ring is supportel on peedestals, and fits closely to the outer surlice of a ring within it, each being formed in two parts held

Bogardus's Duplex-Lathe.
together by bolts passing through projecting flanges. The inner ring has flanges projecting inward from its rim, upon which the cutters are arranged, and a continuous row of short cogs on the outer surface of the ring-rear, with a worm-wheel working in a mortise mall through the outer ring.
Du'plex Pump'ing-en'gine. An arrangement in which two steam-engines of equal dimensions are placed side by side, one operating the steam-valves of the other.
The "Worthington" compound engine illustrated is composerl of two steam-engineseach working a pump. Each engine has two steam-nistons, which operate in the smaller high-pressure and the larger low-pressure cylinder respectively, on the same rod, which is pro-
longed into the pump-cylinder to form the jumprod.

Each engine drives its ylunger at a speed uniform throughout its stroke, during which it opens, by a rock-shalt and appromiate connections, the steamvalve of its neghbor, and pauses at the end of its own stroke till its own stean-valve, being opened by the motion of the other's piston-rod, causes it to return. Other than this, there is no mechanical connection between the engines, but either piston can remain at rest while the other is in motion.

The combined and reciprocal action of the two doulle-acting phangers thus driven at unvarving piston speed ly the combined pressures in the high and low pressure steam-rylinders (whose sum is a practically uniform quantity) forees the water in a strady strean, and the water-valves are seated by their own. gravity through the equalization of pressures in the water-eylinder, during the pause of each engine at the end of its stroke, allowing the incoming currents to subside.

The engine works expansively, and also condenses the steam ; but no cut-off is used, the steam being used at high pressure in the smaller cylinder and exhansting into the large low-pressure cylinder which is immediately behind and in line with it, and where it is used expansively. The motions are all reciprorating ; no materials are employed for counterbalances, to pass dead-centers, or as conservators of jower (fly-wheels) to offset hy acynired momentum the diminishing pressure of steam in the cylinder when steam is cut off at a part of the stroke. The mean pressure resulting from the action of the two cylinders being almost constant when the parts are properly proportioned, the result is a uniform piston speed.
The single-acting air-pumps are driven by rockslafts off the main piston-rod, and are in a convenient and accessible position below the open cradle-rods, which connect the steam and punpeylinders. The valves are rubber disks, backid with iron, working vertically on fixed spindles. They are reached throngh the hand-holes, and are purposely made numerous in order to subulivide any trouble from the possible failure of any one of thenl. The duty trial of the Newark engine, reduced to the actual delivery of water in the reservoit, was by an average of the modes of calculation about $76,500,000$ pounds lifted one foot high by 100 pounds of coal. See Duty.

Du'plex-punch.

1. One having a com ter - die mounted on an opposite jaw, as the ticket-punch.
2. Oue having a forcederived from the rolling action of two levers on a common fulcrum, forming a toggle.

Du'plex-tel'egraph. A telegraph so arrangel that messages can be simultaneously transmitted in opposite directions on

Duplex-Punch. the same line-wire.

The first telegraph of this kind was devised by Dr. Gentl of Austria, in 1853, and modified by Frieschen and Siemens-Holske in 1854; hut it is only within the past few years that any duplex systems have been put into successful operation, and, up to this time, only on American lines.

The system invented by Joseph B. Stearns, of

DUSTER.

Boston, based upou Gentl's plan, is represented in Fig. 1806, in which the relay or receiving instrument is composed of two pairs of electro-magnets mm acting in opposite directions upon a common armature lever A. The key is the armature of an electro-magnet, which is in a local circuit controlled by a Morse key $K . \quad L B$ is the local battery. The main battery ($M B$) current is equally divited between the relay-magnets $m \mathrm{~m}$, one half passing throngh one set of magnets to the line l, and the other half passing throngh the other magnets, and a rheostat R-equal to the resistance of the main line - to earth E. The relay-magnets are thus erfually excited and their influence upon the armature nentralized, so that the outgoing current gives no signal at the sending station. A current receivel, however, thaverses only one set of the electro-magnets, destroying the equilibriom, and cansing a signal. The key is so constructed that it cluses one circuit to the earth before breaking another, thus always preserving the continuity of the circuit, a comdition essmential in systems of this kind. A condenser C is placed in a shunt circuit to the magnets in the short or home circuit, in order to neutralize the effect of the extracurent on the line-magnets of the relay.

Another system of Mr. Stearns is shown in the

3ower part of the same figure. It is based on the arrangement of circuits known as the "Wheatstone bridge," the relay or receiving instrument being placed on the bridge. The current of the main bat-
tery is divided by the rheostats $r r$ and $R F^{\prime}$ to points $x z$. If the resistances of circuits C to z and C ' to x are proportionately to each other as resistances of circuits $x y$ or tine, and z to earth, there will be no current in transmitting across the bridge $x z$, in which the relay or receiving instrument is phaced. The larger portion of the incoming current, however, passes throngh and actuates the relay; as it offers the path of least resistance.

Moses G. Farmer, of Boston, inventerl a duplex system in 1858, in which he used a key which preserved the contimity of the circuit, and also reversed the battery at the sending station, this reversal making the signals at the distant station, the relay licing prevented from responding by the current of a local equalizing battery closed simultanenusly ly this key.

Du'plex-type. (Photography.) A mame given to a mode of taking two photographs of the stme person in different positions by two operations, so that he shall appear in two characters - say, for instance, playing the piamo, and-accompanying himself - on the violin. It is done hy two exlosures, with some skillful mode of hilling the division line. Shive's duplicating reflector is constrincted for this $1^{\text {ruppose}}$.

Du'rance. A stout woolen stuff formerly made in imitation of buif leather, and used for gaments. Durunt. Called also T'ammy.

Du-rom'e-ter. An instrument invented by Behrens, designed for testing the relative hardness of steel rails. This "durometer," as it is stylel, is virtmally a small drilting-machine, working by hand or machine power, which registers the mumber of revolutions of the drill spindle and also the amonnt of feed, the latter being given by the application of a known weight to the back of the drill-spindle. The friction of the machine and the state of the cutting eiges are supposed to be constant quantities, anil as such are throw out of the calculation. The hardness of a metal is consitered to the inversely proportionate to the depth of feed obtained with a given number of revolutions.

Du-roy'. (Fubric.) A common quality of woolen serge.

Dust'er. 1. (Papcr.) A machine for removing the dust from rags or other paper-makiug material

before sorting, cutting, and lulping. It consists of a revolving, wire-cloth cylinder inclosed in a box which receives the dust.
2. (Milling.) A machine for rubbing, brushing,
and blowing bran to remove particles of flour ad. hering thereto. The bran is fed in at a spout at the smaller end, and is driven and blown through the meshes of the conical screen.

Dust'ing-brush. One which has the thick end of the handle driven into the middle of the tuft of bristles. Or a feather brnsh.
Dust-pan. A domesticutensil for eatching erumbs, lint, or dust, as they may be brushed from a table-cloth

Fig. 1808.

or carpet. The example shown has a lid, handle, and an inclined plane with oflset at the front edge.

Dust-shot. The smallest size of shot.
Dutch-case. (Mining.) A shaft-frame composed of four pieces of plank, used in shafts and galleries. A mining-crtse.

Dutch Clink'er. A yellow, hard brick made in Hollami.
Dutch Foil. A copper alloy, rolled or hammered. See Dutch Gold, calleil also Dutch Leaf ; Dutch Metal; Dutch Mineral.

Dutch Gold. The alloy used at the works of Hegermühl, near Potsdam, is composed of : -
Copper, 11 ; zinc, 2.
This is rollel into sheets, and is made into the Dutch leaf used in bronzing.
Dutch'ing. The process of removing the membraneons skin from the barels of Ifuilts, and drying u_{p} the vascular membrane in the interior.
They are heated by planging in hot sand, and then scraped to remove the skin. The heat shrivels the interior membane and lissinates the oily matter of the quill, rentering it transparent.

Dutch'man. (Carpontry.) A playful name for a block or wedge of wood driven into a gap to hide the fault in a badly made joint.

Dutch-ov'en. (Cooking.) a. A spider, stiellet, or cump-oven used by those who cook by hot coals on the hearth. A mode yet common in the West,

anc unsurpassed in its results with skillfnl honsewives. The pot stands in hot embers, and more of the same are pilel on the dish-shaped litl.
b. A cooking-chamber suspendell in front of a fire so as to cook by radiation. Also eminently satisfactory in its results, in just such degree as toasting exceerls baking; grilling or broiling than frying. lt says, "Aha! I have secn the fire."
Dutch-scoop. A hox shovel suspended by cords from a triporl and used for irrigation.
Dotch-tile. A variegatel or painted glazed tile made in Holland and formerly used for lining their capacious fireplaces.

Dut'tees. Coarse, unbleached calicoes of India.
Du'ty. The useful effiect of an engine in work performed.

This tern was first explained in a definite and precise manner by Davies Gilbert, President of the Royal Society, in a paper read before that boly in 1827. "The criterion of the efficiency of ordinary machines is force, multiplied by the sprace throngh which it acts; the effect which they produce, measured in the same way, has been denominated duty, a term first introduced by Mr. Watt in ascertaining the comparative merit of steam-engines, when he assumed one pound raised one foot high,
for what has been ealled in other countrics the dynamic unit; and by this criterion one bushel of coal has been found to perform a dity of thirty, forty, and even fifty millions." This has been more than doubled since the writing of the paper of Mr. Gilbert.

The duty is not an expression of the work done, as this would include the power to overcome friction and other resistances, but is the actual useful effect, expressed in pounds weight, of water actually raised.

The duty of the Newark water-work duplexpumping engine, as ohtained by multiplying together the area of the plunger in symare inches (373.85), and the pressure in pounds per square inch (75.68), to obtain the load in ponnds, and this by the travel of the piston in feet per hour ($10,908.4$), and dividing this product by the number of hundreds of pounds of coal consumed per hour (4), was $77,157,840$ foot-pounds. As obtained by multiply. ing the displacement per stroke in cubic fiet (10.4042), into the number of strokes per hour (2 i 22), the weight in pounds of a cubic foot of water (62.5), and the height in feet to which the water was raised for delivery (174.82) ; and dividing this product by the number of hundreds of pounds of coal consumed per hour (4), the duty was $77,358,478$. As reduceal to the actual delivery of water in the reservoir, it was $76,356,262$ and $76,584,894$ by the two methods respertively.

The following is the duty officially given for the angines cited:-

Brooklyn, No. 1, double-acting beam
60,140,700 Belleville (Jersey City), Comish 62,823,300 Hartford (3 experiments), crank
$58,779,300$ to $64,669,400$
Brooklyn, No. 3, domble-acting bean . 72,000,000 Cambridge (2 experiments), Worthing-
ton double-cylinder, not duplex
$66,941,100$ to $67,574,600$
Spring Garden (Philadelphia), Cornish 58,905,300
The duty or usefnl effect of the Cornish pmoping. engine has been more closely observed and recorded than that of any other engine. The duty is reported monthly, and is reduced to tabulated form, from which the yearly report is made ont.

The duty of these engines has been gradually improved. It is estimated by the number of pounds raised one foot high hy a bushel of Welsh coals, 94 pounds.

Pounds, 1 foot high.
In 1769, the Neweomen engine.
$5,500,000$
In 1772, the Newcomen engine, improved by Smeaton

9,500,000
In 1778 to 1815 , the Watt engine $20,000,000$
In 1820, the improved Cornish engine,
average duty
$28,000,000$
In 1826, the improved Cornish engine, average duty
$30,000,000$

Pounds, 1 foot high.
In 1827, the improved Cornish engine, average iluty
In 1828 , the iuproved Cornish engine, average luty
In 1839, the improved Cornish engine, average duty
In 1830, the improved Cornish engine, average cluty
In 1839, the improved Cornish engine, average duty
In 1850, the improved Comish engine, average duty
Consolidated mines, himhest duty 1827
Fowey Consols (Comwall), highest duty 1834
United mines, highest duty 1842
$32,000,000$
37,000,000
$41,000,000$
$43,350,000$
54,000,000
60,000,000 67,000,000

97,000,000 108,000,000

D-valve. A species of slile-valve, employad chielly in the stenm-engine, and adapted to brings each steam-port alternately in communication wilh the stean and exhaust respectively.

Dwang. 1. A large iron bar-wrench used to tighten unts on bolts.
2. A crow-bar usel by masons.

Dwarf-raft'er. (Curpontry.) Little jack. A short ratter in the lip of a roof.

Dwarf-wall. A low wall serving to surromml an inclosure ; such a wall as that on which iron-railing is commonly set.

Dye'ing. Dyeing is a subject not involving muels machinery, and is therefore hardly within our limits.

Dyes are organic and inorganic.
'The former are vegetable, except cochineal, sepia, and the purple of the murex.

Most of the vegetable colors do not exist naturally in plants, hut are obtained by subjecting vecretalle substances to special chemical treatment; as in the case of gurcencine, obtained from madder.

Tue art of dyeing consists in inpregnating fiber, in the state of eloth or otherwise, with coloring substauces.

Fibrous materials differ in their relative disposition to take color. Their alisposition to absorb amd retain color is in the following order, beginning with the one which has the greatest attraction for color : -

Wool.	Flax.
Silk.	Hemp.
Cotton.	

Woolen goods dyed before weaving are called wool. dyed; if after weaving, piece-dycd.

Dye-colors are substantive or adjective.
The former act directly, imparting their tints by simple immersion in their infusions or decoctions; the latter intermediately, and are the more numerous, requiring fixing or striking.

The intermediate substanees are called mordents.
The mordant is first applied, and eauses the dye which follows to adhere to the fiber, often singularly affecting its tint. Thus : cotton lipped in a solution of copperas (mordent) and then in a solution of logwool (dyc) becomes black. If a solution of tin (mordent) be substituted for the salt of iron, the tint imprarted by the logwood will be violet. Mordants were used in China and India from very distant priods, and are described by Pliny. See Calico-pianting.

Moses (1490 B. c.) speaks of stuff dyed "blue, purple, and scarlet"; "rans'skins dyed red."

Joseph (1729 B. c.) had a coat of many colors ; probubly a product of Damascus.

Dyeing is attributed to the Phcenicians. Solomon
(1000 B. c.) seut to Hiram of Tyre for a man "cun. ning to work in . . . purple and crimson and hlue." Feckiel speaks, in his burlen of Tyre, of the "blue and purple from the isles of Elisha," which may mean the l'eloponnesus and adjacent islands.

The most celebrated dye ot antipuity was the Tyrian purple, derived from a specios of murex. lliny cites two, the buccinum and purpura. A single drop of Huid was obtained from a sae in the thoat of eaeh animal. A quantity was leated with seastlt, ripened by exposure for three alas, diluted with five times its bulk of water, kept wirm for six days, being occasionally skimmed; then elarified and applied as a dye to white wool previously prepared by the action of lime-water or fucus. The wool was first plunged into the purpura and then into the buccinum. Sometimes a preliminary tint was given with coceus (kermes). The dye and dyed groods are celebrated in the Hebrew and other ancient scriptures.

This color seems, from its extreme beanty, permanence, and costliness, to have become rugal, and the royal taste is for the same down to our day. 'l'lie color of the velvet in the crown of the Quenn of Enigland is a slade of purple; the velvet romonation robes of George IV. Were of that color. Pliny (A. D. 70) says that the robes of trimmph in the time of Homer (900 B. c.) were colored. Purple habits were given to Gideon by the faraelites from the spoils of the kings of Midian. Achan secreted a lialiylonish garment, and suffered for it. l’utarch says that When Alexanter took Susa, the Greeks took from the royal treasury purple stufl's to the value of 5,000 talents (1 talent $\$ 860 \times 5,000=\$ 4,300,000$), which still retaned their beanty, thongh they had lain there 190 jears.

Prussian blue was discovered by Dieshach, at Berlin, 1710 ; aniline, in 1826 , by Unverdorben. In 1856 , Perkin, experimenting with aniline, treated it with bichromate of potassa, and obtained maure. Arsenie tried as a substitute for bichromate of ${ }^{10}$ tassa prodneed magenta; blue, green, violet, and other colors were subsequently roductal.
(Hat-meling.) Hats (blaek) are dyed in a solution of sulphate of iron, verdigris, and lonwood, at a temperature of $180^{\circ} \mathrm{F}$. They are alturnatcly dipped and aired, the process being repentud perhaps a dozen times. The hats are all on thin hlocks, and a suit of tive dozen fills a crate, which is swung from a crane, and thus raised and lowered as revuired.

Dye-ket'tle. (Hat-making.) The vat of lyeing liquid in which lats are dipped to color them. It contains a solution of sulphate of iron, verdigris, and logwood, is maintained at $180^{\circ} \mathrm{F}$., and the crate of hats on their blocks is repeatedy dipyed and aired to confer the requisite depth and gloss of color.

Dy'ers'-bath. The dyring material in the vat in which the fabric is immursed.

Dy'ers' Spir'it. Nitro-muriate ol tin. Employed as a mor. dant.
Dye-vat. A beck or tub in which goods in piece or otlerwise are saturated witl a dye or a mordant in solution. In Fig. 1810, the piece of cloth, its ends being sewed together and rounded in

Fig. 1810.

form, is coiled around the rollers in a devious course, so that the whole piece has continuous movement, in which it is alternately carried bentath and raisert from the liquid dye. When the c!-th has been sufficiently dipped the ends are unsewn, and the forward eud is passed between the wringing iollers in a flat form.

Fig. 1811.

In another form, the goods are contained in a basket, which is dipped into the rat and raised by crank and rope.

Dye-wood Cut'ter. A machine for shaving wood into small chips; usually has a revolvercutter, and resembles a rotary planer, except that it reduces the whole body of the \log to chip. The rotating drum has adjustable serrated cutters. The wood is fed on an inclined slide, and propelled by a toothed follower,

Fig. 1812.

the centers of the images, or the diameter of one of them.

Dyn'a-mite. An explosire compound invented by Nolel. "1t is a mixture of 75 per cent of nitroglycerine with 25 per cent of infusorial silica. The silica renders the powder less liable to explode from concussion. This is the dynamite proper, but dynamitt is also used as a generic name for other mixtures of nitro-glycerine,-as colonia powder, which is gunporder witl a mixture of 40 per cent of nitroglycerine; dualine, which contains 30 to 40 ner cent of nitro-glycerine mixed witl sawdust saturated with nitrate of potassia; lithofracteur, which contains 35 per ecent of nitro-glycerine mixed with silica, and a gunpowder made with nitrate of baryta and coal." - Journal of Amplied Chemistry.

Dyn'a-mom'e-ter. A power measurer.
Graham's dynamometer, improved hy Dr. Desaguliers, is an application of the ordinary steelyard, in which the power to be measured is exerted njon the short arm and ascertained by a weight on the longer, graduated arm.

Leroy's dynamometer is a spiral spring in a tube. Power is applicel to condense the string, and the pressure indlicated by a graduated bar. This is equivalent to the ordinary spring-balance, and is a very ready form of dynamometer for moderate forees.
Regnier's dynamometer (1, Fig. 1813) consists of an elliptic spring whose collapse in the direction of its minor axis is made to move an in-dex-finger on graduated ares.
The power may be ajplied in two ways: when it is applied to draw the ends ssariart, the index-finger legisters myriagrammes on the ontir scale ; but when the two leaves of the spring are grasped by the hands and thus pressed by a power applied at right angles to the
actuated by a spur-wheel and rack. See also Barkplaning Machine; Rossing-machine.

Dyke. I. (Mining.) A bank of basalt or whin by which the strata or lodes are frequently divided. 2. A sea-wall. See Dike.

Dy-nac'ti-nom'e-ter. An instrument described by 11. Claulet (" Philosophical Magazine," June, 1851), for measuring the intensity of the photogenic rays of light, and computing the power of objectglasses. See Activometer.

Dy-nam'e-ter. An instrument for measuring the magnifying power of a telescope.

The magnifying power is the ratio of the solar focal distance of the object-glass to the focal distance of the eye-piece considered as a single lens; and this ratio being the same as the ratio of the diameter of the aperture of the telescope to the diameter of its image or disk formed at the solar focus, and seen through the eye-piece, the object of the instrument is to measure the exact diameter of this image, which can be either projected on mother-of-pearl or measured by optical means.

Ramsden proposed for this purnose the doubleimage micrometer, an instrument formed by dividing the eye-lens of a positive eye-piece into two equal parts, and mounting them so that the divided edges are made, by means of a fine screw apparatus, to stide along each other. Each semi-lens thus gives a separate image: and the distance of the two centers, measured by the revolutions of the srrew, when the borders of the tro images are brought exactly into contact, gives the distance of
former, and in the most effective direction, a shorter pin on the same pointer registers kilogrammes on the inner are of graduations.

The graduated plate with its pointers belongs to one leaf of the spring, - the upper leaf in the illus. tration, - while the other leaf connects by a small copper lever with an arm which pushes the indexfinger as the elliptical spring is collansed by force applied to it. The index-finger moves frecty and retains the attained position, being unaffected by the relaxation of the force.

For moderate forces the power is applied to condense the spring by directly pressing the leaves togetlee in the line of the minor axis. For superior forces the spring is collapsed by direct llaft outward, unon the loops s s at the ends of the spring.
Braby's dynamometer (2, Fig. 1813) has an elliptic spring like Regnier's, but a somewhat different recording connection. Like Regnier's lueavier draft, it is attached by the ends $c d$, between the power and the load, and the application of force collapses the leares of the spring, oscillating the index-finger on its axis, amel recording upon the graduated are the amount of power exerted.

The Seetor tynamometer (3, Fig. 1813) is made of a bar of steel, bent in the midlle, and having a certain flexibility. To each limb is attached an are which passes through a slot in the other limb. Loons at the ends of the arcs permit the device to be placed hetween the power and the load, so that the limbs are approached when power is applied. One are is graduated so as to indicate the power exerted in bringing the limbs nearer together. The
graduations madeon the arcare in accordance with the result of the suspeusion of weights experimentally.

The above forms are specifically adapted for pull. ing forces, such as testing strengthes of corls,] wower of animals, force required to draw plows, carriages, etc. When the problem is to ascertain the force transmitted throngh a revolving shatt, the case is somewhat more complicated. "A mechanical con-

Fig. 1813.

trivance for measuring the force exerted by a prime mover, or the amomet of force consumsl in driving a machine or all the machines of an industrial establishment. It involves generally the expedicnt of interposing between the notor and the machinc, as a medium through which the power is to be transmitted, some combination of springs, or some mechanism of which springs are the essential parts, provided with a scale on which are marked the degrees of static force comesponding to differeut states of tension, and sometimes also with autonatic machinery for making periodical record of the marking of the intex on the scale." - Binesarn.

Prony's friction-brake is a test which involves the loss of power, as it consists in opposing a frictional impedimeat to the motion. The measure is relative as comprend with other machines similarly tested, and is letermined by the power evinced to resist given fictional opposition to the continuance of the motion.

Thompson's friction-brake dynamonreter has been contrivel for estimating the amount of power transmitted through a shaft by means of clamping-blocks,
a lever, and suspended weights. The requirement of a perfect dynamometer is that it shall not be itself a charge upon the rower ; that is, that by its interposition the expenditure of Iriving force required shall not be sensibly increased. This property belongs to all that class in which the power of the motor acts directly with all its force to produce Hexure in springs, while the spriugs by their effort of recoil transmit it undiminislied to the machine.
Taurine's dynamometer forms a section interposed between two lengths of a shaft in line. Two amus are attacled to the part of the slaft on either sile of this joint, in a radial direction ; those on the same side being diametrically opposite to each other, while those of each pair are ninety degrees from those of the other. Stout springs in the form of circular quadrants connect the extremities of these arms on two opposed quarters of the circle, and the force of the motor is transmitted through these springs by a pushing effort. The efliect is to bend the arches outward, and the degree of this bending is indicated by a spring which comects their middle points. The flexure of this spring is diminished, and in straightening it moves an index in the direstion of thic axis of rotation.
Bourdon's dynamometer depends upon the trans. mission of the rower hy means of slightly spiral gearing, the tendency of which is to give the arhor of the gear a longitudinal motion in its bearings. This motion is oplosed by a spring, and the degree of compression of the spring is the measure of the power transmitted.
Horn's ilymamometer acts upon the principle of the torsion of the connecting-sliaft.
The dynamometer (4, Jig. 1813) nsed by the jury of Class V. (machines for direct usc) in the International Exhilition, London, 1851, was the invention of Colenel Morin of France.
To the shaft A is secured a pulley C, and on the same shaft is a loose pulley 1) which has a spring bar E extending between checks on pulley C, which is the only connection between them. When a force is apphied to D and a resistance to C, the spring E is flexed, and the degree of flexure is the murasure of resistance. To measure the degrec of hending of the spring a frame is attached to the loss of the spring E supporting a series of rollers $g h i$ a fusee j and η rencil-holder k. On the edge of the pulley D is anotler pencil-holder. When the dynamoneter is to be used, a long ribbon of paper is wound on the roller h, and its onter end being carried over the roller g is male fast to i, which is driven by a string from the fusere j, which lears on its axis a wheel m gearing into one on the shaft A. Until resistance is alplied to the whel C the two pencils make a single line, hut when the spring is flexed the lises of the pencils diverge, one pencil continuing to draw a straight line and the other tracing a line at a distance from the first, varying with the degree of thexure.
Emerson's lever-dynamoneter (5, Fig. 1813) is also designed for measuring power in transmission. The pulley A is loose on the shaft, and receives the pow'r. Its connection with the shaft is made by means of a wheel keyed to the shaft and connected to the pulley by certain levers which have connec. tion $B C D$ with a pendulous weight E which registers on a seale F the amount of power excrtecl mpon A to produce the motion of the pulley G, whicb is fixed to the shaft and delivers the power.

For mellical uses a dynamometer is made compressible in the land.
Dyn'a-mo-met'ri-cal-brake. A form of Dysa. mometer (which sec).

E.

Ear. A small projection on an object, usually for support or attachment ; as:-

1. The eur of a bucket or cooking-pot to whiclu the bail is attacherl. The car or hag of a sngar or salt boiling kettle by which it is supported on the walls of the furmace. The ear of a shell is imberded in the metal, and serves for inserting the looks by which the projectile is lifted.
2. (.Music.) In the metallic month-pipe of an organ; oue of the pair of solt metal plates at each end of the slit or month of the pipe, which may be bent more or less over the opening, to qualify the tone.
3. The cenon of a bell, the part by which it is suspented.
4. (Printing.) A projection on the rdge of the frisket; or one on the edge of the composing-rule.
5. The loop or ring on the ram of a pile-driver by which it is lifted.
6. One of the two projecting parts on the portions of an eccentric strap by which they are bolted together.

Ear, Ar'ti-fi'cial. An anricle having the shape of the natural ear, and worn as an ear-trompet, to colleet the waves of sound and cond ret then by a tube to the meatus auditorius. Usially made of gutta-percha colored to resemble nature, and attachel by clasps to the natural ear. Sue Avbicale.
Ear-brush. A toilet instrument for cleaning the ear. A bulb of sponge on a handle. An aurilare.
Ear-cor'net. A small auricle which is contained within the hollow of the outer ear aml has a short tube to kiep, open the matus cuulitorius in cases of contraction or the presence of polyif. An cartrumpet.

E-lec'tro-mag-net'ic Bat/ter-y. One in which the current is generated in the voltaic battery, as distinguished from the electric, the mugneto-electric, or the thermal hattery.
Ear'ing. (Nuutical.) The rope which lashes the upper corner of a sail to its yard.

The recf-cerings are used to latsh the ends of the reef-band to the yarel.

Ear of Diomys'i-us. An acoustic instrmment named after the sound-conducting orifice in the roof of the dumgeons where the old sicilian tyrant kept his prisoners.

It las a large mouth-piece to collect the sound, which a llexible tube conalucts to the ear of the person. It is especially adapted for emabling the viry deaf to hear gemeral conrersation, lectures, semons, etc. Ser Acoustic Instrumbnts.

Ear-pick. (Surgical.) A small scoop to extract hardened verumen from the muthes auditorius, or foreign matters from the external ear.

Ear-spec'u-lum. (Surgicul.) An instrument for tistenting the exterior ranal of the ear, in removing indurated wax, or other explorations and operations. An otnscope.

Ear-syr'inge. An instrmment for injecting the ear with a liguid or medicated vapor. An orelinary syringe may answer the usual purposes of cleanliness, softening indurated wax, ete., but the instrument shown has a farther capaeity, a is on indiarubber air-bag, b a flexible tulbe, c a lulb of hardrubber, marle in two pieces, whieh serew together and contain a sponge to hold chloroform or other liquid ; d is the perforated bulb. It is particularly ised in treating liseases of the middle ear. The sponge
being previously moistened, the nozzle of the bulb is placed in one nostril, the other is closed by the finger of the suggeon, the month is also closed, and the pationt, having previously taken a monthful ol water, is told to swallow, and, just as lie is loing this, the surgeon compresses the air-bag, and sends the iodized air into the faucial orifice of the enstachian tube, and, if the drum be perforated, into the cavity of the tympanum.

Earth. (Tclegraph.) The ground in its relation to the circuit as the means of conducting the return current. The conductor is led to a buried gromud-plate or to a gas or water main, which forms an admirable ground conductor.

Earth-bat'ter-y. A large plate of zine and a plate of copler, or a quantity of coke, buried at a certain dis-

Roosa Ear. syringe. tance asmmber in damp eartl. The moisture of the earth acts as the exciting thid on this voltaic couple, and a firble but constant current is prodnced.

Earth-board. The mold-hoard of a plow.
Earth-bor'er. A jurm of auger for boring holes in the ground, where the strata are sufficiently soft and loose. The shaft has a screw-point and a cutting-face. The twisted slank revolyes inside a cylindrical case, which retains the earth till the tool is withdrawn. The valve opens to admit the earth, anll closes as the tool is lifted. Sen Avieme.

Earth-car. A car for transporting gravel aud stome in railWay operations. See DumpingCal:

Earth-clos'et. A commode or night-stool in which a hody of earth receives the feces, or is dropred upon them to absor'o the ufluvia; the resultant is to be utilized as a fertilizer.
A is a pan providerl with an absorbent ; when linll, the lining and the contents are removed and buried, and another lining of partl placed in tlie pan by packiug around the mold B.
C his a seat a, which descends with the person and brings a charge of easth in readiness to fall upon the feces. As the person rises, the quantity of earth released ly the former operation is dropped upron the feces in the [an below. b is the eartl reservoir, and c the dumping-spout.

Earth'en-pipe. The Romans nsed carthen jopes where econony was an ohject. They preferred leat. The earthen pipes bad a thickness of at least two inches,

Fig 1815.

Earth-Ener. and the ends were respectively contracted and enlarged to fit into and to reccive the

adjacent pipes. The joints of the pipes were lute 1 with quicklime and oil. The thickness was inereased at the bottom of a bend, as in crossing a valley or hollow, or the pipe at this part was "secured by ligattures or a wright of ballast" (Vitacuivs). Earthen pipes are foumil in the walls of the baths and the Colisenm, of rarious diameters, none less than 2 inches diameter. The claborate armangement of pipes in the amphitheater of Fospasian has probahy never bern excelled. Fifty-six drains constructed within the thickuess of the walls which supported the staircases of the ground-lloor served to carry ofr the mainwater which fell in the huilhing, and also the contents of the urinals in the third and fourth stories. The drains were cylimdical pipes of 12 inches diameter, hollowed out of freestone blocks 20 inches in hight. The drains were led down from the upper stories through pipes in the masonry of the stairs, and mited with humdreds of other drams at the larger chmbits, which comlucted the water to the Clow:a Maxima.

The arrangemont of the aqueduet and distributing piles which condueted the water from the fonatain of Nismers was as raborate as the emmetories deseribed. See "Cresy," ed. 186.5, lil' 1118-11S.

Earth'en-ware. A general wpension which covers all eranie work, such as stone-ware, delft, procelian, ete. Sue Potrery. The term, as far as it may have a less general meaning, inclutes merely the commoner classes of clay-ware, otherwise known as crockery.

The clay, having been propurly tempered, is formed on the wheel and dried muder cover mutil it has acifuired considerable solidity. The glaze, of the consistence of crean, is then pat on as evenly as
possible by memis of a morsh. Small articles are ghazed by pouring in the glaze and then pouring it ont again, sufficient adhering for the purpose.

The glaze consists of galena ground to powder and mixerl with "slip"; that is, a thin solution of elay. This is a clear glaze, and is made black and opaque by the adlition of manganese: galena, 9 ; manganese, 1 part. The glaze laving dried, the ware is piled in the kiln.

A low heat, apllied for twenty-four hours, drives off the moisture ; an increased heat for another twenty-four hom's, as high as can be bome without fusion, bake's the elay, drives ofl the sulphur from the gralena, and causes the lead to form a glass with the clay to which it aulheres. With increase of heat this glass spreads orer the surface of the ware. Ifter the funace is cooled, the ware is removed. The glaze, consisting of oxide of lead, is soluble in acids, such as vinegar and those of fruit, and is destroyed, remlering injurious the fool with which it combines. A more iefractory clay admits the use of a less fasible glaze of a harmless character.

Eurthen-ware is found among almost all mations and tribes, thougl not all have the art of glazing, nor have all the art of baking. Drying is not buking, and it remuires a good heat to make a good riuging article. The Egyptians and Etruseans had pottery at a date hefore the historic period. We know more of the former than of the latter at early periols. The resmblance of the Greek and Etrurian ceramic works is remarkable. Glazing came from China. Wedgwood's patents about 1762. See sureific list muder Potrery and Clay.
Earth-plate. (Telegraph.) A plate huried in the earth, or a system of gas or water lines utilized for the purpose, connected with the trimimal or return wire at a station, so as to avail the earth itself as a part of the cirenit, insteal of using two wires, as was the practice previons to 1837.
Earth'quake-a-larm'. An alarm fonnted on the discovery or sulpmsition that a few sreonds perious to an eatliplake the nagnet temprarily lows its power. To an armature is attached a weight, so that upon the mannet becoming paralyzed the weight drops, and, striking a bell, gives the alarm.
Earth-ta'ble. The lowest visible course of stone or hricks in a wall or huilding.
Earth'work. An enginecring tern apllied to cuttings aml embankments.
Ear-trum'pet. An instrument for the callection an! conduction of sounds. By increasing the size of the amrisle, a larger volume of somm is gathered than by the natural ear.

The par-trumpet fir the assistance of the purtially deaf is helievel to have heen invented by haptista Porta about 1600 . Kircher deseribes the funmel and tuhe for conveying soma, the device which is now so common for eonveying intelligence hetwern apartments and shops, in dwellings, warthouses, and fietories.
1). Anot of Enediank, who became partially deaf from a cold contractel in traveling, first elerised the pair of shells or artibimal cars which extend the surface dindiayed to gather the tremulous air.

There are two qualitios rerpuired in a speakingtube : that it sla:ll concentrate a large amomit of somm in a small space ; and, secondly, that it shall not stille the soumls within the tube itself. Guttafurcha siems to answer the latter conditions better than any wher material.
The car-thumpets are of several deseriptions:-

1. The limg ent-frempot a, with a wide opening at the somal-repption end, and a small opening at
the delivery end. This is made portahle and compact by bending. b has a rotatable section; c is a shorter trumpet ; d d cane trimpets; c a short one.
2. The ear-cornet f is a small and ueat affair, adapted to be worn on the head.
3. The paraboloid trumpet, in which the somed is echoed from a large concave receiver before it enters the tulre.
4. The anditorium trumpet, which is adapted to collect the sound of a speaker's voice and convey it to one or more jarts of the room where the partially deaf persons may be sitting.

The uses of the aconstic tubes are various, form-

ing means of communication letween a captain and his engineer or steersman ; a conductor and driver on a street-car ; a conductor and engineer on a train ; a messenger at the door anil a doctor in his apartment; a housekecper with the kitchen; an office with a factory; an ellitor with the emmositor's rom ; a hospital olfice and the wards, ete.

In the auricle f the tube of the ear-trumpet near where it enters the ear is intersecten by a prassage communcating with an artificial ear which is intenderl to lead such vibrations as fall on it to mite with the vibrations passing round throngh the tuhe.

A sonifor is a bell-shaped instrmment of metal placed on a table with the mouth turned in the direetion whence the sound proceeds; the somel col. lected in the bottom of the instrmment is conducted by a flexible tube to the ear of the person.
(Microcousic.) Au iustrument to assist the learing.

Eas'el. A wooden frame for supporting a picture during its execution.

Eave. The lower edge of a rof overhanging the wall.

Eave-board. A featliel-edsme boakt, nailed above and across the lower embe of the rafters, to tilt up the lower edgre of the lownst course of slates so that the next course may lie latly mpon them.

Eave-lead. (Buildiny.) A leaden gutter inside a parapet.
Eave-mold'ings. (Archetchurc.) Those immediately below the eaves, as a comine.
Eave-trough. A trongh, usially of tinned iron, suspended bemeath an eave to catch the drip. It is

Fig. 1819.

Eave-Trough Hangers.
held by a strap or hanger, which may have means for the vertical adjustment of the trongh, so as to give it the required fall in the length of the eave.

Eb'on-ite. Mr. Goollyear's mame for what is generally known as hard rubber. It is a vulcanite with a larger proportion of sulphur and certain added ini gredients. The proportion of sulphar is from thirty
to sixty prent, and to this may be added certain amotunts of shellace, gutta-percha, chalk, pipe-clay, sulphates of zinc, antimony, or coppler. It is used of many colors, as may be gathered from the above list of ingredients, and of hardness and conserfuent facility for taking polish. The compound, manger its mame, may resemble horn, ivory, bone, wood, etc.
E-bul'li-o-scope. An instrument for determining the strength of a liguid by ascertaining its boil-ing-point.
Ec'cal-e-o'bi-on. A chamber for hatching eggs by artificial heat. See Incubators.
Ec-cen'tric. A disk or wheel 6 fixed upon a shaft at some distance from its geometric center. Aromel it is placed a ring d, within which it is at liberty to turn; the ring, however, does not turn,

but rotates arom the axis of a, so as at its ctuarterly proints to oceupy the places indicated by the dotteel cireles, the effect of which is to rock the bellcrank lever g g.

The upler portion of the figure shows a shiftable eccentric for varying the throw.

The fore ccentric and buck cccentric impart forward and backward motions respectively to the valve-gear and the engine.

The ecentric is used in many other machines besides steam-engines, to convert a rotary to a reciprocating motion.

Ec-cen'tric-catch. See Eccentric-iloor.
Ec-cen'tric-chuck. A chuck attached to the mandrel of a lathe, and having a slibling piece which carries the center. This piece is aljustable in a plane at right angles to the axis of motion by means of a set screw, anl carries the center to one side of the axis of motion. By its means circular lines of varying size and eceentricity may be produced. No oval or ellipse is protheet therehy, but cireles on the face of the work with their centers at such distance from the axis of the mandrel as may be desired.

Ec-cen'tric-cut'ter. A cutting-tonl liseed npon the slide-pest, and laving a rotation ly means of a wheel and shaft, the cutter being attacherl to the end of the latter. The rotation is oltained by an ovcrherd moim, and the eccentrieity ly fixing the cutter at diferent listances from the center by mans of the groove and screw. The action of the pecen-trie-cntter differs from that of the eceentric-chnek in this: in the latter the work is rotated and the tool is stationary; in the former the work is stationary and the tool revolves.

When the motions are used in conjunction, the patterns are capable of almost unlimited variation.
Ec-cen'tric-en-grav'ing. An arrangement of
diamond tracers, operated by elaborate machinery, acting upon a varnished roller elesigned for calicoprinting. The eflect is analogous to that produced by the rose-engine lathe.
Ec-cen'tric-fan. A fan-wheel with radial arms and vanes, and having an axis which is eccentric with the case in which it reyolves. The case hasa scroll form, and the eflect is to make the discharge of air more perfect and avoid carrying a hody of air around between the vathes.

Ec-cen'tricgab. S'e Ec-

Eccentric-Fan. CENTHC-HMOR.

Ec-cen'tric-gear'ing. Cog-wheels set on eccentric axes give a varialle circular motion, as in the case of the ecentric contruto whecl and pinion, and the pecentric spur-wheel and intermediate shitting pinion. Links connect the axis of the pinion with those of the driter and driten wheels, and preserve the pinion at proper mashing distance,

so as to engage with the motor and communicate the motion to the mext wheel in series.
Ec-cen'tric-hook. (Steam-enginc.) One used to connect the erecentric-rod with the wrist on the lever of the rock-shaft which actuates the valve; otherwise rallerl a gub.

Ec-cen'tric-hoop. The strap on the cerentric of an engine.

Ec-cen'tric-pump. A hollow eylinder in which is a revolving lanb and axis eceentrically armaged. On the hub are flaps which act as pistons in the space between the hub and the pans to expel the water, which enters at one opening and departs by another. The same construction is sem in rotary steam-engines, only that in one case the shaft revolves to force watm, and in the other the steam lassts through to drive the shaft.

Ec-cen'tric-rod. The lod fommeting the eccentrie strap to the lever which moves the slide-valve-

Ec-cen'tric-strap. (Machinery.) The ring inclosing an ecentric shenve and connceting by a rod to the object to be reciprocated ; as, the slide-valve of a steam-enginr. See Eccentitic.
Ec-cen'tric-wheel. A cam consisting of a cir-Enlar-disk attached eceentrically to a shaft. It is used for communicating a reciprocating motion to the valve of a stram-engine. Its axis of revolution is out of the center of its figure, and the rectilinear motion imparted is called the throws.
The ring around the eccentric is the cocentric-strap.

The rod connecting the strap to the part to be actuated is the cecentric-rod.
The hook at the end of the rod, by whieh it is connected to the rock-shaft of the valve motion, is the eccentric haok or gub.

The whole apparatus is the ccecutric-gcar. See Eccestric.

Eic-cop'e-us. (Surgical.) A surgeon's knife.
A raspatory; an ancient instrument for trepanning.
E-chi'nus. A member of the Dorie capital ; so called from its resemblance to the echinus, or large vase, in which drinking-eups were washed.

E-chom'e-ter. (Music.) A seale or rule marked with lines which serve to indicate the duration of soumls, and to ascertain their intervals and ratios.
E-clipse'-speed'er. (Cotton, ete.) A form of spinning-machine.
E'coute. (fiortification.) A gallery built in front of the glacis of a fortification, as a lodgment for tromps to intereept the miners of an attacking force.
Ec-pho'ra. The projeetion of any menluer or molding hefore the face of the nember or molding next belor it.
E-cra'seur. A steel chain tightened by a serew, and used for removing piles, prolypi,
Fig ${ }^{183}$ malignant growths, ete. Used also in obstetrical practice.

Ec-ty-pog'ra-phy. A mode of etching which gives the design in relief. The plate is exposed by the etchinr-neenlle between the lines, instead of at the lines.

Edge-cut'ting. The process of giving a smooth edge to books by eutting off the folls and making the margins of all the pages equal. The book is held in a cuetling-pross and the work done ly a plow or trimming-machine.

Edge-joint. (Cerpentry.) A joint formed by tro edges, foming a corner.

Edge-mill. An ore-grinding or oil-mill in which the stones travel on their edges. In addition to the cmishing action, the edele-mill has a frictional or grinding action, whose relative value may be consitered as equal to the ditference of distance performed by the inner and outer edges. See Chilian-mille

Edgeplane. 1. (II ood-workfor edsing boards, having a fence, and a face with the required shape; flat, hollow, or round.
2. (SHoc. making.) A plane for shaving the edges of boot and shoe soles. It has a knife curved to the shape desired, a projecting edge which forms a guide
and gage, and means for adjustment. The moutbpiece is adjustable, and holds the curved paringknife by means of its jaws and set-screw:

Edg'er. A eircular saw or pair of circular saws by which the bark and "wancy" portions are ripped from slab-boards or boards made hy ripping logs throngh and through, without spraring.

A double-edger has one permanent saw and one capable of regulation as to distance frow the former one, so as to adapit the pair of saws to etge hoards of rarying width.
Edge-rail. (lailmand.) a. One form of mil-road-rail, which lears the rolling stock on its elge. The rail is contradistinguished by its mane from the flut-rail, which was first used; the angle-rail, which succeeded that; the bridge-rail, which presents an arched tyead and has lateral flanged fiet ; the footruit, which las a tread like the edlyc-rit, hut, unlike it, has a broad base formed by foot llanges.

The first public railuay laid with ralge rails was mate by Jessop of Loughboronch, England, 1789. They were of cast-iron in 3 or 4 feet lengths, and had vertical holes near each end by which they were woaten-pinned to the sleepers. They were fishbellied, and subsequently laid on cast-iron chairs.

Wyatt's patent in 1800 was ain oval cast-iron rail. The upper surface was afterwards flattened.
liolled-irna colyc-rails were made in 1820 under Birkenshaw's patent.
See Fail; Rallway.
b. A rail plaeed by the side of the main rail at a switch to prevent the train from ramming off the trark when the divection is changed.

Edge-roll. (Boakinuling.) A brass wherk, used hot, in running an ealge omanent on a book cover, either goll or blind.
Edge-shot. A hoard with its elge planed is said to lee edge-shot.
Edge-tool (Ifarduare.) A genemal name which inchudes the heavier descriptions of cutting-tools, axcs, adzes, chisels, gouges, plane-lits.
Other cutting-tools cone within the province of the ammorer or: cutler, and are ineluder unker eutZory, - knives, scissors, slears, surgieal instru. ments, and, ly the analogy of associated use, forks. See Adze; Axe; Hatchet; Kisfes.
The making of swords was auciently the work of the amoner, hut has pobably merged into cuftry:

Wuod-cutting tools are divided by Holtzaiftel as follows: -

1. Puring or splitting toms, with thin elgres, the angle of the lasil not exceeting 60° with the straight face. This inchules broul-owes, chiscls, yonges, tete.

Dorblc-basil tools, such as curcs.
2. Scroping-tools with thick edges, the angles measuring from 60° to 120°. These remove the fibers in the form of dust. The evencer-scroper is an instance One angle of the alyge of the stewl plate is tumed over to fom a bur, known as a veirecullge.
3. Shearing-tools; such are usually in fairs, acting from opposite sides of the object, the basil and face having an angle of from 60° to 90°.
lron and steel for edge-tools hare been combined in a fagot and rollel so as to have a thickness of steel hetween layers of iron, for cloppingstaxes and some other tools, and with a layer of stiel on out sile for broalares, chisels, ete., which have but one lasil. (Pouydell's jratent, Enclish.)
4. A hurnisher for rubbing the exlges of boot and shoe soles. See also Enge-plase.
5. (Suddiery.) A tool used for removing the angular edge from a leathem strap.

For chamfering down the edges of a strap more broadly, another tool is used having a blade and

Fig 1825.

Edge-Tool.
guiles which travel along the eilge and face respectively of the leather. See Champeling-Tuol.

Edge-wheel. A wheel traveling on its ealge in a circular or ammlar bed, as in the: ancient Phcenician oil-mills, the Chilian ore-mills and many other erushing-mills. See Chilan Mille

Edg'ing. The ornamentation of book edges by -

1. Color sprinkling.
2. Marbling (which sef).
3. Gilding.
4. Culoring ; as the mbrie style now so common.

Edg'ing-ma-chine'. A machine for edging boarls to a given prattern. An religer.
Edgting-shears. A garlencr's shears for trimming the elgers of sod around walks or heels.

Edg'ing-tile Tiles for borders of garden-heels, in plate of grown edgings, such as loox, thrift, etc. Such tiles for pleasure-gardens are made ornamental ; fur kitchengardens, plainer.
E-duc'tion-pipe. (Seam-engninc.) The pipe which carties oft the exlranst steam from the cylinder.

E-duc'tion-port. One through which the steam passes from the valves to the coudenser. Evekeustport.

E-dulco-ra'tion. The effusion of water. on any substance fur the purpose of removing the poation soluble in that hipuin. The article is usmally agitated in water, which is removel by decantation after subsilpunce of the heavier portion.

E-dulco-ra'tor. A droplping-tule for applying sin ill Inantities of sureet solntions to a mixture.

Ef-fect'. The amount of work performerl by a steam-engine or other machine. See Dutr.

Egg-as-sort'er. A device by which eggs are assorted according to quality ; being so phacem that a strong light is brought upors them when stuck into holes in a hoarl, their comparative translucency is observerl, and is accepted as an eviderce of quality.

Egg-bas'ket. One for standing egrgs in to boil,

Fig. 1826.

Egg- Baskizt. and also to hold them when placent on the table.

Egg-beat'er. A whip of wites or a set of wire lopps rotated by gear whild plungen in the erge contained in a bowl.

Another form is a vessel contained in anotlret, and a wire ganze diaphrogm through whinl thre eggs pass when the ressels are reciprovaterl.

Egg-boil'er. A lomestic deviee which sounds an alarm wher the eqgs have been exposeyl to the water at suffierent lengeth of time to expond the water in the lower reservoir, raise the plug d, aml release the trigger of the sping bell-hammer:

Egg-car'ri-er. A meqns for holding emers in the proper carvying pasition without jolting against each other during transjortation. The frames have cloth prockets for the egrs. In other forms the egrgs are supported by pockets of wire or netting.

Egg-de-tect'or. An apparatus for showing the

quality of eggs. They are placed upright in the holes in the lid of the dirk chamber, and their

Fig. 1523.

transmitted light observed upon a mirror C; being viewed through a peep-hole, their ruality is determineal by their translueem'y as evinced by the relative transmission of light, as an egg liecomes more cloudy and opaque as it becomes spoiled.

Egg-glass. 1.

A glats for holling an egg while eating it.
2. A sand-glass rumning about tlurer minutes, as a timist for egrar-boiling.

Egg-hatch'ing Ap'pa-ra'tus. An apparatus for the artificial hatching of pags. it has been practiced from time immemorial in Egypt. See lsoubatol: Calorafere.
Egg-mold'ing; Egg and Tongue. (Architretare.) A peculiar moleting in which a tongue de-

Fig 1830.

Egg-Detector.
prement from the corona alternates with an oval boss whose major diameter is vertical, like an egg set on end.

Egg-tongs. A grasping implement for seizing and houding an egg.

Fig 1832.

Egg-Tongs

Eilograph.

Ei'do-graph. An instrument for copying drawing, invented by Professor Wallace. It consists of a central beam of mahogany, sliding backward and forward in a socket whose axis passes through
a longitulinal slit in the beam.
Two erual wheeks, one helow each end of the beam, turn on axes that pass through pipes fixed at $a b$, near its extrenities, and a steel chain passes over the wheels as a band by which motion may he commmicates from one to the other. Two arms $f f$ slide in sockets along the lower face of the wheels, just under their centers, one of which bears a^{+}its extremity h a metallic tracer, laving a handle by which its point may he carried over the lines of any design, while at the extremity of of the other arm is a pencil, fixed in a metallic tube which slides in a pipe and is raised hy a string, when requirell, the pressure on the paper being maintained by a weight.

The wheels being exactly equal in diameter, the arms attached to them, when once set parallel to each other, will remain so when the wheels are revolwel.

For use, the instrmment is set by sliding the central heam, so that the distance b of slall bear the same proportion to ac as the drawing to be copied is intemded to bear to the copy.

The distances $b g_{a} a h$, are also regulated to the same proportion. The center-picce and a:ms are graduated for this purpose, so as to admit of being set to any desirel ratio.

Ei'do-scope. An instrument on the principle of the kaleiloscope, which produces an infinite variety of geometrical figures by the independent revolution of two perforated metallic llisks on their axes. It may be cmployed in conjunction with the magic-lantern, when rapidly rotated causing flashing
rays of light, forming singular combinations to apprear unon the screen. Yarionsly colored glass disks may be used, protucing striking variations and combinations of color. - Mechanical Nuguzine, N. S., Vol. XVII. P. 35.
Eight-een'-mo. A book whose sheets are folded to form eighteen leaves. Sometimes written octodecimo; and usnally indicated 18 mo , or 18°.
Eight-line Pica. (Priuting.) A type whose face has eight times the depth of pica. French, doublecanon.

E-ject'or. 1. A device wherein a body of elastic fluid, such as steam or air, under pressure and in motion is made the means of driving a liguid such as water or oil. The effect of a body of eseaping steam in setting liquids in motion was observed longsince, but the most notahle instance is the Gitfard Injector (see Injector), which is used as a feed-water pump for steam-boilers. The cjectoracts on

Fig. 1834.

Prase's Oil Well Ejector.
a similar principle, but is applied to eject or lift liquils, as in the (xample (Fig. 1833), where it is an oil-well ${ }^{n}$ min. L^{\prime} is a pipe which proceeds from the surface of the ground to near the bottom of the well ; its lower end is closed by a valve which opens upward. A steam-pipe pa sing down alongsile the main pipe is recurved upwardly, and emits steam

Fig. 1835.

Ejector.
just in the throat of the contracted aperture. The effect is to draw up liquid ly the force of the steam-
blast and earry it through the arerture, and so upwardly to the top. See also Figs. 59 to 64, inclusive.
Fig. 1834 is upon the same principle, the steam or air issuing through the small axial-ppe anel hassing into the up-cast pipe, drawing with it the liguind

from the lower pipes which smround the ejector-1nozzle.

Fig. 1835 only differs in the mode of aplilieation, the bent pipe having an unobstructed passage in the nozzle for the admission of stean or air, communicating with the satid jhassage on its hreck or outer curvere siole at a point lisectly opposite to and in line with the outlet or discharge oprening.
2. That device in a breech-loaling fire-am whiclt withdraws the empty cartridge-case from the lure of the gun.
3. A ilevice on sliphoard (Fig. 1836) for earryingup the aslies from the stoke-holes of stemaships and thisclarging them overboard. The ashes are shoveled into a box, and a stean-jet being driven into the mouth-puree of the pipe causes an induced entrent of air which carries the aslues along with it, up the pipe, and overboard above the water-line.

E-ject'or-con-dens'er. (Stean-enfinc.) A form of comilenser worked by the exhanst stem from the cylinder. In the example it is shown as applied to a juir of engines. The alpanatus consists essemtially of three concentric tubes terminatime in conoidal nozzles, and opening inta the hot-well or waste-water receptacle by a common aud gradually

b. The pisee of earved work under the lower eud of the quirter-picce at the aft part of the quartergitlery.

E'lai-om'e-ter. An instrument for detecting the allulteration of olive-oil.

E-las'tic-bulb Syr'inge. A syinge having a bulb of caoutchouc, whose expransion ause contration acts as a pump. Sie Bliexsír-pur ; ATomizele.

E-las'tic Bands. Made of caontchone, maked or covered. The fonnmr are cut from Hattemed cylinders of rubber of proper dianeter and thickness betwern a duplicate series of cimular knives acting after the manner of slowars; the latter are made by cutting continuous slipis from a shect of vuleanized rubber of the requirci thickness, wound upon a reel, by umans of a knife with slicle-rest motion. These strijes are then covered with cotton or silk, and woven in an endless web. See Caoutchouc.

E-las'tic-fab'ric Loom. One haring mechanieal levices for stretehing the rubber threads or sherrs, and holding them at a positive tension while the labric is wovm.

E-las'tic Goods. Those having elastic corls, callerl shirrs, inserted in a fabric or between two thicknesses.

E-las'tic Mold. Elastic molels of glue for taking easts of walerent ohjects were incented by Donglas Fox, Drrloy, Eugland.

The borly to be mohled is oiled and secured alonit an inch above the surfice of a boarl, and is then sumbombed by a wall of elay mather highev than itsolf, and about an inch distant from its peri]hery. Into this, warm molted glue, just thiel enough to rum, is poured, completrly enveloping the olject. When cold, the elay wall is removed, and the mohl delivered by cutting it into as many pieces as are reguired, either with a sharp knife or hy threals previously placed in proper situations almit the object. The pieees are then platerl in their firoler. positions, and bounl together. The mold is drsiched barticulaty for taking easts in jlaster-of-paris, hut molten wax, if not too hot, may also be employed.

E-las'tic Pis'ton-pump. A ן 1 man deseribed in Dr. Gregory's "Mechanjes" eonsists of an clastic bag provitled with a valued boad on top, and opromatiner over a valvad diaphragm. I'le tronk in which it operates is a square box, sum the piston moves without friction agranst the trunk in which it works. The bag is of water-proof canvas or leather, with oceasional rings.

A sonmerhat similar junu, recommended for a lilge-water primp, and for jumping out leak-water, is known
widering or trmmpet-shaperl moutli-piece D; the inlet-tule B is in communication witls the watertank from which the current of injection-water is obtained, while each of the other tubes C conveys the exhanst stem from one of the eylinilers.
A is a regulating-spindle for arljnsting the watersupply ; H, the water-inlet ; $C C$, the exlanst]nssuges ; D, the dischange jassage; E, the sto:eminlet; F, a self-aljusting stean-valve. In statinur, stemi is almitter] at E, and passing along the axialjipe, issues at the nozale. drawing with it water from roll-water pipe B, which condenses the steam from the exhanst passages $C \in C$ of the respective evlinders, aml has momentume enough to carry the comelensed steam aml itself to the let-woll.

Eke'ing. (Skipowillimu.) a. A juece fitterl to make gool a defieiency in length on the lower part of the sulyorter moder the cat-head, etc.
as Cracknell's, aml was somewhat famons in England forty yeirs since. It hat a pliable diapheagm of leather attuched to the plunger-rod, and a valye on top like the pump, just deseriberl. As the leather tityhragm was driven down ame drawn up alternately, it filfol with water and then liftecl it, the lower valve rising as the phuger lifted. See B.tGPUMr.

E-las'tic Pro-pel'ler. A form of slip's propeller invented by Macintosh, in which the blahes are of flexible steel, which assume a more amd more nearly tisk form as the speed and consequent resistance of the water is increaserl.

E-las'tic Type. Type mode of compounds of caoutehoue, whiclt will accommorlate themselves to a sonw-what uneven surfue in printing, and in which a lorm of sain] type may be lapped around a curved printing-surface.

E-lat'er-om'e-ter. A pressure-gage for air or steant.

El'bow. 1. The junction of two parts laving a bent joint. A knee or toygle joint. An abrupt angle.
2. A bead, as of a store-pipe, a wall, a parapet.
3. A sulpport for the arm, elbow high, as the arm of a chair.
4. A voussoir of an arch which also forms part of a horizontal course. An obtuse angle of a wall.
5. (Joincry.) The sides or Hanks of a paneled recess ; especially the two small pieces of framing which ocent on each side of a window immediately below the shutters when the window-jambs are carried down to the floor, forming a slight recess. -
El'bow-board. (Curpentry.) The hoard at the bottom of a window on which the elbows of a person are supported when leaning.

El'bow-tongs. A crucible tongs with jaws hent between the joint and chaps.

Elec-trep'e-ter. An instrument for changing the direction of electrit: currents.

E-lec'tri-cal Ap pa-ra'tus. Gilbert, in his book "De Alagnete", 1600, first introduces into the nomenclature of the sciences the word "electric," deriving it from electron (Gr. amber), which was the only substance known to the ancients that acquired the property of attracting light hodies when rubbed. He gives a list of buties, as diamond, sapphire, crystal, glass, sulphur, sealing-wax, and others, possessing the electric property, which he very properly distinguishes from magnetic power, the former attracting all light boilins, the latter inon only. He regarded magnetisn and electricity as two emanations of one fundamental force. He considered the earth as a magnet, and the lines of equal deelination and inclination as haring their inflections determined by distribation of mass, or by the forms of continents anl by the extent of the deep intervening oceanic hasins. filbert was surgeon to Queen Elizabeth and James I., and died in 1603.
The electric-telegraph precedel the electro-magnetic by many years. See Elfcthic-themghaph.

Otto Guericke, of Magdehurg, diseovered that there was a repulsive as well as an attractive force in electricity, observing that a glohe of sulphur, after attracting a feather to it, repelleal it mutil the feather had again been placed in contact with some other sulistance. Newton, in 1675 , bhserved signs of electrical excitement in a rubhed plate of glass. Hawkeshec, who wrote in 1709. also observed similar phenomena; and Dufily in the "Memoirs of the French Acaleny," between 1733 and 1737, generalized so far as to lay down the principle that electric bodies attract all those which are not so, and repel them as soon as they have become plectric by the ricinity or contact of the electric body.

Dufay also discorered that a hody electrified by contact with a resinous smbstance rejelled another electrifich in a similar way, and attrarten one which had beem eleetrified hy contart with glass.

He thence concluded that the electricity derived from those two soures was of different kinds, and applied the names vitreous and resinons to them. Franklin attrimuted this clifirence to an excess or leficiency of the dectric fluid, the former conlition existing in electrified glass and the latter in resins.

Otto Gucricke had observed that his sulphur globe, when rubbed in a dark place, emitted faint Hashes of lirht, and shortly afterward it was noticed that a similir phenomenon oceurred at the surface of the mercury when the barometer was shaken ; a fact which one of the celelraten] mathematicians, Bernoulli, attempted to explain on the Cartesian systent, but which was afterwards correctly attributed
by Hawkeshee to electricity. Wall, in 1708, observed the sparks produced from amber, and llawkesbee noticed the sparks and "snapping" under varions modifications.
Dufay and the Abbe Noilet were the first to draw sparks from the human borly: an experiment which attracted great attention, and becane a species of fashionable diversion at the time.

The discovery of the Levtlon jar is attributed to Cunrens of lerden, in 17 ± 6, who, white handling a vessel containing water in commmatation with an electrical machine, was surprisenl at receiving a severe shock; a similar event haul haprened the year $\mathrm{l}^{\text {nevions to }}$ Kon Kleinst, a German 1 relate.

Gray in 1729 discovered that certain substances were possessed of a condnctive in contralistinction to an electric power ; and atterwirds Noll \cdot t passed a shock through a circle of 180 men of the French guards, and along a line of men and wires 900 toises in length, while Watson in England ascertained that the transmission of the shork through 12,000 feet of wire was sensilhy instantitheous.

Franklin in $174 i$ pointed out the circumstances on which the action of the Leyden jar depends, showing that the inside is positively and the outside negatively electrified, and that the shock is produced by the restoration of the equilibrinm when conmunication is estahlished bretwen them. Mlonnier the younger discovered that the electricity which bodies can receive depwids on their surface rather than their mass, and Franklin soon fond that "the whole force of the lottle and power of giving a shock is in the glass itsell" ; he farther, in 1550, suggested that electricity and lightning were ilentical in their nature, and in 1752 denomstrated this fact by means of his kite and $k \in y$; about the same time D'Alibard and others in France erpeted a pointed rod forty feet high at Marli, for the jurpose of verifying Franklin's theory, which was found to give sparks on the brassage of a thunder-cloud. Similar experiments were repeated throughout Euroge, and in 1 is3 Richman was instantly killed at St. Petersburg by a discharge from a rod of this kind.
The more important discoweries since those days relate rather to electricity producul hy voltaic or magnetic action. See, umder the following heals:-
E-lec'tri-cal and Mag-net'i-cal Ap-pli'-an-ces.

Annunciator.
Anorle.
Armature.
Astatic needle.
Battury.
Cahorimotor.
Carhon-battery.
Cateleetrode.
Cathode.
Cell.
Circuit.
Circuit-breaker. Cireuit-closer. Commutator. Compound hattery.
Condenser. Electric
Conductor.
Constant battery.
Couple.
Current-regulator.
De Luc's columa.
Dip.
Dipping-needle.
Discharging-rod.

Doubler:
Dry-rile.
Earth-battery.
Earth-jlate.
Electrepeter.
Electrical appratus.
Electric alatm.
Electrical machine.
Electric anmmeiator.
Electric balance.
Electric battery.
Electric loridge.
Electric cable.
Electric elock.
Electric escapement.
Elertric fuse.
Electaic governor.
Electric harpoon.
Electric heater.
Electric helix.
Electric indicator.
Electric lamp.
Electric light.
Electric log.

Electric loom.
Electric meter.
Electrie peendulum.
Electric piano.
Electrie railway-signal.
Eiectris regalator.
Electric signal.
Electrie steam-rage.
Electrit: switch.
Electric tellegraph.
Electric time-ball.
Electric toreh.
Electric waml.
Electric weighing-apparatus.
Electric Whalinur-ilyparatus.

Lightning-arrester.
Lightning-conductor.
Lightning-roul.
line-wire.
Magnet.
Magnetic battery.
Magnetic compensator.
Magnetic curative-appliances.
Magnetic guard.
Magnetic hone.
Magnetic needle.
Nagneto-electric apparatus.
Magneto-electric machine.

Electro-ballistic aphara- Magnetograph.
tus.
Electro-hlasting.
Manipulator.
Electio-chemieal thle- Mariner's compass. crapli. - Meteorometer:
Electro-chronograph.
Electrode.
Electro-dynamic engine.
Electro-engraving.
Electro-etching.
Electro-gilding.
Electrolyte.
Electro-magnet.
Electro-magurtic clock. Polarized armature.
Electro-magnetic mgine. Pole.
Electro-magnetic machine. Positive.
Electro-magnetic regnla- Prime-conductor. tor.

Receiving-magnet.
Electro-magnetic tele- Reel-telegraph. graph.

Relay-magnet.
Electro-1naguetic watch- Repeater.
clock. Resistance-box.
Electro-medical battery. hesistance-coil.
Electrometer.
Electro-motor.
Eleetro-negative.
Electronome.
Electrophorus.
Electro-plating.
Electro-1ositive.
Electro-puncturing.
Electroscope.
Electrotint.
Electrotype.
Filings-seprator.
Galvanic battery.
Galvanizing-iron.
Gabranograplyy.
Galvanmeter.
Galvan mic mulipher. Trlegraph-cable.
Galvanoplastic process. Telegrapli-clock.
Galvanoseope.
Geisler-tube.
Hydro-electric machine.
Inclinatorium.
Inclinometer.
Induction apraratus.
lnduction coil.
inductometer.
Insulated wire.
lnsulating-stonl.
Insulator:
lnversor.
Leyden battery.
Leyden jar.
Lighting gas by electricity.

Telegheaph).
Telegraph-cable.
Rheometer.
Rheomotor.
liheophone.
Rheoscope.
Rheostat.
lihentome.
liheotrope.
linhber.
Ruhmkorff battery.
Sideroseope.
signal-box.
Sounder.
Submarine-cable.
Switch.
Telegraph (varieties, see

Telegraphic signal.
Telegraph-indicator.
Telegrajh-instrument.
Telegraph-key.
Telegrajh-wire.
Terminal.
Thermo-electric pile.
Torsion-balatuce.
Torsion-electrometer.
Trough.
Unit-jur.
Variation-compass.
Yolta-electrometer.
Voltaic battery.
Voltaic licht.
Voltaic pile.

Voltameter.	Voltatype.
Voltaplast.	Zambonis-pile.

E-lec'tric A-Iarm'. An instrument, otherwise known as a thermostut, used for giving an alarm when the temperature rises to a proint at which the instrument completes the circuit. This is used in stoves and hot-honses, to imbicate excess or lack of temperature, and as a maximun themometer-alanm or tire-alarm, which is made by carying one platinum wire in conncetion with a battry anel bell into the bulb of a mermial themometer, and another wire slown the tulse to the degre it is not desired to exceed. When the mercury rises to this point, the circuit is completel, fand notice is given by the ringing of the bell. Gne lorm of the minimum trinperature alarm consists of a spirit - themometers, the bulb of which is placed above and the tube curved in a U-shaple. A platimum wire is carried into the lulb and down to the degree of heat it is wisherd to notify. Below this minimm the curvature is filled with mercury, which is in free communation with a second platinum wise. As the alteonol contracts with the cold, the mereury will, of course, rise, and, reaching the first platinum wire, complete the circuit and gise the warning. One lell and the same battery will serve for the two themometers; liut it will be neecessary to interpose a commutator to ascertain through which circuit the current is passing, and whether a rise or fall is indicated when the bell is rung.

Firr-a'ams constructed on the same principle are plaeed in different apartments of a buibling, the increased temperature in that where fire happens to first break out expands a wire or column of mercury, which, by completing a cireuit, sounts an alarm. The most compact form of the themostat is that jesembling the chronometer-balance. Sce Tienmostat ; Fire-alahin.
E-Iec'tri-cal Ma-chine'. An aplawatus for generating, or rather collecting or exciting, electricity by means of friction.
The Greeks were aware that amber, when rubbed, acquired the power of attracting amd welling light bodies ; and for many ages this 1 roperty was supposed to he peculiar to amber, from the Greek name of whicl (η " $\ell \in \kappa т \rho о \nu$) the word "electricity" was drmed. It was subsequently discoverel that the same etlect was produced by resinous substances rulbed with tlamel, and ly glass when rubud with silk; and our readers may have noticed that by stroking a cat's back smartly with the hand in cloar frosty weather, a crackling noise accompanicd ly a tingling sensation is produceri.

Snbstances in the condition referred to are said to be electrically excited. This excitement is termed positive if glass be the material employed, and negntive if resin be usel ; the kind of electricity developerl by each substance having a tondency to attract that lerived from the other, and to repel that of the same kind as itself. Aceording to the lheory of Dufay, the two kinds were called vitreons and resinons; the former being derived from glass and comesponding to the positive of Franklin, and the latter from resin, correspoming to the negative. It is by the latter terms, positive or + , and negative or - , that the two kinds are now miversally known. See suprot, page 77.

In manhines for devaloping frietional electricity in quantities, glass is the material employed, either in the form of a hollow eylinder rounder at the embs or of a circular plate. These are rotated in contact with a leather-eovered cushim, upon the surface of which a thin layer of an amalgan composed of tin,
zinc, and mercury is spread, and a suspended flap or apron of silk.
Gilbert, in 1600, conjectured the fundamental identity of the forces known as magnetism and electricity, and measured the stringth of the electricity excited ly rubbing amber, glass, resin, etc. His electrometer was an iron needle 1 mised on a pivot.

Otto Guericke, of Magdehurg, recognized phenomena of repulsion. "He heard the first sound and say the first light in artificially exciten rlectricity." Newton saw the first traces of an "rlectric charge" in 1675 , in some experiment with a mbbed plate of glass.

Althongh Wall in 1708, Gray in 1734, and Nollet, conjectured the identity of frictional electricity and lightuing, yet Franklin was the first to attain the experimental certainty by his well-known kite experiment in 1752.
Electrical machines were formerly made cylindrical, but are now more frequently made with a circular glass disk rotated by a hand-crank. The glass passes between rubbing surfaces, and the electric current

Electrical MInchine.
which is generated passes to the comluctors on each elge of the disk, and thence to the prime conluctor, wheu it passes to a Leyden jar or other object, as may be desired. The plate-machine of the University of Mississippi has two plates cach 6 feet in diameter. One made for the London Polytechnic Institute lias a plate 10 feet in diameter driven by a steam-engine of 4 -horse power.

See Drarthanel's "Natural Philosophy," Part I11. [13. 533-543.
E-lec'tric An-nun'ci-a'tor, A form of anmunciator in which a circuit wire is the means of shifting the shield covering the number aperture one the dial, or performing other duty to expose the number of the room. The guest in his room touehes a stud ulon the wall ; the circuit heing mate or broken, the effert is evilencel? by the exposure of the room number in the hotel-office. It is an electromagneti, experlient as a substitute for a pulling wire. sue Ansexcintma.
E-lec'tric Bal'ance. An instrument for measuring the attractive or repulsive forces of electrified bodies. A form of electrometer.

It consists of a graduated are a b supported by a projecting plate of brass which is attached to the purpendienlar eolumn. A wheel d, the axis of which is supported on anti-friction rollers $\dot{f} f$, and is concentric with that of the graduated are $a b$, carries an index c.

Over this wheel, in a groove on its circumference, passes a line, to one end of which is attached a light ball of gilt wood g, and to the other a Hoat $i l$, which consists of a glass tule about two tenths of an inch
in diameter, terminating in a small bulb l at its. lower end, which contains a small portion of mercury or some very fine shot, put into it for the purpose of adjusting the instrument, so that the index c may point to the zero division or center of the graduated arc. The difference between the weights of the float when in and out of water is known, and the diameter of the wheel carrying the index is such that a certain amount of rise or fall of the float causes the index to more orer a certain number of graduations on the are. The hody whose electricity is to be morsured is presented at h, and its attrac-

Fig. 1839.

Electric Balance. tive or repulsive power on the ball ! is estimated by the rising or falling of the float in the thid, and conserguent motion of the index c, as shown by the graduated are.

When the attractive force of the two lodies is to be estimated, the line passing over the wheel d must be formed of two parts, the lower part being of silver thread and the remainder of silk; when their replusive force is to be estimated, the whole is of silk. See Electiometfr; Galiasomfter.

E-lec'tric Bat'ter-y. A series of Leyden jars having all their interior and exterior coatell sullaces connected with each other by means of conductors, so that the aceumulated electricity of the whole may be made to act together, resembling the effects of lightning itself.
A large lattery of this kind is capalle of polarizing hars of iron or steel, and instantaneunsly melting iron or tin wire into glohules, which are dispersed in ail directions, the fusion of the latter metal being accompanied by a cloud of blue smoke, a dazzling tash, and a loul rejort. Small animals are killed by it, and a violent shock given to the human system. Sep Leymen-Jat:

E-lec'tric Bridge. (Elcelricity.) A term applied to an arrangement of electrical circnits used for measuring the resistance of an element of the circuit. The most generally known and used are the W"heatstone "bridge" or "halance," and that of the British Association. The former in substantial respects is adoptel in the siemen's universal gal-
ranometer, in such general use.
The Irinciple inrolved is that an electrical circuit being divided into two branch-

Electric Eridge. cireuits, and again united, and the hranches "hridged" or connected by a "short cut," if the resistances in the branches on one sille of the "lowilge" are in the saute ratio to each other as the resistances on the other sile, no current will traverse the "lridge"; if the ratios are not equal, a current will traverse the bridge.
$A A$, metallic circuit from battery B divided into branches 1, 2, and 3, 4, which again unite. Calling resistance "R," when R 1 : R $3:$: R $2: \mathrm{R} 4$,
an equilibrium or "balance" is established, and there is no appreciable current in the "bridge" a b, in which is insertel the galvamometer G.
Ifi use, the resistance of one of the members, say 4, being known, the unknown resistance is inserted in 2 and its resistance calculated from the dellections of the needle in the galvanmerer, caused by the current thrown through the " bridge." See Dupplextelegrapif.
E-lec'tric Ca'ble. Virious forms of telegrah cable for submarine uses have heen proposel. That between Linglame and lreland is composed of a single coppro wire covered with gutta-percha, surroumled by hempen yarn, and the Whale protectel lyw ten No. s iron wires twisted. That betwepl Dover and Calais has four copper wires covered with gutta-perchai twisted into a rope, and protected in similar manmer. - It weighs seven, anll the lrish two, tons to the mile. The lirst Athantic cable was composel of seven No. 22 colpuer wires, covered with gitta-percha, hempen yarn, and an outside coating of iron wire. This weighel 19 cwt. to the mile. The ent shows a ealle with coils diversely twistel. Sue Teleghiapit Cable.

E-lec'tric Clock. A dial with hands ant goingtrain impelled by recurent impulses from an electromagnet. The first known clock of this kind was invented by Wheatstone and exhilited by hisn in 1S40. Appold, Bain, Shephemh, and others have contrived elocks on the same principle. Sce Elec-tho-magnetic Clock.
E-lec'tric Es-cape'ment. A device actuated loy electric impulse which intermittingly arrests the motion of the suape-wheel and restrains the train to a prlsative motion, -acting, in finct, in the place of a peodulum. An electric pemdulum at a central station maty he the regulator of numerous distant clocks with clectric escipements, with each of which it is commeted hy cirtuit or circuits. In some cases the device has alternately a detent and impulse ateion, and is the motor as well as regulator.

Hevices in which a train is set in motion, or a mulhine started or stopped, are not strictly escape1 'nts, bit may he considered as elcetrical-governors or elactricet-rigetertors.
lu that illustrated, the lever L and its corresponding one on the oprosite sille, not shown, are caused to vibrate to the action of the circuit ; these cause the anchorshaped piece $L^{\prime} T T$ to strike altermately against each of the pallets $P P$, which are fastened by springs, and yield in either direction, so as to alternately retain and release the seapewheel I^{r}.

E-lec'tric Fuse. A device used in blasting to explote the charge. The fuhminate or the charge itself is lighted by means of an electric spark or a resistance section ot fine phatimum wire, which is heated to reduess by the passage of an electric enrrent induced by a voltaic or magneto-electric battery. See Fuse.

E-lec'tric Gov'ern-or. One in which a part of a lly-wheel, say a segment of the rim, is made to move radially outwar! when the wheel revolves at a rate ahove a preipmonted sleed, anl thereby comes in contact with a metallic tongue completing an electric connection, which is utilized to move a but-tertly-valve or other device which concerns the thatsmission of power.

Governor-balls flying out to a certain distance may make or break an electric comection to produce the same result, or somud an alam.

Electro-nagnetic action is also used to start and stops machines, and operate stopl-motions.
E-lec'tric Har-poon'. An application of the electric force to the explosion of a bursting-charge in a harpon or bomb-lance. A copler wire is cartied through the line, and, when a circuit is entablished by the harpooner, a resistance-section in the linse of the homb-lance ignites the charge. see Hakruos; Bomb-Laxce.
E-lec'tric Heat'er. A device in which a fine platinum wire heated by a passing electric current is male to commmicate sensible loat as a means ol warming or burning, as the case may be. It has been used as a local cautery, has heen suggested for amputating, and for some other purpose, which it would excite a smile to mame.

It is a lower application of the same principle as is developed in the electrie light; a body of relatively great resistance is included in a cireuit, and, failing to carry the electricity, a part of the latter takes the form of heat.
E-lec'tric He'lix. A coil of copluer wire around a bar of solt iron ; the coil forms fart of an electrie circuit, and coufers folarity upon the iron. The two constitute an electro-magnet.
E-lec'tric In'di-ca'tor. The alluratus shown in loig. 1843 is for indinating electro-magnetic cur-
rig. 1843

Electric Indicator.
rents, and consists of a wheel having figures upon its jeriphery turned by a star-wheel E^{2} ulpon its shaft. The star-wheel is actuated by pawls $J J K^{\circ} K^{\circ}$, connected with armature levers $G G^{2}$ turning one cog, equal to one figure, at each completion of the circuit though one ol the spool-magnets $P P$. The two magnets are arranged to tause opposite rotation, and either may be connected with the operating-key hy a switch. The circuit passes through the axis of the key and through nambered buttons upon a di-k. The key being brought in contact with a hutton canses one mowment of the numbered wheel, and each tume the key comes in contact with a hutton the wheel is movel one figure, aml no wore.
E-lec'tric Lamp. A hox or case provided with an electric lighting-apparatus. See Electhic Ligut.
E-lec'tric Light. An intense light generated by
passing an electric current between two pieces of tharcoal fixed at the positive and negative ends of the circuit.
The electricity developed may be either derived from voltaic action or from magnets in counection with a series of helixes arrauged on a rotating wheel, the latter source being prefersed for practical application to illumimating purposes.

The lights of the natual lanterns earried by fireflies, glow-worms, ant some species of nocturnal noths, may be considered as cicctric lights. Though classer as phosphorescent, some of them are intermittent, and we suppose the nerrous action by which they are flashed into brilliancy to be in the nature of what we call a voltaic impulse from the battryy, - the brain.

The electric light was first brought into notice in 1846. The patent of Greener and Staite of that year eubraced an arrangement wherely small lumis of pure carboa, inclosed in air-tight vessels, were ren-

Eectric Light
dered luminous ly currents of galranic electricity. Two smatl cylinders or lits of jure cearbon were placed nearly in contart with their juints toward each other, and maintained at a constantly einal listance apart by means of clockwork, which slowly adranced them as ther were consumed by combustion. Throngh these the cerrent of a galvanic battery Was thamsmitterl, so that the circuit would mot be complete without triwprsing the small sprace betwern the joints of the two pieces of carbon; this gemerated an intense heat at this spot, cansing the rombustion of the earbon, which was accompanied by an extrinuely brilliant light. The chief practien diffeult; was fouml to he in maintainiug the points at sucil a distance from each other as to reuder the light contimmous insteal of intermittent.

This is now eflected by means of nn eleatro-magnet and a clock movenjent, the duty of the latter being to bring the two points togrther as they are gradually worm away by the passage of the electric current, while the former checks the clock action when not required. The positive carbon pencil is found to wear much more rapidly than the negative; and in order to maintain the point where the lierht is produced at a uniform elevation, the cord by
which each point is adranced is causet to pass aromd a harrel, larger for the positive and smaller for the negative, so as to take up unequal quantities of cord.

When the battery employed is very powerful, the electricity between the points assumes the form of an are of dazzling brilliancy: With 600 Bunsen's cells arranged consecutively, an arc 7.8 inches in lengtl was obtained; and when the 600 cells were arranged in six parallel series, a still more powerful light was produced.

According to Fizean and Foucnult, the intensity of the electric light with a luttery of 46 pairs ol Bunsen burners was 235, that of the sun being taken at 1,000 , while with 80 prairs it was but 235 .

During the excaration of the docks at Cherhourg two aplamens of this kind were employerl, maintained ly a single battery of 50 paiss of Bunsen, athording sutficient light for 800 workmen.

The magneto-electrie light was applied for illuminating the lighthonse at Dungeness, England, in 18tio, and was introdneed at La Here, Fyance, a year or two later. The machines employd at eard are very similar in construction and entirely so in principle, the English apraratus being arranged atter the following manmer: -

Eighty-eight bobbins or coils of copper wire are wound about an equal number of cores of soft inon, and arranged in two parallel rings, forty-four in each ring, at the circunterence of a wherl 5 feet in diameter, their axes heing parallel to that of the wheel. The axes of each set are placed millway hetween those of the other. Sixty-six puwerful horseshoe marnots are timbly fixel in three rings exterior to the whece and parallel to rach other, twenty-two in each ring, their poles heing in the planes of their respective rings, and distast from earl other a space erpal to that which separates the centers of the bohlims.

The magnets of the several bings are similany situated upon the circumference, their poles bring alternate: lout the poles of those in the inner ant outer rings face eontrary poles in the eratral ring.

As the wheel is tumed, which is eflected by conuection from a steam-rngres working at a power of one and a half to two horase, the cores with thair bohbins pass betwern the successive poles of the fixel maghets, and as thr spmes letween the hobhins are ropual to those betwren the joles of the magnets, nll the bobluins of one ring pass the poles simultaneonsly; lut as these are arranged intermediately between those of the other ring, it follows that while one set of bolibins is passing the poles the other set is half-way between them; thas alternate currents of "prosite character are gemeratrd in "ach sut of hohhins, the polarity being elangell at the momeme of polar passage, so that while the current in one set of bobbins is in the midule of its How the other undergoes a sudden rewersil.

By means, however, of "commutators," all the successively opposite cmments are turnerl in the sime direction in the circuit which conreys the electicity ta the earbon points; any fluctnations in the strength of the currents are thus compensated so as to render the resulting intemsity remy nearly constant. The velority of rotation imparted to the wheel is about 110 tums per minute, eansing nearly 10,000 changes of jolarity in that time. The inteusity of the light produced elppents on the relocity of rotation, being comparatively feehle at a slow speed and increasing up to a certain point, when an aeceleration of the velocity seems ratlier to diminish than increase the light.

In the French machine, sixty-four bobbins are
armagred in four sets, and revolve betwen five sets of magnets, eight in at set. They are so arrangeel as to pass the prles of the magnets simmltanconsly, and a commutator is dispensed with. This arrange. munt, by making each of the carbon points alternately the positive aml negative poles of the cirenit, insures their equal wear, and permits the use of a simpler alyuratus for maintaining a uniform distance betweren them.

The apuaratus actually anployerl at Ia lieve lightlouse comprised two of the above machines, bach driven lyy a separate engine, aflorling a light equivalent to 3,500 C'arcel burners, or more than six times that of an oil light of a similar chass. Its forg-penetrating power is said to be very superior to that of the latter.
ln Browning's electric lioht, worked by a battery of six Grove cells, the principle adopted is to let the carbon points touch each other, and to clamp them in that position, so that the cmrent hass to burn an interval between the two points for itself. ln the ac. companying cut, D is a brass rod carrying the 1ppuer carbon point, and slibling easily in its vertical bearings by its own weight. Directly the ulyrer mint touches the lower one, the eument is established, and the little electro-magneet A at once pulls down its armature, which clamps the "ujer brass rod at 13 . Directly the curreat is luroken hy the wasting away of the carbons, the electro-magnet A ceases to hold the brass rod, which then falls, and re-establishes the communieation.

Professor Tyndal, in his experiments, concealed the elentric: liefht in what he termed a dati-box, in order that all the issuing beams naty be emitted at one

orifice, and the expriments be the more vivid in the absence of dithused light in the room, l is the aleetrie limpl, the rays of which are focused at any de. sired point. The apparatus is alapeted for a large range of experiments, but in the figure is shown witl I'ynalal's rety-filter c, in which the lmminous lays are filtered ont ly passing the bean through an mpatue sulution of iorline in hisulphide of carbon, while the invisible lusting or ultra-red rays are transmitted. A current of cool water circulates in the jacket on tha watside of the cell to keep the volatile bisulphide cool. p represents a piece of hlackenmal platimm held in the forns of the minror to be hated to reflness by the invisilue heat-rays, althongh no light masses ont thongh the solution.

The electric light on the Victoria tower of the Lritish Ilouses of Parliament at Westminster is gellerated by a Gramme magnuto-electric mathine, driven ly an engine in a vanlt of the Honse of Commons, ant commoted witl thr signaling-joint hy two copper wiles half an incle in lianeter and 000 leet long. The machinu consists of a jumanent horseshot-magnet, butwern the poles of which revolves an electro-magnet, consisting of a ring of soft gron round which is wombed an insulated contheting wire, continmons, lut aisposed in sertions. Thu light apparatus is placed within a lantern 5 lect ligh, 4 fieet wide, and having a semicimenlar gelass front, and the light may be directed in a horizontal are of 150°. Two lamps are mad alternately, the carbon-points lasting fomr hours. Vxpuse, twenty ents per hour.

E-lec'tric Log. An elretnic eirenit thougli the logr-line to the detent of an escapement in the regis-ter- \log, so that by touching a key on deck a cirenit may be completed, m armature attracted, and thus the starting ame stol jing of the mer hanical register in thr log lue exacoly tinmed. See Lag.

Elec'tric Loom. ln 1852 an elentric loom was exhibited by lionelli at Turin. The invention was at that time in a crute state, bat has since bern much inproverl. 'lye object is to dispune with the pmforated cards required in the Jacquand apparatos. For this purpose, an endless land ol pajur covered with tin-foil is used, on which the ropluived pattern is traced with a varmish, remering the 1 arts thas covered nonconlucting.

This band is cansed to pass umbler a series of thin metallic treth, each commecterl with a small electromagnet, which opierate a series of pistoms that ojen or close the holes in a perforated metallic plate (answering to the Jactulurit eard), through which pass the needles governing the hooks hy whilh the warptheads are lifted or let fall, accosding as the elfetromagnets are in action lyy contart of the teetly witle the metallic surface of the band, or inogerative by contart with the varnish.

E-lec'tric Me'ter. See Elvctrometer: ; ElecTHORCOPE.

E-lec'tric Pen'du-lum. The ordinary element of an electric clock. A point below the bob of the pendulum passes thomerl a globule of merenry, the time of contact being indicated on a traveling fillet of paper. In anotler form the holb comes in contact, at the limit of rarll stroke, witli a delicate spring, which makes the alatric commertion.

Besides its use as a chronograph for recording atmosplerie, astronomical, and other oliservations, it is also employed to seemre isoclironous beats of distant pentulums. A morle of keeping ristant elronometars in exact simultanoons pulation by which longitule may be exactly determined; the invention of Dr. Iohn Locke of Cimeinmati.

E-lec'tric Pi-a'no. One providal with a series of electro-magnets, each corresponding to a key of
the in-trument, the armatures of which are cansed to strike the keys when the cirenit is elosed. This may be effected ly means of perforated eards through which gins are citused to pass and again retracted in any repured sequence, after the mimmer of the Tacquard ajparatus. The device may be connected with a number of instruments at great distances apart, so that they may be caused to play the same tune simultaneously.

In 1868, a contrivance on this principle for playing the organ was exhibited in Lonlon. It was opicrated by means of a keyboard, and by enabling the performer to be placed at some 1 istance from the instrmment it was clamed that he was better able to judge of its tones, so as to play with more ellect.

E-lec'tric Rail'way-sig'ıal. A ilevice for communicating messages or warnings as to the place or constition of a trais on thr track, in regard to stations left or approached, or to other trains on the s.me line.

1. An antomatic signal operated loy the wheel on the thack to indiate thie passage of a given point ly a train, to sigmal the approach to a crossing in aulviance; or to the rear, to show the distance of a preceding train ; or to signal to a station the position of trains on a track.
2. To enalle an operator on a car to communicate with a station at a distance, or with an observer or operator on another train on the same line.
3. To communicate between parts of the same tran, as hetwent the combluctor and engineer, ete.
E-lec'tric Reg'u-lator. A device by which an electro-magnetic circuit is made the means of reaching a machine to stop it or'start it. The applications are numerous and varions.
In gas-lighting ly electricity, the gas-cock at a distance is turned by a succession of impulses derised from a battery, communicated throngh a wire circuit, and impirted to an armature connected with the plug or valse.
As a means of controlling machinery at a distance, the electric circuit, by its magnetic powr, alfords means for putting a detent into antion or removing it.

Stop, motions in machinery are also made phertive by electrie connection, as, for instance, in spinning and knitting machines, when the breaking of a

thread allows a metallie: arm to (rop, and this comes in contart with a tongue, and makes ic connection which turns a baud on to a loose pul. ley or otharise.

E-lec'tric Sig'nal. One in which ristual, pal. pable, or andible signals, by simple or rejetitive sounds or by corle, are conveyed by electric influence. The motion of bell-hammers, of flags, inde-fingers, or sema. phoric arms may he held as imeluded in this defmition, which thas eovers telegraphing abil signaling by electric cireuit.

By a not distant connection, storm-siguals and time-halts of observatories may be lold as included.

E-lec'tric Steam-
attachment, in which the rise of the mercury under pressure of steam is indicated by means of ilectric conncetion to the dial. In the example, the galvanic battery and index are connected with the nercury column by means of insulated points on the tube, so that the index will signal cach smecessive pomm of pressure upon the dial, which has corresponding points. The completion of the circuit also sounds an alarm ly attracting the armature on the hammer-shaft.
E-lec'tric Switch. A device for interrupting or dividing oue eireuit and transferring the current or a part of it to another circuit. Sec Swicers. A commututor: See Culley"s "Handbook of Telegraphy," London, 1870, p1. $199-203$.
E-lec'tric Tel'e-graph. That form of electric signaling apparatns in whicl, an insulated wire excited ly frictional electricity is - or tather was used to convey messages by sjarks or shocks. For notices of early observations, sce Electimal AlpaRates.
Gray, in 1729, experimented with conductors; Nollet soon afterwards sent a shock along a line of men anll wires 900 toises in length; Watson, the learnerl Bishop of Llandaft, in 1745 , sent a shock through 12,000 feet of wire, and proved that it was practically instantaneous thronglout its length. He signaled an observer by this means.
A writer in the "Scots' Magazine," in 1753, proposed a series of wires from the ends of which were to be suspumbed light lalls narked with the letters of the alphabet, or bells which were to be moreal by an electric current directed to the appropriate wire.

Lesage, at Genera, in 1774, actually eonstructed a telegraph arranged in this manner, the end of each wire having a pith-lall electroscope attached.

Lamond, in $17 S^{7}$, employed a single wire, entploying an electrical machine and electroseope in each of two rooms, and thus talking with Madame Lamond by the peenliar movements of the pith-hatls according to an agreed code : and leusser; in 1794, propoed the employment of lotters fomed by spaces cut out of parallel strips of tin-foil prastel on slecets of glass, which would appear luminons on the passage of the electric spark.

In 1795, Cavallo proposed to transmit letters and numbers hy a comhination of sparks and patuses.

Don Silva, in Spain, appears to have previonsly surgrestel a similar process. See Electlicala Arfabatis.
In 1816, Mr. Ronalds experimented with a frietional electricity telegraph at Hammersmith. The eurvent had to pass through eight miles of wire, and the signals were made by means of light pith-balls. The realling was effected by dials at each station having a synchronous movernent derived from clockwork. Lpou their circumferenees the letters of the alphabet were engraved, and a screess with a hole ent through it was arranged at each end of the line, so that only one letter should be visible at a time. The operator at the transmitting station waited matil
 sereen and then made the signal, causing the divergence of the pith-lalls at the instant that the same Tetter hecame visible to the obsewer at the other station throngh the aperture in his screen.

Betancourt, in 1796 , construeted a single-line teleEma,h between Madrin! and Aranjucz, a distince of twenty-seven iniles, in which the electricity was fumished by a battery of Leyden jars, and the reading effected by the divergence of pith-balls.

It was not, howerer, matil the discoveries of gage. A steam-boiler, Henry Galuan, Orrsted, Ampere, Famadiy, and
reloped by the voltaie battery, that a jractical, continuonsly working instrument was feasible. Following these discoveries eane the practical instruments and corles of the no less illustrious Morse, Wheat-
 bathehy; blempho-maginetie Thleghaph.

E-lec'tric Time-ball. A balloon of canvas suspunded on a mast, and dropped at an exact time every lay by means of an electric circuit operated by an observer whose ese is upon the astronomical clow, and hand upon the telegraph-k'y.

E-lec'tric Torch. A gas-lighter operating by electrice action. Au electrmpluones.

E-lec'tric Wand. An clectrophorus in the shape of a biton. Sie Electrorimbles.

E-lec'tric Watch-clock. A watclman's timedetector, in which a patrol tonches a stud at such times during the night as may indicate his presence at that spot at the aprointed hom. Touching the stud completes an electric connection and makes a mark mpon a taverling time-paper.

E-lec'tric Weigh'ing-ap'pa-ra'tus. An at. tachment to a suale which comes in as an auxiliary to the ere in ditecting the thrn of the scale. The poise is sliftecl ont on the lream, and as soon as it feels the tembency to rise the circuit is completed, and the point at which the poise stopped is indicated.
\boldsymbol{E}-lec'tric Whal'ing-ap'pa-ra'tus. A means wherehy a bursting-charge in a harpoon may be exmoded. See Electice hampoon.

E-lec'tro-bal-lis'tic Ap'pa-ra'tus. An instrument for cletermining hy plectricity the velocity of a poojertile at any part of its flight.

The projectile passes throngh a wire sereen, thas breaking a current of elestricity, and setting in motion a pendulum, which is arrested on the passage of the projectile throngh a second serven. The distance between the sereens being known, the are throngh which the peminlun vibrates measures the time due to the projectile's flight between the screens. See Cnhengerapi ; Bullisic Pexuulum.

E-lec'tro-bal-lis'tic Pen'du-lum. Fig. 1848 1 is an elevation and 2 a section of the apma-

Electro-Eallistic Pendulum.
ratus used in the Thited states Ordnance Department. The pendulums ab are suspented from the same axis, amd ar" so aljusted that when each is brouglit to a horizontal position at the 90° mark on each side of zero at the middle of the are c and let fall, they will ment precisely at the center. The hob of the inner pendulum b is provided with a marking point, the outer and of which is struck ly a blunt projection on the onter pevinlam a, when the two jrass each other, impressing a mark on a sheet of pajer clamperl to the are. Siep Cumosoghaph.

E-lec'tro-blast'ing. Blasting ly means of an elsetric or electro-mignetic battery, communienting through connecting wires with the charges of powder.

It was first tried in blowing up the sunken lull of t'le "hoyal George," in 1839, by Colonel Pasley.

In 1840 the plan was used in Boston Harbor by Captain P'aris.
In 1843, by Cubitt, for overthrowing a large section of Liumd-down Cliff, Kent, England, in making a portion of the suntheastern lailway. The maiss dislodged weighed 400,000 tons. Sce Blastinc.
E-lec'tro-chem'i-cal Tel'e-graph. A telegraph whela wecords stgals t1001 parer imbucel with a chemuial solntion, which is diselarged or caused to change color hy chectric action.

Nicholson and carlinle diseovered, in 1800, that water was drecmuposed by the valtaic pile, hydrogat being evolved at the negative and oxygell at the prisitive end of the wire. Divy, atterwards Sir Hmaplay Bavy, by the aid of the apmatus of the loyal lustitntion at London, the most powerful then in existcace, proved by a series of experiments, commencing in 1801, that many substanes hitherto consin? ered as clementary hodies conld be decomposed by voltaic action, and succeedel in $180 t$ in resolving the lixed alkalies soda and potash. Faraday; 1833 , besides his extensive additions to the scirnere of electro-magnetism, established the firct that the chemical power of a current of electricity is in direet proportion to the alsolute ynamtity of electricity which passes; and farther jnovel that the yuantities required for decombosing componnd bodies were proportional to the atomic weights of lalton.

Bain's telegraph (1845) was the tirst in which these scientilic facts were so applied as to lead to any practical result.
lin this, a solution of ferro-cyanide of potassimm in water, to which are added two parts of nitric acill and two of water, is employed. With this long strips of [aper are saturated, which heing elrawn between a metallie roller and stylas operated by means usual in electro-telegraphy, - dispensing, however, with re-lay-magnets, - lots and dashes are produced, is in the Morse system. These aplear of a blue color, in conserpence of the ferro-cyanide of potassium being converted into eyanide of hon hy electric action anel contact of the iron stylus with the paper.

Bakewell subsepuently imporell the construction of this instrument, and added an electro-magnetic govenor, to obtain synchronism in the movemonts of the appratus at che two ends of the line.

Gintl, a Gemman, in nis method, also dispenses with the relay, and records messages by the line-current direct. He prepares his paper with a solution of one part iorlide protinsinm and twenty starch-paste in forty purts of water. The iodine being set free colors the stareh blue.

Bonelli's telegraph (1860) verords a fac-simile of the transmitted message on mechanically pryared paper. The message is set up in type, which are armanged in a box at one side of a carriage that thaverss sfom eme to cul of a table, and passes layk and forth under a bridge placed transversely thereto. The type ocerng the lower left-hand side of the carriage, and at the "ppreright-hand sime is placed a strip of the paper. Immediately over the type are tive movalile tecth, insulated from each other and connected by tive wires with a similar number of styles at the receiving apparatus. As the carriage with the tylues fice npwarls comes under the bridge, the teeth cone lightly in contact with their raised portions, closing: the cireuit so long ans the metallic contact lasts. Thus letter after letter is transmitted. On the rinlit side of the brilge is a writing-comb composed of five teeth made of platinum-iridium alloy, which is mot subject to corrosion, insulated from each other and pressing lightly on the paper strip beneath. This would produce, if each tooth were simultanconsly
traversed by the electric current, five parallel lines on the paper; but as the current only passes to each during the time when some portion of a type is beneath the corresponding tooth of the type-comb at the sending station, they only produce lines at sucb intervals and of such length as are deternined by the form of the type; carities in the letters and spraces between letters and words leing represented by the discontinuation of one or more of the lines.

The wagon is moved by a cord and weight, and is secured at one end of the carriage by a hook, which is released by an electro-magnet when a current is sent over the wires.
Those at each enil of the line are adjusted to trarerse their respective carriages in equal or nearly equal times.

The paper intended for receiving permanent printing is prepared by being saturated in a solution of nitrate of manganese, which, under the action of the current, leares a light brown mark. Fugitive printing, as for the press, is done on paper prepared with iodide of potassium, which atfords at first an iodine color, bnt is liable to facte.

It is said that a speed of 300 in permavent, and of 1200 words in fugitire, printing per minute is attainable by this apparatus. See Electro-magnetie: Telfgraph : Axtughaphic Telegraph.
E-lec'tro-chron'o-graph. An instrument used for recording time and occurrences in the instant and order of their ti:ne, as in noting transits in obserratories. A paper marked for secoads is placed on the surface of a revolving drum, over which is a stylus operated by electro-magnetic action when the circuit is closed by the telegraph key in the hand of the operator, who is also the observer at the transit instrument. A mark is thus made on the tians-puper at the instant of the occurrence of the transit.
E-lec'trode. Either of the poles of the voltaic circle. The positive, + , electrode is the anode; the negative, -, the cathodc. The terms are Faraday's.

E-lec'tro-dy-nam'ic En'gine. An engine in which a dynamic effect is proluced by the evolution of an electric current, by roltaic battery or otherwise. See Etectro-magरetio Machise.

E-lec'tro-en-grav'ing. Engraving executed by means of electricity. A form of etching.

E-lec'tro-etch'ing. A process for biting-in an eagrwing by attachiag it to the copper of the battery in an electro-bath. The plate is covered with a ground and etched in the usual manner ; being immorsed for a while in the bath, it is withdrawn and the fine lines stoppert-out ; a second immersion deepens the lines anl makes the next tint, and so on.

E-lec'tro-gild'ing. A thin deposition of gold by roltaic aution on an object placed in a bath of a salt of the metal. See Elfectro-plating.

E-lec'tro-lyte. The compound in the electropla ing bath which is decomposed by the electric action.
E-lec'tro-mag'net. A bar of soft iron rendered temporarily mangetic by the passage of a current of electricity through a coil of wire by which the bar is surrounder.

The electro-magnet of the Sterens Institute of Teuhnology weighs in all about 1,600 pounds : eight brass spools, each of which is wound with 272 coils of copper wire insulated with kerite. The hollaw spools contain cores of Norway iron, four to each core. The lifting-force of the magnet is from thirty to fift y tons.

E-lec'tro-mag-net'ic A-larm'. One which is brought into action by the closing an electro-magnetic circuit. This mas be a burglar-alarm in which
the opening of a door or window is made to close a circuit mechanically; or it may be a tire-alarm in which the lengthening of a rod or a change in its shape is made to close a circuit. In some cases, a column of mercury is expanded by the leat and thus completes the circuit, the coil b attracting the armature and releasing the detent of the wheel k; which is then revolved by the weight i and cord h, and

Electro-Magnetic Alarm.
ribrates the hammer-shaft, delivering a blow upon the bell. Br this means the hammer mar be nade to give a repetitive alarm, like that of a clock, as a warning, or the instrument may be used as a sigmal. each closing of the circuit by means of a key giving a single hlow. See Fipf-alafa.

E-lec'tro-mag-net'ic Clock. These clocks are of two kinds : -
Those in which the motive-power is derived from electric action. Invented hy Wheatstone.

Those which are operated by the usual means, but are made the medium by mechanical derices of driving or regulating other clocks to which they are connected by an electric circuit.

1. In Bain's clock the pendulum, at each ribration, moves a light slide by whirh the electric circuit is alternately completed and broken, and loy which magnetism is alternately conferrel nipon and abstracted from a coil inclosell in a heavy hollow brass case which constitutes the bob of the pentulam. On either side of the pendulum are the poles of two permanent magnets, which altermately attract and repel the coil of the bob, according to its mag. netized or demagnetized condition.

A clock of this kind has been kept in motion hy electric currents derived from a zinc plate buried in damp earth.

Shepherd's electro-magnetic clock was shown at the London Exposition, 1851. In this clock electromagnetism is the sole motor in moring the pendulum, driving the train, and moning the strikingworks, no weights or auxiliary springs being emploved.

The pendulum in its oscillations makes and breaks an electric circuit, which alternately magnetizes and demagnetizes a horseshoe-magnet, which in its active condition attracts an armature and raises a lever which is caught by a detent-latcb. On the break-
ing of the cireuit, the armature is released, the latch lifted, and the weighted lever strikes the pendulum to give an adequate impulse to maintain its motion. This is repreated at each oseillation.

Besides the circuit just described, which maintains its own action, the prendulum makes and umakes another cireuit whichactuates a ratelet-wheel, propelling it at the rate of a tooth to each second, the axis of this ratchet-wheel operating the remainder of the train.
The circuit of the striting part is only completed once in an hour, an 1 opreates an armature to pull the ratehet-whecl attached to the uotched strikiugwhecl one tooth forward every two seconds, nud tan tooth is accompanied by a blow on an electromugnctic bell. The nmmber of blows depends upon the notched wheel, the spaces in the ciremmference of which are adapted to the number to be struck; and when this is complete, a lever falls into the notela, and in so doing cuts off the electrie cirenit till the recoment period again stirs the striking-parts into activity.
2. The other form of eletro-magnetic clork is desioned to obtain isochronons action among a number of clocks in different portions of a bnilding or a town.

Fixed upon the arbor or axis of the seconl-wheel of a elock is a wheel of metal, the circumference of which is diviled into sisty alternating divisions of metal and of ivory, the former being a conductor and the latter a noneonlactor of electricity. A small platinum peg is kept in contact with this divided elge, so as, by the revolution of the wheel, to the alternately in contact with the conducting and noncondusting surfaces, and so connectel with a voltaic series is to altemately admit and resist the passirs of an electric eurrent.

The electric circuit thens becoming pulsative is causcd by local magnets and amatures to actuate an appratus stationed at any point to which the wires may be carrierl, giving motion to a wheel and axle, and causing it to revolve so as to indicate seconds, and the other motion-work of a clock.

By this means istellronous pulsations of seconts are mantained at all the points connected with the refulator, and thens perfent uniformity is established at all the clocks of a city, capitol, or private establishment.

Dr. Tocke of Cincimati, about 1848, invented the methorl of obtaining isochronous vibration of pmululums by electric connection. Congress awarded him a premium of $\$ 10,000$ for the invention, designing to use it in astronomical researches and determining longitudes.

E-lec'tro-mag-net/ic En'gine. The action of a current of electricity converts a piece of solt bariron into a magnet, and the breaking of the circuit restores the iron to an inert condition. This transi-tion-alternate excitement and postration - has hecul frequently utilized to confer a pulsative morement upon an armature, whose motion in one direction is obtained by the attraction of the magnet and the reflex action by a spring or weight in the intervals of electric excitement of the iron.

So fur the chronitler has little to record of valuable eflect derived from this engine, though its power is demonstrable. At present the anthorities declare it is resolvel into a question of the relative costs of zinc and coal. The case is thus stated in the "American Artisan ": -
"The chenical action in the galvanic battery is the source of power in electro-magnetic engines, just as the rapid chemical action ealled combustion in the furnace of a steam-engine is the source of power
there. Chemical affinity, or the tendency of two borlies to combine chemically, is a sort of potential energy which, when the substances actually do comline, is reptaced by actual energy in the form of huat or of current electricity, or of both combined; and this may be converted into mechanical energy. In a Daniclis battery, the lipuid in the cells leing a solution of a sulphate of copluer in water, the total leat produced by the solution of one pround of zinc is 3,006 thermal units; 2,342 being porluced by the oxilition of the zinc, and 664 being produced ly the combination of the oxide of zinc with sulphmic aritl. The total heat consumed is 1,419 thermal units; 527 being consumed in decomposing sulphate of oxide of copgrer, and 1,060 being consumed in decomposing the oxide of copper. The total quantity of heat developed is, therefore, 3,006 less 1,587 , equal to 1,419 thormal units ; and this quantity multiplied tyy 772 foot-pounds, the mechanical erpuivalent of heat, gives $1,095,46$ foot-poumls for the amount of energy developed ly the solution of one pround of zine in a Daniells battery. This is less than the total energy developed by the combustion of one pound of carbon. In a smee's battery, the liyuid in the rells being dilute sulphurie acid, the heat froluced hy the combination of one pound of zinc with oxygen and sulphurie acid is, as before, 3,006 thermal units, and the total heat consumed is 2,106 themal units; about 200 being consumed in separating water from sulphurie acid, and 1,906 being consumed in decomposing water. The total amount of heat leveloped, therefore, is 3,206 less 2,106 , equal to 900 thermal units, which are equivalent to 694, 500 font-pounds of mechanical energy derived from the solution of one pound of zine in a Smee's battery. This is alont one sixteenth part of the energy developed by hurning one found of carbon. It is certain that the efficiency can be made to approximate much more nearly to uaty, the limit of perlection, in clectro. magnetic elngines than in steam-engines. At present, however, the ratio of their efficiencies can only be roughly estimated ; and it may be consideral as a favorable view toward electro-magnetic engines to estimate their greatest possible fthicincy as four times that of the best stean-engines. Taking this into account along with the previons calemations, and it appears that the work performed per pouml of zine may be estimated at four tenths of the work per pound of carhon in steam-engines when the solution used in the cells of the battery is snl phate of collur ; and at four sixteenths, or one fourth, of the lork per pound of carbon in steam-engines when dilute sulphuric aced is used in the cells of the battery.
"Before, therelore, electro-magntic engines can become equally economical with heat engines as to cost of working, their working expense per pount of zine consumed must fall until it is from four tenths to one quarter of the working expense of one of the most economical steam-engines per pounl of carbon or of coal equivalent to carlon. The price of zinc, however, being so much greater than that of coal, it is evident from these facts and calculations that elec-tro-maguetic engines never can come into general use except in cases where the power reguired is so small that the cost of material consumed is of no practical importance, and the situation of the machinery is such as to make it very, desirable to have a prime mover without a furnace."

Aceording to Mr. Jonle, the consumption of a grain of zinc, thongh forty times nore costly than a grain of coal, produces only about one eighth of the same mechanical effect.
Cazal's clectro-magnetic machine resembles a flywheel, being a thick disk of soft iron cut into the
shape of a gear-wheel and having a circumferential groove wonnd with insulated wire, whose ends are soldered to insulated thimbles, which, by means of tangent springs, introduce the battery current. Surrounding this magnetic wheel is a fixed, heary iron ring insulated on its interior surface in a manner to present elevations corresponding to the teeth of the wheel. When the teeth of the wheel pass before the prominences of the ring, there is a near approach to coutact, and the attraction is strong. The attractions are balanced when the teeth are midway. At the moment of nearest aplroach the current is arrested ; it is renewed when the teeth are midway; the momentum of the wheel carries it over the point of equal attractions.
The Birmingham Company's (English) electromotor has four sets of fixel electro-magnets of the horseshoe form, two sets at each end of an oscillating beana by which the power is to be utilized. The mashets of each set are arranged in two tiers, one above the other. The armatures of these sereral magnets are carried by rods depending from the ends of the beam ; but the rods pass freely through these armatures without being fastened to them. When, therefore, an armature, in the descent of the roul, comes into contact with the magnet to which it belongs, the rod continues its motion and leaves the armature resting there. In the return motion the rol lifts the armature again, by means of a collar or enlargement which has been giren to it at the place intenited.
In the action of the machine, the battery current actuates the magmets on the side of the descent, while on the other sile the current is cut off. The m -chine acts, therefore, only by attraction. As the aruatures a phroach their magrets successively, it laypuens that whenerer one becomes inefficient, by coming into rontact with its magnet, the next will be in position to exert a very high attractive force, and this force increases until this next makes contact with its magnet in like mauner.

Kravogl's electro-magnetic engine is a heary wrolght-iron wheel rotated by the creeping up insile it of a permanent magnet, whicl disphaces the center of gravity, and by the prepomlerance of the side rotates the wheel.
Another form of the engine has two parerful helixes of insulatel copper wire, within which are two lueary cylinulers of soft iron counterbalanced on the ends of a beam, like the working beam of a stean-engine. By the working of an eccentric on the main or fly-wheel shaft these insulated helixes are altruate' y connectel and liseomeneted with the opprosite sith's of a galranic battery so as to maynetize and demagnetize alternately the two helixes, and so drawing first one and then the other of the soft bar-iron eylinders into them with a force of many hundred pounds. In some machines of this description 10 -horse jower has been obtained.

Page's reciprocating engine (Fig. 1850) consisted of two electro-magnets, the armatures of which are connected by a bar moving upon centers, the bar is comectell with the beam, which, hy means of a crank, mores the lly-wheel; by means of a breakpieee upon the axle of the fly-wheel, the current is altermately passed through the two magnets.

A double-beam engine of similar constrnction, operated by two pairs of electro-magnets, has also been made.

Ahont 1849, Professor Page propelled a car ma the track of the Baltimore and Washington Railroad froun Washington to Bladensburg, a distance of six miles, and back, by means of an engine of his inrention, attaining a spreed of nineteen miles an hour.

Yarious forms of electro-magnetic engines have also hecu invented by Wheatstone, Talbot, Hearder, Hjorth, and others. Professor Jacobi of St. Petersburg, in 1535-39, succeeded in propelling a boat upon the Nera at the rate of four miles an hour, by means of a machine on this principle. The boat was 28 feet long, about 7 feet wide, drew abont 3 feet water. The battery used ronsisted of sixty-four pairs of plates, and propelled the boat by pactilewheels. He also applied his engine to workiug machinery, but without decided suceess.
In 1842, Davidson constructed an electro-magnetic locomotive-engine which attained a speed of ahout

Fig. 1850.

four miles an hour on the Edinburgh and Clasgow Railway.
E-Iec'tro-mag-net'ic Ma-chine'. See Elec-tro-magnetic Exgine.
E-Iec'tro-mag-net'ic Reg'u-la-tor. A device for maintaining an even heat in an apartment, a bath, ar a fumace. See Thermostat.
E-lec'tro-mag-net'ic Tel'e-graph. A nignaling, writing, printing, or recording apparatus in which the impulses proceed from a magnetic force developed by voltaic electricity: A mass of soft iron is rendered temporarily magnetic by the passage of a current of electricity through a surmourling coil of wire. It differs from the electric tolegropht jroperly considered, and also, specifically, from the Magneto-electhic Telegtafu (which ser). See also list under Telegiaph.
Three discoreries necessarily preceded the invention of the electro-magnetic telegraph : the proprties of the magnet, the modes of dereloping frictional electricity, and roltaic electricity. The earlier electric telegraphs were all what their name implies, and not clectro-magnetic. Sce Electivis Telecirafir.

To sare repetition, reference is here made to Magnet, Electhicity, Eiecthic Telegrafu, Yoltaic Pile, Galifaic Batteny, for the jrecedent discoveries and inventions which are the foundation of the electro-magnetic telegraph.

In 1808 , Sömmering descrihed a system invented by him, based upon the decomposition of water hy the voltaic pile, embracing a number of wires engual to that of the alphabet and the numerals, and leading into glass tubes containine water, the bubbles of gas from which, when the electric fluid was conducted into them, served as signals.

Professor Coxe, of Penusylvauia, ahout the same time suggested telegraphing by means of the decomposition of metallic salts.
Oersted, in 1820 , after many years' research into the action of the soltaic current on magnets, announceld the fact that the magnetic neelle was defleeted by such current, exhiliting a tendency to Ilace itself at right angles to the wire through Which the current passes; and Faraday disenvered in 1821 that the maguet would revolve about the conducting wire, or the latter aloat the bagyet.

The experiments of Oersted, farther extended by Ampère, and the discovery by Faraday that magnetisin was induced in a bar ol soft iron unter the influence of a voltaic eircuit, led the way to the invention of the firt really convenient and practical system of electro-telegraphy.
lu 1825, Mr. Sturgeon, of London, discoverd that a soft iron bar, surrounded by a helix of wire, throngh whieh a voltaic current is passed, becomes maqnetizen, and continues so as long as the current is passing through the wire.

In 1832, Baron Sehilling constructed a model of a telegraph which was to give signals by the deflection of a needle to the right or left.

One great practieal difficulty was still to be overeome, the resistance of the transmitting wire to the comparatively feeble current engendered by the voltaic battery.

This was conquerel by Professor Joseph Henry, now secretary of the Smithsonian Institntion at Washington, who, in 1831, invented the form of marguet now genemally used for telegraphic purposes, and discovered the principle of "combinution of circuits, constituting the important invention of recciving-magnet, and the relay or local battery, as they are familiarly known in connection with Mlorse's telegraph. The effect of a combination of eireuits is to enable a weak or exhausted current to bring into action and substitute for itself a fresh and powerful one. This is an essential condition to obtaining useful meehnaical results from electricity, itself, where a long cireuit of conduetors is used." - Prescott, History of the Electric Telegraph.

In 1832, Professor Morse began to derote his atteution to the subject of telegraphy ; and in that year, while on his passage home from Europe, inventel the form of telegraph since so well known as "Morse's."

A short line workel on his plan was set up in 183.5, thongh it was not until June 30, 1840, that he obtained his first patent, and nearly four years elapsel before means could be proenrel, which were finally granted by the government of the United States, to test its practical working over a line of any length; though he had as carly as 1837 endeavored to imince Congress to appropriate a sum of money satticient to construct a line between Washington and Baltimore.

Profissor Morse desarves high honor for the ingenio's manner in which he availed himself of scientific discoveries previously male by others, for many imfortaut discoreries of his own, and for the courage ant prerseverance which he manifestel, in endeavoring to render his system of practical utility to mankiml by bringing it prominently to the notice of the pablic: and he livel to see it addpterl in its essential features throughont the civilized world.

In the mean while Ganss and Weber, and after them Steinheil, in Germany, were at work, and construsted a short line between the Royal Academy at Munich and the observatory; this, by means of right amd left hani? leflection-needles, was caused to print dots on a continuous slip of paper, moved by clock-work.

While making experiments in connection with this work, Steinh ill inale the important disenvery that the earth might be used as a part of the cireuit, thus emabling him to disprense with one half the length of wire which was thought requisite.
The attention of Wheatstone, in Euglami, appears to have been drawn to the subjeet of telegrapliy in 1834.

Morse's first ilea was to employ chemical agencies for recording the signals, but he smbserpuently aban-
doned this for an apparatus which simply makerl on strips of paper the dots and dashes emplosing his alphabet. The papre itself is now genrrally disnensed with, at least in this country, and the siguals rearl ly somm, - a practice which comblues to accuracy in transmission, as the ear is found less liable to mistake the duration and succession of sounds than the eye to real a serjes of marks on paper.

Bain, in 184h, patentel the electro-chemical telegraph which dispensed with the relay-magnet at intermediate stations; and subseruently Gintl, in Austria, and Bonelli, construrted telegraphs of this elass, varying in details from that of Bain. See Electio-chemical Treeghain.
Wheatstone's first telegraph comprised five pointing needles and as many line wires, reguiring the deflection of wo of the needles to indirate pach letter.

His first dial instrument was patenter in 1840; modifications were, however, subsequently made in it. The transmission of messages was eflected by a wheel having fifteen tecth and as many inter-spaces, each representing a letter of the alphabet or a mumeral, and thirty spones corresponling to these, and forming " part of the line. The circuit was closed by two diametrieally opposite springs. so arranged that when one was in contact with a tooth the other was opposite a space, when the transmitter was turned until opyosite a purticular letter, and held there, a continuous emrent being produeed, causing an index on the indieating dial at the uther end of the line, whieh had thirty livisions, corresponding to those of the transmitter, to turn mutil it arrived opposite the letter to be indieated. The revolution of the index was effected by clock-work, the escapement of which was actuated by an electromagnet at either end of a pivoted heano, the ends of which carriel two soft-iron armatures. One of the line wires, as well as one of the contact springs of the transmitter, and one of the electro-magnets of the indicator, was afterwards dispensed with.
A magneto-ejectric apparatus was subsequently substituted for the voltaic battery.
Thee single-nteedle telegraph of Cook and Wheatstone is causell to indicate the letters and figures hy means of the deflections to the right or left of a vertical pinter ; for instance, the letter A is indicatel by two deflections to the left, N Ly two deflections to the right, 1 by three consecntive deflections to the light, and then one to the left, and so on. This is extensively employed in Great lritain and in India.
The same inventors have also coutrived a double needle-telegraph on the same plan ; lut this, as it reyuires two lines of wire, each needle leing independent of the other, though greatly inereasing the speed with which messages may be transmitted, has not come into general use.

Dr. Siemens, of Berlin, invented an apparatus hy which the armatures of the electro-magnets at each end of the lim: were caused to viluate synchrononsly, maintaining the motion of seaple-wherls carrying pointers traversing a lettered dial, so that, the vibrations of either armature buing checked, the pointers at either and of the line would simmlaneously point to the same lifter.

House, about 184 , invented a telegraph which printed the letters of the Roman alphabet on a strip of japer, and was at one time extensively used in the United States. It comprised a lettered disk, operated in much the same way is that of Wheatstone, from keys arranged like those of a piano, and a re-ceiving-apparatus, whieh incluled a seape-wheel, an anchor escapement, controllell by the movements of the lettered disk, and actuating a slide-valve which operated the piston of a compressed-air cylinder by
which a wheel carrying type on its periphery was turned so as to present the appropriate letter indicated at the trausmitting station to the paper slip which was by suitable mechanism drawn to the trpe-wheel to receive an impression.

Professor Hoghes has alno invented a very ingenious printing-telegraph, deproding upon the synchronous revalutions of two or mare typu-wheels at differnt stations. See Pisiting-teleghaph.

Tarious torms of dials or pointer telegraphs have been devised hy Bregret in France, Siemens and Halske and Kramer in Germany, and various improvements in the details of construction by numerous others which the linits of this article will not pernit us even to refer to. See specific index under Telegredrh.

E-lec'tro-mag-net'ic Watch-clock. An apparatus consisting of a magnet, with a recording-dial, clock-works, and a signal-bell; fron this run wires, one to each of the banks or other otfices under guard where watchmen are euployed, whose duty it is to visit eacll bank at stated times luring the night and give signals, which are recorded on the dial of the clock in the fire-alarm office, showing the time that the signal was given from any particular bank or office.

If the signal is not given within five minntes after the appointed time, the man on duty at the firealarm otfice commmoicates with the office of the su* [r-rintendent of police, and an officer is inmediately despatched to the proint frou whence no signal has been sent.
E-lec'tro-med'i-cal Ap'pa-ra'tus. An instrument for the treatment of diseases by electro-magnetism.
Great success in this lime was announced by Johannes Franciseo Pavate, at Venice, in 1747. The details of the apparatns employed by him are not known.

From that time to the present the treatment of diseases by electrical appliances has undergoue its

Fig. 1851.

Electro-Medical Apparatus.
vicissitudes in public favor, becoming notably prominent after the discovery of voltaic electricity and of the properties of electio-magnetism. The latter is now generally adopted.
Fig. 1851 shows a machine designed for medical parposes. It is operated hy a single-cell Damiells battery, the current from which, after passing through a helix, is conducted by wires provided with insulating landles to any part of the person to which it is desired to apply the treatment.
In the instrument shown in Fig. 1852 two small coils, connected with each other and furnished with a vibrating contact-breaker, are traversed by the currents from a small battery. The coils are surrounded by hollow cylinders of copper or brass in which indaced currents are geuerated. Tliese may
be slippet] on or off the coils, to intensify ol moderate the strength of the current, whiel is directed by aplropriate wires to the parts under treatment.

E-lec-trom'e-ter. An instrument to measure the amount of an electrical force.

In Coulomb's torsion rectrometer (a) lie force opposed to that of electricity is the resistance to twisting offered by an elastic thread.

In Henly's quadrant electrometer (b) the electric force is measmred by the amonnt of repulsion which it produces upon a pith-ball at-

Electro-Medical Mrehine. tached to a silk fiber sus
l^{n} noded from the center of a gradmated arc.
c is the goli-leaf electrusioje. Sue Electioscope. Sir William Thomsan's and Varley's electrometers are the nost de]icate of all, and are need in reading the insulating power of telegrapli-cables. See Galvanometer.

The strength of the electric force excited hy the rubbing of glass, sulphur, amber, wax, resin, etc., was measured by Gilluert by meins of an iron needle (not very small) moving freely on a point, revsorium clectricuin; very similar to the ajparatus employed

Fig. 1853.

Electrometers.
by Hainy and Brewster, in trying the electricity exciterl in different minerals by warmith and friction.

E-lec'tro-mo'tor. An exciter of electric action.
An apparatus actuated by electricity and imparting motion to a machine. See Electro-magaetic Machine.

E-lec'tro-neg'a-tive. Having the projerty of being attracted by an electro-positive borly, or a tendeucy to pass to the positive pole in electrolysis.

E-lec'tro-nome. A measurer of electricity.

See Electhompetrr.

E-lec-troph'o-rus. An instrument inrented by Volta, for generating electricity by induction, about 1766.

Tolta's electrophorus (A, Fig. 1854) consisted of a thick disk of resin 12 or 15 inches in diameter, ealled the plute, resting on a tin foil called the sole. The plate has a metallic cover, insulated by a glass handle.
The resinous plate being excited by rnbbing it with a warm and dry flannel, the metallic cover is placed upon it, and a spark of - electricity may he drawn from it; if it then be raisell, it affords a spark of telectricity. On replacing the cover and assain
touching it, it affords another spark of - electricity, and so on.

It forms a portahle electrifying-machine, and is used as a gas-lighter by developing a spark over the burner, inflaning the issuing gits.

The electruphorns B has a metalic bell lined with fur or wool, and a hard-rubber handle. It has also an interior hell of hard rubber with a metallic pedrotal and foot. The act of raising the metallic loell generates frictional electricity, and the bell heing bought into contact with an insulated chain attached to a burner develops a spark over the latter, thus lighting the gas.

In the eloctric wand C, the electricity is generated by a metallie tube sliding in a fur-lined reservair of hard rubber, and is applied, as the bell just de-

Fig. 1854

scribed, lyy establishing a circuit except at a short break over which the spark jumps.

Another wand carries a Leyden jar.
E-lec'tro-pho-to-mi-cog'ra-phy. The art of photographing objects as magnified by the microscone by the help of the electric light.

E-Iec'tro-plat'ing. A means of covering a metal or a metallic surface by exposure in a bath of a solution of a metallic salt, which is decomposed by clectrolytic action.

Early in the present century, Volta demonstratel that a solution of a metallie salt, under the influence of the voltaic pile, became immediately relluced to its elements, in such a way that the metal was deposited at the negative pole. This was regarded as an interesting fact, of some moment to electricians, but not of special interpst in the arts.
"Some curious experinunts haye lately been made by Mr. Cruickshank of Woolwieh. On passing the galvanic influence by means of two silver wints through a solution of nitrat of silver, the npper wire lecame oxidated and gradually corroded, while at the same time a beautiful arborescent precipitation of metallic silver took place on the lower wire. Acetite of leal and sulphat of copper were similarly decomposel and precipitated on the lower wire." Monthly, Magazine, Nugust, 1800.

In 1801, Wallaston demonstratel that a piece of silver in connection with a more prositive metal phaced in a bath of sulphate of copper became covcred with copper and would stand burnishing.

It was not until 1838 that Mr . Spencer gave it a practical bearing by making easts of coin and casts in intaglio from the matrices thus formed.

Professor Jacobi of Dorpat, in Russia, had been an independent inventor, and in the same year
bronght forward specimens which were nuch admired and caused him to be jut in charge of gilding the iron dome of the Cathedral of St. lsaac at St. I'efersburg. This donte weighs abont 445,000 pounts, and was electro-gilded with 274 pounds of durat grold.

The process, brietly described, is as tollows: -
The voltaic current emploged is suplied lyy a constant battery, such as Daniells's or l'unsen's. In the simple lorm, the galvanic current is produced in the same ressel in which the metallie dequsit is elfected. The outer vessel K of glass, stone-ware, or wood, contains a solution of the metallic salt, - say sulphate of copper. A smaller yessel I ', of unglazed porcelain, contains diluted sulphuric arid. A plate of zine Z, forming the positive pole, is suspended in the acid solution and connected with the copprer medals $m m$ by means of a copper wire. Electrolysis ensues, the copjer iu the solntion is deprosited on the medal which forms the negative pole, and the strength of the solution is maintained by suspending a bag of crystals of sulphate of copper in the bath.
In the compound form the galvanic current is produced outside the bath containing the solution to be

Fig. 1855.

Electro-Plating Apparatus.
decomposed. In this arrangement a current of any degree of strength may be employed, according to the size and number of cells forming the bittery. A is the battery, B the vessel into which the solution of the metal to be deposited is placed ; the molds are suspended from a metallic rod $a b$, opposite to which the plate $f d$ is hung; conper, if the solution is a salt of that metal, will serve as a soluble electrode, and will be dissolyed in the same ratio as the metal is deposited upon the mold. The battery being charged, $f d$ is put into communication with the copper pole C by a copper wire, and $a b$ is put in commanication with the zine pole Z.

The voltaic current being passed through the solution of a metal, decomposition takes place, the metal being electro-positive attaches itself in a metallic state to the negative pole or to the object attaehed thereto, - the medal, for instance, - while the axygen or other electro-negative elensent secks the positive pole.

The anode is the clectrorle placed at the positive pole of the battery, which in the electro-chemical decompusition can be dissolved, or which, if it be
insoluble, attracts oxygen and acids. The cathode is the electrole which, placed at the positive pole, receives the metallic deposit, or attracts hydrogen and alkalies.

If the article to be coated be a medal or other object which is a conductor of electricity, the deposit will be made directly upon it ; but if it be an eagrav d wooden block, a wax seal, or a plaster-cast. it is necessary to give it a conductiog surface, which is done by brushing it orer with black lead or bronze puwder.

In obtaining the connterpart of a medal or engraved plate, the latter must necessarily be coated with some substance to prevent adhesion of the matrix. In the United States Coast Surrey a solution of iodine is emploged in the duplication of its cop-per-plates.

In Shaffner's profess, wood, fabric, or fiber is prepared to receive a netallic coating by immersion in a bath containing plumbago in suspension.

Fibrous substances may also be prepared by dipping in a solution of nitrate of silver and ammonia, and exp ssure to hyilrogen gas.

The process of electro-plating has been applied to many substances, as terra-cotta, wood, cloth, lace ; and to the oruamentation of book-covers and similar objects; and also for soldering, by uniting the adjacent edges of two piec 3 of metal by forming a solid mass between them. The works of a chronometer watch have been electro-plated while going.

When applied to depositing a coat of silver or gold upon an article, it is placed in a solution of the required metal, the acid set free in the reaction loeing such as rill act npon the piece of metal whose function it is to keep the metallic solution to its normal strength. Copper and its allors and German silver are the metals upon which gold or silrer are must rea lily deposited.

Electro-plating with iron has been done in Rossia by a process in rented by Jacobi and Klein; it is nusch niore durable than copper, and is said to afford gool jesalts, having been used by the Russian government for printing bank-notes. A United States patent was granted for this process in 186 s . See also Garnier's process, "Photographic Journal," Vol. VI., p. 31 et siq.

An imprortant improvement in electro-plating is that of M. Oudry of Autenil, near Paris, for coating large objects made of iron with a thick layer of conper. In the old process it mas customary to clean the pieces to be platel, and after subjecting them to a weak preliminary hath. in order to form a thin film on the surface, to transfer them to a stronger bath, where ther were subjected to voltaic action for several days. In this part of the process it was found that, owing to the strength of the acid bath, and the imperfection of the preliminary coating, the iron was corroded, instead of beconing coated with copper.

The details of M. Oudry's process have not been made public, but as a preliminary to the plating the articles are corered with three coats of benzine and afterwand rubbed with pulverized chareoal, when thes are really for the bath, which is composed of a saturated solution of sulphate of copper.

The battery used is Daniell's.
The operation requires from three to four days, by which time a deposit about one twenty-fifth ol an inch in thickness is formed. The objects, when removed from the bath, are washed in slightly acidulated water, brushed with a wire brush, and rubbed with paper to brighten them, after which they are brushed with ammoniacal acetate of copper, and finally polished with a hard brush well waxed.

By this process many of the cast-iron monuments in the city of Paris liave been copper-plated, and also the street lamp-posts. Cast-iron lamp-pnsts weighing $4 \frac{1}{2}$ ewt. plated in this way cost about $\$ 40$, while those of bronze of similar pattern, though Weighing but $2 \frac{3}{4}$ cwt., cost $\$ 150$.

Herr IV. Licke, of Hanover, deprecates the ase of the acid bath, and adrocates the use of a tartrate with either a soda or a potash salt, especially for colpering iron by means of malranism. The best results were obtained with a solution of 20 parts of erystallized sulphate of empler in 160 jarts of water, which solution is mixed with 50 parts of neutral tartrate of potash dissolver in 650 parts of caustic solla solution of 1.12 specific gravity.
E-lectro-po'i-on-bat'ter-y. (Eitktron-proiëo, Gr., electricity-making.) A name applied specially to Bunsen's carbon battery, though applicable to other forms.

E-lec'tro-pos'i-tive. Haring a tendency to the negative pole of a magnet or batters.

E-lec'tro-punct'ur-ing. Treatment br the insertion of needles in the body, and passing a voltaic current between the pioints.
\boldsymbol{E}-lec'tro-scope. An instrmment for detecting electrical excitation. It is shown at c, Fig. 1853, and consists of a glass jar with a wonden bottom, a brass wire pasing through the cork and surnounted by a ball of the same metal ; to the lower end of the wire are gummed two dep ending strips of gold-leaf. The test of the electric condition of a hody is to bring a small ball suspeuded from a filament of silk against the body, and then apply the same ball to the knob of the electroscope. The presence of eleetricity will be shown lor the divergence of the leares, which, being sinnilarl \dot{y} electrifiod, will repulse each other. A rod of glass or of sealing-wax rubbed ant applied to the knob will determine whether the prerious excitation was lositive or negative.

The dry-pile electroscope consisted of a gold-leaf suspended between two balls, and Grove improved on this by insulating the gold-leaf between tro sur-. faces and charging it at the same time by an electrified rod. See Electhometer.

E-lec'tro-tint. A morle of engraving in which the design is drawn on a copprer plate with an aeddresisting ramish. By the electro-lath a reverse is obtained, and from this copies are printed. The proeess may he adapited to relief or to plate printing.

E-lec'tro-type. A enpr, usually in copper. of a form of type. An electrotype is superior to a stereotrpe, as copper is hardet and nove duralile than trpe-metal, add the plates take less room in storage.

A page of the trpe is corered with was, which is driven into the interstices by powerful pressure. The face of the rax-mold is corered with plumbago to give it a metallic surface to which the metal will adhere. The positive pole of a battery is attached to the mold, and the negative to a coppler flate, and both are plunged in a bath of sulphate of copper in solution. The copper is deposited on the fare of the mold in a thin film, which inereases in thiekness as the process continues. The shicll haring attained the thickness of a stont sheet of paper, the mold is remored from the bath, the shell detached, and strengthened by a backing of type-metal.

This process is called backing-lip. As type-metal will Dot readily adhere to copper, the bark of the shell is coant with tin, and the shell is then placed face downward on a plate, by which it is suspended orer a bath of molten trpe-metal. When it has attained the requisite heat, a yuantity of the metal is dipped up and floated orer the back of the shell.

When colt, the plate is reduced to an even thick. ness by a planing-machine. For printing, it is mounted on a wooden backing.
Another mode of obtaining electrotype plates from a letter-press form is by a mold of gutta-pereha, brushed with graphite and immersed in the electrophating hath.
Gntta-percha is also used for obtaining intaglio mokls and then cameo impressions from woodeuts, for printing. See Electlin-plating.
E-lec'tro-typ'o-graph'ic Ma-chine'. An apparatusinvented liy Fontaine, a French barrister, for printing short legal documents, ete.
The letters of the alphaket - caps, lower-ease, figures, ete.-are arranged around two horizontal lisks, one above the other, and sumounted by a third lisk which has notehes corresponding to the types below. A har in the center is caused to press upon the notch representing any particular letter, whieh is, by elec-tro-maghetio action, cansed to drop and leave its impression on a sheet of paper wound npon a roller beneath, and then retnm to its place.
When the whole has been printed, letter by letter, in this way, an impression is transferred to a lithographic stone, from which any mmber of eopies may be printed.
E-lec'trum. 1. Argentiferous gold : an alloy of gold and silver.
A vase and eight drinking-cups of this material were found in an ancient Scythian tomb at kertch.
2. An alloy of copper, zinc, and nickel : Germansilver. See Alloy.

El'e-phant. A size of drawing-paper measuring 28×23 mehes, anl weighing 72 ponnds to the ream.

A flat writing-paper of ahout the same elimensions.
El'e-vat'ed Bat'ter-y. One which has its whole parajet elevated above the natural surface of the ground ; to procure the mass of earth recpuired, a dituh is nsually dug directly in front of the parapet.

El'e-vat'ed Ov'en. One whose baking-chamber is sitnated above that plate of the stove in which are the holes for the pots and kettles.
El'e-vat'ed Rail'way. A railway with an elcvated track.

Any railroad supported on a continuons viaduct may be said to be an elevated railway, but the term has lately rereived a rather more limited application. It is now particularly applied to city railroads whose track is so elevatel as not to materially infringe upon the street arma, already too limited for the convenience of the citizens and the trathe.
The nucessities for more convenient transportation of prassengers in New York City, especially on Broadway, have perhaps given the greatest stimulus to invention in this line, and the fuestion of elevated railway versues subterranean railway has beren very thoronghly debaten.

The capitals and other large cities of the world wre not originally laid out for the motern means of locomotion. We see in the eities of Asia the condition which formerly existed in European towns, - narrow streets without silewalks, aldanted for pedestrians, equestrians, pack-animals, and sedanchairs. Jelldo, Maeao, and other Asiatic eitips where the natives are yet dominant, have in general no provision for wheelenl vehicles, and London before the great fire of 1666 was in much the same condition. The foot-traveler was jostled by the horseman, and stood on one side to let the train of paekanimats go ly, jnst as the molern traveler resigns the road in favor of the loated camel or the ambling donkey in the streets of Alexandria. The sedanchair of England and the palanquin of Constantinople were carried by shanbling porters, who were at-
tendel after nightfall by toreh-bearers and guards, who illuminated the way and keprt off the prowling robber. Asia, having stood still, preserves the institutions to which we have alluded; Western Europe and the West have outgrown them some timue since.
The topography of old Boston and Dutch New York show that no ideas of these modern stirring times tronbled the engineers and architects of those days, and it has become a problem with their suc-

cessors how best to adapt the thing as they find it to moulern needs.

London has solved the problem by brick viaducts and subterranean railways, which are successful and safe' ; of the latter it may be acked, profitable.

New York, of all our American cities, is most interested in oltaining the best solution of the problem.

The viaduct of the London and Greenwiel Railway is 3 miles and 60 ehains in length; being composed of over 1,000 yellow brick arches, 18 feet span, 22 feet high, 25 feet wide. It cost over $\$ 1,300,000 \mathrm{p}^{\mathrm{pr}} \mathrm{r}$ mile, and has not proved a paying investment to the shareholilers.
The London and Blackwall Railway is upon a
continuous vialuct of brick arches, and is 3 miles 38 chains in length. It cost $£ 1,083,951$. The pullic are benefited more than those who built it.

These are two examples ol elevated railways of a certain kind. The Greenwich Railway was always worked by locomotives. The Blackwall Railway was for many years worked by stationary engines and wire ropes.

In 1821, Palmer, enmineer to the London Dock Company, patented a railway whose single track was elevated upon pillars, which were of such lengths as to bring the track to a level or moderate inclination, notwithstanding the inequalities in the suface of the gromud. This is shown in the upper illustrations of Fig. 1856. The boxes H are in pairs, suspended on each side of the carriage, which tiavels upon a pair of grooved wheels D. The track K^{-}is supported on the pillars. The wheels are placed one before the other, and the axles are extended laterally so as to support the boxes by the suspension-rods \bar{I}. The

Fig. 1857.
lower side of the box having a continuous longitudinal slit, allowing the passage of the suspension-bar.
The mode of propulsion is probably by a wire or rope.

Dick's elevatel railway (English patent, 1825) had a double track supported on vertical jillars $m \mathrm{~m}$ of varying hight when crossing irregular surfaces, so as to jweserve a level, or nearly so.
The track has two rails, upou which the wheels n of the carriage traverse ; and bencath the rails are safety-wheels on the sides of the carriage, which keep the upper wheels hom leaving, should the carrage sway and jump with high sureds.

The mode of propulsion was to be by drag-ropes from stationary engines. The lower wheels journaled between the sections of the supporting frame are for the ropes to run in.
Warren and Blume's elevated railway M is on the principle of the Fisher (English) patent of 1825.
The rails are supported noon in ward projections at the sping of an arch s, which is attached by one eud to a single post t. A truck runs on this track,

Fig. 1858.

Sarnum's E'evated Eailuay
center of gravity of the loaded boxes is below the level of the rail.

The earriages are hooked together, and are drawn by horses and a towing-rope.

A railway on this priuciple was constructed in 1825 at Cheshunt, in Englant, and used for conveying bricks across the marshes to the river Lea, where they were shipped.

Fisher's Englis! patent, 1825, in the same figure, shows a suspended carriage between two lines of rail.

In the figure, the bar a with rail-flanges $b b$ is shown suspended by rods from a catenary chain, which is supposed to be spanning a river or deep gulley.

The carriage f has two pairs of wheels which traverse ulon the flanges $b b$, and support the bar h from which is suspended the freight.

One of the riews slows a modification, in which the rails are flanges of a hollow box or trunk c, the
and the car is suspended from the truck, and is drawn by horses. The truck wheels have brakes which are operated from the car.

Fig. 1857 shows another form which is supported on columns and reached from the second thors of houses. It is driven by dummy-engine, compressed air, or by rope.
Another form is proposed to span the street and form an arcade. (Fig. 1858.)
Cheseborough's elevated railway consists of a series of inclined planes down which a car runs by its own gravity, elevating platforms bring interposed to raise the car from the foot of one incline to the head of the next. The ylatforms are elevated by a perpendicular lift operated by compressed air.

In India, Australia, and some other places, it has not been unusual to cross gullies and rivers by means of a bucket or basket susjended from a cord. The patents of Palmer, Fisher, and Dick, already cited, are an anplification of this idea, a carriage being arranyed to travel on a rail.
The idea has recently been reduced to practice in a conplact and useful form. See Wire-way.
El'e-vat'ing-block. A tackle-hlock used in elevating hay or bales, where, after the object has heen raised to i given hight, the bloek is required to travel along to a position above where the load is to le deposited.

The track-rope passes through the case under the

Elevating-Btock. , rope, which is grasped by a man on the barn or warehouse thoor.

El'e-vat'ing-clutch.

rests on the top of the screw.
Designed to attach a elntch to an elevaten beam in a barn, as a means of susjension of the tackle of a horse hay-fork, and to detach the cluteh therefrom when required. It has two arms attached to a handle of any suitable length, and arranged to engage the jaws of the clutch to hold them open until the beam is grasped or to unelose them when required.

El'e-vat'ingscrew. One beneath the breech of a priece of orduance, to give the elevation or vertical direction to the piece. In field. pieces it is berded in the stack immediately muder the basering of the gun, whiel by four hanclles.
In theodolites and nther geoletical and astronomical instruments a similar contrivance is used for leveling the instrument. See also Jack-screw, etc. See list mader Hoisting.
El'e-va'tion. 1. (Astronomical Instruments.) The are of a vertical circle intercepted between an object and the horizon.
2. (Dicling.) The angle of the gnomon with its base.
3. (Gunnery.) The angle of the line of fire with the plane of the horizon.
4. (Irawing.) A side or end view of an object or representation on a perpendicular plane.

An end or side view of a building or machine drawn according to the actual wilth and hight of its parts without reference to perspective.

Projections or depressions from the plane of the general surfaee are indicated by shatows equal in wilth to the ilepth of the elevation or depression, the light being supposed to fall at an angle of 45° both to the vertical and horizontal lines of the drawing, and usually from the upper and left-hand side.
locomotive pulleys. The draftrope leading from the hay-fork to the team passes between the low. er pulley and the stop. The cord rmaning over the pulley in the rear operates the stop that rigiclly connecting the draft to the track-rope ahove arrests its progress in eitherdirection. It is managed by a is manager by
\qquad

El'e-va'tor. 1. A machine for transferring grain
ly raising it from the car, a lin, or the liold of a slip, to an elevated hopper, whence it is disclarged by any one of a series of spouts directel to a lin for storage or to the hold of a boat, a car, or to a run of stones.
Elevators are used in flour-mills to carry the wheat to the upper story, where it is cleaned in the smut-mill ; also to raise wheat, so eleaned, to a hin whenee it proceeds to the stones; also to raise the meal to the bolt, the oflal to the bran-duster, ctc., as the ease may be.

Elevators are also used in many other machines for raising small objects or materials, such as the tailings in a thrashing-machine or clover-huller. These may be consulted where they occur under these heads. They are also used in elevating bricks,

Grain-Elevator
mortar, etc., in building. See list mnder Hoisting. machines.
2. A platform or cage in a warehouse, hotel, mine,
or elsewhere, for raising or lowering persons, gools, or material to or from different Hoors or levels. See Huist; Man-engine; Cage. Also the list above cited.
3. A building specially constructed for elevating, storing, and loading grain into car's or ressels. These structures are very capacious both as to the capacity for handling and storing, but the construc-

Fig. 1 \$63.

Fievalor-Leg. tion is very simple. An clervetor-leg, so called, seen in Fig. 1563 and also in Fig. $156-2$, reaches into the bin or cellar into which the contents of the wagons or cars are discharged. A strong belt, carrying a series of bnckets, tratels over a drum at the lower end and also over one at the upper end, where the butckets tip over and discharge into the upper bin. This, as seen in Fig, 1562, has ralved spouts F which direct the contents into either one of the deep bins A. The fioors of these bins are over the tracks, and valyes in the floor allow the contents of the bins to be discharged into cars or canal-boats, whieh are brought beneath.

In unloading from slins, the leg is a piroted, andjnstable piece, which is first raised to obtain the necessary hight, brought over the hatchway, and lowered thereinto.

In practice, the grain is diseliarged into the hopper of a weighing-machine gaged exactly for one limndred bushels; by pulling on a valve the contents are sent by a spont to the bin, the ralve closed, the elevating resumen, and soon. Seven thomsaml bushels an bour are thus weighed. An elevator at Nilwankee is 250 feet long and so feet wide. The total length of the great lriving-belt, urged by a 200 -horse-power engine, is 250 feet, that is, the hilf extending from cellar to comb is 140 feet, and the down half is of course equal to it. This belt is 35° inches wide and $\frac{3}{4}$ of an inch thick, and is made of six-ply or thicknesses of canras, with sleets of india-rubber passed between and into them. It drives nine receiving elerators or belts set witl buckets, each of which lifts the grain 140 feet. The buckets are made of thick tin, bound with hoop-iron, and are w.tl riveted to the belt at intervals of fourteen inches; six inches across the mouth and eighteen iurches long. When full, one contains a peck. Ther do not usnally go up quite full, but, allowing for this, there are 100 pecks $=25$ bushels, loadet on one sille of one of these belts whenever it is at work. If all nine are running at once, as is often the case, the quantity of wheat lifted on these swift-running belts is 225 bushels. The established weight of a bushel of No. 2 Nilwankee Spring is $\overline{5}$ j pounds. This would make the total lift of the reeeiring elevators during the time they are at work orer 12,000 pounds.

The bins in which this wheat is ponred are of great size, being 60 feet deep, 20 wide, and 10 across, containing 12,000 enbic fuet. The total receiving and storing capacity of this huilding is $1,500,000$ bushels. Ot the crop of 1869 it receivel $7,000,000$ bushels. About 10,000 hushels are taken into a train of the arerage length; so 2,100 trains were that year rolled into this elevator and discharged.

In discharsriug on to the Lake grain-rressels, as soon as a ship is anchored beside an elevator the
hatehes are remored and great spouts extend orer them from the bottom of one of the bins deseribed. The gate is raised, and a torrent of wheat pours down. The loading power of these spoats is 12,000 hushels an hour. A vessel with a capacity for $1 \mathrm{~S}, 000$ bushels may be loaded in an lour and a lialf. Tlee Oswego and Ogdensburg schooners and ressels destined for the Welland Canal usually take o: from 12,000 to 20,000 bushels. The louflalo vessels are larger, often receiving 30,000 , and in a few cases 45,000 bushels.
4. (Surgical.) An instrument employed in raising portions of bone which have heen derressed, or for raising and detaching the portion of bone separated by the crown of the trepan. Tlie common elevator is a mere lever, the end of which is somewhat bent and rongh, in order that it may less readily slip away from the portion of bone to be raised. The elerator of Louis has a screw peg mited to the bridge by a kind of pirot. Pettit's elevator is a stright lever, except at the rery loint, where it is slightly curved. The triphoid elevator consists of three branches united in one common trunk.

The elevator is one of the instruments of the trephine case. A curred instrmment for operating upon depressed portions of the skull was disinterred at Pompeii, 1s19, by Dr. Cavenke of St. Petersburg.

El'e-va'tor-buck'et. One of the grain-cups on the traveling belt of the elevator.

El'io-type. (Photography.) A mode of multi. plying photogiaphic copies of artists' work, batented hy Eliot, Englaml. The painting is made ppon glass in a borly-color more or less dense, and consequently more or less eflective as a negative, and from it positives are printed.

Eli-qua'tion. The process of separating metals ly exposine in a fnrnace or on a beartb to a heat which melts one and does not melt the other. See LIQRATION-FtRNACE.

El-lip'so-graph. An instrument for describing

Fig. 1964.

Fig. 1865.

Ellipsograph.
ellipses. The pins of the heam traverse in the slots of the trammel, each ocenpying its own slot, and the jencil at the end, as the beamrevolres, is cuided in an ellintical path. SepTrammel.

There are many rarieties of compass for this purporse.

Eliptical Wheels.

El-lip'ti-

cal-arch. (Architceturc.) An arch having two foci and an elliptical contour. The arches of London Bridge are the finest elliptical arches in the world: the middle one has 152 feet span.

El-lip'ti-cal-gear'ing. See Elliftical-wheel.
El-lip'ti-cal-wheel. One used where a rotary
motion of varying speed is required, and the variation of speed is dutermined by the relation betwern the lengths of the major and minor axes of the ellipises.

In the upper figure, variable rotary motion is producel by miform rotary motion. The small spur pinion works in a slot cut in the bar, which turus loosely upion the slaft of the elliptical gear. The piaion is kept to its engagement by a spring on the shaft. The slot in the bar allows for the variation of lenerth of rarlius of the elliptical gear.

El-lip'tic-chuck. A chuck invented by Abraham Sharp, for oval or elliptie tuning. See Cuver.

El-lip'tic-spring. (Vehicles.) One formed of a number of bent plates in two sets, curved apart in the middle and united at the ends. The pressure is brought upon the middle and tends to collajnse them.

Elliptic Carriage-Spring.
In the illustrations, the spring is of one or two pieces, mited by lhocks or bolts.
E-lu'tri-a'tion. l'uritication by washing, when the water carrie, off a linhter or more soluble material from the heavier portion, wheh is desioned to be saved. It differs from lixiviation in the latter respect.
To recever sacharine matter from animal ehareoal, the latter may he lixiriated, water being passed throngh the mass to carry off the sugar.
To remove sace harine and coloring maters from starch in the process of manufacture, the material is elutriated, and the granules of stareh vettle in the botwom of the vat; the substances remaining in sulufion are removed by decantation.
El-y-dor'ic Paint'ing. A mode of painting invented by Viacent, of Montpelier, intended to combine the fresh appearance of watercolors and the mellowness of oil-painting. The vehicle for the pigment.s is an emulsion of oil and water with the intervention of a gum ur macilage.
Em. (Printing.), The square of the boty of a type. As the " m " in early fonts had a simare, buty, it bccame a unit of meisure for compo-itors, work.
E-mail'-om'brant. A process which eonsists in flowling eolured hut trancparent masses over denigns stamped in the body of earthenware or porcelain. A phame surface is thins produced, in which the cavities of the stamped dexi-n appear as shatows of varions depthe, the parts in higbest relief coming nearist to the surtice of the glass. and thus having the cffect of tho lights of the pieture. Introduced ly the Baron A. de Tremblay, of Melun.
Em-balm'ing. The att of preserving the dead bodies of men or animals. The carliest examples ure
found in Egypt, where it was practiced over 3000 years ago. There the custom was miversal and intimately connceted with their religion, as they believed in the desurrection of the body, and imagined that after the lapse of 3000 years the spirit would again inhabit its original tenement if the latter was still in existence. The invention was ascribed by them to Anubis the sou of Osiris, who was said to have perromed the office for his father.
It has been estimated that more than $420,000,000$ mummies were embalmed betwen lis time and the year 700 A . D., when the practice full into disuse, hesides an innumerahle multitude of sacred animals, as dugs, cats, apes, ibises, bulls, rams, foxes, crocodiles, serpents, ete., whieh are found along with human mummies in the tombs.

The Egyptians, liswever, wre not tle only juenjle who embalmed their deacl. The practice prevailed, thongh not so extensively, among the nations of Asia, and was, at a somewhat later period, in use to some txtent among the Greeks and Romans.

Herolutus gives a long deseription of the diffirent methoils enployed by the ancient Egyptians. These varied aecording to the rank or wealth of the subject.

Drying the bodies in sand was a methad chiefly practicel among the poorer classes; and it may he remarked that, in a warm dry climate like that of Egypt, decomposition dous not take place so readily or spredily as in those which are favored with more moisture.

Embalming was also performed by salting in natron and then drying; hoiling in resins and bitumen; and by removing the brain and viscera, washing with palm wine, and then applying fine resins, myrrh, cassia, and other aromatic sulstances.
In some cases oil of efdar was injected into the cavity of the lody, which was then steeped in a solution of natien for 70 days, $w h+n$ the viscera came away, leaving little lut skin and bone remaining.

Aruong the urjer classes, the botijes, after leing prepared, were swathed in linen bandages saturated with gum, the tutal length of which amounted in some instances to more than 1,000 yards.
The fhysi-ians embalmed Israel (Gen. 1. 2) н. с. 1689, and the hodies of the Hehrew kings were embalmed with spices.

Within and about the bodies of different mummies liave been found sulphate of soda, saltpeter, common salt, soda, oil of cedar, turpentine, asphalt, myrrh, cinnamon, and other substaners.

The opinion has lieen advanced that an essential part of the process was the application of heat to the bodies, whith wete filled with some bituminous substance, ly which means creosote was generated. As all mummy bandages were smeared with gum, and hear the appearance of having lieen heated, being often reduced to tinder, the production of creosote may have been the oljert for which they were gummed and partially calcined.

The cost of the most expensive method of embalming was a talent of siluer, more than $\$ 1,100$; according to Calmet, the prices ranged from the neighlorhood of $\$ 300$ to $\$ 1,500$.

The principal materials used by the ancients (the Egyptians excepted) in embalming were honey, brine, wax, and vinegar.

Pharnaces put the hody of his father, Mithridates, in brine, in order to preserve it during its transportation to Pompey. Several curious monsters and an ape were piekled and sent to Rome; Pliny and St. Jerome mention them. The body of St. Guibert was pickled to make it keep during a long journey in summer, A. D. 1113.

The lodies of several Grecian kings were preserved in honry. Agesipolis, who died in Macedonia, was thus sent hone to Sparta. Alpexander is said to have been sent to Egypt in honey; by others, to have been embalmed in Egyptian style. Perhaps he went to Alexandria in hones, and was then embalmed in regular order. The Enperor Jnlian 11. was placed in honey mixed with spices.

Wax and waxen cerecloth were used for centuries in England. The body of one of the Edwards, interred 1307 and exhumed 1774 , was preserved in natural shapee, but fragile.
The bolly of Lord Nelson was sent to England in a puacheon of rum. The sailors ran foul of the cask, and, getting Irunk, playfully called it "tapping the almiral." The poor man was nearly dry by the time he reached home.
The Seythians, Assyrians, and Persians used wax. The boly of Agresilaus was covered with wax, but the practice soon became general of wrapping in waxpl cloths. We read of these cerements in the preparation for burial of Philip of Burgundy, 1404 ; Edward I. of England, 1307; and George 11. The cerecloth and aromaties for the latter cost $£ 152$.
John Hunter (died 17931 embalmed several bodies by injection into the arteries and veins. The bollies are preserved in the Museum of the College of Surgeons, Loudon.

The lihasias, a people of the Himalayas, preserve the bollies of their dead in honey till the cessation of the periodical rains permits their being burned. The quantity of rain which falls in that region is remarkable. See Rain-gage.
Embalming was prowticed by the Guanches, or aboriginal inlabitants of the Canary Islands, and by the ancient Peruvians. Dummies from the latter source are now to be seen in the musenm of the Smithsonian Institution. Some bodies have becu preserved for ages by hurial in cavems, the earthen floors of which contained a notable quantity of saltpeter. The steepes of Tartary, some of the oplands of Montana and Colorado, and the dry uplands of the Andes, are nitrous. Many cares are so also, the Mammoth Cave of Kentucky, for instance.

In very recent times, with the: increase of chemical knowledge, considerable attention has been devoted to the sulject, and various processes and componnds have been devisel.

Dr: Chausier employed a solution of corrosive sublimate, with which the corpse. previously disemhowellell and cleansed, is saturated ; this imparts firmness to the flesh and renders it imputrescent.

Gaural practiced injecting the veins with sulphate of alumin?.

Dr. L're proposes chloride of mercury and wool] vinegar to be used in a similar way. M. Fatconi fonnd that sulphate of zinc, injected into a borly, would preserve it in a flexible condition for some six weeks, after which it began to ary up, though still preserving its natural color. Chloride of zinc and sulphate of soda are also sometimes userl.

A more simple form of preparation for injection, well suited for anatomical purposes, consists of glyecrine, 14 parts ; soft sngar, 2 parts; nitrate of potash, 1 part. It is found that, after saturation for some days in this solution, the parts become comparatively indestructible, and change neither in size nor figure.

Dr. Hutton's (1863) composition is 4 pounds of zine dissolved in 6 pounds muriatic acid, to which are allded 1 gallon alcohol, 2 drams arsenic, and 1 dram corrosive sublimate; the flum is injected into the arteries in a heated state.

Dr. Morgan's (English, 1S64) is 6 pounds common
salt, $1 \frac{1}{2}$ pounds nitrate potash, $1 \frac{1}{2}$ pounds powrlered alum, and 2 drams to 1 ounce arseniate of potash. This, in the form of a solution, is injected into the heart. This process embraces some peculiarities in the mode of treatment of the subject and manner of injecting the fluid.
Collmau's (1867). Distilled water, I gallon ; carbolic acid, 4 ounces ; nitrate of potash, 4 ounces; alcohol, 4 ounces.

Brunetti, of Italy (1867), expels the blood from the tissues by injections of jure water and of alrohol, and fatty matters by injections of sulpluyic ether, and afterwards injects a solution of tannin into the arteries, veins, or excretory camals, after which the body is dried in a case heated by steam to a temperature of 90° centigrade.

E de la Granja (1867) employs a solution of sulphurous acill and the sulphides of soda, potash, or lime, in water or alcohol, injected into the aorta. The cavities of the body, head, thorax, and ahdomen are filled with tamin, gun-cotton, camphor, and resin dissolved in absolute alcolol or ether, and stiffened with cotton and wax.
Em-bank'ment. A structure raised to prevent water from overtlowing a level tract of country, or to support a roadway. Technically, in rivil engineering, the earth removed to produce a level is exearation, and that which requires to be heaped up for the same propuse is embankment.

A raised monnd or bank of carth to form a barrier against the encroachments of the sea. See Dife.

Or against the orerflow of a river. See Lfvee.
Or to carry a railroad, canal, or road across a tract of low ground oracross a ravine or gully. See Filling.

The oldest embankment in England is Roman, that of Rommey Marsh. In the time of Cromwell, 425,000 acres of fen and morasses were recovered, 1649-51.

The embankment by which the Nile was turned from its course before the time of Ahralam is mentioned under Dike (which set). Reference is also there made to some of the works of Holland.

The bottom part of the embankment of the Amsterdan and Mearlem liailways throngh the low country consists of trelle ranges of fascines, tied down by longitudinal poles 39 inches aprart from center to center and 10 inches diameter, two douhle stakes at each end of the poles, and two ties in the intermediate distances. The interstices of the fascines and the space between the rows are filled in with sand. The upper part, forming the encasement for the ballast, is made of three rows of treble fascines, well staked, and wattlell together.

A cure of sand or clay, faced with step fascines, is made up to low-water inark. L'pon this a bel of rushes, fastened down lis stakes and wattles, is laid; and the upper portion of the bank is faced with fascines of a regular slope of 1 to 1 . Ser also Wig-, gins's "Enibankments of Lands from the Sea" (W'eale's scrips).
Em-bat'tled. (Fortification.) Having a parapet with embrasures.
Em-bo'Ius. Something inserted in another and moving therein, as a wellge, a piston of a steamcyliniler, the bucket or plunger of a pump.
Em-bossed' Pa'per. Paper having an ornamented surface of raised work; dune by stamping or rolling.

Embossed paper or cards may be copied in metal by taking a mold in wax, treating the surface with graphite, and subjecting it to electrn-deposition in a bath of solution of sulphate of copper.
Em-bossed' Print'ing. Printing in which the paper is forced into dies, into which the letters have
been cut or punched. The result is raised letters, used for printing for the blind, and various kinds of ornimental work.

Embossed typography is also effected by pressing

the type into the paper, raising the letters or elaracters on the ntherside. See Punting fur the lilind.

Em-boss'ing. Ornamenting by raised work or figures in reliaf.

It is applied to many objects.
stamps or initials are embossed on envelopes, praper, carrls, etc.

Orniments are emhossed on book-covers, especially on those of cloth.
leather is embossed for binding and many omamenta! uses, saldles, porte-nomnaies, pocket-books, satchels, etc.

Textile fabrics are embossed for various purposes.
Glass is cmbossed - so called - by molding with ribisel figures.

Em-boss'ing-i'ron. (Sculpture.) A tool for giving a prentiar grained or carmentar appearance to a marhle surface.

Em-boss'ing-ma-chine'. A machine in which a comprossible material is placed betwern a rolling or reciprocating surface and a bed, the moving portion having a design in intaglio, whieh confer's a cameo ormamentation upon the object. In Fig. 1868 the roller has a ronghened surface and is rotated by a hand-crank. Above the roller is a lollow pressblock having a removable convex-faced plate, with ridges for embossing any substance passed between it and the roller. The lilock is depressed by a pivoted lever having an elastic press-band over the end.

Fig. 1808.

The hollow within the block serves to introduce some substatuce to heat the embnssing-plate.
The embossing-machine for giving an indented ormanmintion to velvet and other goods (Fig. 1869) has engraved copper rollers, which are heated by inclosed reel-hot irons when operating on dampened gonds, as in giving a "watered" surface.

Em-boss'ing-press. A hand-stamp or machine for giving a raised surface to an olject placerd betwecol the descending die and the bed. In the example, the lever is raised hy a spring, and is driven down by a how of the hand, impressing the paper

Embossing-Machine.
placed between the intaglio upper die and the cameo comiter die.
Emhossing-presses of bookbinders are screw, tog. gle, or lever presses, according to the area of sur-

Embossing-Press.
face and character of material under treatment, and other considerations.

Em-boss'ing Wood. A process of imlenting designs in wood by heat and pressure.

The wood is saturated with water, and the castiron mold heated to redness and pressed forcibly upon the wond. The water preserves the wood from ignition, though the surface is slightly charred. The iron is releated, the wood re-wettem, and the hand-ing-iron again applied. This is repreated mutil the wood fills the mohl. The surface is cleansed between each operation, and finally with a scratch-brush, and any desired color may be retained or obtained hy the extent to which the charcoal and discolored surface are removed.
Perforated desigus are obtained by pressure upon portions of the surface and the removal of a scale of material hy a saw. See Caliving.
Em-bra'sure. 1. (Fortification.) A crenelle opening ent through a parapet or wall to fire guns through.
The checks are the sides.
The mouth is the widest or outer part.
The neck is the narrow part.
The sole is the hattom part.
The sill is the front of the sole.
The merlon is the part of the parapet between two mbrasures.
Embrasures are usially perpendicnlar to the par-
apet, but are sometimes inclined thereto so as to obtain a line of tire in a particular direction.
2. The inward enlargement of the cheeks or jambs of a window or door.

Em-broid'er-ing-ma-chine'. A form of sew-ing-machine in which the eloth is ruoved beneath the reciprocating needle-bar according to the requirements of the tracing, while the needles and hooks retain their respective relative positions above and below the fabric.

Heilmann's embroidery-machine (Mîlhatusen) has an arrangement by which the needles- 100 , more or less - are attached to a carriage which travels to and fro in front of a vertical web. The neerlles have an eye in the middle and a point at each end. They are arasped loy pincers and pulled through.

Em-broid'er-y. Ornamentation by raised fig. ures of needle-work.

This is a very ancient art.
The Fgyptians, Babylonians, Medes, and Persians all excelled in it.

The adormments of the tabernacle in the wilderness were of tapestry worked in blue, searlet, and gold. The gimment of Sisera, as referred to by Deborah, was embroidery, "needle-work on both sides." Sce Dinask.

Homer refers to embroidery as the occupation of Helen and Andromache.

The tents of wealthy Arabs have an inuer covering of white embroidered stuff beneath the dark, outer, water-proof covering of goat's-hair.
"The Tartar women excel in embroislery, and exhibit in this a skill, taste, and variety that is really admirable. It is very doubtful whether it would be possible to find, even in Franee, embroideries as beautitul and perfeet as those sometimes execnted by Tartar women." - ABBÉ Hre's Triterels in Turtery.

The tent of a late Persian shah was a load for forty camels, and eost $\$ 10,000$, 000 . It was embroidered with gold, studded with precious stones and pearls; the figures representing animals, vegetables, anll the works ol inen.

The Chinese, at the present day, are skillfil and patient workers at this art, and excel in the disposition of colors.

The North American Indians have a certain rich and barbaric taste in the clisposition of colors (preferably searlet) ; with the adlition of beads, porenpine fuills stained, and other mere bizarre ormaments, such as skins, elaws, and feather's of birds, claws of bears, ears of the lynx and fox, tails of If ustelide, shells, ete.

Emery-Grinder.
Embroidery is generally done in frames, the woven fabric being stretehed tlat and the needle passitl through and through.

Em'e-rald. A type, used in England, between nonpureil and mivion.

Nonparcil.
 Emerald.
 Minion.

Em'e-ril. A glazier's diamond. A quarrel, or queirr!!.

Em'e-ry. An amorphous, compact, opaque variety of corundum, consisting ehiefly of indurated alumina. It is extremely hard and euts almost all minerals, and is extensively used in cutting and polishing glass and other hard substances.

The emery is stamped to powder and sorted into
finenesses by bolting through sieves of different degrees of fineness. For delicate purposes, it is sorted Ly elutriation. It is made up into various forms with gums, resin, glue, clay, etc., accorling to 1 ur. pose.

Emery-cukes are used to dress the edges of buffs and glaze-wheels. Tluey are formed of emery melted with bees-wax and made into cakes.

Emery-cloth is prepared by brushing the surface of thin cotton eloth with liguid glue, and sifting the emery-powder over the surface while still waru.

Enery-poper is made in the same way as emery. eloth.

Emery-sticks and rifles are pieces of wood prepared in the same manner.

Emery-stoncs are made ol formed of emery of the reguisite coarseness, mixed with about laalf its weight of clay and water, to make a stiff paste, which is forced into a metallic mold by powerful pressure. They are then dried in a mutile. Disks, laps, and wheels are thus made.

Other cementing materials are frequently used instead of loim. See Grinding Materials; also list unter Gbinding and Polishing.

Em'e-ry-grind'er. An emery-wheel monnted in a stand, to he used as a grindstone. It may be considered as such, indeed, the mineral corundum with a matrix of gum, resin, glue, vulcanite, etc.

The example is a double machine having two

grinding-wheels and rests; one wheel being at one ensl and one at the other end of the mandrel, and both outside of the supporting frame. The faces or edges of the wheels may be userl.

Em'e-ry-pa'per. Paper brushed with liquid ghe and dusted with emery of the required grade of fineness.

Em'e-ry Vul'can-ite-wheel. A compound of emerv and caontchoue, molded into the sliape of a grindistone or lap, and mulcanized.

Em'e-ry-wheel. This is a leaden wheel in which emery is imbidhled by lressure, or more commonly a wooden wheel covered with leather and with a surface of emery. The wheel is fastened to a mandrel and rotated by a wheel and band ; its principal use is in grinding and polishing metallic articles,
especially cutlery. Those wheets in which the edges are used are grinders, butt-wheels, cloth-wheels, glazers, etc. When the hat surface of the disk is used, they are known as laps. The wheels may have roarse or fine eutting surfaces for ditferent descriptions of work. For 1 mlishing, tlour of emery, erocus, or ronge may be substituted. In machine-shops the en ry-wheel is known as a buff-uchecl; among cotlers it is a gltzer.

Sometimes called a "cormondum" wheel, from the specitic nam of the crystalline alumina used thereon. The harkest known substance next to the diamond. Ein ry is a dark, granuliur variety; the sapphire anil ruby are peculiarly colored varieties.

E-met'ic-cup. A cup of metallic antimony in which wine is left for ten or twelve hours to beco:n emetic.

Em-is-sa'ri-um. A shrice or flond-gate.
E-molli-o-typs. (Piotogruphy.) A collodiochloride pi:sure on opal glass.

Em-plec'tum. A kind of masonry having a squared stone fice ; itu the Greek it is represented as solid throphoat, and in the Roman having a filling of rabble.

One form of Roman cmplectum las courses of tiles at intervals. See Masonisy.

Em'prejs-2lot'a. (Fubric.) A lady's dress-goots, all wool and not twilled. It may be considered its an equivalent to the merino, (xcepting the twill of the latter.

En-am'el. A vitreors, opaque, colored material, tract.able in the lire, and used in ormamenting metals; in printing on metals, to be salbsequently firel.

Enameled bricks of varions colors, blue, red, yellow, white, and llack, are abandaut in some of the mounds of Bibylon and other cities in Mesopotamia. - laya:d.

Eurmele.l pottery has also been recovered at Thebes. Vestiges of the Rom in occupation of Britain are occasionslly disinterred in various parts of the country.

The art of panting in enamel or with metalline colors, and fixing them by tire, was practiced by the Esyptians and Erruseans on pottery, and passed from them to the Gre ks aud homms. Eumeling wis also practicerl among the Chinese. Specimens of enameled work are yet extant of early British, Saxon, and Norman manufacture. An enameled jewel, male by order of Alfrel the Great, A. D. 887, was discovered in Somersetshire, England, and is preserverl at Oxford. An enameled gold cup was presented by King John to the corporation of Lyan, Norfolk, and is yet preserved.

Luca della Robbia, born about 1410, applied tin enamel to pottery, and excellen in the art.

Bernard Palissy, the Hagumot potter, born about 1500, devoted many years to the discovery and application of enamels of varions colors to pottery. He was remarkably successful in true copies of natural objects. His methol died with him. He died in 15s9, in prison, for consciense' sike.

John Petitot, of Geneva (1607-91), is regarded as one of the first to excel in portraits. He worked for Charles I. of Englancl, and subsequently for Louis XIV. of France. The revocation of the Ediet of Nantes drove lim from France to the city of his birth, Gemeva.

In 163:2, Jenn Tontin, of Chateaudun, introduced the practict of grinding the colors in oil of spike, instaral of water.

Fuicnce and majolica may be considered forms of the art.

The enameled portrait of herself, presented by Queen Victoria to Mr. Peabody, is fresh in the rec-
ollection of those who speak the language common to the donor and presentee.

Enamel is applied to various kinds of pots and pans tor stewing and preserving frits whose tlavor would be injured by contact with iron, and wholesomeness by being cooked in brass or colper.

The ordinary enamel for the purpose is common glass fused with oxide of leaul. This will not resist vinegar and sone other acids, and a langerous poison may be present unsuspected in the mess.

Articles exposed to the weather are sometimes enameled to preserve them from masting. This has been done with llowshares, motd-boards, waterwherls.

The asphaltum varnish which is burned on to some articles of hardware and housel:old fumishing is not an enamel, lint a hitnminous varnisli. The term cnamel, as applied to these, is thercfore a misnomer.

One of the most familiar exanples of enameling is a watch-face. The white ground of these is first fired, the figures being added afterwards.

The backs of gold wathes and numerons articles of jewelry are enameled ly first engraving them so as to make deruressions to hold the pulverized enamel, which is Lurned in, and the whole polished down to a miform surface.

Enameled work may he ground ly the horizontal lapidary mitl or leal-wheel, with emery : sceond, the same with rottenstone and water ; third, polished by the leather lap or buff-wheel with gutty powder.

Or the process may be completed in a lathe, using the same materials, and either chucking the objert to be ground and jolished, or placing it on a mandrel.
ln hand polishing, the work is roughed down with slips of water-of-Ayr stone and water, followed by slips of wood dipped in powder of fumice-stone and crocus successively.

En-am'eled Board. Card-hoard treated with a surface of white lead and size laid on by a large, flat bush and smoothed by a round badger's-hair lurush. A powder of tale (silicate of magnesia) is rubled 1 1pon the dried surface of lead, and the face is then polished by the brush.
En-am'eled Leath'er. A glazed leather for bouts, shoes, carriage mhlolstery, and other purproses.

It is frepared from hides, which are split to the required thickness, well tamed, curried, and passed through two operations; the first to render the leather impermeable to the varnish, and the Jatter to lay on the vamish.

The hitles used are those of kip, calf, ox, or horse. They are rubbed on the grain or flesh side with three coatings of hoiled linseed oil mixed with ochre or gronnd chatk, and dried after each coating. The surface is then pumiced, treated with the same material of a thinner quality in several applications.

Over the surface thus prepared are laid suceessive layers of boiled linseed oil and of the oil mixed with lamp-black and turpentine spread on with a brush. The surface, which has becone hlack and slining, is then varnished with copal and linseed oil with coloring matters. The following is recommended.

Five coats of varnish are successively applied, and the colors are varied at will.
En-am'eled Pho'to-graph. (Photography.) Metal or pottery is used for the ground; the image is developed by nitrate of silver until the hall-tints are overdone or ohscured, and the deep shades are covered with a thick deposit. The heat of the muffle drives off the organic matters which formed but vehicles, and the fire cleans the image and restores the britliancy and delicacy. A thin layer of Hux fixes the image. See Comptes Rendus, June 11, 1855. "Photographic News," Vol. XIV. p. 86.

En-am'eled Ware. The enameling of hollowware is by a mixture of powdered glass, borax, and carbonate of soda, mixed, fused, cooled, and ground. The ware is cleansed with acid, wetted with gumwater, the powder dusted on, and then fused by leat carefully applied.

En-am'el-ing. The art of applying vitrifiable colors to metal, pottery, or glass.

The colors are prepared from the oxides of different metals, meltell with a vitreous thex and laid on with a fine brush; the medium being oil of spike or some other essential oil. The work is heaterl in a muftle, which fuses the colors so that they adhere to the metal or other object.

The principal colors are oxides of lead, platinum, chronium, uranium. Oxides of tin and antimony give opacity.

The enameller works, not with actual colors, but with materials which will assume certain colors under the action of fire. See Esamel.

En-am'el-ing-fur'nace. For vitrifying the enamel coating on a plate, glass, or bisenit.

The work is placel in a muffe, which cousists of an arched chanb r in the midst of a small furnace, and sarrounded by fuel, which keeps it at a red heat, although the fuel cannot touch the work.

The furnace and muffle are sometimes made of sheet-iron mounted on legs so as to bring the work to the level of the artist's eye.

En-am'el-ing-lamp. (Glass.) A glass-blower's lamp with blow-pipe for performing some of the more flelicate surface ornamentation of glass.

En-am'el-kiln. (Porce'cin.) The enamel-kiln for tiring porcelain which has been bat-printed, that is, printed on the glaze, is made of tired-clay slabs, and is $6 \frac{1}{2}$ by $3 \frac{1}{2}$ feet, and $i \frac{1}{2}$ feet high, with flues benceth and around. The fireplaces are at the siles, and smoke and flame are excluded from the int riur.

En-am'el-paint'ing. Vitrifiable colors are lain on metal aud finsel to it. See Enamel.

En-am'el-pa'per. Paper with a glazed metallic colting.

Various metallic pigments are emploved, such as will spread smoothly and take a polish. The pigments are white learl, oxide of zine, sulphate of harytes, china, clay, whiting, chalk, in a menstrum or mion a previons coating of glycerine, size, collodion, water, varnish, etc. ; afterwards polished by an agate or between calendering or burnishing cylinders.

En-caus'tic. A mode of painting in which the colors are laid on or fixed by heat.

The ancient Greek encaustics were executed in wax-colors, which were burned in by a hot iron, and covered with a wax or encaustic rarnish. Pictures in this style were common in Greece and Rome. (See Smith's "Dictionary of Greek and Roman Antiquities.") The credit to Gausias, of Sicyon, 33 B. c., as the inventor, is rather to be taken as an indication that he was an improver.

Sir Joshua Reynolds, in his attempts to fix his colors durably, mixed wax with them as a velicle. On one occasion he placed his painting before a fire to mellow the tints by warming the wax. On returning, he found the lady's face had slipped down over ber bosom.
The term " encaustic " at the present day is mostly confined to colors burnt in on vitreous or ceramic ware.

By the ancient method, according to Pliny, the colors were marle up into crayous with wax, and, the subject leing traced on the ground with a metallic print, the colors were melted on the picture as they were used. A coating of melted wax was then evenly spiread over all, and, when it was quite cold, was polished.

The art was revived by Count Caylus in 1753. The wood or canvas is coated with wax, which is warmed at the fire. The colors are mixed with white wax and powdered mastic, whicll are rulibed smooth with gum-water and ajplied "ith a brush. The surface is coated with white wax and 1 olished.

En-caus'tic-brick. Diodorus Siculus relates that the bricks of the walls of Bahylon, rected under the orders of Semiranis, "had all sorts of living creatures portrayed in ratious colors 11 on the bricks hefore they were burnt."

En-caus'tic-tile. An omamental tile laving sereral colors. A mold is prepared which has a raised derice on j ts face so as to leave an inulnession in the face of the tile cast therein. Tlis intaglio recess is then filled by a trowel with clay compounds, in the liquid or slip state, and which retain or acquire the reguired colors in baking. The tile is then scraped, smoothed, baked, and glazed. This tile is common in ancient and modern structures. The glazing came from the Alahs, who delived it from India, and prinarily from (hina.

En-ceinte'. (Fortification.) The live of circmmrallation; the space inclosed within the ramparts ol a fortification.

En-chased'-work. Chased work in silver and golk smithing. See C'hasisg.

En-chas'ing. A form of engraving which results in an ormamental emt ossing. It is parlly executed By punching on the back and partly hy the graver.

Another mode is by filling the object with pitch or lead, and then indenting from the ontside.

The modes are rariously ecmlined, according to the object, the style, and the material. See Chasing.

End. 1. A sliver or carding.
?. (IF'caring.) One of the worsted yarns in a loom for weaving Brussels carpet. It proceeds fiom a boblin on the frame and though a small brass eye called a mail, by which it is lifted when its turn comes to be raised to form a loop, in the pattern. Sice Prissels Cariet.

End'less-chain Pro-pel'ler. One in which the paddles are attaclied to a traversing helt or sets of chains, which rolls over two prallel wheels.

Endless- Chain Propelter.

End'less-saw. A band-sau, consisting of a steel ribbons serrated on one edge and passing continnously orer wheels above and below the worktable. Used for scroll-sawing, etc. See BaNDsaw.

End'less-screw. A serew whose action is contimuons, engaging the teeth of a wheel which is rewolved thereby. It is used in gradnating-machines, registers, oclometers, and in many other places where a means of slow and positive rotation to a wheel is required. A worm-whecl.

There is a neaessary relation between the pitch of the worms on the shaft and of the teeth on the wherl, and a revolntion of the shaft moves the wheel a clistance of one tooth. By an iudex arrangement on the shoft to enalie it to be turned a certain portion of a revolution, say through 6°, and having, say, sixty teeth in the wheel, the latter may be turued उठण0 of a revolution at a time, a distance inappreciable to the eye. This is the micrometer-screw. See Micrumeter.

Fig. 1874.
Fig. 1873

t.nilless. Screw.

En-dos-mom'e-

 ter. An instrument invented by M. Dutrochet to measure the rapidity of endosmotic action ; that is, the passinte of a less dense fluid through a membrane which separates it from a denser fluid. The cxosmose, or passage of the denser Huid in the opprosite lirection, is slower.
A simple form of the instrument is a trumpetshaped tube with a membrane covering its bell month. The tube is filled with a solution of a given density and plungel in a solntion of lesser or greater density to ascertain by successive trials the relative
rapidity of the entosmotic or exosmotic actions, or the action of different fluids.
End-shake. A certain freedom of endwise motion of a spinulle or arbor, which has bearings at each end, so that the shoulders of the gudgeons or pivuts (as in a wateh) skall not bear against the journalboxes or plates.

End-stone. One of the plates of a watch-jewel against which the pivot abuts. See Jewel.
En'e-ma-chair. One sluecially constructed for the administration of clysters to the helpless and intirm.

En'e-ma-syr'inge. A syringe for injection per ano. See Injemton-syringe.
En-er'gi-o-type. (Photography.) Mr. ILunt's process, called so by him from a suposed influence which he called energia, as distinct from light (visible).
En'field Ri'fle. The British infantry serricearm prior to the introdnction of the breech-londing system. It was first extensively introrluced in 1853, just prior to the Crimean Wur. It has three shallow grooves, which make one turn in 6 feet 6 iuches, the length of the harrel being 3 fent 3 itiches, and the diameter of the bore .577 of an inch. In construction and general appearance it very closely resennhles the Springfied rifle musket (caliber . 5 S of an inch) of the United States serrice, with the exception that in the Enfield the harrel and other visible metallic parts are blued, while in the latter they are left bright. Large numbers of these rittes have of late years been converted into breech-loaders on the Suider principle. To these the tem " Snider Enfiell " is applied. See Fire-alim.
En'fil-ade. (Fortification.). The act of obtaining a fire on a work in the direction of one of its faces.
En'gine. A machine which acts automatically, botla as to power and operation.
Distinct from a machine in its ordinary acceptation, whose motor is listinct from the operator, and a toot, which is propelled and operated by one fierson.
En'gine-fur'nace. A furnace appertaining to a stean-engine boiler.
En'gine-lathe. A lathe of the larger kind, having a capacity for all the principal turning work of a machine-shop. That shown in Fig. 1875 has serew gearing, center and follow rests, and face-plates. On the floor are shown the overhead counter-shaft and cone-pulley, a pile of change-wheels, and a face-plate.

En'gine-sized. Paper sized by a machine, and not while in the pulp, in a tub.

En'gine-turn'ing. A system of ornamented turning lone in a rose-engine lathe, and commouly seen on the outside of watch-cases.

En'gi-scope. A retlecting microscone, invented by Anici, in which the image is riewed at a side aperture in the tube, in a manner similar to the Newtonian telescope.

Eng'lish. (Printing.) A size of type between Great Primer and Pice.

Great Primer, 51 ems

 to a foot. English, 64 ems to a foot. Pica, 71 ems to a foot.En-grav'ing. Engraving is very ancient. The oldest recorls are cut in stone, some in relief, some in intaglin. The hieroglyphics of Egypt are cut in the granite monoliths, and on the walls of the tombs aul chambers.

In Exodus xxriii. we real that tro onyx stones were to he engraved like a signet with the names of the tribes, $1491 \mathrm{~B} . \mathrm{C}$. The tro kinds of stones of the high-priest's breastplate were engrared with the names of the tribes of lsrael. Seals and signet-rings with the cartouches of the Pharaols are in many musenms; those of London, Berlin, Paris, and the New Vork Historical Snciety, for instance.

The "graving with an iron pen and lead," referred to liy Job (chap. xix.), consisted probably of an etching or seratching 1 rocess, that of a shary stylus upon a piece of shert-lead; Hesiod's poems were thus preserved. The date is not quite dutermined at which this patriarch of Vz lired; but assuming him to be coeval with Moses, we find quite an adranced state of the art in the time aul country of the latter. Mnses was learned in all the wiston of the Egyptians, and when the Israelites went out of Egypt there were a number of skillful workmen able and willing to cugrave on precious stones and on metals.

The tools, weapons, and ornaments of the ancient Egyptians are in some eases claborately engraved. Chasing and carving, which are kindred arts, flourished in the kingdon watered by the Nile.

Layard and his friends disinterred from the mounds of Nimoud, and at other places, many specimens of the grawer's art ; copper vessels, beautifully engraved, were among the number.
Carving in stone is closely allied to the abore, anil may the he termed engraving in stone. Egypt is one trinuphant rindication of the skill and industry of that mation in this particular. The warlike Osymand yas, nearly 200 years before thraham, perpetuated upon granite the memory of his exploits, which reached as far as and included Baetria.
The temples, tomls, and obelisks of Egynt, the sculptured palaces of Ninereh, and the gorgeous rilievos of Persepolis, attest the skill and fancy of the artists of the times

"Ere Romulus and Remus."

From Egypt or Phoenicia the Greeks receired the art of engraring, where it had considerably advanced in the time of Homer. Among other uses which are allied to chasing and inlaring, it was employed in delineating maps on metallic plates. Specimens of Etrurian art are also of great antiquity, and we prudently do not enter the arena to settle the questions
of precedence so lately revived by the sonderful discoveries of General Di Cesnola, in Cyprus.

In the temple of Jupiter C'apitolinus were stored 3,000 brass plates on which the laws of Rome were engrared. The ancient engraving was much of it complete enough for printing, bnt was generally intended for impressions in plastic material, clay, wax, and what not. (see skal.) It is, however, belierel that parchment, linen, silk, and papyrus were sometimes impressed by the surface of the seal, previnusly blackened by ink or pigment.
Other than this, the first we know of engraring as a means of delivering an impression in ink or color was among the Chinese. See Puntisg.

The art of engraving is tairly referalie to threc dirisions: chalcography, or plate-engraring : cyllongraphy, or wood-engraving ; lithogronihy, or stone-cngraving: the nameo heing derised from the Greek words chalcos, xylon, lithos, respectively, and the terminal gruphein, I write.
Engraring on metal originated with chasers and inlayers. This art is rery ancient, but does not seem to have suggested the sister art of printing from the plates thus engrared. It appears singular that it did not, for a common mode of examining a piece of engraved work is to fill the engraved lines with a dark liquid, - the dinty oil. for instance, of the polishing rag, - so as to make visible the lines and the effect produced. A piece of soft paper laid on this would obtain an impression, imperteet, it is true, but apparently sufficient to have suggested the art of copperplate printing. In taking a cast in sulphur of some engraved church ornaments, it is stated that a Florentine arrist named Finiguerra, about 1440 , was led at length to the discovery of the value of plate-engraving as a means of printing. smue dust and charcoal whieh had gathered in the lines came out $116 n$ the sulphur and gave an unexpected and suggestive eftect.

Vasari records a similar mode of taking impresions in work, and states that "from these engravings the artists were in the halit of taking impresions by smoking them, and then, after cleaning the surface with nil, inipwesing mon the work a lamp paper." The collections of impressions of these plates in the Florentine and other nusemms show that, previous to the time of Finiguerra, they are but proofs of inlayer's work, and that they were not nade with a viow to fumishing prints; the figures lave their swords, $\mathrm{p}+\mathrm{ns}$, etc., in their left hands in the impressions, instead of the right.

Had they been engraved for the purpose of printing, the figures would have been reversed on the plate, so as to print right.

Euclid was printed with diagrams on copper in 1482. The copperplate roller-jress was invented in 1545. Etching on copper by means of aqua-fortis invented by F. Mazzuoli or Parmegiano, A. D. 1532. Mezzotinto engraving invented by De Siegen, 1643; improved by Prince Rupert, 1645°; and by Sir ('hristopher Wren, 1662.
"Mr. Erelyn showed me most excellent painting in Jittle [miniature] ; in distemprer, in Indian incke, water-colours : graveing; and, above all, the whole secret of mezzo-tinto, and the manner of it, which is very ,retty; and good things done with it."- Peprs's Diury, Nor. 1, 1665.

At Gresham College, the Royal Society meeting, Mr. Hooke explained to Mr. Pepys "the art of drawing pictures live Priuce Fuperts rule and machine and another of Dr. Wren's [sir Chiristopher] ; but he [Dr. Hooke] says nothing do like squares, or, which is best in the world, like a dark room."- Pepys, Feh. 21, 1666.
These devices are apparently for copying; the
former is probably on the principle of the pantograph; the symares is a familiar mode of reducing or enlarging by ruling ofl into equal numbers of squares the original and the paper on which it is copied. The dark room is probably the camera-obseura, in the simple form of a hote in a shutter of a darkened apartment.
"Cocker [the famous arithmetician] says, that the best light for his life to see a very small thing by, contrary to Chaucer's words to the Sum, that he
'Should lend his light to them that small seals grave,'
it should be by an artificial light of a canulle, set to advantage as he could do it."-- Perrs's Diary, Aug. 8, 1664.
"Come Mr. Cocker, and brought me a giobe of glasse, and a frame of oyled praper, as I desired, to show me the mamner of his gaining light to grave by, and to lessen the glaringness of it at pleasure, by an oyled puper. This 1 bought of him, giveing him a crowne for it ; and so, well satistienl, he went away." - Ibicl., Oct. 5, 1664.

Aluatint engraving invented by St. Non of France, 1662. Engraving in steel introduced into England by Perkins of !hiladelphia, 1819.
The earliest application of the wood-engraver's art in Europe was in cutting blocks for playingcurds. The French writers ascribe it to the time of Charles V., but the Germans show cards of the date 1300. The ltalians again clain that it originated in Ravenna, abont 1285. An Italian panphlet of the year 1299 speaks of cards as a gambling game, but these may have been drawn by the pen and colored by hand. In the year 144 the Venetian government forbale the impartation of stampel playing-cards as being injurious to their handicraft mannacture. Uro di Carpi introduced the method of printing in colors or tints by separate successive blocks. Engraving on wood assumed the character of an art about 1440 ; the first impression, 1423 . Improved by Durer, 1471 - 1528 ; by Bewick, 1789.

Engraviny on stone. Work done upon a lithographic stone by etching-point, dianond, or rulingmuchine: the styhs of the latter is a diamond.

There are two modes, the first of which is the more usual: 1. The stone is covered with a gum and acil ink-resisting compound, drien, and the design scratehed through this ground to such a depth merely as to expose the clean stone. The stome is then oiled, the engravel portions alone absorbing the oil: it is alterwards washed, rolled up, and printed. Printing is, however, usually done from transfers from the en rraved stones.
2. The stone is etchel through a gromen of asphitum; acid is applied to deepen the lines. These are inked; the face cleanel off, gummed, and etched, the stone rolled up and printed.

Engraving is in many styles, and these are briefly considered under their respective heads, as follows : -

Anaglyphtograph.
Amastatic engraving.
Aquatint.
Antopyrograph.
Banking.
Bite-in.
Brillye.
Burin.
Burnisher.
Cameo.
Celature.
Chalcography.
Chalk-engraving.
Chasing.

Chemitype.

Clamming-machine.
Copperplate engraving.
Counter-proot.
Cradle.
Cycloidal-engine.
Dabber.
Daguerreotype etching.
Diamond-point.
Die.
Dotting.
Draw-point.
Drive.
Dry-point.

Eccentric-engine.
Ectypography.
Electro-engraving.
Electro-etching.
Electro-tint.
Engraving.
Engraving-machine.
Engraving. PhotoEtching.
Etching-ground.
Etching on glass.
Etching-point.
Finishing.
Galvanograph.
Gem-engraving.
Glass-engraving.
Graver.
Ground.
Grounding-tool.
Intaglio.
line-engraving.
Lithography.
Lithotint.
Lozenge-graver.
Medallic-engraving.
Mezzotint-engraring. Niello.

Passe-partout.
Photographic-engraving.
Photograph-plate engraving.
Proof.
Rebiting.
Re-entering.
Relief-line engraving.
Reversing.
Rocker.
Rocking.
Roulette.
Round-point.
Rubber.
Ruling-machine.
s.raper.

Seal-engraving.
Suall chisel.
Steel-plate engraving.
Stipule.
Stopping.
Tint-tool.
Transferring.
Transterring-machinc.
Wood-engraving.
Xylography.
Zincography.

En-grav/ing-ma-chine'. 1. A machine in which an intaglio impression is ilclivered upon a plate or cylinder for bank-note printing, or calico-printing, by the rotation under contact with the said olject of a hardened steel roller (mill) bearing the design in cameo.

This system was invented by Jacob Perkins, and was first adopted in bank-note engraving. (See Transfarming-machine.) The process for obtaining in the design in cameo on the mill, by rotation in contact with an intaglio dic, is rffected in a transfer press. See also Clanming-machine.

A pantograph is usell in etching a reduced copy of a pattern on to the copper cylinder for calico-printing.

Eecentric-engraving, for a certain class of patterns in calico-printing, is performed by a diamond etch-ing-point on the varuisled roller. The points are moved by elahorate machinery, and the eflest is analogons to that of the ceccutric and rose-cngine lathes.
2. An apparatus on the minciple of the pantograph, but proviled with a cutting device and machinery for causing pressure upon the surface to be engraved, so as to produce lines similar to those made by hand with the graver.
Collas (English patent) engraving-machine, 1830. Electro-magnetic engraving-machine used in Germany, 1854 ; in America, 1858.

Guerrant and Field's engraving-machine was yatented in 1867, and was in operation in New York C'ity during the year 1868. To engrave by means of this machine the operator sits with a copy of the drawing, photograph, or whatever design is to be engraved, directly in front of him. A small pointer rests upon the drawing, and the whole operation consists in moving the jointer over the sereral lines of the copy. The pointer is oprated by two small cranks, one of which produces a vertical and the other a lateral movement ; the simultaneous openation of both eranks producing a circular, inclinel, or any alesired irregular montion of the pointer, which is thus made to "follow copy." All the movements of the pointer are impurted, by means of a simple arrangement of levers, to a graver, which cuts or engraves the design nipon the surface of a copper plate or block.

At the Paris Exposition of 1868, an apparatus was exhibited by M. Gaitfe, of Paris, for engraving by electro-magnetism. It consists of two or mure disks having their tares in the same vertical and their axes in the same horizontal plane. The graving tools are provided with diamond points, and are connected with the armature of an electro-magnet, and with a tracmg-point in contact with the patternplate. The tracing-point and graver are caused to approach the centers of their respective plates by a gralual and uniform motion, forming a spiral of extremely close involutions. A design is drawn on the pattern-plate in a non-conducting ink, and as the plates revolve together whenever the tracer crosses one of the lines of the pattern the circuit is broken, and the graver takes the metal of the plate to be engravel ; when the tracer, on the contrary, is in immediate contart with the metal of the pattern, the graver is withdrawn from the plate to he engraved.

When the tracer has thus passel over all parts of the pattern-plate from the circunference to the center, a face-simile of the pattern will have been engraved, in which, however, all the lines of the original will he representell by as rifes of dots. The pattern misy be reduced or enlarged by the applica. tion of the pantographic principle; and by the use of a series of gravers arrauged on a pivotel bar at varinus distances from its center of motion, several copies nay be made at the same tine on scales proportioned to the distance of the gravers from this center.
En-larg'ing-ham'mer. The gold-beater's hammer, by which lie reduces the package of quartiors or gold-plate. Fiftysix of the quartiers form a package (caucher), and are interleaved with vellum. The hammer weighs foutteen or tifteen prounds, and is shaped like a truncated hex igonal pyramid, 6 inches high. Its face is very slightly couvex, and 5 in hes diameter.
En-le-vage'-style. A mode of Calico-printing (which ste).
E-nor'tho-trope. A toy on the principle of the thauntrop: the stroboseope, and phenakistuseope, which depend for their action upon the persistence of visual inpressions. Upon different parts of a card are detached parts of a given figure, and when the card is rotated these become assembled and give a combined impression to the eye.
En-rock'ment. Stone pitched on to the seaface of a breakwater or dike, or a shore subject to encrathment by the waves or stream.

En-tabla-ture. 1. (Architecture.) That portion of a classical stracture which rests on the col umns; it consists of an arciitrieve, frieze, and cornice.

An attic or blocking-course is sometimes added.
Those members of a portico which were constructed upon the columns, consisted of the epistylium, zophorns, and corona.
2. (Machinery.) A strong iron frame supporting the paddle-shaft. It usially receives additional stitliness from being confined between two beams of ti nher, called the entablature or engine-beams.

Eu'ta-sis. The swell of the shaft or columns of either of the orders of architecture.

En'ter-ing-chis'el. A spoon-chisel ; used by se 1 pitors.

En'ter-ing-file. A narrow, flat file, with consilerable taper, to enable it to enter and open a groove, which may be linished by a cotter-file, for instance.

En'ter-ing-port. (Shipbuilding.) A port cut in the side of a vessel to serve as a door of entrance.

En-ter'o-tome. An instrment for opening the intestinal canal through its whole extent. It consists of a pair of scissors, one hlade of which is made longer than the uther, and ronuded at its extremity. This is passed into the intestine.

En-to-mom'e-ter. An instrument for measuriug the pirts of insects.
En'trail-clean'ing Ma-chine'. A machine for cleaning guts for sausage holders

Two rollers, revolving in opposite directions and armed with seraping ealges, are surmonnted by elastic lieed rollers, and provided cach with an adjustable curved surlice for pressing the entrails against the scrapingedges.

En'tre-sol

 (Architecture.) A low story or part of a story in a building, between two higher oncs.Intersol.
En-tro'pi-um For'ceps. Forceps for grasping and returning to the natural position the eyelid, in

Fig 1877.

Dr. Prout's Entropium Forceps.
which, hy inversion, the eyelashes have become turned inviardly.
En've-lope. 1. A paper case to contain a folded letter.
2. (Fortificution.) The exterior line of works surrounding a fort or fortified josition.

The besieged are said to be enveloped when completely surrounded by the works of the besiegers.

En've-lope-ma-chine'. The manufacture of envelopes is said to have been introdnced hy an English stationer named Brewer, some fifty years ago. He cut them from the sheet with the aid of metallic formers, and folded and grommed them by liand with the brush, in the manner generally practiced until a comparatively recent period.

An envelope-macline was invented as far back as 1840, but De la Rue's, 1845, appears to have heen the first which achieved any notoriety.
Envelope-machines, so called, generally comprise only provisions for folding and gumming the envelope after it has been cut to the proper form.
The English envelope-machine, invented by Hill and De la Rue, operates nuon diamond-shaped pieces of paper, which are successively placed on the platform. A plunger descends and forces the central
part of the paper into an oblong qualrangular cavity : the: fonr comers stand erect and are successively flatened ly four fingers. When the folding is compheterl, two india-rubber fingers lightly touch the envelope and draw it aside to make room for anuther. These fingers are small metallic cylinders with tips of india-rubber, which allhere sutficiontly to the friper to retract it from its place in the machine and make rom for another. The gum is spread over an enlless apron or blanket, and an artificial arm takes a supply and applies it to the envelope in its proper place, just before the flap is folded down. As fiat as the envelopes are mule they are automatically ranged on an inclined plane and slide into a bx. The machine (1853) made sixty a minute.
M. Rémonl's envelope-machine feerls the blauks by mpins of a pmemmatic appantns known as an aupirator, consisting of a hollow tube which is thrust forwand and rests on the upper blank; the air is exlrusted from the tube by an air-pump, and the mak becomes attached thereto by atmospheric pressure. The tube is then withlrawn, removing the blank, which is dropped at the reguired place, by the relaxation of the atmospheric tension.
The macline of Robineau and Romestant, exhib-

Keating's Envelope-Machine ited at the Paris Exposition of 1867, also lifts the blanks singly by atmospheric pressure, and folls then and gums them by a series of up)erations similar to those of Rémond's machine.

In another machine, the paper is fed in a contimuons strip of a given width fora certain size envelope First are made transverse incisions, which answer for a portion of the division between the aljacent envelopes; the rectangular crease is made determining the size of the envelope, slits made from the comers of the latter to the edges of the praper ; the included flaps are folded over and paste applied; the superflnous edge strip is cut off, and the angular division is made between the aljacent envelopes; the envelope is bent on the folding-line and passed between rollers, to be afterwards dried and
have its flap gummed.
In Kieatiug's machine, the paper blanks are placel on a reciprocating feeder-plate O and carried forwand under the plonger S by small hooks or projections. The planger descemds, doubles the blanks by their contact with the creasing-rollers, and leaves the blank on a flat hinged bed, where the flap-folders are actuated to foll consecutively. The anxiliary presser s^{\prime} operates upon the gummed portion, starting direetly after the gum-flap fohler, which is cut asay to allow its passinge, and rises a little in adwance of it. The counting apparatus is a ratchet and pawl a:rangement.

E-o'li -an. 1. A frame with catgnt strings which are ribrated by the wind. See Eolian.
2. An cölian-attuchment to a piano-forte is a sulp plementary arrangement of a bellows and set of reeds which are called into action at the discretion of the performer.
E-o'li-pile. The rotary steam-engine of Hero. Sce LuLipile.
E-paule'. (Fortification.) The shonlder of a hastion; the salient angle formed by the face and tlank.
E-paule'ment. (Furtification.) A siecies of breastwork formed to defend the flank of a post or any other place.

A work thrown up to defend troops from an attacking force; usually shonlder-high, hence the name epatlement.
E-pergne'. An ornamental stand for a lange dish on a talle.
Ep'i-cy'clic Train. (Gearing.) An epicyelic train is one in which the axes of the where's revolve around a common center. They are used for variuus purposes. Several are shown under the luals Equ'athonal Box; Sun and l'lanet Motien; l'alillel Motion ; Epicycluidal Wieel, ete.

Thein forms are numerons, curious, and ingenious. (Sce page 120, Brown's "Five Hundred and Seven Mechanical Movements.") Quite a numher of a! ${ }^{\text {hi- }}$ cations of the device have been made to harventingmachines, in transmitting the motion of the drivingwheel axle to the cutter-bar.
$a b c d$ are forms of epicyelic gearing.
The epicyelir train b has some features in common with Houldsworth's equational-lox for regulating the relative speeds of the spindle with its flyer, and the bobbin, in the roving-frame.

If motion be imparted at the same speed and in the same direction to the loose wheels $D C$, the clfectistorevolve B aromml the shaft A without rotating B on its axis F; they all move together as if pinned fast in a cluster.

If motion be imparted to the loose wheels D C at tle same speed in opposite directions, the effect is to rotate the wheel B on its axis

Epicyclic Trains. withont revolving it on the common axis A.

Unequal rates of motion of the wheels $D C$, either in the same or opposite directions, will cause the wheel D to rotate on its axis, and with its axis $F G$ to revolve around the common center A.

In Entwistle's patent gear, three bevel gears of even size are thas associated, and the device is nsed for steering-apparatus, multiplying speed for serewpropellers, ete.

Driving from the other end of the train gives power with decrease of speed.
Many ingenious applications of the device might be cited and shown wonld space permit.
Ep'i-cy-cloid'al Wheel. An cpicycloid is a curve gentrated by a point in the circunference of a movable circle, which rolls on the inside or outside of the circumference of a fixed circle. See Sunand Planet Muthon, the invention of Watt.

An epieycloidal wheel is a contrivance for securing parallel motion, in converting recipocating mo-
tion into circular, depending on the principle that an inner epicycloidal curre becomes a straight line when the diameter of the fixed circle is just double

Fig. 1850.

Epicyclvidal Wheel.

that of the rolling one. It consists of a fixed ring, with teeth on the inside, into which is geared a wheel of halt its diameter ; to a pin on the circumference of the smaller wheel the reciprocating motion is communicated, while the center of the wheel describes a circle and nay receive the pin of a crank whose shaft is concentric with the ring. - Webstrir.

Ep'in-glette'. An iron needle for piercing a cannon-cartridge before priming.
Eprou-vette'. 1. An apparatus for proving the strength of gunpowier.
One simple mode is to fire weighed charges and ascertain the rang of the balls. A small quautity of powder, a heavy ball, and a short mortar reduce the range within convenient linits.

Another is to fire a small quantity beneath a shot attached at the foot of a rertical roll. The latter aseends, and, on reaching its greatest elevation, is prevented from descending by a pawl which engages a rack on the roll. The hight to which the shot ascends determines the strength of the powder.

The éprouvette of Regnier is an adaptation of the Sertor dynamometer. A small brass cannon is attached to one are and chargel with a given quantity of powaler. A projection from the other are comes in front of the muzzle, and the parts are separated when the explosion takes place.

A cmisor over the graduations indicates the point reached by the force of the explosion. See Ballistic Pendilutig.

A convenient and portable épronvette is an in-

Eprouterte. strument sbaped like a small pistol without a barrel, and having the forward end of its chargechamber closed by a flat plater connected with a spring. On the explosion of the powder against the plate, the latter is driven forward to a distance proportioned to the strength of the powder, and is retained at its extreme range of propulsion by a ratchet-wheel and spring-click.

Pouillet's chronoscone and Navez's electro-ballistic apparatus, by measuring the relocity attained by balls with charges of certain powders, form good éprourettes. See Chronoscope; Electro-ballista.
2. (Metallurgy.) A flux spoon. A spoon for sampling an assay.

Eprou-vette'-gun. The gun-éprouvette determines the strength of the poorder by the amount of recoil prodnced. A small jiece of ordnance is tastened to a frame which is suspended as a pendulum
so as to vibrate in an are when the piece is fired. A pointed iron rod projects downward from the gun, and travels in a groove of soft wax as the gun recoils, thus making a mark which is measured to determine the length of the arc. A graduated are with an index-finger is used in the British service. The gun is of brass, $1 \frac{3}{4}$ inch bore, 27.6 inclies long, weighs $86 \frac{1}{2}$ pounds; suspended from a frame and charged with two ounces of powder without shot or wastuing.

The êrouvette-mortar of the British service is 3 inches in diameter, and is charged with 2 ounces of the powder, and an iron hall of $65 \frac{1}{2}$ pounds weight : average range of 265 feet. The government powder, somewhat deteriorated and reserved for blasting, gives a range of 240 feet.

The French éprouvette-mortar has a caliber of 7 inches ; charge, 3 ounces ; rojectile, a copper globe of 60 rounds ; required range, 300 yarls.

The éprouvette-mortar of the Cuited States service is a 24 -pounder, having a chamber to contain one ounce of powder, and no windage to the ball. The required range for new powder, 250 fuet.

E'qual-ing-file. A that file which has a constant thickness, but may taper a little as to width.

E'qual-iz-er. An crencr or whiftetree to whose ends the swingle-trees or single-trees of the individual horses are attached. A three-horse equalizer divides the load to three draft-animals. See Theble-tref.

E'qual-iz-ing-saw. A pair of saws on a mandrel
Fig. 1882.

at a gaged distance apart, and used for squaring off the ends of boards and bringing them to dimensions.

E-qua'tion-al Box. Invented by Houldsworth. A differential gearing used in the bobbin and tly machine for the arljustment of different degrees of twist, for different yarns. The bobhin and flyer are driren independently, and the arrangement afforts a means of changing the relative speeds.
Two short cylinders $b p$ inclose bevel wheels 29 31. Between the edges of these boxes is a spurwheel 28 , driving a third bevel-wheel 30 , mounted on an axis forming the radius of the spur-wheel, and occupying a slot in the ucb of the wheel.

The wheel 30 has the same diameter and number of teeth as the wheels 2931 , with which it engages. The wheel 29 is keyed to its slaft ; but wheels 2531 run loosely on the shaft and independently

Fig. 1883.

Equational Box.

1
of it. Now, if wheel 28 be held still and wheel 29 be turned, the middle wheel 30 will act merely as a carrier between 29 and 31, which will turn with the sume speed, but in opposite directions. If 28 be turned at the same speed as 29 and in the same direction, the middle wheel 30 will not revolve on its axis, but auts as a pin between 29 and 31 , cansing them to turu with the same speed and in the same direction. These are the extreme auses. The mill dhe ease is when 28 turns with half the speed of 29 , in which ease 31 does not revolve at all. All possihe variations letween the relative speeds of 29 and 31 ein therefore be attained by elanges of velocity in 23. This is aceomplished by patting a larger or smadier pinion on shaft K, which has a regular rate of mation relatively to shaft B.

Wheel 32 is joined to 31 , and drives the bobbins, Whose speen is adjusted in any required ratio to that of the spindles and flyers, whatever may be the speed of the latter. See Bubbin-and-fly Frame.

E-qua'tion-watch. A watch made to exhibit the diffrences between moan solar anl apparent solar time. Orizinally made in England, but innprove 1 in Ftance.

E'qua-to'ri-al. A teleseope mounted to follow the apparent motion of the heavenly bodies as they move in the sky. It revolves about an axis so inclined that its motion around it may be parallel to the equator. Hence the name. See Telescore.

E'qua-to'ri-al Sec'tor. An instrument of large ralius for finding the dillerence in the right ascensio: aml leclination of two heavenly bodies.

E'qua-to'ri-al Tel'e-scope. The equatorial telescolu is so momnted as to have a motion in two plaues at right angles to each other ; one parallel to the axis of the carth, and the other to the eqnator. Each axis has a graduated circle, one for measuring declination and the other right ascension. The right ascension and derlination of an astronomical oljject being known, the telescope may be pointed to thu spot. Clock-work is sometimes attached to the instrument to give the motion in right ascension, and thereby keep the object constantly in the field of the instrument.

The large telescopes of the principal observatories are mounted equatorially. See Telescope. See also Fis. 401, p. 175.

E'qui-lib'ri-um-valve. (Steam-engine.) α. A

Fig. 1834.

Equilibrium - Valve. valve having a pressure nearly equal on hoth sides, so as to make it more easily worked by nearly neutralizing its pressure on the seat.
The valve D has packing on the back opposite to the two ports, so as to exclude the steam from behind it, and thus renove the pressure thereof.

A, eylinder ports.
B, central $\mathrm{I}^{\text {ort }}$ leading to condenser.

C, parts of the valve-casing filled with steam.
D, equilibrium-valve.
E, packing ring on the back of the valve.
b. The valve in the steampassage of a Cornish engine for opening the communieation between the top and bottom of the cylinder, to render the pressure erfinal on both sides of the piston.

E-ras'ing-knife. A knife with a eordate blade, sharpened on each edge, and adapted for erasing
marks from paper by an abrading or eutting action, according to the angle at which it is held. The ends are provided with burnishers, rubbers, peneilsharpeners, or other appendages useful about the desk. An cruser.
E-rect'ing Eye-piece. (Opties.) A combination of four lenses used for terrestrial teleseopes, and so armanged as to exhibit the objeets viewed in an erect position. This is not deemed necessary in astronomical teleseopes, as the additional lens required causes the reffection and absorption of a certain portion of light.
E-rect'ing-glass. A tube with two lenses, slipped into the inner end of the draw-tube of a nicroscope, and serving to ereet the inverted image. She Euector.

E-rect'ing-prism. A contrivance of Nachet's for erecting the inverted image producen by a compound microscope, by means of a single rectangular prism plaeed over the eye-piere.

E-rect'or. An arrangement to antagonize the inversion of the inage formed by the oljpet-glass, by again inverting the image to make it correspond in position with the olject.

First applied to comfound mieroseopes by lister. It is a tube about three inches long, having a meniscus at one end and a plano-convex lens at the other, - the convex sides n!ward in each case, and a diaphragm about half-way between them. The ercetor is serewed into the lower end of the draw-tube.

E'ri-om'e-ter. An instrument for measuring the diameter of small fibers, such as wool, cotton, or flax, hy aseertaining the diameter of any one of the colored rings which they produce.
"The eriometer is formed of a piece of eard or plate of brass, having an aperture of about one fiftieth of an ineh in diameter in the center of a circle of one half inch in diameter, and prerforated with small holes. The fiber or particle to be measured is tixed in a slider, and the eriometer being placed before a strong light, and the eye assisted by a lens applied behind the small hole, the rings of colors will be seen. The slider must then be drawn out or pushed in till the limit of the first red and green ring (the one selected by Dr. Young) coincides with the circle of perforations, and the index will then show on the scale the size of the particle or fiber:" - Buewsteris Optics.

Es-cape'. (T'clegraphy.) Leakage of current from the line-wire to ground, eansed nsually ly defective insulation and contact with partial conductor:.

Es-cape'ment. A device intervening between the power and the time-measurer in a clock or watch, to convert a continuous rotary into an oscillating isochronous movement. It is acted on by eaeh. The power imparts through the escapement an impulse to the pendulum or bulance-uchecl suffieient to overcome the friction of the latter and the resistance of the atmosphere, and thus keeps up the vibrations. The time-measurer (prendulum or balence-uhcel) acts thromgh the escapement to cause the motion of the train to be intermittent.

While there is some variation in the trains of elocks and watches, and in other partienlars, they are genemally named aecording to the form of their esfapment ; as, -

Anchor-escapement.
Detached escapement.
Chronometer-eseapement. Duplex-rseapement.
Crown-wheel eseapement. Electric-elock escapement. Cylinder-escapement. Horizontal escapement. Dead-heat escapement. Lever-escaprement.

Recoil-escapement.
Vertical escapement.
Renontoire-escapement. (Which see.)
Verge-escapement.
Goodrich, in 1799, substituted a crank for an escapement in clocks, and received a bounty of $£ 65$ fiom the Londou Society of Arts. Its advantage was silence.
A number of curious and ingenious escapements may be found in works on horology, in Denison's volume in Weale's series ; Brown's "Five Hundred and Seven Mechanical Morements"; and Piaget's
"The Watclı ; its History and Manufacture."
Es-cape'-valve. (Stcam-cugine.) a. A loaded valve fitted to the end of the cylinder for the escape of the condensed steam, or of water carrivd mechanically from the boilers with the steam. A priming valve.
b. Escape-valves are also fitted to the feed-pipes as a means of exit for the surplus water not used by the boilers.
c. A valve which affords escape to steam in a given contingency; upon excessive pressure by a safety-valve; to announce low-water, etc.

Es-cape'-wheel. These are various in form; the wheel is actel upon by the spring or weight of the clock or watch, and is allowed an internittent rotation, one tooth at a time, and the pendulum or balancewheel which thus regulates the movement hecomes the time-measurer. The pallets on the oscillating pendulum arbor allow the teeth to escape, one at a time. See Escapement.
Verge-Escapement.
Es-carp'. (Fortificution.) A wall on the inside of the ditch at the foot of the rampart. On the other side of the ditch is the comenterscurp.

Es'cri-toire'. A writing-desk ; generally fixed, and having a falling leaf.

Es-cutch'eon; Scutch'eon. An ornanental plate for a name, as in a colfin-plute, the nume-plate on the side of a packet-knife, etc. ; or a perforated plate to finish an opening, as the key-holc plate of a door, drawer, or desk.

E-soph'a-gus-for'ceps. One for removing foreign matters from the gullet.
An esophagus-forcepls, with bent shank, was founcl in 1819, in a house in Pompeii, by Dr. Savenko, of St. Petersburg. It is pietured in Smith's "Dictionary of Antiquities," p. 274.

Es-pal'ier. (Ayriculturc.) A trellis for training vines or other plants.
Espla-nade'. (Fortification.) An extended glacis. The sloping of the parapet of the covered way toward the open country.

A clear space between the citadel and the aljacent honses of a fortified town.
Es'ta-cade'. (Fortinfcation.) A line of pile stakes in water or swampy ground to check the ${ }^{1}$ pproach of an enemy.
Es-thesi-om'e-ter. (Surgical.) An instrument to ascertain the tactile sensibility of the human body. It has two points, adjustable as to distance, and the object is to ascertain the nearest proximity at which the points give distinct sensations. The result is indicative of a normal or abnormal condition of the surface. In front of the ear the points may be three quarters of an inch apart, and give but a single sensation; but if you draw them lightly across the face to the other ear,
at a certain point the single sensation will change into a double sensation; as they approach the month, they will seen to separate more widely, and on the other side of the face they will seem to draw together again, until the double impression is lost in a single one. (See Nerve-neenle.) An anatomist (Rufus, of Ephesus) dissected apes and distinguished between nerves of seusation and of untion.

Es-trade'. A slightly raised 1 hatform, occupying a piat of a room. It may form a dais.

Et'a-gère'. A set of slelves in the form of an ornamental staniling-piece of furniture. Used for the display of articles of bijonteric and vertu.

Etch'ing. 1. (On motal.) Engraving expeuted by a grinted tool and acid upoa a metallic or glass surface previously covered with varnish.

The ordinary procelure is as follows: Cover a polished metallic plate with a composition technically called ground, and consisting of asphaltum, 4 parts; Burgundy pitch, 2 parts; white wax, 1 part. For use, this is melted and compoundrl, and tird up in a silk rag. The plate is heated, rubbed with the ground, which is then spread evenly, smoked, and allowed to cool.

The design is traced by a pointed tool, called an etching-point, which lays bare the metal wherever it goes. This finished, a wall of wax is raised around the design to hold the dilute acid which is poured on. For a copper-plate, this consists of nitrous acid, 1 part ; water, 5 parts. For stecl, pyreligneous acid, 1 part ; nitric acid, 1 part ; water, 6 parts. This is poured on the plate, which it corrodes on the lines made through the "groumd." This is called "biting-in." The etching is swept with a feather to remove the bubbles from the surface, or, in case of a steel-plate, agitation may answer the purpose. When a sufficient depth is attained for the lighter tints of the etching, the acid is removed, the surface washed and allowed to drain dry. The parts having sufficient depth are now "stopped out" by a varnish of Brunswick-black laid on with a camel's-hair brush. When the varnish is dry, another "biting-in" will derpen the lines of the parts not "stopped out," and when these parts are deep enough for the second tint, the varnish is removed, the plate dried, ete. This is repeated as many times as may be necessary.

The wall of wax is then removed, the surface of the plate cleaned with turpentine, and the plate is seut to the printer for a proof of the etching, which is complete. It may he finished by a graver to give it more effectiveness, but it then partakes of the character of a line engraving.

Etching is all accomplisled by the point and acid.
The art is believed to lave originated in Germany, judging by its name ctien; but the earliest known practitioners were Albert Ditrer, a German, and Agostino Veneziano and Parmegiano, I talians. These were contemporaries.

Etching on soft ground is in initation of cbalk or pencil drawing, but has been alamtoned since lithography has attained excellence. The soft ground is made hy adding one part of hog's lard to three parts etching ground isee Grousu), which is laid on the plate with the dabber in the usual way. A piece of smooth writing-paper, having the design in outline, is damped and stretched orer the plate. A pencil is then nsed to follow the lines of the design, observing that the softer the ground the softer the pencil should be. The temperature of the season or the room will affect the character of the ground. When the paper is removed, it withdraws the allhering lines of ground, and the plate is bittcr-in in the usual way.

Several peeuliar processes have been introduced in etcling, but are rather curious than usefnl.

Ehlectro-etching, so called, is a process of biting-in, rather thin etching, and consists in exposing the etched plate in the electro-bath, as the topprer of the battery, so as to be corroded by the voltaic action. See Electro-etching.

Dityuerreatype-etching is a process wherein the dark lines of the image in the camera are made to expose the plate to the action of aeid.

Une mode of etching, the reverse of the usual phan, is to remove with joint and scrapuer the lights, and then lite-in so as to expose the design in relicf.
2. (G'uss.) Fluoricacid was discovered by scherle in 1771. One humdred years previons to this, Schwanhard had a secret process for etching glass, but his secret died with him. See Ercuing on Glass.
3. (Lithographing.) a. The preparation of a lithographic stone with a weak mineral acid after the drawing or transfer has been pat upon its surface ; the object being to tix and render such drawing capable of receiving the ink used in printing. The crayon or ink of the artist is essentially based npon an alkaline soap combined with wax, resins, and pigment, the latter being added merely for the purpose of enabling the artist to see the progress of the work; drawings made with crayons and the ink used in pen-work are soluble, anit hence not fit to resist the damping process on the stone; nor is the stone under them lit to receive the printing-ink. The action of a very weak acid applied to the stone by a large soft brush, a sponge, or by flooding it, is to decompose the alkaline soaps, forming nitrates or chloriles of the alkaline metals, according to the acid used, and setting free the stearic and oleic acils simultaneonsly, These fatty acins isolated in intimate contact with the carbonate of lime, of which the stone is mainly composed, appear to enter into chemical combination with the same, driving ont the carbonic acid. The insoluble lime-soap thus formed has an exceedingly strong affinity for greasy matters of all kinds, and readily accumulates upon its surface the "varnish" (burned linseed-oil) constituting the vehicle carrying the carbonaceons matter which gives the printins-ink its color.

Another function of the weak acil is performed upon the clean part of the stone, whereby it renders the particles of calcareous matter pecnliarly susceptible to receiving and holding, despite the longcontinued dimping operations upan the stone, the coveriug of gan-arabic furnished by the operation of Gummeng (which see). The gum is often applied with the acidulons solution. Sulphuric acid camot be used in etching, in consequence of the production of insoluble sulphate of lime.
b. Etching by a needle or diamond on stone is done in two ways:-

1. The surfice of the stone is treated with gun and acid (an ink-resisting compound), and dried; the work is then scratched in by the etching-point. Oil is rubberl over the surface, which is resisted by the gum, but penetrates where the stone has been laid hare by the needle. The stone is then washed off, rolled up and printed. This is usually called engraving.
2. The surface of the stone is covered with an asphaltum ground; the work is etched in, cutting away so much of the gronnd and exposing the stone. Acill is then applied, which eats away the stone, makiug a depression; this is inked, the asphaltum cleaned off, the clear spaces etehed, and gummed as us ona in the lithographic process.

Etch'ing-nee'dle. A sharp-pointed instrument
for scratching away the ground on a prepared plate, proparatory to the biting-in.
Etch'ing on Glass. This art was invented by Schwanhard of Nurcmberg, 1670, and originated in an accident to his spectacles, which became corrodel by some drops of acid. Fhoric acid, discovered by Scheele, 1771, is now employed for corroding, or, ass it is technically called, "liting-in" the etching. The glass is covered with a resinons ground, and the design marked by anetching-point, exposing the glass. The latter is then subjected to an achl, whichacts ujon the silicate and cats away the glass at these points, making depressions which constitute the cteling.

Etch'ing-point. The steel or diamond point of the etchers.

Etch'ing-var'nish. A compound of wax, asphaltnm, piteh, ete., for sprealing on plates which are to be etelmed. Se Ground.

E'ther-en'gine. See Bisitiphide of Carbon Exbine: Ahi-ENGine; Gas-minge:

E-tui'. A case for holding sinall articles, as a lanly's work-box and case for articles of gracefinl nee$\mathrm{dl}_{\mathrm{h}^{2} \text {-work. }}$

Eudi-om'e-ter. Dr. Priestley, the discoverer of oxygen gas, levised the first cudioneter, for ascertaining the quantity of oxygen contained in a given butk of aeriform thuil.

His device was foumbed upon the ishea of suljecting a measured volume of air to a sulstance which would absorb the oxygen of the air. For this purpose he used deutoxide of nitrogen, which has an energetic tendency to regain the oxygen of which it has been deprived, and resume its condition as nitric acid.

Scheme's endiometer was a tube of knowneapacity, in which a body of air was exposed to at mixture of sulphur and iron filings made into a paste with water. This abstractel the oxygen of the air, but an evolution of hydrogen somewhat marred the accuracy of the result.

De Marte used as an oxygen absorbent a solution of sulphuret of potassium.

Guyton used the same material, and added heat to experdite the resnlt. See "Nicholson's Journal," 4to, Vol. I.

Seguin used a glass tube filled with and inverted in mercury. A piece of phosphorus, being introduced, thated to the top of the mereury, and was melted by the approach of a hot iron. Air is then introduced in instalments, and, igniting the phosphorus, parts with its oxygen thereto. A measured fuantity having been thus introduced, the remainder in the tube is transferred to a graduated tube, and the loss of bulk by oxidation is detemined.

Berthollet used the slow combustion of phosphorus, dispensing with the application of artiticial heat.

Hope contrived a cudiometer in whiels a gradnated tube containing a cubic inch of air was inverted into a phial containing the oxygen-absorling solntion. The apparatus, being tight, permitted the contents to be agitated. As gas was absorhed, water was admitted to the phial, and the rise of the liquid in the graluated tube indicated the amount of the gaseons remainder.

Henry substituted a caontchone ball for the phial in Hope's instrmment.
Pepys made a number of technical improvements, which he consilered insured accuracy, but certainly complicated the apparatus.

Volta introduced an instrument whioh superseded the preceding. He determinell the composition of the air by combustion with a known quantity of hydrogen gas.

It is founded on the principle that when a mix- | the sugar-house of the plantation, that of the refinery; ture of oxygen and hydrogen gases is fired, one third of the diminution is owing to the condensation of oxygen. For this purpose he used a graduated tube anil two platinum points, between which an electric spark was caused to prass.

This was modilied in construction by Mitscherlich and others, retaining the main ilea.

Ure's eudiometer is fommed on the Volta principle, bnt is much simplified in point of manipulation. It consists of a gratuated glass siphon
Fig. 1886. whose open extremity is slightly flaring. The other end is closed, and has two platinum wires. Being filled with water or merchry, the closed leg receives a volume of gas by the ordinary means. A couple of inches of water being displacel from the open end of the tube, the mouth is closed hy the thumb, and the instrument approwhed to the electric conductor, a spark from whilh, leaping the interval between the end wires, explodes the gases. The rise of the Ure's Eudi- water in the elosed end indicates the
ometer. volnme removerl, aml the result is detemuined, as hefore explained, by reference to the graduated tube. If melely oxygren and hydrogen gases have been introduced in their proper atomic proportions, einht of the former and one of the hatter, by weight, the result will be water withont gaseous remainder.

If the experiment be as first stated: A given volume of hydrogen introdnced in company with a body of atmospheric air to be testel ; one third the amount of condensation may be ascribel to the removal of oxygen, whose proportions for combining with hydrogen to form water are, oxygen 1 , hydrogen 2, by bulk.
The space botween the thumb and the surface of the water in the open leg forms an air-cushion whem the gases explode.
Dübereimer's is founded upon the power of spongy platimm to cause the combination of oxygen and liyidrogen gas. The labors of Bunsen, Regnault, and Reiset, Willianson and Russell, Frankin ant Wiard, have brought the instrument to the present effirient form.

Eu'phroe. A long slat of wood, perforated for the passage of the awning-corls which suspend the ridge of an awning. The cupluroc (or uphroc) and its pendent cords form a crox-fiot.

Eu'style. (Archifecture.) That style of intercolumnation in which the space between the colmums was $2 \frac{1}{2}$ times their diameter; so called from beins considerel the most beautiful style.
E-vap'o-rat'ing-cone. A Belgian evaporator, consisting of a hollow cone with double walls, between which is a borly of steam. Over the inner and outer surface of the cone a sacchurine solution runs in a thin film, and is thereby hoated. It is similar in principle to the Degremel condenser. Sec Condenser; Evaporatole.

It is the same in its principle of construction as certain coolers, in which a refrigerating liguil tills the jacket, over whose walls passes the liquid to be cooled.
E-vap'o-rat'ing-fur'nace. The furnace of a boiler for cane-juice, sirup, brine, etc.
E-vap'o-ra'tion-gage. A graduated glass measure, with wire-ganze cover to prevent access of iusects, to determine the ratio of evaporation in a given exposure.

E-vap'o-ra-tor An apparatus consisting of ar furnace airl pan, in which vegetable juices are con- and vacuum-pan densed. The varieties are numerous: intended lor, for maple-sugar making and for sorghum ; for making vegetable extracts for medicines and other purposes. Those which bnil in (partial) vucuo are known as Vacutar-pais (which see). Some drive oll a part of the aqueous floid, and are called comdensers, such as the Degrand. See Cundiansel.
A "set of kettles" in Lonisiana consists of five, phaced in line, and
with their tops on the same level. Underneath is a furnace, the mouth of which is outside the building. The kettles are techically known as the grunde, propre,

Fig. 1587.
 flambcau, sirop,

and the battcric.
The grande receives the canc-juice from the mill, and is the farthest removed from the mouth of the furnace. The scmm, as it rises, is sweit towards the rear from ketthe to kettle, and the juice, as the kettles empty by evaporation, is dipped from one to the other towards the battcrie. From the latter it is dipped into a box whose conducting troughs lead it to the coolers.

Hoard's pan, patent 1838 (A, Fig. 1887), has a trough around to collect scum, and tubular flues passing through the boiler:

The steam-pan, first introllaced in Lonisiana in 1829, had a serpentine coil at the hottom of a circular pan.

Stillman'span (B), 1846, had a series of bends connecting with a tube which also formed an axis for thesystemwhich conld thus be erected so as to expose the bottom of the pan.

A combination

las been adopted to some extent in Louisiana, and
probably elsewhere. The cane-juice being concentraterl in open kettles to abont 26° or 28° Baume and then finished in the vacuum-pan. It requires no sleerial notice.
The Duplessis plan, 1846, consists in heating the juice in pans with double bottoms, forming steman-jackets, and then finishing it in kettles let into the top of a horizontal cylindrical boiler, which is picuced wihl holes for that purpose. The Hanges of the liettles are bolted stean-tight to the top plate of the steam-boiler, which has an inclination from front to rear to facilitate the transfer of the scum to a trongh at the lower end.
Graham's apparatus, 1843, has a series of kettles in a rising order towards the rear, like steps, so that the greende may empty into the flumberen, that into the sirop, anl the latter into the batteric, without dipping. They are of progressively smaller size to the lower end of the series, and are heated by steamjackets. The pans are connected by pipes furnished with stop-cocks.

A comnected history of the process of manufacturing sugar is given meder Sugar-manufactumag, and some things are omitted in this to avoid duplication. Sce also Condenser, Degrand, which acts as an evaporator of the sirup poured over it, while it condenses the vapor from the vacuum-pan with which it is charged. Sue Vacutm-pan.
The Wetzel pan is heatel? by steam. It is a long tank with a semi-cylindrical lower portion in which revolves a hollow wheel heated by a constant flow of steam. Drums on the shaft are also full of stean, and are comnected hy pipes, steam-heated. Revolving slowly, it exposes a considerable surface t. and agitates the sirup, which constantly drips off that portion exposel to the air.
The Bour pan is somewhat similar, but the revolving, heating surfice is made up of stean-heated drums on a shaft, revolviug in a pan having a semicylimdrical well.
The evaporating cone C of Lembeck, near Brussels, consists of a double-walled cone $\varepsilon \in$ about 16 feet high, and heated by stean in the space intervening between the walls. Sirup from the cistern s tlows by the faucet c into the funnel f, and thence is listribated by openings so as to run in a thin film over the interior surface of the cone ε. A ballcock keeps a constant level in the cistern p. To prevent the liquid ruming in streams down the surface of the cone, it is again and again arrested by the hollow conical frustums, which divide any trickling streams and redistrilute them over the heated surface. These frustums are strung uron a stena $a a$, so as to be removed in a body when required for cleausing.

The exterior surlace of the cone receives a film of the sirun from the same cistern, the spout conducting it into the trough r from whence it reaches the surlace of the cone. It is again and again arrested by exterior funnel-shaped troughs $m m$, and allowed to trickle therefrom at openings along the meeting edge of the trough with the cone. This hreaks ap any determination to mon in streams, and keeps the evaporating surface evenly supplied.

An annular reservoir receives the condensed liquid, whence it is conducted by a spont t to a eistern w.
The apparatus is especially designed for beet-root sligar-making.
The Degrand or Derosne condenser is an evaporator nsed in the cane-sugar works, and cousists of a colunn of horizontal, steam-heated pipes over which the cane-juice trickles, and eventually passes in a condensed condition into a cistern below. See Condenser.

A class of inventions knowu as coolers agree in many points of construction with these surface condensers ; the main difference being in the fact that in one case the hollow trunk is filled with a refrigerating liquid and in the other with steam. Usetul hints may be taken from Beer-Cuolelis; Liquid-cuolets (which see).
One form of apparatus consists of a number of hollow disks of lenticular figure, arranged ujon a common axis, and dipping into the liquid to be evaporated. These disks, or lenses, are constructel of thin metal, and are all in communcation with eath other through the common axis, which is likewise hollow. The whole system is kent in slow rotary motion by some convenient moving power, and each disk carries up with it, adhering to its surfice, a thin film of the liguid; as evaporation when it takes place without ebulition goes ou with a rapidity proportional to the surface exjosed.

Of this class is Schroder's evaporator D, used in the West ludies, for evaporating saccharine juices at a temperature not exceeding 180°; it is worked hy hand or stram power. It is intended specially as a substitute for the teache, and consists of a sumi-cylindrieal pan h, whose contents are leated by a steam coil $d d$, comnecting by pipe g with the builer.

On a longitudinal axle resting in boxes on the ends of the pan are a number of disks j, which are rotated by power applied to the crank. As these disks are alternately exjosed to the simp and to the air, the latter has free access to the moistened surface, and carries off the aqueous particles with consilcrable rapility. n is the discharge-pipe, which is opened by a fancet in the usual manner. The machine stands isolated on the Hoor of the sugarhouse, and is supported on an iron stand.

A moditication of this plan is the Cleland evapo-

rator (English), in which the rotating device consists of a spiral coil of steam-pipe rerriving steam through the trunnions and immersed dming a 1 ortion of its revolution in the sirup of the pan. It differs from the Schroder pan in the fact that the rotating device is hollow and steam-heated so as to make the action more energrtie, the film of sirup on the coil being exposed to the heat of the interior steam and to the evaporative action of the surrounding atmosphere.

Fig. 1558 shows two forms of sorghum-evapo cumstances may be twice changed in twenty-four rators, iu the upper one of which are reciprocating paddles for removing seum tiom the heated juice and sweeping it towards the cooler overhanging shallower parts at the edges of the pan. The lower

Portable Ecaporator.
figure shows a series of pans with connecting apertures stoplyed by gates.

Fig. 1859 shows a portable evaporator mounted on a wheelbarrow.

Fig. 1890 shows an evaporator in which a continuous stream of juice is allowed to flow in a sinuous track from eml to end of the pan, which is

Fig. 1590.

Continuous-Stream Evaporator.
so mounted as to be inclined in any required degree, accorling to the condition of the fire or of the juice, so that it may reach the end in the desired condition of coudensation.
A pan for the evaporation of water from brine is

Fig. 1591.

Sult-Pan.
being discharged into the ovens before being discharged into the chimney. The brine is
led into the pan by pipes, and under orlinary cir-
hours. As soon as most of the water has been evaporated, the wet salt is ladled into conical baskets which are placed against the bench to drain. The salt is finally dried in the ovens heated by the furnace fires.

The cocoa-nut palm yields a juice (suri), which is evaporated to make a sugar (jaghery), one gallon of suri yielding a pound of jaglecry. This is tive times the quantity to the gallon that is rieded by the sugar-maple. The suri is obtained by cutting the spadix of the tree and collecting the juice iu a crock suspended from the spathe.
E-vap'o-rom'e-ter. An atmometer or hygro. scope, for ascertaining the evaporation of liquids.

The example shows a self-recording evaporometer or tide-gage, adapted also for a rain-gage or to intlicate the rise and fall of any body of water in a river, canal, or lock, showing the exact time at which any increase or reduction of level may have occurred.

a is a time-piece driving the paper cylinder $g ; b$ is the carriage which carries the tracing-pencil that marks the paper on the cylinder, and is mored by the float which is suspended from the card f and rests on the surface of the water. The motion of the float is communicated by cord f over small wheel e, float-wheel d, and pulley c.

E'ven-er. A double or treble tree, to "even" or divide the work of pulling upon the respective horses. It is swiveled to the pole, usually by a bolt or wagon hammer, and has clips on the ends to which the middre clips of the single treesare

Erener. attachel.

Ev'er-point'ed Pen'cil. A pencil-case having a fine cylinder of graphite, which is lrought forward by a screw as fast as wear renders it necessary.
Patented by Hawkins and Mordan, England, 1823. The pencil-case has a slider actuated by a screw to project a little cylinder of hlack-lead as the latter wears away. The lead is so small in diameter that it does not need catting for the ordinary purposes of a pencil. The projection of the lead is performed by holding the nozzie in one hand and turning round the pencil-case with the other.

A reservoir at the end of the holder contains a sapply of spare leads.

Ew'er. A toilet-pitcher with a wide spout.
Ex'ca-vator. 1. A machine for digging earth and removing it from the hole. This definition does not distingush the excavator from the ditching-machine, auger, dredje, earth-borer, post-hole digijer,
etc. Custom, however, confines the term cxeavutor to a narrower range.
The excavator, which is of the nature of a plow, with an elevating earth-belt, is shown in Fig. 1894. It has adjustment for depth ol cut, and the dirt ex-

Fig. 1894

Ditch-Excarator.
eavated by the hollow share is carried upwardly and harkwarily by the shovel-belt and Ilropped into the chate, which elischarges it at the side of the trencll.

Wilhard's excavator, which has bern so widely used in m:aking railway embanknents in the broad West, is shown in Fig. 1895. 1ts principal use in practice las been to elig soil by the side of the track and dump, it on to the road, to form a bed for the ballast and sleepers. The carth is scraped up by the sbovel, carried between the wheel and a traveling apron, and droped into a hopper. When this is full, the ma-

Hillard's Excavator
chine is drawn on to the site of the road and the load (lumped.

The excavator (Fig. 1896) is mounted on a carriage which traverses on a temporary track. At nome end of the frame is a crane, which has a circular alljustment on its axial post. To the end of the chain-tackle is suspended a scoop made of boiler-iron, whose lip is a steel ellge with fingers. Direction is given to the scoop hy means of a beam which may be called the scoon-handle, and when the sconp lias been thrust by its weight into the carth, the beam affords a ful-
crum on which the scoop rotates when the tacklechain is wound up on the drum by the action of the stean-engine.

The excavated earth along some parts of the line of the suez Cimal was transported by means of a bump. By the aid of a steam-pmup water was mixed with the earth brought up by the drelge, and

Fs. 1896.

the mud so formed was spoutel ont ipmon both banks of the canal to such a distance and in such quantities as to form high compact ramparts against the sand showers blowing in from the desert. Ninetysix million cubic yards of earth lave hren taken out; and there is left to-day a eanal 90 miles long, 328 feet wille at the surface, and 74 feet wide at the hottom, anil 26 feet cleep thronghout. Sec Dredgingmachine.

The practice adopted in the United States, in France, in Englaud, and Holland is to mix such earth in silu and pump it n1p, - mud, earth, sand, and all, - and pour it into lighters or directly upon the land arljacent.

The hydranlic mining of California is by means of powerful jets of Trater projected against the banks of drift, the dibris of former periods of glacial and fluvial action. See AuGer; Ditchasg-Macurse; Dredgisg-machise; Šckaper; Well-bohisg.

Number of Cubic Fect of various Earths in a Ton.

2. A dentist's instrument for removing the carious portion of a tooth. They are of varions forms anel sizes, straight, curred, angular, and hooked ; and may be compared to chisels, gonges, seropers, scrapers: spear, hoe, hatchet, spade or spoon shaped, etc.
Ex-cel'si-or. A trade name for curled shreds of wooll used as a substitute for curled hair in stuffing cushions, etc.

It is made in a machine in which the bolt is pressed downward within its fixed case hy a weighted lever, and suljected to the action of the scoring and plane cutters at the upper surface of the horizontal rotating wheel.
Ex-change'cap. A tine quality of paprer male of new stock; thin, highly calendered, and used for printing hills of exchange, etc.
Excla-ma'tion. Note of. A mark (!) indicating emotion or pointed adllress ; as -

"Father of all! "

Ex-e'dra. (Architecture.) A niche projecting berond the general plan of a luilding.

Ex'er-cis'ing-ap'pa-ra'tus. An apparatus for the use of gymnasts, or for the training of special muscles. In the example, the hand-bar is supported on an adjustable cord passing over a spring. The frame his two spring-boards near the floor.

In other instances the apparatus is intended for the use of those unahle to take walking exercise. The bedridden 1 ,atient uses the arms to flex and extend the legs and keep the body in motion, the bedstead rocking on its centers.

Lounde's English patent, 1796, described a gymnasticon with treadles for the feet and cranks for the arms. It is adapted to exercise a limb which may have no voluntary motion, and may be used by a patient sitting, standing, or lying.

Ex-haust'er. (Gas-making.) An apparatus by which reflex pressure of gas upon the retorts is prevented. The forms arc various; one consists of 2

derice like one form of rotary steam-engine, which has an eccentric, revolving lub and sliding piston

Fig. 1899.

Exercising-Apparatus.
in a cylindrical chamber. It is of the nature of a rotary pump.
Ex-haust'-fan. One in which the circulation is obtained ly vacuem, in contradistinction to that which acts hy plenum, forcing a hody of air into and through a chamber or passage-way. Soe Blower; Fan.
Ex-haust'ing-syr'inge. A syringe with its ralves so arranged as to withdraw the air from the ohject to which it is applied.
Ex-haust'-port. (Stcam-cngine.) The passage learling from the cylinder to the condenser or to the open air.

Ex-haust'-pipe. One conducting the spent steam from the cylinder.

Ex-haust'-reg'u-lat'or. A ralve adjusted to the pressure of the steam by compressing or relaxing the spring held within the tube, hy means of a disk secured to the end of the spindle, the olject being to utilize the exhanst steam.
Ex-haust'Steam. (Steam-enginc.) Steam which passes out of the cylinder after having performed its function. It is emitted by its own pressure when the exhaust-valve is opened, and its ejection is

Exhaust-Regulator
assisted by the advancing Saudstone . piston, which is being driven Slate
late 1.00104
Pine (along the grain ; dry)
1.00104

Honduras Bay wood (along the grain;
1.000428

Ex-haust'-valve. (Steamcngine.) The valve which governs the opening by which steam is allowed to escape. The eduction-value.

The valve in the eduction passare of the stean cylinder of a Cornish engine, placed between the cylinder and airpump, and worked by the tappet motion, so as to open shortly after the enfuilibrinmvalve, and admit the steani to the condenser.

Ex-pand'ing-al-loy'. Such as exprands in cooling. They always contain bismuth, and usually antimony. Typemetal is a familiar instance.
Ex-pand'ing-ball. One having a hollow conical base, altomling a relatively thin body of metal, which is expanded by the force of the explosion, driving it closely against the hore of the gun and into the rifling, preventing windage.

Ex-pand'ing-bit A boring-tool whose diameter is adjustab!e. Nee Auger: Bit.

Ex-pand/ing-drill. One having a pair of bits which may be diverged at a given deptlı to wilen a hole at a certain point ; used in drills for metal and for rock-horing.

Ex-pand'ing-mauldrel. One having fins expansible in radial slots to bind against the inside surfaces of rings, sleeves, or circular cutters placed thereon.

Ex-pand'ing-plow. One having two or more shares, which may be set more or less distant, accorcling to the distances between the rows at which different crops are plinted.

Ex-pand'ing-pul'ley. One whose perimeter is made expansible, as a means of varying the speed of the helt thereon. See Expansiuxi-drum.

Ex-pand'ing-ream'er. One which has a bit or bits extensihle radially after entering a hole, so as to enlarge the hole below the surface.

Ex-pan'sion. 1. The expansinn and contrac. tion of long heams from changes in temperature is shown by the following table, which exhibits the extension dilatation in passing from 32° to $212^{\circ} \mathrm{Fah}$. (0° to 100° centigracle).

The talle exlibits the expansion at 212°, the length of the bar at $32^{\circ}=1$.

dry)
Water at $40^{\circ}=1$. 1.0401
Air 1.376
2. (Shipbuilding.) The expansion of the skin of a ship, or rather of a net-work of lines on that surface, is a process of drafting to facilitate the layingoff of the dimensions and positions of the pieces of which that skin is to be made, whether timber planks or iron plates.

It consists in covering the surface with a network of two sets of covers, which cross each other so as to form lomr-sided meshes; then conceiving the sides of those meshes to be inextensible strings, and drawing the net-work as it would appear if spread flat upon a plane. By this operation, the neshes are both distorted and altered in area; the curves forming the net-work preserve their true lengths, but not their true angles of intersection ; and all other lines on the surface are altered both in length and in relative angular position.
The process is applied to surfaces not truly developahle. See Development.
3. (Sleam.) The principle of working steam expansively was discovered ly Watt, amil was the sub-ject-matter of his patent of 1782 . By it the supply of stean from the boiler to the cylinder is cut off when the latter is only partially filled, the remainder of the stroke of the piston being completed loy the expansion of the steam already admitterl.
The work done by a given amount of stean is greater when worked expransively than when worked at full pressure, in the following ratio:-

Point of cutting off.	Mean Pressure of Steam.	Gain per Cent in Power.	Point of cutting off.	Mean Pressure of Steam	Gain per Cent in Power.
. 1	3.302	230.	. 5	1.693	69.3
. 125	3.079	208.	. 6	1.507	50.7
. 166	2.791	179.	. 625	1.47	47.
. 2	2.609	161.	. 666	1.405	40.5
. 25	2.386	139.	. 7	1.351	35.1
. 3	2.203	120.	. 75	1.285	22.3
. 333	2.099	110.	. 8	1.223	20.5
. 375	1.978	97.8	. 875	1.131	13.1
. 4	1.916	91.6	. 9	1.104	10.4

No deluctions are here made for a reduction of the temperature of the steam while expanding or for loss by back pressure.

Ex-pan'sion-coup'ling. The coupling representel consists of an expansion-drum of thin copper x between the extremities of two pipes a i, Fig. 1901, which, in elongating, press the sides of the drum in, and draw them out in cooling.

Ex-pan'sion-drum. An arrangement by which an occasional change of speed may be effected. The diameter of one of the drums is made variable, and the belt is kept strained ly means of the weighted roller a. The part of the expansion-drum marked b, consisting of a boss and grooved arms, is keyed fast on the shaft; on to another portion of the arm c, which slides $n p$ and down, in the groore of b, is cast a prortion of the circumference of the drum ; it has also a stud d, fitting into the curved slot of the disk e, which moves loose on the boss b, and has teeth on its circmmference into which works a pinion f, with ratchet fixed to the part b, and turned with a handle. As the disk is to turned the right or

left, the studs move up or clown in the curved slots, and the diameter of the drum is inereased or diminished.

Ex-pan'sion-gear. (Steam-engine.) The apparatus by which access of steam to the cylinder is cut off at a given part of the stroke. A cut-off.

A variable cut-off is one which is capable of beiner adjusted while the engine is in motion, to cut off at any given portion of the stroke, within a given range, as the requirements of the work may indicatc.

A fixed expansion is one arranged to cut ofll at a determinate part of the stroke.

An rutomutic expansion is one which is regulated by the governor, and varies with the amount of power required.

The expransion gear of marine engines generally consists of a graduated cam on the paddle-shaft, against which a roller presses and communicates the movement peculiar to the irregular surface of the cam, through a series of rods and levers, to the $e x$ -pansion-valuc situated between the throttle-valve and the slides. See Expansion-valye.

Ex-pan'sion - joint. 1. A stuffing-hox joint nsed when a straight metal nipe, which is exposed to considerable variations of temperature, has no elbow or curve in its length to enable it to expanul without injury. The end of one portion slips within the other telessopically. Known as a feucct-joint.
2. An elastic copper end to an iron pipe to allow it to expand or contract without injury.
3. An attachment of a boiler in its framing to allow the former to expand without affecting the framing.

Ex-pan'sion-valve. A valve arranged to cut off the comection between the boiler and cylinder

Expansion-Valve (side view and front viewe).
at a certain period of the stroke of the piston, in order that the stean may act expansively during the remainder of the stroke.

One form of this apparatus, for marine engines, derives its motion from the crank-shaft of the engine, the ralve-spindle being commected by a selies of rods and levers with a small brass pulley which presses against the periphery of a graduated cam on
the crank-shaft, by which means the steans is "cut off" in the most advantageous manner at any required portion of the stroke. See Cur-off.

Ex'ple-tive-stone. (Masonry.) One used for filling a vacuity.

Ex-plor'er. An apparatus by which the bottom of a body of water is examined, when not beyond a certain depth.

In one form it is called a submarine telescone; in other forms it is a diving-bell, submarine-boat, etc. See Abmor, Submahine; Diving-bell; Subma-fine-boat; Submarine-telescope.
Ex-plo'sive-ball. One having a bursting-charge which is ignited on concussion or by time fusce. See Silele.

Ex-plo'sives. Gunpowder was in use as far back as the twelfth century, and its comprosition, as shown by old manuscripts, did not difler greatly from the most approved modern manufacture. See Guxpowder.

Berthollet proposed to substitute chlorate of potash for saltpeter in the mannfacture of gumpowder. The explosive force was in this way doubled, but it was found to explode too readily, and, at a trial in loading a mortar, at Essounes, 1788, the powder exploded when struck by the rammer, blowing mortar and gunners to pieces.

Fulminates of gold, silver, and mercury were experimented with in the early part of this century, as substitutes for gunpowder. Fulminate of mercury is oltained by dissolring mereury in nitric acid and adding a certain proportion of alcohol and saltpeter to the mixture. It is usell extensively in the mamufacture of percussion-caps and cartridges, but none of the fulminates are likely to be used in large quantities, as being too exprensive and dangerous. In an experiment at Paris, a grain of fulminate of gold was placed on an anvil and exploded by a blow from a sledge, making a dent in both hammer and anvil.

Pyroxyline, or gun-cotton, was discovered by Schoenbein in 1846 . It is prepared by immersing cotton in a mixture of nitric snd sulphurie acid for a few minutes, and then washing and drying it. It has been experimented with by several European mations in comection with fire-arms, but was found to be clangerous, and to rapidly destroy the arms by its excessive energy, and was abandoned by all but the Austrians, who utilized the improvements of Baron Lenk in gun-cotton, and have several hatteries of artillery adapted to use the improved composition. Abel's English gun-cotton is now used for petards and in mining. Several compounds based on ginn-cotton are nsed in the arts, as in collodion for photography, surgery, etc.

Nitro-glycerine, which is pure glycerine treated with mitric acid, was discoverel by the Italian chemist Sobrero in 1847, but was rery little used until 1863, when it was utilized by Nobel for blasting. The explosive energy of this compound is given as rrom four to thirteen times that of rifle powder. By an explosion of a few cans of this material on the wharf at Aspinwall in 1866, a considerable portion of the town was destroyed, shipping at some distance in the harbor much damaged, and a number of lives were lost. An explosion of a storehouse containing some hundreds of pounds of nitro-glycerine took place at Fairport, Ohio, in 1870, accompanied with much loss of life. The shock was felt at Buflalo, 160 miles distant.

Nohel, in 1867, irrvented a compound called dynamite, which consists of three prarts nitroglycerine and one part of porous earth. Dynamite is supposed to be safe against explosion from concussion or pressure. See Dynamite.

Dualine differs from dynamite in the cmployment of sawdust with nitro-glycerine, instead of earth or silica. See Dualin.
l'icrate of potash is a yellow salt, extremely explosive, formed from potassium, by the action of picric aeid, a product of the distillation of coal-tar. It was experimented with by the French War Department to some extent, and was denoustrated to lie between gmopowiter and dynamite in its explosive force.
MI. Berthelot gives, in Annales de Chimie ct de Physique, a table showing the relative force of explosives. From this table is deduced the following, expressed in terus of our own standard measurenucuts: -

Fig. 1903.

Exsection-Apparatus.

	药	
147,811	0216	1
140,215	0225	0.986
117,413	0.173	0.633
153, 472	0.111	0.540
176,432	0.24 .3	1.368
22t, 285	0.318	2.325
72,784	0.370	0.842
304,397	0.710	6.797
145,337	0.801	$3.63{ }^{\circ}$
202, 371	0.484	3.456
327,529	0.484	4.594
110, 319	0780	3.910
223,515	0.408	2.72?
323,919	0408	4.198
49,981	0120	0.108
94,204	0.270	0.785
60,565	0.116	0.208
43,762	0212	0288
$135,56{ }^{\circ} 3$	0585	2.476
197,161	0.337	2059
328,449	0.337	3.554

Blasting.

Blasting-powder.
Dynamite.
Fulminate.
Fuse.
Gun-cotton.
Gunpowter:
Lithofracteur.
Nitrine.
Nitro-glycerine.
Nitroleum.
Percussion-powder.
Ex-sec/tion-ap para'tus. (suryicul.) A splint or snjprort to stiffen and aid an arm from which a section of bone has been removed. In the example, it hasa seapula or sabllle-pad whiel forms a foumlation for the other parts, and from this proceed jointed rods ant elastic bands, which form anxiliary bones and muscles. The
humerus and the forearm lave rigid cases which afford means of attachment for the prosthetic parts, and the cases are held to the arm by tlexible aponenrotie hauls $f i$.

Ex-tend'ed-let'ter. (Printing.) One having a face broder than usual with a letter of its hight.
Ex-ten'sion-ap'pa-ra'tus. (S'urgical.) An instrament designed to comnteract the natural tendency of the museles to shorten when a limb has heen fractured or dislocated. Ordinarily this is done by means of a weight and pulley attaehed to an arrangement surrounding the limb immediately

Fig. 1904.

Extension-Apparatus.
above the point of fracture; but in the apparatus shown in Fig. 1904 this is effeeted by screwthreaded rods, the lower one of which carries a plate aplulied beneath the sole of the foot and attached by a stirrup passing over the instep. It is obvions that this appraratus may be also adapted to dislocations or fractures of the humerus or forearm. See also

Fig. 1905. Ex-ten'sion-lad'der. A ladder

 Ex-ten'sion-lad der. A ladderhaving a movable section, which is
projected in prolongation of the main

Extension-Ladiers
section when occasion requires. A common form is shown in Fig. 1905, in which the sections of the ladder slide upon each other, and the upper one is extended by chains which pass around rollers and are wound upon a windlass journaled to the lower section.

Another form has a standing base part. The ladder is formed of jointed sections, which may be folded together or arranged as a self-supporting ladder. Some ladders are monnted on truck's to be used in emergencies. See Fine-escape.

Some of the Roman scaling-larkers were made in sections and put together to form a large ladder. Others of their ladders might be elerated with a man on the top for reconnoitering.

Ex-te'ri-or-screw. Oue cut upon the outside of a stem or mandel, in contradistinction to one whose thread is eut on an interior or hollow surface.

Ex-te'ri-or-slope. (Fortification.) The slope of a parapet towards the country. It is at the foot of the superior slope, and forms the lower portion of the rampart ahove the cscarp, or the berme, if there be one. See Pirapet

Ex-tin'guish-er. A little cone placed on top of a burning candle to extinguish the light. Extinguishers were also formerly attached to the railings of city houses to enable the link-hoys to dout their torches.

Some lamps have attachments which may be made to clasp the exposed portion of the wick and extinguish the flame.

Ex-tract'or. (Surgical.) An instrument for remoring suhstances from the body. Sce BulletFoncers, etc.

Ex'tra-dos. The exterior curve of an arch, measured on the top of the voussoirs ; as opposed to the soffit or intrulos.

Eye. An opening througlı an object ; as, -

1. (Nuutical.) a. A cirenlar loop in a shroud or rope. A worked circle or grommet in a hank, rope, or sail.
b. The loop of a block-strap.
c. The hole in the shank of an anchor to receive the ring.
2. (Milling.) The hole in a runner stone through which the grain passes to be ground.
3. The hole through the center of a wheel, to be occupied by the axle, axis, or shaft.
4. The eye of a crank; a hole bored to receive th.: shaft.
5. A metallic loop on the end of a trace, to go over the pin or hook on the end of a single-tree. A cock-cyc.
6. (Architccturc.) a. The circular aperture in the top of a dome or cupola.
b. The circle in the center of a volute scroll.
c. A circular or oval window.
7. The hole in the head of an eye-bolt.
8. The center of a target. A hull's-eye.
9. The thread-hole in a weedle.
10. The loop in which the hook of a dress catches.

Eye, Ar'ti-fi'cial. 1. A slefl or segment of a hollow sphere, usually made of enamel, and so inserted as to present the appearance of the natural eve. Artificial eyes made of glass are found in ancient

Fig. 1907.

Artificial Eye. Egypt. In the Abbott Museuni of Egyptian Antiquities, New York, are several wooden cats with flass eyes. One of them is but a shell, and contains the mumny of a cat. They are from the cat-tombs of Sakkaral.
In the example (Fig. 1907),
the caruncular portion of the ocular orbit has ungrinal depressions on each side of the nasal extremity, so as to establish larmony between the circmmerence of the prosthetic shell and the organic sinuosities when used on either side.
2. (Nuatical.) An eye worked into the end of rope, as a substitute for a spliced eye.
Eye-bolt. A bolt laving an eye or loop at one end for the reception of a ring, hook, or rope, as may be required. The insertion of a closed ring into the eye converts it into a ring-bolt.
Eye-cup. A cup for washing the eyehall. Its lip is held tirmly against the open lisl, and the eye-wash dashed against the ball, or forced against it by compressing the reservoir, as in the example. The device shown is also applicalle to the eyeball for the purpose of preventing myopia by preserving the conrexity of the cornea; the bag c, being partially exhansted, is

Fig. 1908.
 allowed to exprand after the ealges of the cups are seated upon the eye-balls.
Eye-ex'tir-pa'tor. A surgical instrument for removing the cye.

Tutting out the eyes has long been a common Oriental punishment. The eyes of Zedekiah were put out by Nebucharlnezzar. Xenophon states that in the time of the younger Cyrus the practice was so common that the binded men were a conmon sjectacle on the highways. The Kinuls and Turkestan hordes yet blind their aged prisoners.

Eye-glass. 1. (Oprics.) The glass nearest to the eye of those forming the combination eye-piece of a telescope or microscone. The other glass, nearer to the object-glass, is called the field-glass. See Negative Eye-piece.
2. A pair of glasses to aid the sight; usually worn by clasping the bridge of the nose. They are of various shapes, $a b c d$. The watehmaker's or engraver's eye-glass c has a horn frame and a single

Fig. 1909.

lens. Its flaring edge is retained within the ocular orhit hy the muscular contraction of the eyelids.
Eye-head'ed Bolt. A form of bolt having an eye at the head end. It is intended for securing together two objects at right angles, - as a gland to a stuffing-box, itc. See Bolf.

Eye-in'stru-ments.

Operative. Eetropium.
Cataract-knife.
Cataract-needle.
Couching-instrument.

Entropium.
Entropium-forceps.
Eye-cup.

Eye-extirpator.
Eye-forceps.
Eyelid-dilator.
Eyeprotector.
Eyc-specutum.
Eye-syringe.
hriankistrium.
1 ridectomy-instrument.
Keratome.
Lachrymal-duct dilator.
1 teryginm.
Strahismus-forceps.
Strabismns-scissors.
Examinative.
Anto-opthalmoseope.

Iridioscopre.
Opsimeter:
Ophthalmometcr.
Ophthalmoscope.
Ophthalmostate.
Prosthelic.
Eye. Artificial
Pupil. Artificial Optical.
Eye-glass.
Goggles.
shades.
Spectacles.
Sue Optical lnstruments.

Eyeleting-Machine.
Eye'let-punch. A device used at the desk for attaching papers together by eyeleting. It has nsually a hollow punch for making a hole, and a diepuneh to upset the flange of the eyelet.

Eye'let-set'ting Ma-chine'. See Eielftingmacmine.
Eye-piece. (Optzcs.) An cyc-piccc, or pover, as it is sometimes called, is the lens or combination of lenses used in microscopes or telescopes to examine the aerrial image formed at the focus of the objectglass. - Brande.

Eye-pieces may be, -

1. Pusitive (lamsdens).
2. Negative (Hnyghenian).
3. Diagonal.
4. Soler (Dawes).
5. Terrestrial or erecting.

Eye-piece Mi-crom'e-ter. A graduated slip of glass introduced throngh slits in the eye-piece tube, so as to occupy the ceuter of the field. Adapteal by Jackson.
Eye-rim. A circular single eye-glass, adapted to be held to its place by the contraction of the orLital muscles.
Eye-spec'u-lum. (Surgical.) An instrument for clilating the eyelids, to expose the exterior portions of the eye and its: adjuncts.
Eye-splice. (Nautical.) A splice made by turning the ead of a rope back on itself and splicing the end to the standing part, leaving a loop.

Fig. 1912.

Eye-Speculum.

F.

Fab'ric. A cloth made by wearing or felting. The various names are derived from material, texture, fineness, mode of wearing, color, mode of coloring, surface-finishing, place of manofacture, etc.
"Each glossy cloth, and drape of mantle warm, Receives th' impression; ev'ry airy woof,
Chey ney, and baize, and serge, and alepine.
Tammy, and erape, aud the Jong countless list Of woolen webs. ${ }^{12}$

Dyer, The Flecee, 1757.
The following list includes the names of the principal varieties of fabrics, cxcept those of merely fanciful and ephemeral nature :-

Ahee.	Boshah.
Aditis.	Braid.
Aërophane.	Breluche.
Agabanee.	Brilliant.
Alpaca.	Broadcloth.
Anabasses.	Brocade.
Anacosta.	Brocatelle.
Anagaripola.	Buckram.
Angola.	Buke-moslin.
Arbaccio.	Bunting.
Arlienanse.	Burdett.
Armozine.	Burlap.
Armure.	Cacharado.
Atlas.	Cadence.
Baetas.	Catta.
Baft.	Calamanco.
Baftas.	Calico.
Bagging.	Cambayes.
Baize.	Cambria.
Balmoral.	Camlet.
Baluster.	Camptulicon.
Balzarine.	Сапиеquin.
Randanna.	Cangan.
Bandannois.	Cartaloon.
Bangra.	Canton Hannel.
Barege.	Cantoon.
Parmillians.	Canvas.
Barracan.	Carpet.
Barrage.	Cashmere.
Barras.	Cashmerette.
Barretees.	Cassimere.
Batiste.	Cassimerette.
Barutine.	Castor.
Bauge.	Cauthee.
Beaver.	Chainwork.
Beaverteen.	Challis.
- Bengal.	Chambray.
Bengal-stripes.	Clarkana.
Bergamot.	Check.
Bezan.	Check-mak.
Bindiug-cloth.	Chenille.
Birrus.	China-grass cloth.
Blaucard.	Chinchilla.
Blanket.	Chiné.
Plınk.	Chintz.
Bohbinet.	Chitarah.
Pocasine.	Cloth.
Bocking.	Coburg-eloth.
Bombazine.	Cog-ware.
Bonten.	Collar-check.
l3ook-muslin.	Coothay.
Buotee.	Cordillas
Boquin.	Corduroy.
Borders.	Cossas.
Borel.	Cotillion.

Cottonade.	Holland.
Crape.	Huckaback.
Crape-morette.	Hum-lum.
Crash.	India-rubber cloth.
Crepon.	Ingrain.
Crequillas.	Jacouet.
Crinoline.	Jamdari.
Cristale.	Janus-cloth.
Cut-velvet.	Japancse silk.
Damask.	Jean.
Damask-satin.	Jemmy.
Damassin.	Kalmuck.
De bege.	Kennets.
De laine.	Keper.
Demyostage.	Kersey.
Denim.	lierseymere.
Diaper.	lompow.
Diaphane.	Lace (rarieties, see LacE).
Dimity.	Lapping.
Doeskin.	Lastiug.
Doily.	Lawn.
Domestic.	Leno.
Domett.	Levantine.
Dooriahs.	Linen.
Dorsel.	Linsey.
Dorsonr.	List.
Dowlas.	Lorkran.
Drab.	Long-cloth.
Drabbets.	Loonghie.
Drap dété.	Lustring.
Dreaduaught.	Lutestring.
Drill.	Mail-net.
Drugget.	Mucape.

Holland.
aback
Hum-lum.
aber cloth.
Ingrain.
Jamdari.
Janus-cloth.
apanese silk.
Jemm
Kalmuck.
Kemnets
Keper.
lierseymere.
liompow.
(rieties, see Lacs).
Lapping.
.
Lawn
Levantine.
Linen.
Linsey
Lockram.
Long-cluth.
Lus.
Lustring.
Milor
Man-net.
Marseilles.
larsella.
h-cloth.
latting.
Melton.
Merino.
Nillinet.
ed fabrics.
Iohair.
Moleskin.
Mloquette.
loreen.
Mozambique.
Mungo.
Muslin de laine.
Muslinet.
vacarat.
Nainsook.
Narrow-cloth.
Neigelli-cloth.
Net.
il-clath
Oiled silk.
Oi-skin.
Organdie.
Orleans-cloth.
Pack-cloth

Padesoy.
Palampoor.
l'anne.
Paper-muslin.
Paramatta-cloth.
Pennistone.
Percale.
Petersham.
Pile.
pillow.
Pilot-cloth.
Pique.

- P'iquée.

Plaid.
Plain-back.
Platilla.
Plonket.
Plumeta.
Plush.
Poldway.
Polemit.
Polimita.
Pongee.
Poplin.
Pou-de-soy.
Punlon.
Poyal.
Princettas.
Print.
Prunello.
Pudtlie.
Puminm.
Purlah.
Rattanas.
Ratteen.
Ravens-duck.
Razago.
Riblon.
Romal.
Rubber.
Rubber-clotl.
lug.
liugging.
humswizale.
Russia-duck.
Sacking.
Sagathy.
Sail-cloth.
Sarsnet.
Satin.
Satinct.
Satin-jean.
Say.
Sayette.
Seehand.
Selvage.
Sendal.
Serge.
Sergette.

Shag.
Shalli.
Shalloon.
Sheeting.
Shirred goods.
Shirting.
Shodty.
Shot-silk.
Silesia.
Silk.
Silk-shag.
Sof.
Soocey.
Spinel.
Stripe.
Stnff.
Swansdawn.
Swiss-muslin.
Tabaret.
Tabby.
Taffety.
Tambour
Tammy.
Tape.
Tapestry.
Tarletan.
Tarpaulin.
Tartan.
Terry-labric.
Thibet-cloth.
Thickset.
Tieking.
Tickenbergh.
Titlany.
Tinsel.
Tissue.
Tobine.
Toilenet.
Tournay.
Toweling.
Trellis.
Tufted fabric.
Tulle.
Tweed.
Twill.
Unions.
Vadmel.
Velours.
Velvet.
Velvetcen.
Verona-serge.
Vessets.
Vitry.
Wadmal.
Watered goods.
Wincy.
Wire-gauze.
Yasmas.
Yergas.

Fa-ccade'. (Architccturc.) The front or face view of a butilding.

Face. The front, exposed, principal, dressed, or effective surface of an object. The surface from which others are laid ofl or tried, and ly which they are tested as to angle or proportions.

1. (Horology.) The dial of watch, clock, com-pass-card, or counting-register.
2. (Architecturc.) a. The front or broal side of a building. The factade. The front of a wall.
b. The surface of a stone exposed on the face of a wall. The sides are flunks, the upper and lower surfaces are beds.
e. The front of an areh showing the vertical surfaces of the outside row of voussoirs.
3. (Fortification.) One of the parts which form a salient angle, projecting towards the country. See bastion.
4. (Curpentry.) a. The front of a jamb presented towards the room.
b. The sole of a plane.
5. (Forging.) a. The working portion of a ham-mer-licad.
b. The flat part of an anvil.
6. (Ordnunce.) The surface of metal at the muzzle of a gun.
7. (Steam-enyinecring.) a. The flat jart of a slide-valve on which it moves.
b. The flat portion on a cylinder forming a seat for a valve.
8. (Geuring.) That part of the acting surface of a cog which projects beyond the pitch line. The portion within that limit is the flank.
9. (Grinding.) That portion of a lap or wheel which is employed in grinding, be it the edge or the disk.
10. (Printing.) The inked surface of a type. The character of the face for size, style, and proportions gives the name to the type. As to proportions, it may be standard, extended, compressed, heavy, light, ete.
11. The edge of a cutting instrument.

Face-ham'mer. One with a flat face, as distinct from one having pointed or elged peens.

Face-guard. A mask with windows for the eyes, adapted to the use of persons exposed to great lipat, as in glass-houses, forging heavy works, and in the various metallnrgic furnace operations.

Also for workmen exposed to flying particles of metal or stone.

Cohn, an ocnlist of Breslan, made an estimate of the number of workmen in metal who had been injured by fiying pieces, and found that auong 1,283 workmen, 90 per cent had suffered to some extent; 40 per cent had been nuder medical treatment; 59 were permaneutly injured; 21 had lost one eye. He introduced mica spectacles.

Face-joint. That joint of a voussoir which appears on the face of the arch.
Face-piece. (Shipbuilding.) A pipce of wood wrought on the forepart of the knee of the head.

Face-plan. (Architectural drawing.) The principal or front elevation.

Face-plate. (Turning.) A plate screwed on to the spindle of a lathe, and affording a means of attaching the work to be turned; or a place of attachment for a pin which comes against the dug or driver on the work and imparts rotation to the latter.

A true plane for testing a dressed surface.
Fac'et. A little face. One of the small planes which form the sides of a natural crystal ; of a cut diamond or other gem; of a cut-glass ormament or vessel. The facets of diamonds are known as skicw or shitl facets and star-facets. Upper skill-facets are wrought in the lower part of the beacl, and terminate in the girdle; under skill-facets are wrought on the pavilions, and terminate in the girdlc. Starfacets are wrought on the bezels and temminate in the table. See Bhimant.

Face-wall. (Brilding.) The frout wall.
Face-wheel. This is another name for a crown or contrate whecl, which has cogs projecting from the periphery at right angles to the plane of motion. The term is applicable to a wheel whose face rather than its perimeter is made effective, as in the cogwhels cited and in the amexed illustration, which is the ground-wheel of a harvester. The term is also applicd to a wheel whose disk-face is adapted for grinding and polishing. 1 lap.

FAIENCE.

Fa'ci-a. (Architecture.) A flat band projecting slightly from the general surface.
An architrare may have several different faces, t-rmend fucias.

Fac'ing. In exterior covering or sheathing.

1. (Hydiraulic Enyiuecring.) a. Protection for the expmerd faces of sea-walls and embankments. Several different kinds are used, accorling to the facitities and means.

Earth-work.	Thatch-wood work.
Turfing or sodlding.	Wharting.
Pile and stone work.	Stone-walls.

b. A layer of soil over the pudelle, upon the sloping sides of a camal.
2. (Foundiny.) Powder applied to the face of a mold which receires the metal.
The object is to give a fine smooth surface to the casting.

The facing consists of varions materials, economy and the description of casting being taken into consideration.

Meal dust or waste flour.
l'owlerenl chalk.
Ashes of wood or tan.
Charcoal dust.
Loan-stone powder.
lottenstone powder.
An equivalent etleet is produced by lepositing a layer of soot upon a metallic pattern by smokins it in a fire of enrk shavings, or of resin burned in ann iron ladte, or in the flame of a link of a lamp.
3. The front cosering of a bauk by means of ia wall or other structure to enable it to be made steeper than the natural talus of the material.
4. The envering of hrick or rough stone-work with fine masonry, such as sawed freestone or marhe.
Fac'ing-brick. (Euiiding.) Front or pressed brick.
Fag'ot. 1. (Metel.) A bundle of scrap or wrought-iron for working over.
It is usually a buneh or pile of bars wedged together in a hoop. If it be large, a round bar in the center is surrounded by the shorter ones and forms a porter by which the fagot is guided to and from the furnace and underneath the hammer.
Scrap is also fuyoted for heating in the reverberating furnace, for tilting, or for re-rolling.

In fagoting iron for rolling into beams, respect must he had to the disposition of the pieces, so as to bring the iron of the tread, soffit, and web into the most julicious arrangement for the strain it will be required to bear.
$a b c d$ are fagots for beams.
c.f are fagnts tor railway rails in which the portions are of ster!, which becomes the tread, as in g. c is all bar, f has a portion of old rails, cut and built into the fagot.
$h i$ are also fagots for beams with steel faces. See also Beam.
2. A bundle of states. A shook.
3. A bundle of hrush-wood. A fuscinc. See also Gabios; Dike; Filling.

Fig. 1914.

Fagots.
Fag'ot-ed I'ron Fur'nace. (Metallurgy.) A form of furnace adapted for scrap and bar cut up and figuted for releating and re-rolling.

Fag-ot'to. (Music.) An instrument with a reed and mouth-piece like the clarionet, and resembling the hassong.
The alto-fagntto has a compass of three octares, commencing with C in the second space, have rlef: continuing to the C 'second lerger line above the treble stall with their intemuediate semitones. It has sesen keys and key-holes, three on the opbosite sile to that represented.

Fahr'en-heit. The kinul of thermometer used in England and the United States, and named after the inventor. It differs from the Celsins, or centigrade,

Fig. 1915.
 and the Reammer. See Themanmf.trin.

	Fah.	Centigrade, or Celsjus,	Reaumer.
Boiling water .	212°	100^{\prime}	80°
Freezing -	32	0	0

Fai'ence. (Pottcry.) a fine limul of pottery named from Faënza, in Romagna. It was originally made in imitation of majoliea, and afterwards acquired some characteristics. Delft alterwards became celebrated for the manufacture of faience. This ware, having passed through the fire, preserves a eertain amount of pornsity, and is then cevered with a glaze.

The different kinds of faience are produced by the use of common or of fire clay ; the admixture of sand with the clay, as in Persian ware ; the usp of a transparent or of a colored glaze ; of an opaque or
translucent enamel ; and by a combination of these proeesses on the same piece.
Faints. (Distilliny.) The later results of distillation of wash, of low specific gravity, and reserved for redistillation.
Fair-lead'er. A guide for a rope. It may be a Fig. 1916. thimble, crinete, or sheave.

A perforated board, through whose respective loles the varions ropes of romingriggiug are rove to keep them distinct.

Fair-leath'er. (Leathcr-munufucturc.) Leather linished in the natural color or that imparted by the tanning process; free from any special coloring,-black, for instance.

False. A winding or coil of a rope or hawser. In the coil the fukies are a helix, and a range or layer of fothes loms a tier. When the rope is armuged to run free when let go, as in rocket-lines, it is disposed in pratallel bends of one fathom each.

Fal'chion. (Weupan.) A sworl in use in the 13 th century, with a boad blade. willening towards the point, the elge con-
FairLeader.

Fal'con. An old-time picee of ord- nanc, about 7 teet long, having a bore of 3 inches, and throwing a 3 -pound hall.
Fal'co-net. An old piece of orduance, smaller than a falcon, throwing a ball of $1 \frac{1}{2}$ poumds weight.
Fald-stool. A folding stool, or backless seat. It is as old as liameses, and is now commonly called a camp-stool. Fialdistury.

Fall. 1. That part of the rope in hoisting-tackle to which power is applied. One end of the rope is attached to a point of support, say a hook or an cye below the niprer hook of the tackle, and is then rove through the blocks; the end eamied to the winch, capstan, crab, or other hoistiug-engine, is the fill.
2. The amonnt of deseent in a given distance ; as, -
a. The vertical pitch of water at a mill.
b. The inclination of a water-course.

Large and leep rivers run swiftly with a fall of 1 foot per mile, or 1 in 5,000 .

Sinaller rivers and branches require donble the fall, or 2 feut per mile, 1 in 2,500 .

Small brooks lardly keep an open course under 4 feet per mile, or 1 in 1,200 .

Fig. 1917.

Datit-Fall-Block Hook.

Ditches and covered drains require 8 feet per mile, or 1 in 600 .
Furrows of ridges and open drains require a still greater fall.
Fall and Tack'-
le. The fatl is the pulling-end of the rope; the tackle is the blocks with the rope rove through them. See 13 tock ; Tackle; PurChase.
Fall-block Hook. A hook D for a davit-fall block $A B$ released by the action of the cord 1 and link H, when the boat has de-
scended a certain distance, the end of the rope I being secmed on deck. There are other forms. See Davit.

Fall'er. 1. (Cotlon-manufueture.) The faller is an arm on a mule-carriuge, operating the fallerwire, whose duty it is to depress the yarns when the tariage is abont to run back, in order that the yarns may begin to wind on at the botton of the cop and be regularly distributed thereon as the fatler-wire is raised. See Mule. The counterfaller is another wire bencath the yarns, and comerweighted to keep them tant.
2. (Fluex-manufucturc.) A har in the flax-spreading machine, having attacheel a munber of vertical neelles, forming a comb or gills. A gill-bar. The office of the gills is to simmate the action of the human fingers in detaining to some extent the line as it passes to the drawing-roller. See Spreader.

The term fuller is derived from the motion, the gill being raised and lowered so as to alternately detain and release the line.

Fall'er-wire. 1. A horizontal bar by which the rovings, slubbings, or yarn are depressed below the points of the iuclined spindles in a slubbing-muchine or mute, in order that they may be wound into cops upon the spindle in the backward motion of the billy, or mule-carriage, as the case may be. See Slubbing-machine; Mule.
2. A device in the silk-doubling machine for stopping the motion of the hobbin if the thread break. The wire is hung by its eyelet end to the thread, and with the breakage of the latter falls upon the lighter arms of it balance-lever and actuates a detent.

False. A term used as to constructions, or parts of a temporary or suplemental character.

False-core. (Fuunding.) A part of a pattern which is nsed in the undercut part of a mold, and is not withdrawn with the main part of the pattern, but removed by a laterad dratt subsequently.

False-keel. (Shipbuilding.) Timbers worked on to the main or true keel, and intended, -

1. To prevent leeway:
2. 'To protect the main keel in case of grounding.

False-keel'son. (Shipbuilding.) One lying longituclinally above the real one.

False-key. A key roughly made of a bent slip adapted to aroid the wards of a lock. A pick-lock:

False-pile. (Pite-driving.) An additional leugth given to a pile after driving. A temporary prolongation at the upper end, when the pile has passed beyond the immediate reach of the monkey, is called a sett.

False-rail. 1. (Curpentry.) A thin piece of timber inside of a curved heal-rail.
2. (Shipbuilding.) A facing or strengthening rail fayed to a main rail.
False-roof. (Carpontry.) The part between the ceiling of the urper chambers and the roof-covering.

False-stem. (Shipbuildiny.) One fayed to the forwarel part of the stem.

False-stern. (Shipbuildiny.) False stern-post, etc. Supplemental structures or timbers accessory to the main parts or pieces.

False-works. (C'ivil Engineering.) Construction works to enable the erection of the main works. Among false-works may be cited cotler-dans, bridgecentering, scaflolding, etc.

Fan. 1. A device waved or rotated to canse a cireulation ol air.
The choury, or fly-flapper of the phans of India, is made of the bushy tail of the Thibetan yak.

Fans made of ostrich and other feathers were commonly used in Egypt, for the purpose of setting the
air in motion, and also for brushing array flies. The honor of attending the king in the capacity of fanbearer was conferred upon his sons, and we see them in many Egyprian paintings and sculptures, with the insignia of princes and carrying the flabella, a wing or bunch of feathers on the end of a long handle. Among other paintings may be specially cited that of the triumph of Rameses 111 ., the great Sesostris of Herodotus, about 1355 B. C. The flabellum is shown in the tombs of Beni-Hassan, Thebes, and Alabastron, of dates from 1706° to $1355 \mathrm{~B} . \mathrm{c}$. in more humble life, men are represented keeping the llies away from the drink prepared for the reapers in the field. See Bellows; Blower; Puskah; Vextilator: anil list under Air-appliances.
"Cape hoc flabellum, et ventulum lurie sic facito," - Take this fan, and give her thus a little air.

Fans made of ostrich aud other feathers maintained their holl apon the people, and were common in the reign of Elizabeth, being ornamented with gold and silver. According to Evelyn, our modern paper fans were introduced by the Jesuits from China.

The common palm-leaf fan of this country is innported from the East and West Indies, and is made of a portion of the leaf and stalk; the leaf being hound on the edges with strips and thread. The Japanese fan is made of hamboo and paper. A stalk of hamboo forms the handle, is split into a number of fibers which are displayed in fan shape and fastened in position while paper is applied on each side. They are then painted and inseriherl with scenes rural and humorous, and have mottoes which do not conrey any rery distinct impression to us as a people.
Hechanical fans for household uses are driven by clock-work or weight, are rotary or oscillating. On a larger scale, they are used for urging tires and

Fig. 1913.

Fan-Blowers.
for $\dot{\text { ventilation }}$ (see Blowfr), and for purpose's of cleaning grain. See Fan-sisg-mill.
2. The small vane which turns the cap of the smock-mill on its axis, to keep the sails presented to the wind.
Fan-blow'er. A blower in which a series of ranes fixed on a 10 -
tating shaft creates a blast of air for forge purposes, or a current for draft or ventilation. In the example (1 , Fig. 1918), the machine is applied to remoring shavings from the cutters of $1^{\text {laning-machines. }}$ The rotation of the fan, hy belt and pulley, in its box a, causes a downward draft through the pipe b, connected with which are the horizontal pipes $f f$ and rertically alljustable pipes $\varepsilon \varepsilon$, haring flaring mouths directly orer the cutters d of the planers; the shavings are drawn upward through the pipes ε, and carried through $f b$, when, passing through the hower, they are driven through its mouth ε into a chute which takes them to an apartment whence they may be removed as required for fuel.
B (Fig. 1918) is intended for intensifying the draft of a furnace d; the products of combustion, being caused to take first an ascending and then a descending course through the curted pipe b, are expelled at ε. Blowers are plenum (pressure), or racuum, which is equivalent to exhaust ; either form is used for the rarions purposes of ventilation, air-draft for furnaces, etc. See also Blower; Faxsixg-mill.

Fan'cy-line. (Jautical.) A down-laul line frassing through a block at the jaws of a gaff.

Fan'cy-roll'er. (Carding-machine.) One placed immediately in adrance of the doffic, and prorided usually with straight wire teeth, its function being to loosen up the wool on the main cylinder so that it may be taken up with facility by the doffer.

Fan'don. A large copper ressel in which the "hot process" of amalgamation is conducted, blocks of copper being drawn around like the porphyry block's in an arrastra.

Fane. A weathercock. A ranc.
Fang. 1. (Bining.) a. A niche cut in the sile of an adit or shaft to serte as an air-course.
b. An air-pipe of wood in a shaft. An air-main.
2. A projecting tooth or prong in a lock, bolt, or tumbler.
3. (Vautical.) a. The ralre of a pump-box.
b. The bend of a rope.
4. A long nail.
5. A projecting claw, as that on the reverse of a helt plate, which passes through the belt and is clenched or riveted at the rear.
6. The tang of a trool.

Fan'ion. (ltal. gonfalone, a standard.) A small flag for a sorveying-station.

Fan-light. (-Architcture.) A semicircular transom window.

Fan'ner. A blower or ventilating-fan. See Fascing-mill; Blower.

Fan'ning-mill. A machine for cleaning chaff from gain by a blast of air.

Fig. 1919.

The fans mentionel in the Bible were used for winnowing or cleaning grain. A floor of beaten earth was prepred in a situation exposed to the wind, and the grain and chaff were thrown up by a shovel. The fan was for raising an artificial blast, and was evidently a hand inplement. "Hlis fan is in his hand" (Hatt. iii. 12). Wimorred with the shovel and the fan (lsaiah axx. 24). The machine in its simplest form is a rotary shaft with llapping breadths of canvas suspended from the arms.
Fig. 1919 represents the ordinary famingr-mill, having rotating arms with vanes to produce blast, a lopper for the grain, and a series of sievess of varying lineness for sorting the grain into qualities and keeping it longer exposed to the blast. The famingmill forms part of the Thidshel: and Sepabatob (which see) and of the clover-huller. Sir Walter scott relates, in our of his novels, that the religions freling of some of his countrymen was greatly shocked at an invention hy which artificial whirlwinds were producen in ealm weather, when it was the will of Goul for the: air to remain still. As they considered it a moral duty to wait patiently for a natural wime to separate the chafl from their wheat, they looked upon the use of the machine as rebellion against (iod.

Fan'uing-out. Spreading out the sheets of a pile of paner by grasping a comer and giving a dexterons twist. It is to facilitate comoting.
Fan Steam-en'gine. The action of this steam is the inverse of that of the fan. The onter amman easing receives steam from the boiker and discharges from its imner surface in tangential jets upon the seoop-shaped blades which are attached to a rotating slaft.
It is one form of the rotary steam-engine, and may bee compared to the inward-flow turbine.

The outward-flow turhine has also its congener in a form of rotary stean-engine, in which the stean passes through a central pipee and out at the periph. ery, impinging by direct pressure upon the curved buekets.

Numerous are the resemblances between this type of rotary steam-engines and the reaction water-wheels or turbines. The constructive features of the Wolipile of Hero and the Barker water-wheel are identical, and the family features are still visible in the rotary steam-engiu's, rotary-pump, and waterwheels. This is not extraminary, when it is considerel that the impact or direct pressure of a fluid is in each case exprtet upon a body which, by its construction and relation, is confinel to move in a curved patl, couferring a rotary motion upon the axle to which it is attached.

Fan-tail. 1. A form of gas-burner in which the burning jet has an arched form.
2. A kind of joint.

Fan-vault'ing. (Architceture.) A form of arching in which the ribs of the arch diverge from the impost like the sticks of a fin.

Fan-ven'ti-la'tor. The oldest known form of this device is the corps of worker bres arranged on each side of the entrance hole, a little within the hive, engaged in incessantly vibrating thuir wings so as to cause a circulation of air into, throngh, and out of the hive. An ingoing and outgoing curvent is establishel at the hole, as has been proved by holling filaments of cotton at the aperture.
The fon as a mechanical ventilator appears to have been invented by Dr. Desagnlier, 1734. II is fan (A, Fig. 1920) was a wheel 7 fret in diameter, 1 foot wide, and had 12 vanes which approached within 12 inches of the axis, around which was an opening 18 inches in diancter. The vanes rotated
as near as possible to the calse, which was lined with blanket as a packing. The case was consentric, and had an eduetion and an eduction pipe, the ones axial, the other pes. ripheral.
Such a wheel was used above the ceiling of the British House of Com. mons from 1736 to 1817.

1)r. Desagulier's fan was concentric with its case, but an improvement was to make it eccentric.

Fairbairn and Lillie's eccentric fan is shown at B; s is the shaft, b the case, v the vancs, c the elluction opeming, o the discharge. The point x is a shoulder which acts as a cut-ofl in conncetion with each passing vane, and contines the strean of combensed air to thue eluction passage. See ahso Ventilatus.

Fan-wheel. This usnally consists of an armed slaft with wings or braters, and revolves in a case. It is used in grainecheners, wimowing-machines, howers for furnaces, whe, amd is the most common device for oltaining a blast of air for any purpose. The air is chawn in at the central opening and dis. charged at the tangential chute. Whare great force is required positive devices are used, partaking of the nature of pump. The volute-wheel is also used for a similar jurpose. See Fanning-mll ; Bloner; licowing-Afpabates.
Fan-win'dow. (Architccture.) A semicircular window witl ranlial sash.
Far'an-dams. (Fubric.) A mixed fabric of silk and woel.

Far'cost. A Senteh trading-vessel.
Fare-box. A place of deposit for fares in streetcars. it has a receiving aper tare, wintows at which the monry or ticket may be seen by the passenger inside and the driver outside the car; a series of slanting plates, whieh allow the money to drop, but prevent its abstraction ; a plate on which the fare falls, and which is tiltel to discharge it into a locked box heneath.
Fas'cet. (Gluss.) An iron-wire basket on the end of a roll, to carty the bottle from the howing-rod or the mold to the leer.
A rod inserted into the moutl of the bottle for the same purpose is also called a fuscet.

Fas'ci-a. A flat architeetural memher in an entahlature. A broul fillet.
The architraves of some orlers are divided into fuscias.

Slaweson's Fare-Box.

Fas-cine'. A cylindrieal bundle or fagot of brush-wood used in revetments of earthrorks. They vary in size, say from 6 to 18 feet in length, 6 to 9 inches in dianneter, and are bound with withes every 18 inches. When the limbs are stouter and longer than usual, it is called a saucissc or saucisson.

A gabion is a basket for earth; not a bundle of brush.

In civil engineering, fascincs and gabions are used in naking sea and river walls to protect shores subject to washing; or to collect sand, silt, and mud to raise the bottom and gradually form an island, either as a breakwater or for cultivation, as in Holland.

Fash'ion-ing-nee-dle. (Knitting-machine.) One of the pins or fingers emplored to take loops from certain of the bearded needles and transfer them to others for widening or narrowing the work.

Fash/ion-piece. (Shipbuilding.) One of the pair of cant frames which form the exterior angle of the stern-framing; between them extends the wing-transom, which is the base-piece of the coun-ter-timbers.

Fast. (Nautical.) A mooring rope or hawser, securing a vessel, and named from its position; as, hecul, bouv, breast, quirter, or stern fasts, as the case mav be.

Fast-and-loose Pulleys. (Machincry.) A derice for disengaging and re-engaging machinery. One pulley is fast to the shaft, the other rms loosely thereupoz. The band is turned on to either, as the work requires.

Fas-tig'j-um. 1. The pediment of a portico.
2. The comb or rilge of a roof.

Fast-pulley. (Muchinery.) One keyed to the shaft so as to revolve therewith. In contradistinction to the loosc-pulley, which is loose on the shaft, and to which the belt is transferred when the rotation of the shaft is no longer desired.

Fat. (Printing.) Copy which affords light work, as blank or short pages or liues, leaded matter, rule-and-figure work, poetry, and such like matter prolitable to the compositor.

Fa-tigue'. The fracture of a bar owing to the repeated application and removal of a load which is considerably belor the hreaking weight of the lar. To futigue is ascribed the breaking of car-axtes by the constant repetitive blows and strains incident to their duty.

Fat-lute. A mixture of pipe-clay and linsecd oil for filling joints.

Fau'cet. 1. A form of valve or cock in which a spigot or plug is made to open or close an aperture in a portion which forms a spont or pipe for the

Fig. 1922.

Screw-Plug Faucet
discharge or passage of a flnid. The ordinary beer-cock is well known. Fig. 1922 shows a less usual form, in which the central aperture is closed by an elastic packing at the foot of a screw-plug, and
 opened by the rais ing of the lattes. Fig. 1923 is a modified form having some sinilar features.

2 . The enlarged end of a pipe to receive the spigotend of the next section.

See under the following heads :-

Auger-faucet.	Gage-fancet.
Ball-cock.	Grease-faucet.
Basin-faucet.	Hot-water faucet.
Beer-faucet.	Measuring-faucet.
Bib.	Molasses-gate faucet.
Blow-off cock.	Pet-cock.
Poring-faucet.	Pit-cock.
Botlefaucet.	Robinet.
Cork-faucet.	Rotary valve.
Diaphragn-faucet.	Spring-faucet.
Filter-fauret.	Stop-coek.
Four-way cock.	Threeway cock.

Fau'cet-bit. A cutting lip and router on the end of a laucet. The fancet is rotated to cut the hole in the head of the cask, and then the harrel of the faucet immediately necupies the aperture so male. A boring-faucet.

Fau'cet-fil'ter. One having a chamber for fil-tering-material.
Fau'cet-joint. 1. An expansion-joint for uniting two prarts of a straight metallic pipe, whieh is exprosed to great variations of temperature.
2. One form of breech-loader in which the rear of the hore is exposed by the turning of a perforated phig. See Fire-atim; Class B, Div. 5.

Fau'cet-key. One fitting upon a concealed sullate projection on the plug of a faucet.
Fau'cet-valve. One in which the puppet or phev-valve is operated by a bandle of the fancet order.

Fauld. The tymp-areh or working arch of a furnace.

Fault. (Mining Engincering.) The dislucation of a stratum or seam by which the continuity is destroyed and one portion hecomes relatively lower than the other. Known also as shift, slip.

Fausse'braye. (Fortificutiun.) A low rampart or counterguard to protect the lower part of the main escarp.

Fau-teuil'. An easy, upholstured arm-chair.

Fay. A shipwright's term for fitting one piece of timber or plank to another.

Joining two pieces so as to make a flush surface.
Fay'ing-sur'face. That surface of a plate or angle-irou which is to be against the object to which it is to be riveted. The fiening-surface of the sidearm of the angle-iron of a ship's side, and the inside or fayiza-surface of the plate, are in contact.
Fear'naught. (Fabric.) A heavy, shaggy, woolen fabric, used for seamen's coats, for lining lort-holes aml the doors of powder-magazines. Dreulnaught.

Feath'er. 1. A slip (b) inserted longitudinally into a shalt or arbor, and projecting as a lin therefrom so as to fit a groove in the eye of a whepl whieh may have a longitndinal motion on the said shaft, but no rotation. A spline.
2. A wedge-shaped key between two semi-cylindrical plugs (a) placed in a bored hole in a stone, and driven in to rend the stone.
3. A tongue on the eulge of a board.

Feath'er-ing-pro-pel'Ier. An invention of Maudslay, Loudon, in which the vanes of the pro-peller-screw are arjustable, so as even to be turned into the plane of the propeller-shalt and offer no resistance when the vessel is under sail and the propeller not used.

Feath'er-ing-screw. See Feathering-limopellef.

Feath'er-joint. A mode of joining the edges of boards ly a fin or feather let into opposite mortises on the eilges of the boards.
Feath'er-ren'o-va'tor. A machine in which

4. The angular aljustment of a propeller blade or of an oar in rising from the water.
5. A marrow strengthening strip on a structure. A longitudinal rib on a shafting to resist flexion or fracture.
6. The plumage of hirds, as well as the tail and wing feathers, are used lor certain purposes after undergoing cleansing and bleaching processes.
Ostrich fenthers are procured from Africa, those plucked from live or recently killed birds being the best.

The feathers are tied together in bundles; rubbed in tepid water and soap to free them from grease; washed in pure lot water; dipped in a heated solution of Spanish white; washed; steeped in water tinted with indigo, to correct the yellow color; sulphured; dried.

The ribs are rubbed to render them pliant, and the vanes curled by pressure with a blunt knife.

They are dyed rose-color by safflower and lemonjuice; red by Brazil wood followed by cudbear; blue by indigo ; yellow by turmeric; alum is the usual mordant.

The heantiful aniline colors are fast superseding the others for superior work.

Feath'er-edged. Sail of boards. One edge is thinner than the other. Usell for weather-boarding.

Feath'er-edge File. A file with an acute ellge; the cross-spetion of the file being an isosceles triangle with a short base. A kriffc-file.

Feath'er-ing-float. The paddle or float-board of a paddle-wheel, so arranged as to turn on an axis to present its broad side to the water at its lowest submergence, hat to turn its edge to the water in entering and emerging.
Feath'er-ing Pad'dle-wheel. A wheel whose floats have a motion on an axis, so as to deseemel mearly vertically into the water and ascend the same way, aroiding beating on the water in the descent and lifting water in the ascent. The loss of power from these canses is not as greatas is commonly supposed. Some floats are made to feather on axes paralfel to that of the wheel, others on axes radial thereto. There are numerons plans.
old feathers nay be scalded, purified, and dried, so as to remove effete matter from them. One example among many may be given. Warm or cold air is fored from a chimney through conducting passages in such commection with a boiler and steampipes that the air may be moistened more or less with steam as reguired. Hollow bearings for the renovating cylinder serve as couplings between the central pipe and the draft pipe.
Feath'er-spring. (Gun-naking.) The searspring of a gun-lock.
Feed. 1. The motion or action which carries stutf torward to the machine ; as, -
The eloth to the neelle in a sewing-machine.
The board to the planer, etc.
2. The motion of a tool towards its work; as, The auger, bit, or drill into the olject.
The cutter on the slide-rest of a lathe to or parallel to the work suspended on the centers, etc. 3. The supply of material to a machine ; as, The water to a stean-boiler:
The grain to a run of stones.
Blanks to a coining-press, or punching-machine. Eyelets or planchets to the appropriate machines. Wool or cotton to a carding-machine, etc.
Feed-bag. A nose-bag for a horse or minle, to contain his noon-day feed or luncheon.

Feed-cloth. (Fiber.) The apron which leads the cotton, wool, or other fiber into the cleaning, lapping, earding, spinning, or other machine.
Feed-cut'ter. A machine for cutting straw, hay, or cornstalks into short feed or chaff. See Straw-cutter.
Feed'er: An auxiliary or a supplying part of a machine, that whieh leads along the stult being operatel upon.

1. (Hydraulic Enginecring.) A water-course, natural or artifieial, carrying water to a canal or reservoir. Obviously, the principal feeder is at the summit level, and it is commonly supplicd from a reservoir.
2. (Mining.) The side branch of a veiu which passes into a lode.
3. (Sewing-muchine.) That part (b, Fig. 192s) which carries the cloth along the length of a stitch between each penetration of the needle. See Sewingmachine Fefid. The illustration shows the Wilson four-motion feed.
4. (Machinery.) a. A toothed or binding wheer which carries the plank into the planing-machinc (a, Fig. 1928) ; or a feed for gate-saws (c, Fig.

Fig. 1928.

1928), in which a reciproeating arm is provided with a dog to engage the rim of a wheel on the axis of the roller beneath the log-carriage, and so aldvance the \log to the saw a grailnated amount at each rise of the saw-gate. An aprou of a blowing, cotton-cleaning, lapping, or earding-machine, etc.
b. That motion or combination of parts which carries and directs a blank or rod to the place where it is operated upon. Such are the feeders and feed-motions in machines for making wood serews, pins, eyelets, hooks and eyes, etc. Such also are the motions by which planchets are fed to the coining-press; eyelets and clasps to the machines for attaching them to garments; pins. needles, and hooks and eyes to the machines which stiek and paper them.
5. The nail-plate feeder has an intermittent oscillating or semi-rotary and forward motion to present the plate to the eutters so that the heal of the nail may be taken from the respective edges alteruately.
6. The grain-feeder which forwards the opened sheaves into the throat of the thrasher ; or the grain into the eye of the millstone; or the grain and

Nail-Plate Feeder.
chaff from the hopper to the tiddlle of a winnowing. machine ; or the grain from the bin to the manger of sheep or other stock. See Fig. 1930.
7. (Printing, ete.) A device with fingers which take the top sheet from a pile and lead it into the
press where it is printed, finled, or what not. Also a deviee by which blanks are taken successively from a pile and carried into an en-relope-maehine, or paper-bag or box machine, as the case may be.

Some printing-presses and envelope-machines have an aspirator or preumatie eontrivance by whieh the upper sheet of the pile is picked off and led into the machine. Comly's patent, 1853. See also Exichore-machine. See "Ringwalt's Dictionary

Fig. 1930.

Stock-Feeder.
 of Printing," Philadelphia, 1871, pq. 224, 225.
The usual mode of feeding blanks for envelopes from the pile to the folders is by a plunger with a gummed surface ; this deseends upon the hlank and moves away to the folding-apparatus, where it leaves the blank ready gummed on the end and bottom fitps.
8. A device for supplying steam-hoilers with water in graduated quantities, or as occasion may require.

Automatic boiler-feeders act by means of floats upon the surface of the water in the boilers.

One of the illustrations (d, Fig. 1928) shows a floating ball on a lever to whose other end is a valverod which is lifted when the hall deseends below its normal height; floating on the water at the proper level.
The other form (c, Fig. 1928) is only intended lor supplying water from cisterns at a considerable elevation.
Feed-hand. (Gearing.) A rod by which intermittent rotation is imparted to a ratchet-wheel.
Feed-head. 1. (Stcam.) A cistern containing water and communicating with the boiler of a steamengine by a pipe, to supply the boiler by the gravity of the water, the hight being made sufficient to overcome the pressure within the boiler.
2. (Fonnding.) Also called dead-head, or simply head. The metal above and exterior to the mold which flows into the latter as the easting contracts, and also serves to render the casting more compact by its pressure. Also called a riser, and the metal whieh oecupies it a sullaye-picec.
Feed-heat'er. 1. A drum or chamber in which
feer-water for the boiler is heated by the exhaust steam.
2. A biler or kettle for heating food for stock.

Feed'ing-en'gine. (Steam.) A supplementary engine for feeding the boiler, when the main chgine is stopped. A doctor.

Feed'ing-head. (Founding.) An opening in a

Boiler-Feeder.
mold up which the metal rises, and which supplies motal as the easting contracts
Feed-mo'tion. That contrivance in a machine by which the material under treatment is advancel.

Fig. 1932.

Frat-Pump of Marine Enginc.

See Fexd.
Feed-pipe.
(Steam-en. gine.) The pipe carrying water to the boiler.
Feed.
Feedpump. A force-pump driven by hand, by doc-tor-engine, or by the encine itself, for supplying to the boiler a guantity of water equal to that removedin the form of steam, by the brinepump, the blow-off or muld valve, or other sources of outlet.

In high. pressure engines it takes water from the
heater; in condensing engines from the hot-well.

In locomo. tivesit usually takes the form of the Giffiart injector. (Sioe 1njectori.) In the example
plag A with cross cells $\alpha \alpha$ is constantly reciprocated and carries water from B at each passige, when the kevel in the boiler falis below the top of the plunger.
The focl-pump of a marine engine has a plunger a attached to the cross-head b of the air-purnp, and working through a stulfing-box in the pump-barrel $e . d$ is the value-bux attached to the side of the hot-well ; e is the suction-valve through which the water is drawn from the hat-well into the pimp by the rise of the plunger. At the descent of the plunger the water is divien out at the valve f along the feed-pipe g to the boiler, unless the regulating valves or cocks to the boiler should be quite closenl, when it raises the loaded ralve h and returns to the hot-well hy the aperture k. The load per square inch on the valve h must somewhat exceed the load per square inch of the steam in the boilpr.

The lower portion of Fig. 1932 shows the feedbump of the Cornish-engine, which has also a safetyralve, so that no injury may arise by shutting ofl the feed when the pump is at work.

Feed-rack. A stork-leeding device with graintrough and hay-rack under shelter, which sometimes is extented to the stock also. In the example, the sheel' are intended to be inside, and the hay introducrel into the racks from the outside. The shed is

mate in sections to admit of removal on a wagon, and is placed on runners for moventent in the firhl. The feed-troughs are opened on the outsile for the introduction of hay, which is accessible through racks on the inside.

Feed-screw. (Lathe.) A long screw employed to implart a remplar motion to a tool-rest or to the work; as the feel-screw in the bed of a lathe, which maves the screw-eltting tool.
Feed-wa'ter Ap'pa-ra'tus. Ap antomatic device for supplying steam-boilers with fred-water. Of the very large number of devices for this purpose, many agree in one particular. A wertieal pipe leading from a reservoir of water enters the top of the boiler, and its lower open end is at the lowest allowable level. In its normal condition the pipe is lull of water, but when the level of the water lalls below the level of the open foot of the pipe, steam enters the latter and water flows out till the foot of the pipe is again immersed. In some cases the steam is matle to give an alarm at this point of depression of the water-level. See Low-water Alams.
Other forms of apparatus have valses operated by Hoats. See Bollem-feeder; Feedpump, etc.
A form of feed-water apparatus by which water is taken on board the tender while the locomotive and train are in motion is adopted on some railvays in the United States anl in England. On the Hudson River Railway, for instance, at Melrose, is placel hetween the rails of the track a trongh 1,200 feet long, 18 inches wide, 15 inches deep, anil holding 16,000 gallons of water. The tender has a pipe with a nozzle pointing forward, and capable of being raised and

FELLING-MACHINE.
lowered. The train running at full spreed, the nozzle is let down so as to pass two inches below the surface of water in the trough, and the water is thereby forced through the nozzle into the pipe aud thence to the tender.
The plan was iuvented and patented by Augus MeDonald of Virginia, 1854, but was first introduced in Enyland.
Feed-wa'ter Heat'er. A device for leating the feed-water for high-pressure engines ty passing it through a clamber traversed by a coil of pipe rarryiug the exhanst steam.
Feed-wa'ter Pump. See Feen-pemp.
Feed-wheel. A continuously or interuittingly revolving wheel or disk which carries forward an olject or material, as in the examples, where
B represents the feed-wheel as applicil to a lampwick.
A, a binding feed by a slotted pawl on a flange of the wheel: this is similar to the cramp-feed, common in one form of saw-mill.
E is one form of sewing-machine feed. The lever Leing reciprocated at one movement, it clanj]s the

Fig. 1934.

Feed-Wheels.
block against the wheel and turns it, and on its return motion allows the block to slip in its seat in the inner periphery of the wheel.
D is a feed-whecl to regulate rate of passage of the seed from the hopper of a seeding-machine.

Fell. 1. (Metallurgy.) The finer portions of leat ore which fall throngh the meshes of the sieve when the ore is sorted by sifting.
2. (Wencing.) The end of a web, formed by the last threal of the weft.
3. The skin of a heast with the wool or hair on.
4. (Seucing.) A form of hem in which one edge is folded over the other and sewred down; or in which one edge is left projecting and in sewed down - ver the previous seam.
5. To cut down trees.

Fell'er. (Scuing-machine.) An attachment for making a felled seam, i. e. one in which two elges being run together are folded owir and stitelud.

Fell'ing-axe. One specifically adapted for cut-
finy down timber, in contradistinction to an axe for loyying off, buttiny, loppiny, hewing, etc. See Axe.

Fell'ing - ma-chine'. Une for cutting down standing timber. In the example, the vibrating

Fig. 1935.
Nㅗㅇ․

head has chisel and spur cutters, which are made to cut into the tree by the oscillation of the lever and the feed-movement of the carriage.

Other forms of machines for this purpose bave gangs of augers, saws which cut kerfs from both sides simultaneously, and so on. It would ajplear that the contrivers have dropped but few trees, or that they have profited but little by their experience.
Not content with the sernoia trees which lay prostrate in the Calaveras grove, California, some enterprising vandals determined to Jell one, which they did by using pump-augers, boring all around

Fig. 1936.

The Calareras Redwoorl (Sequoia Gigantea)
towards the center. The tree was 92 feet in circumference and 300 feet in light. It stood so plumb that when it was cut elear by the angers it stood upright and lad to he upset ly wedges. The stump was then adzed ofl for a dancing-floor.

These trees are situated about seventy-five miles
east of Stockton, at an elevation of 4,700 feet above the level of the sea. The grove contains 92 trees, ten of which are 30 feet or more in diameter, 82 varying in diameter from 15 to 30 feet. In hight they range from 150 to 327 feet, the tops of many of the larger having been broken off by the wind or snow. The age of the trees is supposed to vary from 1,000 to 3,500 years.
Fell'ing-saw. This has a taper blade abont $6 \frac{1}{2}$ feet long, with gullet-teeth, and operated like the cross-cut saw by a man or men at each end. The

Felling-Saw.
handle at the wide end is fixed by an iron bolt and wedge. The handle at the narrow end is calculated for two men, and the saw is held in this handle by a wedge which is driven out when the saw is to be removed from the kerf. Weilges are driven into the kerf to prevent the blade from being jammed, and the saw is withdrawn from the kerf endways.

Fel'loe. The rim of a wheel or one of the annular segments thereof. See Felly.

Fel'ly. (Vehicles.) A segment of the rim of a wooden wheel. When the perimeter is in one or two portions of bent stuff, it is a rim, or made of two half-rims. Felloe.

Fel'ly-au'ger. A hollow anger for fashioning the round tenon on the end of a spoke. A podauger for boring the hole in the felly to receive the spoke, or the holes in the ends for the dowel-pins.

Fel'ly-bend'ing Ma-chine'. A machine with a segmental or circular former around which fellystuff is lent to a curved shape and held till it has cooled and dried in its assumed shape.

Fel'ly-bor'ing Ma-chine'. One having a vertically adjustable boring apparatus attached to an ordinary trestle, and with a clamp to hold the felly

Fig. 1938.

Felly-Boring Machine.
in position. Stops on the adjustahle rest against which the bit-holder brings up limit the depth of the holes. At the front of the vise-block which
holds the felly are two guide-irous, to keep the same in position when dowel-holes are bored.

Fel'ly-coup'ling. A box for enclosing the ad-

Fig. 1939.

Felly-Coupling.
jacent ends of fellies in the rim of a wheel. The sectional block is ex. pranded by the taper screw to expand the felhes and tighten the tire.

Fel'ly-

dress'er.

machine for
Fig. 1940.

Felly-Dresser.

dressing the erlges of fellies, the wheel being chucked upon a spindle I above so as to bring each part of the: rim of the wheel in turn to the revolving cutter 1). To dress the periphery of the rim, the wheel is chucked on the spindle E.

Fel'ly Saw'ing-ma-chine'. A machine for sawing stuff into fellies. The block is placed on a seg. mental bed which oscillates on a center and brings the stuff against a pair of gig-saws, which are gaged

Fig. 1941.

Felly-Sawing Machine.
at a distance apart which determines the side width of thespoke, while the distance they work from the
center of oscillation of the swinging frame determines the radius of the circle of which the felly is an are.

Felt. 1. (Fabric.) Fur and mool fibers have barbed surfaces inclined from the root towards their tips. Under the influence of friction and heat these barbs spread out from the main fiber, and, like the tendrils of a plant, catch hold of other fibers and eling to them. When a mass of such tibers are disposed in all directions, they readily interlock and consolidate into a compact fabric. As these barbs all incline in one direstion, the fibers can readily work into a mass of tibers, partially felted, butend foremost. This is called sizing, and is produced in napping hats.

Felt prohahly preceded woren fabrics. In Central Asia, the home of the argali, from. whence the domestic sbeep has probably sprung, the elothing and tents of the people are yet, and have been since the first reenrded times, felted fabrics. The latticed huts referred to hy Herodotus and Eschylus are cosered with felt, of which also the flapping screen which answers for a door is made. See If agos. Marco Polo (thirteenth century) describes them fully. Klaproth describes them as of goat's hair (see Haircloth), and having a shaggy villus on the outsile. The Chinese tmveler, Chi-fa-hian, who risitel India in the fourth century, describes the people of Chen-ehen, who lived about the Lake of Lob, as wearing ilresses of Chinese cut, but made of felt. Felt covered the funeral pile of Hephrestion, whose obsequies were so splendidly celebrated by Alexander; Xenophon says that felt was used to cover chairs and conches; the Medes also used felt for sacks.

The word felt is alliell to the Greek pilos and Latin $p i^{\prime \prime} u$, from a root word which neans to compress. The Greek worl pilotos - felted - comes straigely near the English pilut-cloth in name and meaning, not but that the latter is woven before being thickenel by the act of compression (Latin, cogr, wactus, whence coactilis).
"Lanæ et per se coactæ restem ficiunt."

Pliny.

The principal use of felt among the Greeks and Romans was in the minufacture of caps and hats. (See Hat.) The art of felting no doubt passed from Central Asia into Greece. In the time of Aristotle, hesides the felt hats (pelasi), the helmets were lined with felt (pilos) or sponge.
The mantles of Circassia and Phrygia to this day are heavy, stiff, and rain-prool. Colonel Leake deseribes a postilion's dress in Phrygia as a cloak of white camel's hair half an inch thiek and stiff enough to stand alone when set on the ground. It had neither sleeves nor bool, but boles for the hand and projections like wings on the shonlders to turn off the rain.
The Armenians of Schamachi lead a nomadic life in morable huts constructed of wieker-work covered with felt, and with mits made of reed-grass.
The Nogai Tartars of the Caspian hare similar sh iters.
The batters attribute the art of felting to Clement. The hatters are a very modern guild, and cannot antedate their orler beyond the year 1400 .

Dr. Hooke lectured on felt-making before the Royal Society, 1566. - Pepys.
The mechanical features of the operation of felting are derived from the jaggell character of the edges of some animal fibers, which enables then to pass in one direction, that is, root first, but opposes their withdrawal. The most familiar illustration of this
feature is an awn of barley, a beard of wheat, or a head of grass of some kinds. These, as we all know, when introdnced but-first between the wrist and the sleere, will crawl up the arm and strongly oppose withdrawal. Tbe teeth are presented towards the point, and resist a force applied from that direction.

If we take a human hair, hold it fast by the rontend, and draw it gently between the finger and thumb, it passes szoothly and withont sensible interruption; but if we reverse the direction of motion, a sensible crepitation is experienced. If we gently press a hair between the finger and thumb, and give it a rolling motion, it will adrance root first, whatever may be the position of the root in respect to the two rubbing surfaces. A fiher of wool operates in the same way, moving root first ; so do the lairs which are adapted for felting when siuuilarly treated.

The jagged structure is visible in the beard of wheat and barley, and the microscope reteals it in the bair and wool referred to.

It wonld be interesting to introduce various other examples of hair and wool, as seen under the nieroseope, but our limits forbid. a, in the illustration, shows the appearance under a mieroscope of a filer of Saxony lamb's wool somewhat less than Tino of an inch in diameter.
f shows the appearance of rablithair under the microscope, and b bearer-down, whieh has a diameter of about
 चौण्रि of all inch. c, d, ε, show musquash, mutria, and hare's fur. They all show the jagged edge which confers upon them the characteristic felting quality.

Wool in the yolk, with the batural grease (suint) adhering to it, will not felt, because in this state the asperities of the fiber are filled and smootlied over, just as oil destroys the action of rery fine files. Fine wool that has been scoured has strong tentency to mat or felt together, and must be oiled to enable it to be carded and spun successfully:
The hair of rabbits, lares, and sorne other animals, is used in Pinssia as a felt fomndation for bowls, dishes, plates, etc. It is brought to shape and then rarnisherl; when conuplete, the utensil resembles papier-maché or varnisbed leather, and is light and durable.

English patent 1,403 of 1862 cites the us of the silky down of typher or bulrush. The down is selarated from the seeds by a willowing process and blown over into a chamber. It is mixed with one third or half the quantity of rablit's hair, anif worked by the usual processes into hats, eals, and fahries; or mixed with silk, wool, cotton, or Hax to form a faluric for shoe-soles, paper, etc. ; or mixed with caontehone or gutta-percha for bands, helt-, carriage-fitting, accouterments, pipes; as a substitute for cork, book-covers, etc.

The uses of felt are various; among them may be cited the following : -

Among the Asiatics: cloth, hats, cappets, tentcoverings, socks.

In the Uniterl States and Europe, for domestic purposes: cloth, clothing, socks, slippers, boot and shoe soles and insoles, lats, caps, gloves, carpets, and table-covers.

Nurgeons' bandages and saddle-cloths.
Mechanical: clothing for steam-boilers and cylinders; deadening for walls and floors; non-conductors for kilns and refrigeraturs ; rooting charged with bitumen or other water-repeldant; steampacking; lining between the planking and coppersheathing of ships; polishing-wheels; hammers of pianos; clastic blankets for printing-presses; covers of books.
2. 'l'he felted cloth on which paper is couched and carried in the paper-making machine. The cloth on which the praper is conched from the making cylinker is known as the muking felt. Others as carrying felts, first felt, sccond felt, etc. Apmurtenances of the felt are known as felt-washers, feltrollers, etc.
Felt-car'pet. A carpet whose fibers are not spun or woven, but are associated by the felting process.
Felt'ed Cloth. (Fabric.) Cloth made by felting, without spinning or wearing, was patented in England by Williams, in Febrnary, 18 ā0.
Felt-grain. (IF ool-working.) The grain of wood whose direction is from the pith to the bark; the direction of the medullary rays in oak and some other timber.

Felt'ing-ma-chine'. Felting-machines are of

rarious kinds. 1. For acting uron the material in mass, as in the fulling-mill (Fig. 1943), where the cloth in a bath of soap-smils is pounded by the stork, which swings like a pendulum on its bearings ahove.
2. A lower reciprocating bed monnted on grooved rollers ranning on tracks secured in the vat; the other bed being attached to grooved rollers that ran between a donble track above. The beds are worked in opposite directions by a dou-ble-action lever connecting therewith; the material placeel between the beds and exposed to a rubling action while immersed in hot water. (Fig. 1944.)
,

Fig. 1945 shows a form in which the main cylinder, having a cork surface, acts upon yarn or cloth carricd between it and the fibrous belts which pass

Kevolving Felting-Machine.
around steam-heated cylinders, and motive and idler rollers. Perforated pipes beneath the belts throw hot water upon them.

Fig. 1946.

In Fig. 1946 the fiber is placed on a feed-arron, passt's between two fluted rollers to a card-cylinder, and is then taken between two endless aprons over

FENCE.
the series of tables, and beneath the longitudinally and transversely reciprocating platens. The combined heat, wet, and rubbing action consolidates the bat of fiber into a felted web.

Fe-luc'ca. (Vessel.) A small vessel propelled by oars and lateen sails; used in the Nlediterrauean and adjacent waters for coastiug voyages.

Fem'er-ell. (Carpentry.) A louvre lantern in a roof for the escape of steam and smoke, or for rentulation.

Fence. 1. A structure on the boundary of a lot, field, or estate to keep off intruders, or act as a screen.

Among the varieties of fences are the wall, of brick or masonry; post-and-board, pust-and-rail; rail or - worm fence; post-and-wire ; paling; iros: portable ; sunk or ha-he; hedge.

When strouger than most of these, the fence may rise to the diguity of a scarp, palisade, stockade, parapet, and constitute an important defensive line.

The Roman fences were four in number : -

1. The Scpimentum naturule, or live fence of thern.
2. The S. agreste, or mooden paling interlaced
board fence standing in line ; stay-rods passing over the tup of the fence and being anchored below the surface.

Fig. 1948 shaws a mode of hanging fence-panels to plosts.
Fig. 1949 is a portable fence in which the panels rest between posts which are planted in sills and stayed by inclined bars which form buttresses.
Fig. 1950 is a more pretentious fence of iron posts set in grouting and ornanental pazels.

Iron Fence.
Fig. 1951 is a post, wire, and paling fene.
2. (W'ood-uorking.) An auljustable guard-plate or edge on a gage, or on a yrooring, banding, plow, fillister, or rylet plane, lyy which the distance of the groove front the guide-edge is regulated.

A straight edge on the work-table of a circular,
zand, or seroll saw, or of a planing, molding, or

Fig. 1948.

Fig. 1951.

with withes, or bored and strung on longitudinal rails.
3. The S. militaire, having a bank (agger), diteh (forse), and vallum, or row of stakes on the bank.
4. The S. fabrite, or wall of stone, brick, adobes, or mud.

Room here can be afforded for but a bare lint of the diverse kinds.

Fig. 1947 shows a mode of supporting panels of

mortising machine. It acts as a fage and guide, and is adjustable to any required distance from the tool.
The fence may be sriveled so as to have a capacity for angular presentation of the work.
3. The arm of the hammer-spring of a gun-lock.
4. (Loch's.) An arm or projection whicl enters the gates of the tumblers when they are aljusted in proper position and coincidence, and at other times prevents such morement of the clog. stump, or other olstrueting member as would permit the retraction of the bolt.

In common tumbler locks the fence forms the obstrncting medimm between the bolt and the tunsblers, to prevent the retraction of the former when the tumbler-gates are not in coincidence.

Fence-jack. A lever jack adapted for litting the rorner or lock of a worm-fence in order to lay in a new bottom-rail, a fence-chunk, or a stone.

Fence-post. A piece of timber or a structure of other material, planted vertically in the ground,

Fig. 1953.

Scren-Post.

Fig. 1954.

to hold pancls of fence. Ingenuity has princtipally heen exercised in contriving modes of saving timber in fences for prairie countries, and in structures as substitutes for the usual wooden posts. Two suggestive forms are shown in Figs. 1953 and 1954. One is an iron post with a spiral rib which answers as a screw for inserting it. The other is an anchor-block, to which the rertical slat of a fener is bolted.

Fence-post Driv'er. A device like a triphammer or pile-driver, mounterl upon wheels, and used for driving lence-posts which have been previ-

Fence-Post Driver.

ously sharpened. After the hammer attains its hight, the rope is cast off suddenly and the hammer drops.
Fenc'ing-gage. An implement to space and hold boards against a post while nailing them. The upright cleat A is temporarily tacked to the post, and the pegs afford rests for the luwer etlges of the boards.
Fenc'ing-nail. A heavy nail of its class, allapted for fastening on fencing-boards.
$6^{\mathrm{d}}, 7^{\mathrm{d}}, 8^{\mathrm{d}}, 9^{\mathrm{d}}$, and 10^{d} nails are made for this purpose nearly twire the weight of the common nails of these numbers.

Fend'er. A contrivance to fend off an object so as to prevent the bruising of the structure so protected.

1. An mpright timber plaeed against the edge of a pier, rock-
to prevent injury to the wall by the
contact of vessels, dirft, or floating ice. A fouderpile.
2. A mass of old rope stuffed into a heavy, open net malle of rope, and placed between the sides of a vessel and the guay or pier with which it is about to collide, in order to deaden the blow and prevent injury to either of the contarting oljects.
A piece of oak on a vessel's side to protect it from elafing by objects which are being hoisted aboard.

On the river steamboats of the West, poles hang overboard, being suspended from the upper guards, and answer the same porpose. Fancy rowing-boats, wherries, and man-of-war boats have lenders which hang outside the gunwale.
3. A structure in frout of a fire or fireplace, to keepchildren
or lunatics
from burning themselves. In the exam. ple shown, the fender is secured by hooks to the grate-bars. In lunatic asylums the fender is a large cage.
4. An attachment to a culti-vator-plow to keep clods from rolling on to the young corn.
5. A rub-plate on the bed of a wagon or earriage to take the rub of the wheel when the vehicle is turning short.
Fend'er-
beam. 1. The lorizontal beam

Fireplace Fenter. into which the posts of a saw-mill gate are framed at top. The lender-beam in Perley and Pattee's saw-mill at the Chaudiere Falls, Canada, is pine stock, 84 feet long and squared to 24×28 inehes.
2. The inclined advance piece of an iee-breaker.
3. A beam suspended over a vessel's side to ward off ice and preserve the planking and sheathing of the vessel.
Fend'er-bolt. (Shipbuilding.) One havingalarge heal which projects from the planking and serves as a fender to save the planks from being bruised.
Fend'er-pile. A pile fixed in front of a pier, wharf, or river wall, to ward off the blows of running ice, drift, vessels, ete.

Fend'er-post. One of the guiding stanchions of a saw-gate.

Fend'er-stop. (Railroad Enginccring.) A structure at the end of a line of rails, to stop the carriages or engine, if needful.

Fe-nes'tra. (Architecture.) A window; an entrance.

Fe-nes'trai. Window-blinds or easements elosed with paper or cloth, instead of glass.

Fer-ment'ing-square. (Brewing.) An ohlong or square shallow vat in whiel wort is fermented.
Fer-ment'ing-vat. A tank or tun in which wort is placed to undergo the fermentation resulting from the aldition of the yeast. Certain arrangements for keeping the liquid at the desired temperature in the
heat of summer or cold of winter are added in some cases.

Fer-ran'dine. A mixed stuff of silk and other materials, formerly worn. 1 t is referted to by Pepys in his "Diary," about 1667. The word was sometimes written firuendam or forendune. It probably resembled poplin.

Fer'ret. 1. (G7ass.) An iron used to make the rings at the mouths of bottles, or to try the melted matter.

2. F orst, or floss-silk.

Fer-ret'to. (Glass.) A preparation of copper employed in glass-coloring. It is made by phacing thin sheets of copper interstratified with powlered hrimstone in a crucible which is luted tight and exposed to the heat of a blast-liurnace for about two hours; when cool, the copper is found to be calcined so as to be readily cromibled between the fingers; it is then pulverized and sifted for use. A supherior article to the foregoing is prepared by using vitriol instead of brimstone, and exposing the crucible to the heat of the glass-fumace for three days. The old vitriol is then replacen hy fresh, and the heating operation repeated six times.

F'er'ro-type. (Plontorraphy.) A process, so named by Hunt, which derives its name from the material of the plate (iron) on which it is taken. Plates of sheet-iron are covered with a surface of black Japan rarnish. This is immersed in collorion, and after a time in the silver solution. It is then placed in the bolder and exposed in the camera.

Fer'rule. 1. A short tube or thimble made slighty conical, and used to fasten the tubes in the sheet-plates of steam-boilers. Exeept at the point,

Ferry-Eoats.
the fermle is a little larger than the bore of the tube, and when driven in it compresses the tube forcilly against the sides of the hole in the tube-sheet, making a steam-tight joint.
2. A metallic ring or sleeve on the handle of a tool or the end of a stick, to keep the wood from splitting.
Fer'ry-boat. (Ccssel.) A vessel for earrying passengers and freight across a river or estuary.
a, an elevation of the stean ferry-boat for ordinary travel crossing the Missouri River at Omaha
b is a plan-view of the same, showing the single wheel amidship, the engines and boilers.
d is a transverse vertical section of the same, showing the cabins over the guards.
e is a transrerse vertical section of a ferty-boat for railway-cars at La Chine, river St. Lawrence. It has side-wheels and a track anidslip.
c is a plan-view of the same.
Fer'ry-bridge. A form of ferry-boat in which the railway-train moves on to the elevated deck, is transported across the water, and then lands upon the other side. Tramways forming inclined alproaches are adjustable to the reguirements of wiferent stages of water in the river, or states of the tide in estuaries. The ferry-bridge which preeeded the present bridge over the Susquehana at Havre-de-Grace is a notable instance.

Ferry-bridges are alsa to be found in Eurone, which cross by means of chains laid across the river, and chain-wheels on hoard rotated by an engine.

Fer'ry-rail'way. Une whose track is on the
Fig. 1959.

hottom of the water-course and whose carriage has an elevated deek which supprerts the train.
Fer'ti-lizer-mill. One in which the materials are ground to powder so as to be sown from a

Fig. 1960.

Fertilizer-Mill.
machine. The illnstration shows a Chilian mill adanted to the purpose. Phosphatic minerals, bones, and rarious materials are thus ground.

Fer'ti-lizer-sow'er. A form of seeding-machine adapted to sow gramulaterl manures, such as diry poudrette, the phosphates, bone-dust, lime, guano, etc. It sumetimes forms a machine by itself, and sometimes is an attachment to a wheatdill; in Englani, also to a turnip-drill.

Fes-toon'. (Architccture.) An ornament like a garland. Common on friezes.

Fet'lock-boot. (Menagc.) A protection for the fetlock and pastern of a horse. See Intenferingattachments; Leg-guard.

Fet'ter. A chain for the feet. See Hopple.
Fet'tling. 1. (Metellurgy.) The material, consistiug of ore, cinder, and scrap-iron, mixed in varying proportions, and usell in preparing the hearth of a pudtling-furnace before receiving its charge of iron. Fettle is an odd English word signitying to prepre, and corresponds to the American word fix. Fixing is the term used in the United States to signity this preparation of the hearth.
2. (Pottery.) The shaving and smoothing of green clay-ware to remove the appearance of seams from articles that are molded, and to smooth asperities.

Feuil-Iets'. (Dirmond-cudting.) The projecting points of the triangular facets in a rose-cut diamond, whose hases join those of the triangles of the central pyramil.

Fi-a'cre. A French hackney-coach.
Fi'ber-gun. A device for disintegrating vegetahle fiber. Lyman's patent, No. 21,077, of 1858. Flix, hemp, jute, cane, or wood are placed in a cylinder and charged with hot water, steam, gas, or air under great pressure; the cover of the cylinder being suddenly removed, the mass is projected into a chamber where the sudten expansion of the fluid under pressure ruptures the cells and tears the fibers apart.
Attempts have been made with more or less suceess to ure this system of rapil exclusion of the matter, under pressure of generated carbonic acid, resulting from the treatmeat of the material first with a caustic alkali and then with acid. See Cuttonizing Fibes.

Fi'ber, Treat'ment and Man'u-fac'ture of. See list under Corrox, Flax, Woul, Hemp, ete., Applances.

Fib'u-la. (Siurgicab.) A needle for sewing up wounds.
(Masonry.) An iron crank by which stones are fastenell together.

Fid. 1. (Nuztical.) a. A bar of wool or iron to support a mast ujon the oue beneath. It passes through a mortise in the upper mast, and rests on the trestle-trees of the heal of the mas? blow.
b. A wooden, pointed pin used to open the strands of a rope in splicing. A similar iron instrument is a marlinspzze, or, as used by sail-makers, a stab. ber:
2. A plug of oakum for the rent of a camon.

Fid'dle. 1. (Music.) An instrument phayed with a bow, and having four strings, stretched over a somding-buarel to give resomance, and aiong a neek (withont frets) upon which the strings are pressed by the fingers to vary the tone. See Violin.

Locusts are fiddlers. Their hind legs are the bows, and the projecting veins of their wing-covers the strings. On each side of the body in the first segment of the ablomen, just above and a little behind the thighs, is a deep cavity closed hy a thin piece of skin stretched tightly across it, like a banjocover. When a locust begins to play, he bends the shank of one hind leg beneath the thigh, where it is lodged in a furrow designed to receive it, and then draws the leg briskly up and down several times
against the projecting lateral edge and veins of the wing-cover.
From a ballad of the fourteenth century, or there. abouts, cited in Watson's "History of Enclish Poems," occurs, -
"Syre Jadore latte made a feste
That was fair and honeste,
With his lord the kynge;
Ther was much miastralie,
Trompus, tabors, and santre,
Both hurp and fydyllynge."
A monumental brass of the same leeriod in St. Margaret's Chureh, King's Lynn, Norlolk, England, shows the musicians at a peatock feast ; one lias a four-stringed fiddle, another a six-stringed cithern.
2. (Husbandry.) A wonden bar abont 11 feret long, attached by ropes at its ends to the traces of a horse, and used to drag loose straw or hay on the ground, or hay-cocks to the place of stacking. A rope or grape-vine answers very weil for the latter purpose.
3. (Nautical.) A frane of bars and strings, to keep things from rolling off the cabin table in bad weather.
Fid'dle-block. A long block, having two sheares of different diameters in the same plane; not as in a double-block, where they are in parallel planes. A viol-block.

Fid-ham'mer. (Nautical.) A hammer with a face for striking and a pointed pecen to act as a fid.

Field. The space visible in an optical instrument at one view. By shifting the telescope, the ficld is changed ; by shifting the slip or object relatively
 to the oljuect-gliss of a microscope, successive parts of the olject are brought within the field.

Field-bed. A folding-bed for camp use.
Field-book. The hook in which the memoranda of survers are made.

Field-der'rick. One used for stacking hay in the field. It is mounted on a sled or on a sill-pinece which is anchored temporarily by stakes; otherwise it is stayed by guys.

Fieldu-glass. 1. a. A binocular telescope in compact form, and having six achrumatic lellows. It has a metallic body covered with morocco, and a

Fig. 1962.

Field-Glass.
sun-shade to extend over the olject-glasses. It is carriel in a leather case with a strap, and has a body $3 \frac{3}{4}$ to $6 \frac{1}{4}$ inches long, the object-glasses being from 15 to 26 lines in diameter. A lorgncttc. An operaglass. A rucc-ylass.
b. A small achromatic telescope, usnally from 20 to $2 \pm$ inches long, and having 3 to 6 draws.
2. That one of the two lenses forming the eyepiece of an astronomical telescope or compound microscope, which is nearest to the object-glass; the glass nearest to the eye is the cyc-glass.

Field-gun. A light camon designed to accompany troops in their maneuvers on the field of battle. At the commencement of the late civil war in this country, those thus devominated were the 6 -pounder, weighing 885 ponnds; the 12 -pounder, of 1,770 pounds: a light $12 \cdot$ pounder of 1,220 pounds; and the 12,24 , and 32 -ponnder howitzers, weighing respectively $780,1,320$, and 1,820 pounds. These were all made of bronze. During the war several kinds of rifled field-guns were introduced, but ouly two maintained their place in the military service; the 3 -inch wrought-iron rifle and the Parrott 10 -pounder of 2.9 -inch caliber, each nearly the weight of the bronze 6 -pounder, and carrying an elongated projectile of ten pounds weight. The smooth-bores generally were withdrawn from the field during the war, with the exception of the light 12pounder, or "Napoleon" gun.

Four smooth-bnre guns and two howitzers, or six ritted or sis 12 -pommer guns with their carriages, caissons, forge, and battery-wagon, constitute a battery. No particular kind of breech-loading gun has been adopted in the United States Service, unless the Gatling machine-gun may be so classel. See Battery-gun. Most, if not all, European govemments have adopted breech-loaders of various kinds for field service.

The English use the breech-loading Armstrong gun (see Armstrong-gus) for field, fortification, and naval service.

The Prussian army uses two calibers of field-guns, 4 and 6 pounders, both rifled steel breech-loaders. The bore of the barrel extends entirely through. The breech of the 4 -pounder is closed by a duuble wedge sliding in a horizontal slot through the barrel. The 6 -po:mder is closed by a plug held in place by a large steel pin. The escape of gas is prevented by a gas ring on the Broadwell plan, similar to that in a Sharjis ritte. See Gas-Rnsig.

Field'ing. Exposure to the open air and sun of malt-wash, or gyle in casks, in order to promote its ace:tification.

Exposure to artificial heat is termod stoving.
Field-lens. See Field-Glass, 2.
Field-roll'er. (Husbandry.) A vooden or iron
Fig. 1963.

cylinder, drawn over a plowed field to mash the clors and level the ground.

Field-staff. A gunner's staff for carrying a lighted match.

Field-tel'e-graph. One adapted for nse in the field in military operations.

The field-telegraph of the German army consists of $140 \mathrm{men}, 10$ wagons, and 40 miles of wire for
each army corps in the field. The wire is reeled ont of the wagons and mounted on light poles abont ten feet high, every third one being put in the gromd. One eighth of the who'e length of wire is iusulated, and may be ron along the ground.
Field-works. (Fortification.) These are of three kinds:-

1. Works open at the gorge :-
a. Redans, single and donble.
b. Lurettes.
2. Works closed all ronnd :-
a. Redoubts.
b. Star forts.
c. Bastioned forts.
3. Lines, continued or broken. See Line.

Fife. (Music.) A small pipe nsed as a musical instrument; the usnal accompaniment of the drum.
Fife-rail. (Nautical.) A banister on the break of a poop or around the mast of a vessel.

Fif-teenth'. (Music.) A stop of an orgin tuned an octave above principal; two octaves above opers diapason. Spe Stop.

Fifth-chain. The chain by which the single lead lorse in a team of five is litched to the end of the tongue. It is supported by chains from the harness of the leading pair.

Fifth-wheel. A wheel or segment above the foreaxle of a carriage and beneath the bed. The kingbolt is the center of oscillation, and the fifth-uhicel forms an exteuded sapport to prevent the careening of the carriage-bed.

In the example, one part is shown in section to
Fig. 1964.

Fifth- Wheel.
exhibit the anti-friction rollers which traverse on that portion of the segment attached to the axle.

Fig'ured-fab'ric Loom. In figurc-ucaving, the cloth is onamentel with flowers and other deviees. The warp is divided among a number of heddles which are operated by separate treadles, hy which different colors may be concealed or brought to the surface, or made to change places' accolding to a presented pattern. The Jacquard is the primeipal loom used in weaving figured fabrics. See DassAsk; JacQualld.

Hohlfield, of Hemmerndorf, in Saxony, 1711-71, invented a loom for wearing figured fabrics, the model of which is preserved iu the collection of the Berlin Academy.
Fig'ure-head. (Nautical.) The ornament on the head or prow of a ship.
Fi'lar-mi-crom'e-ter. A micrometer having threals or wires across its field of view. It was invented by Malvasia about 1660, who applies] a net. work of fine silver wires crossing each other at right angles, and dividing the field of the telescope into squares. See Wipe-michometer.
File. A steel instrument for ahrading or smoothing surfaces, and having raised cutting edgis (teeth) made by the indentations of a chisel.

Files are mentioned in 1 Samuel xiii. 21, 1093 в. c. "They had a file for the mattocks aml for the colters, and for the forks and for the axes, a:sd to sharpen the goads."

Files are graded by shape, size, and fineness of cut; and also known by their purpose.

As to sluape, the diagram (Fig. 1965) giving a series of sections will be rearily inderstood.
a, b, e, d, e, f, g, h, are sections derived from the square.
i, k, l, m, n, o, n, q, are sections derived from the circle.
r, s, t, v, x, x, y, z, are sections derived from the triangle.
a, square file, parallel or taper, sometimes with a safc sicle.
b, when large, a cotter file; small, verge or pivot file.
e, flat file: when small, pottance file; when nartow, pillur file.
d, when parullel: equaling, elock-pinion, or cud-

less-screw file. When taper: slitting, entering, varding, or barrcl-hole file.
c, f, Freneh-pivot or shouldering file ; parallel V file.
g, mail file, for the finger-nails.
h, pointing mill-saw file, round-cdge file.
i, round, gulleting, rat-tail file.
k, frume-san; tile.
1, half-round file; niching, piereing, or round-off file.
m, cross file ; double-half-round file.
n, oval file.
0 , balanec-uchecl or suing-whcel file, the convex side only cut.
p, suctered file, for finisbing brass-moldings.
q, curvilinear file.
r, triengular, threc-square, or saw file.
s, cant file, for filing inside angles of 120°.
t, when parallel, lirinking or vatelh-pinion file; when taper, knife-edge tile.
r, serew-hertel, feather-cdge, slitting file.
w, velve file.
x, triangulav-and-hnlf-round file.
y, doubice or eleckering file, for gunsmiths.
z, double, or pencil-sharpening file.
Other grades of files are known by peculiarities of form not shown by seetion; such as :-

T'aper: thinner towards the point.
Parallicl; the same dimensions thronghont the length.

Blunt ; a grade between taper and parallel.
As to eharacter of teeth, the elasses are:-
Double-cut; having two sets of teeth crossing obliquely.

Single-ent or float; having but one row of teeth.
Rusp; having detached teeth niade by a punch, instead of a chisel.
A (Fig. 1965) shows the position and action of the file-chisel on the blank $B ; C$ the appearance of the rows of teeth. The lower row should, however, have been shown as not quite squarely aeross the face of the file.

As to relative fineness of teeth:-

Rough-eut.
Nichile-cut.
Bastard.

Second-cut.
Smooth.
Superfine or dead smooth.

Approximate number of cuts in an inch of files:-

See any in the following list, under their alphabetical heads:-

Angular-file.
Arm-file.
Balance-wheel file.
Parrel-file.
Bastard-file.
Blunt-file.
Bow-file.
Bread-rasp. Cabinet-file. Cant-file. Carlet.
Cherkering-file. Cireulau-file.
Cohler.
Conteavo-convex file.
Cotter-file.
Cross-file.
Cutting-file.
Dead-smooth file.
Dental-file.
Double-file.
Double-cut file.
Double half-round file.
Donble-tang file.
Dovetail-file.
Entering-file.
Equaling-file.
Feather-edge file.
File-Mank.
File-blanks. Rolling
File-earrier.
File-chisel.
File-cleaner.
File-cutting machine.
File-sharpening.
File-stripuer.
Filing-block.
Filing-maehine.
Filings-separator.
Flat-file.
Fiont.
Found.
Graille.
Half-round file.
Half-thick file.
Hand-file.
Hollow-edge file.

Joint-file.

Key-file.
Knife-file.
Lock-file.
Marble-workers' file.
Middle-cut tile.
Molding-file.
Nail-file.
Nicking-lile.
Oval file.
Parallel-file.
Parting-tool.
Perforated file.
Piercing-file.
Pillar-file.
Pinion-file.
Pivot-file.
Pottance-file.
Quannet.
Rasp.
Rasp-eutting machine.
Rasper.
Rasp. Mechanieal
Rat-tail tile.
Rittler.
Hough-file.
Ronnt-file.
Round-edre file.
Rommt-of file.
Rubber-file.
Safe-edge file.
Saw-file.
Saw-filing machine.
Second-ent tile.
Screw-head tile.
Shonldering-file.
Single-cut file.
Slittiner file.
Smooth-file.
Square-file.
Suluerfine-file.
Swing-wheel file.
Taper-file.
Three-square file.
Topper-file.
Triangular-file.
Turn-file.

Valve-file.
Verge-file.
Warding-file.

Watchmakers' file (varieties, see Watchmakens' Files).

The sculptor's file is known as a riffer, and is curved in various forms. Hitam Powers's file is perforited to allow escape of plaster or marble-dust.

The method of haulling the chisel depends in great measure on the kiml of tuotin to be cut. The hile is held to its place ou the leaden anvil by means of a leathern strap passing over each end of the file, and then under the feet of the workman in the manner of stimups. At every blow of the hammer the chisel is made to cut a tooth, and the blows follow each other in rapid succession, the workman after every blow advancing the chisel forward by a slight movement. The chisel forms a number of angulat grooves parallel to each other, the tooth being formed by the metal raised between every two grooves. As the work proceets, he shifts the lile forward by loosening his tread upon the straps. When one surface is covered with single cuts, he procecds, in double-cut tiles, to adl a seconil row of teeth, making them cross the former ohliguely.

The files are next hardenell, unless they are to be usel upon wood, ivory, and other soft sinbstances ; such files admit of being sharpenerl up with a handtile. Some of the curved files us"d hy sculptors and die-sinkers are made of iron and case-hardened.

Mr. Holtzapffel describes the operation of eutting in the following terms: "The first cut is made at the point of the file; the chisel is held in the hand at a horizontal angle of about 55° with the central line of the file, as in the upper row of cuts at C, and with a vertical inclination of about 12^{2} to 14° from the perpendicular, as repressated at A." (Fig, 1965.)
"The blow of the hammer upon the chisel canses the latter to indent and slightly to drive forward the steul, therehy throwing ap a tribing ridge or bur ; the chisel is immediately replaced on the hlank and slid from the operator, until it encounters the ribge previously thrown up, which arrests the chisel or preveuts it from sliphing farther back, and thereloy determines the sucpeeding position of the chisel. The heavier the blow, the greater the ridge, and the greater the distince from the precerling cut at whieh the chisel is arrested. The chisel, having been placed in its second position, is again struck with the hammer, which is made to give the blows as neinly as possible of uniform strength; and the pracess is repeated with considerable rapidity and regularity, sixty to eighty cuts being made in one minute, until the entire length of the tile has been cat with inclined, parallel, and equidistant ridges, which are collectively lenominatel the first conrse. So fur as this one face is concerned, the file, if intendel to be single cut, would be then ready for hardening. Most files, however, are double cut; that is, they have two series or courses of chisel cuts. In cutting the seconl conrse, the chisel is inclined vertically as before, at about 12°, but its edge only a few degrees from the transverse line of the file, or about 5^{3} to 10° from the rectangle. The blows are now given a little less strongly, so as barely to penetmate to the bottom of the first cuts, and from the blows being lighter they throw up smaller hurs, consequently the second course of cuts is somewhat finer than the first. The two series, or courses, fill the surface of the file with teeth, which are inclined towarlls the point of the file." See Holtzapffel's Turn. inly and Mechanical Manipulation, London, 1847.

File-blank. A piece of soft steel, shaped and ground ready for cutting, to form a file.

File-car'ri-er. A tool-holder like the stock of

a frame-saw, and used to mount a file in a manner similar to that of the sav in the case cited.
File-chis'el. The cold chisel (A, Fig. 1965) for rough files is about 3 inches long, $2 \frac{1}{4}$ wide, and the angle of the edge is about 50°. (See File.) The edge is straight. The file-llank rests upona block of lead which forms the anvil. The narrower chisel, for cutting smaller and smoother files, has a length of about 2 inches, width $\frac{1}{2}$ inch. It is very thin and sharpened to an angle of about 35°. It is used with a hammer weighing one or two ounces. Other chisels are of intermediate proportions. The edge is always wider than the file to be cut.

The chisel is leld in the left hand at an inclination of 4° to 15° from the perpendicular, according to the character of the file.

The blow of the hammer drives forward the chisel, raising a bur, the light of which determines the distance of the next cut, as the sliding of the clisel against the ridge previously thrown up affords a gage for the position of the chisel at the next blow, the operator being guided by the sense of truch. The cuts are made at the rate of 60 to 80 per minute. The file-blank is greased hefore cutting.

File-clean'er. A scratch-bunsh of wire. A thin brass edge which acts as a rake. A card such as is used in carding cotton.

To remove wood, dip the file in hot water to swel] the wood. It is then renoved by a hard brush; the warmeth pyaporates the moisture.

File-cut'ting Ma-chine'. A nachine by which files are cut automatically. The usual form has a table to which the blank is secured, and on which it is fed beneath the chisel, which receives the blows of a trip-hammer ahove.

Many attempts have been made in this direction in France, England, and the United States. Among these may he mentioned Durerger, 1699 ; Fardonet, 1725 ; Thiout, 1740 ; Brachal and Gamain, 1756, 1778; Raoul, 1800; Ericsson, 1836; Robison, 1843. See also Skilton's machine, "Ure's Dictionary," Vol. 11. pp. 202-204, edition of 1860. See also "Transactions of the American Philosophical Society," Vol. IF., in which a machine is described in which the file is fixed on a berl of lead, and a chisel fixed at the end of a lever is struck down by a hammer. The lever is again raised by means of a spring, and during its rise moves a ratchet-wheel comnerted with the sul port of the bed, whichisshifted, together with the file, after each stroke. In Thiont's machine ("Traité de l'Horologie," Paris, 1740), the file is attached to a screw-slide suspended at the end by pivots and covered with an anvil-plate of tin. The slide works upon a stationary anvil, and is worked by a feed-screw mored at intervals the distance of the pitch of a tooth by means of a pinwheel. The chisel is held on a jointel arm beneath which is a spring to raise it after each blow, the latter being given by a vibrating drop-hammer. Ericsson's machine was adapted to cut several files at a time, and is especially commended for the introduction of means by which, in cutting tajer files, the lammer is less raised in cutting the ends of the files than at the middle, so as to proportion the force of the blow to the width and depth of the cut at different parts of the file. Two machines were used for double-cut files, the bed of one inclined to the right and the other to the left, to give
the different horizontal inelinations proper to these teeth, and a machine with a straight berd was usen for single-cut flonts, and for romin and half-round files. The machimes make about 240 strukes 1 rer minute, which is about three times. the rate of handwork, and two beds aitemployed, so that one may be entting while the blanks are being adjusterl upon the other.
Sir John Robison, formerly president of the Royal Scottisll Society of Arts, suggested, in 1843, the making of enrvilinear files by cutting flat strips of steel plate and then rolling them into shape ant tempering them. Cammel's improvement was to make the plate thimuer towards the edges, so that it miont bend equally, and not too much in the midulle, as it was apt to do when of an even thickness. He also suggested to make the teeth by a graver, in in automatic machine.
Fig. 1967 shows a file-cutting machine in which
movenent are supported on a turn-table, by whose aljustuent the inclination of the teeth is determined. The chisel is supported upon a flexible rod which is eonnected to the hammer-handle by a spiral spring. The haumer is attached to a rock-shaft, which has an adjustable arm acted on by a ean on the main shaft.

File-grind'ing Ma-chine'. A machine for surfacing forged or rolled file-blauks to bring them to form previous to cutting.

In the example the files are secured one after another upon a carriage whieh moves under a revolv. ing cutter on a curved bed in such a mamer that

Fig. 1969.

the shape of each lie depends entirely upon the curvature of the bed; and as long as this curvature remains unchanged, all the files tumed out upon it are uniform in shape. The files are hith in position upon the earriage ly a sliding clanrp operated by a toothed segment. This segment connects with a hand-lever in sueh manner that when the clamp has been made to catch over the end of the file, the toothed segment is locked and the clamp thus prevented fiom spontancousiy releasing the lije.
Fil'er. An office device for holding bills and loose japers. See Paper-file.
File-sharp'en-ing. Wom files are first cleaned by hot water and sodia; then placed in connection with the positive pole of a hattery, in a bath conposel of forty parts of sulphuric acil, eighty jarts of nitric aeid, and a thonsand parts of water. The negative pole is formed of a copper spiral suromoting the files, but not touching them; the coil terminates in a wire which rises towards the surface. When the files have been ten minutes in the bath they are taken out, washed, and dried, when the hollows will be found to have been attacked in a very sensible manner; but shonld the effect not be sufficient, they are replaced for the same period as before. Two operations are sometimes neeessary, but rarely.

File-strip'per. A machine in which a worn-out file, after being softened hy heat and slow cooling, is smootheel to prepare it for bring re-cut. In the example, the file is held by adjustable jaws upon a slightly rotating bed supported by springs. The cross-bar, to which the stripping-tool is attaehed, is connected at each end by a connecting rod with a erank upon the end of the driving shaft, and is reciprocated in gnides upon a frame hinged at one end to the driving-shaft, and which may be elevated to raise the stripper off the file through the instrumentality of a rock-shaft and a system of levers at the other end.

wood, gripped in the jaws of a vise, and having grooves of varying depth in which small jods, hass, or wires may be lairl to be tiled. The wire is shown as grasped by a hand-vise.
Fil'ing-ma-chine'. 1. A machine used in the mint to reduce the weight of coin planchets, when above the standard. The pieces are laid parallel in a trough, and their edges rest upon a cylimbrical file, whereby a portion of metal is removed, the piects rotating as the work proceeds, in order to preserve their circularity.
2. A machine in which a file is mounted as a jigsaw; or to reciprocate in a manner similar to that of a tile in the hands of a workman.
In the example, the file receives verticnl reciprocation from a pitman whose crons-hearl has a lorizoutal slot traversed by a crank-piu on a rotating

Fig. $19{ }^{2} 2$.

Filing-Machine.
disk. The tahle is piroted and has a semicirentar rack which is engaged by a screw-gear to incli:e the table. See also Saw-filing Machive.

Fil'ings-sep'a-ra'tor. A natachine in which filings of iron and copper are scparated by exponure to magnets which are brought into contact with all of the particles, and select, retain, and remove the iron particles from those of brass and copper, so that the latter may be used for re-melting. There are several forms of machines for the purpose.

Fil'let. 1. A strip of card-clothing. A strin of leather furnished with the bent wire teeth peculiar to carding-engines.

FILTER.
2. A ring on the muzzle or eascabel of a gun.
3. A ribion of metal of gaged proportions fed to the machine which punches ont the planchets for coining.
4. (C'urpentry.) a. A square molling, frequently forming an upper finish or corona. A bund or listcl.
h. Λ strip nailed to a wall or partition to support a sherlf.
c. A stop for ronn or closet cloors to close against.
d. A strip inserted into the angle formed by two lusiuds or surfates.
5. (Ineiry.) A perforated curb to confine the curds in muking (lheese.
6. (Borkbinting.) A rolling tool which has a plain line, limes, or band; differing in this respect from the ormanental rolls.
7. (Avchitecturc.) The projection between the flutes of a column.
8. (Printiny.) A rule with broal or broad and narrow lines, principaldy used as a border.
9. (Gildiny.) A band of gold-leilf on a pictureframe or elsewhere.
1). The thread of a screw.

Fil'let-plane. A molding-plane for dressing a till ot or sthtare bead.
Fill'ing. 1. (Railroading.) An embankment of stone, gravel, earth, ete., to make a raised bed for a rond, railroad track (a), or eanal. An artificial, elevitted way.
In the linying ont of a permanent way, it is usual to make the cuttings and fillings counterbalance cach

Fig 1973.

other, as near as may he, hut in a flat country the way is made hy throwing the sides to the midile, making a bank bounded by two ditches (b). The eustomary soil in sucle situations, however, is untit for the relpose of the ties, and it becomes necessary to earry soumd hallast, such as broken stone or good gravel, before the permenere way can be said to he in gooll order. Such is especially the case in gromm naturally swampy. lin such cases the track is pither supported by piles, or, as in the annexed illnstration (c), which represents a railroal embankment in Holland, by fascines and stakes, bound together and placed altermately across and Iongitudinally.
Among the largest embankments of mollern times are the Tring filling of the Northwestern lailway, Encland, coutaining $1,500,000$ culie yarts; the Gatlelbach, on the Ulm and Augsburg Railroad, $1,750,000$ yards; the Oberhänser, on the Augsburg and Lindau Railway, 2,500,000 cubic yards.

Chat-Moss, on the liverpool and Manchester Railway, is $4 \frac{1}{2}$ miles aeross and from 20 to 40 feet deep. Cattle could not stand upou it. To form an emhankment of 277,000 yards, 670,000 yards of material were thrown into the bog.
2. (Shipbuildiug.) lijeces or composition fitted in between the frames of the hold, to increase the
water-tightness, resist compression, and prevent the collection of dirt, bilge-water, and vermin. Blocks uf wood, brieks, mortar, cement, asphalte, have been used.
3. (Nautical.) A slip of wood forming a part of a billt structure, such as a made mast; or a priece inserted to fill a defect.

The covering of a pile, below water, with lroadheaded mails, to exelude the Torcdo mavelis.
4. (Heaving.) The weft-thread which fills up the warp, being introdnced by the shattle and heaten up by the batton or luthic. Also known as the woof, shoot, or tram.
5. A stopping for carious teeth. The filling of decayed teeth with gold was practiced liy the Eryptims, as is proved by some mummies lound at Thebes. Sce Denthl Inembments and Aprlances.

Fill'ing-en'gine. (Silk-muchinery.) A machine in which waste and floss silk from the regnlat silkmachinery is disentangled, and the fibers laid parallel. The silk, previously hackled, is fed between rollers and suljected to the action of a series of moving combs. It then passes to the drureiny-frame, where it is suljected to a farther process of substantially similar character. From the drausing-frame it passes to the scutcher, and thence to the cultingcugine, which cuts it into lengths of about $1+\frac{1}{}$ inches. The staple is then eleansed, dried, and eventually curded and doubled, dreuco and spun, like cotton.
Fill'ing-in Pie'ces. (Carpentry.) Timburs necurring in partitions, groins, and roofs of less length than those with which they range ; as the jack-rufters next a hip, and the short ralters filled in the side of a roof next the chimney-shaft.

Fill'ing-pile. (Ifydroulic Engincering.) A backing or retaining pile in a coffer-dam.

Fill'ing-post. (Architccturc.) A middle post in a worden frome.

Fill'ing-tim'bers. (Shiptuilding.) Those placed between the trames to fill np .

Fillis-ter. 1. The rabbet on the onter edge of a sash-har, to loold the glass and the putty.
2. A plane for makiug a raluet. The varieties are known as sidc-fillisters and sash-fillinters.

The former is regulated for depth by a novable stop. See Plane.

Fil'ter. A vessel, chamber, or reservoir through

FILTER.
which water or other liquid is passed to arrest matters mechanically suspended therein. The idea does not necessarily include speeific chemical action, though doubtless animal and vegretable charcoal have a faculty for absorhing gases and deleterious and effrte matter, especially organic.

The filter (a, Fig. 197t) of the laboratory is made of a circłe of bibulons paper, tolded and opened into a quadrant and inserted into a tummel of glass or porcelain, and the filtering material is a quadrant of bibulous paper which is rolled into a cone and fitted into the funnel. Crushed and powdered glass, and gun-cotton are also used.

The filter b (Fig. 197t) is placed within a water bath which has a leg heated by an atcohol lamp. This is used for filtering matters which become viscid by cooling, such as gelatine, tallow, wax, stearic awis, etc. All filters for the laboratory, in which a sheet of paper is made to line a funnel and contain the liquid, should have sides subtending an angle of 60°; this for the reason that a sheet of paper folded in four, and one corner opened so as to form a cone, fills a funnel of the shape described.

The domestic filter frequently consists of a submerged jar or box made of a natural or artificial po-

rous stone, through which water passes, and which is withdrawn by a fauret which crosses the intervening space and passes to the outside. In another form it is a chamber at the bottom of the water-reservoir, as in Fig. 1975. The water passes down into the spongepocket, and thence follows around the circuitous chamber charged with filtering material to the outlet. In another form, the filter is placed within a bar-
 rel, and the water passes through a coarse filter D beneath it, and up a central tube C to an upper chamber, and from this chamber through the filtering material contained between two perforated diaplatagms $F G$. The water is drawn from the lower annular chamber by a siphon r^{\prime} laving a stop-cock at its lower end.

A good domestie: form consists of a dery wooden tub divided by a tight vertical partition through the midlle, the partition at the bottom being perforated with mumprous sinall holes. The tub is nearly filled on both sides of the partition with granulated charcoal made from sugar-maple, and screened through a mesh of one
sixteenth of an inch, the fine dust being spparated by holting. The foul water enters the tub on one side at the top, passes downward and through the small holes in the partition, and rises upward on the other side, leaving its impurities, hoth solid and gaseons, in the charcoal.

Fig. 1977 shows a filter and cooler coinbined. The water from the reservoir A above passes into a tube B, whose mouth is vertically adjustable, and is introduced below the filter-bed

Fig 1977.

Filter and Cooler. E, through
which it passes upward into the ice-chamber K.
Fig. 1978 is a reversible filter interposed in a length of pipe. The water flowing from A to the fil-tering-surface T has its impurities detained, while ! the strained water runs off at B, and pursues its course along the pipe. When the filter-surface T has become foul, the handle H is turned, throwing the dirt to the delivery side, by which it is carried off, the water being allowed to run to waste until the surface is cleansed and the water runs clear.

The filter for rain-water is a part of, or is placed at, the end of the sponting or conductor for the rainwater.
It is usually a box or chamber containing char-

Fig 1978.

Reversible Filter. coal or sand, which prevents leaves, decayed wood, or other foreign matter, from passing to the cistern. It has a detarhahle spetion which intervenes between the conductor and the filter, and has a perforated strainer which arrests leaves and other larger matters which can be removed from time to time by separating the sleeve-joint conpling.

Asbestus has been used for filtering, and has this merit among others, that it may be purifed readily by making it red hot.
M. Maurras's filter is a water-tight iron box $5 \frac{1}{3}$ feet square, with a filtering surface of 60 sumerficial feet, which, with a bead of $12 \frac{1}{2}$ feet, is calculated to filter 150,000 gallons of water per diem. It percolates from the eircumference inward, passing through fine and coarse sand, is received in a central chamber from whence it is diseharged by a pipe. The chamber contains a number of perforated boxes containing sand which cannot pass the interstices; hetween these are layers of fime and coarse sand. The reversa\} of the current agitates the contents so as to stir up the sediment, which passes off to the wastepipe, till the sand is cleaned. The ordinary flow is they resumed.

The mode of filtration in those of the London Water-W orks, wherein this process of puritication is used, is by the descent of the water, which passes through strata of fine and coarse river sand, broken shalls, and prebbles, small and large gravel. These are placed in the bottom of the reswoir, so as to present an undulated surface. Be!ow these are tunnels made of brick, hilt open-jointed, The sedi11 mit penetrates to a depth of from 6 to 9 inches, and thit much of the surface-sand is frequently removerl, portions of the area at a time. An acre of area filters 300,000 to 400,000 eubic feet daily.

A natural fister is used at Nottingham, England, the reservoir being thg in such position as to reccive its water hy percolation from the river through a hed of fine sand, which intervenes between the two. The sedimentary matter is continually washed away from the river face of the fiter by the action of the strean.
The filter of Greenock, Scotland, is a tank 50 feet long, 12 wide, and 8 deep. The water percolates either upward or downward through the filtering nuterial as it may be directed. After the filter has become foul, by opening a sluice the water is turned in the other direction, passing upward through the filter, and passing off ly a waste-sluice. After the water is cleansed, the shinices are changed and the filter operates as before. There are three of these filters in the works.
The filter of Paisley (c, Fig. 1974), eonstructed by Thom, is upon the principle just statenl. Water is admitted to the filter by opening a slnice, and runs upon the surface of the filtering material through which it percolates, and passes off by the main. The stop-cock is kept closed so long as the filter does reffeetive duty, but when it becomes choked by sellimentary matter and mud, the stopvalve of the main is closed, the stop-cock lowered, and the water carried by a pipe bencath the filtering m terial, so that the upmarl pressure will dislodge the nund and carry it up through the various strata of gravel and samil.
Upon the Hoor of the filter bricks are laid edgeways, a little apart from each other at all points ; upon these perforated tiles are laid, nearly touching. The strata of filtering material are successively, -
Gravel, about 3^{3} inch in dianeter.
Gravel and sand, four courses of grailually increasing fimeness.
Sand, fine, clean, and sharp, 2 feet deep. The upper 6 or 8 inches mixed with broken animal charcoal ; say pieces $\frac{1}{1}$ inch in diameter.

When cleaning the filter bed by the upward pressure of water, the upper part of the stratum of sand is raked to dislodge the murl, which is apt to accumnlate at the surface.
The filter-bell is 60×100 feet in area, divided into three compartments capable of separate use. It is mude in a level piece of ground excavated to the depth of 6 to 8 feet, and lined on sides and bottom with a wall puddled in the rear, and haid in hydraulic cement.
The water filterel amounts to 106,632 eubic feet in twenty-four hours.

Natural filters consisting of heds of gravel or sanil intervening between a pumping well and a muddy river or sea water, as the case may he, are found in many places; Dayton, Ohio, and Cape Col may be mentioned, in aldition to that at Nottingham, England, just cited.
The filter for sirups is chargerl with bone-black, revivel from time to time by reburning to consume the absorherl organic matter. As a mere filter, cloth covered with paper pulphas heen used successfully for simbs. Sce Sughi-Filuer; Centhifugal-machine.

The filter for seprating the nucilaginous matters
from vinegar is charged with wood shavings, straw, suent tan-bark or rapes. Thic latter comsists of stalks and skins of grapes from which the must las been expressed. Ropes are far prelerable to any other material. The vinegar is passed again and again through the filter.

Air-filters are used for arresting dust, stect-filings, smoke, etc., accorling to circumstances and exposire. (See Ain-FilitFii.) A filter recommented hy Professor Tyndall consists of a cylinder four or tive inches long and two inches or more in cliameter. Its interior contains, at the top, a layer of cottonwool which has been moistened with glycerine, then a layer of dry cotton-wool, then a layer of clarcoal, then cotton-wool, with wire-ganze covers at both ends, and at the urper end a month-piece so shapul as to fit closely over the mouth of the wearer. By drawing the breath throngh this instrument, the most dense smoke may be entered with impunity. When places are to be entered, such as mines or wells, where carbonic-acill gats is present, it is necessary to adkl another layer of cotton-wool, and to place between the two bottom layers of cotton a layer of slaked lime to arrest moisture and carbonicacid gas. See also lnialer; Respirator.

Sce under the following lieads :-

Air-filter.
Air-1,ressime filter.
Bar-filter.
Bent-pipe filter.
Capillary-filter.
Centrifugal-filter.
Charcoal-filter.
Cistern-filter.
Drip-stone.
Fancet-filter. Filter-bed. Filtering hydrant. Filtering-paper. Filtering-press. Globe-filter. Hippocrates-sleeve. Hyilro-extractor.

Laboratory-instruments. Oil-filter.
Petrolem-filter.
Physeter.
Pressure-filter.
Rape.
Reversilitedfilter.
Sponge-filter.
Stoneware-filter.
Strainer.
Sugar-thainer.
Sugar-filter.
Tube-filter.
Upwarl-filter.
Tacuum-filter.
Well-tube filter.

Fil'ter-bed. A settling pond whose hottom is a filter. It may consist of a reservoir 5 leet deef) with a paved bottom covered with open-jointed tubular drains leading into a central conduit. The drains are covered with a layer of gravel and a top layer of sand. The water is delivered noon the surface miformly, and the rate of sulssidmee is a bout six inches an hour. The more rapid the rate fother things being equal) the less effective is the operation. See Filter.

Fil'ter-fau'cet. One haring a clamber containing sand, sponge, or other material to arrest impurities in water.

Fil'ter-ing Ba'sin or Tank. (Hydraulic Engincering.) The chamber in which the water from the reservoir of water-works is received and filtered previous to entering the mains. See Filter.
Fil'ter-ing-ly'drant. One which sulje ts the water from the service-pipe and main to the action of a material to arrest mul.

Fil'ter-ing-pa'per. A bibmlous, unsized paper, thick and woolly in texture, used for filtering solutions in the pharmacy or laboratory. Swedish fil-tering-paper is thinner anl of superior quality.
Fil'ter-ing-press. One in which the passage of a liquid through a holly of filtering material is expedited hy pressure applied thereto. A pressure-filter.

Fin. 1. A mark or ridge left in casting at the junction of the parts of the moli.
2. A slip inserter longitudinally into a shaft or arbor, and left projecting so as to form a guide for
an object which may slip thereon, but not rotate. A spline or feather.
3. A tongue on the edge of a hoard.

Find'er. (Optics.) A small telescone fixed to the tube of a larger one, the axes of the two instruments heing parallel. The finder has a larger field of view than the principal instrument, and its purpose is to find an object towards which it is desired to direct the larger telescone.
Fine-arch. (Glass.) The smaller fritting-fnrnace of a glass-house.
Fine-arts. So lar as this subject is consilered in this work, it may be found mader the following lieals: -

Allertype.
Anaglyptography.
Anastatic- ${ }^{\text {minting. }}$
Arpuatint.
Autopyrography.
Antotype.
Bank-note.
Bintam-work.
Basso-rilievo.
Block-printing.
Bronzing.
Buhl.
Burin.
B. 1 st .

Calico-printing.
Calking.
Calotype.
Calduing.
Camaieu.
Cameo.
Camera.
Canvas-stretcher.
Carbon-printing.
Cartoon.
Chalcography.
Chasing.
Chemitype.
Chiaro-oscuro.
Chromatic-printing.
Chromo-lithography.
Chromo-xylography.
Cliché.
Crystallo-engraving.
Crystallo-ceramic.
Copperplate-engraving.
Cradle.
Crayon.
Cycloidal-engine.
Dab.
Daguerreotype.
Daal-coloriag.
Deadening.
Demi-relief.
Demi-tint.
Distemper.
Diamonel-point.
Die-sinking.
Easel.
Electypography.
Electrotint.
Ely loric-painting.
Embossing.
Embroidery.
Enameling.
Enamel-painting.
Encaustic-painting.
Enchasing.
Engraving.
Engraving-tools,

Etching.
Flatting.
Fresco.
Galvanoglyphy.
Galvanograply.
Gelatine process.
Gem-engraving.
Gilding.
Glass.
Glass-coloring.
Glass-emameling.
Glyphograph.
Glyptograph.
Graining.
'Graph (see list under this hearl).
Graver.
Gumuing.
Hair-pencil.
Half-relief.
Hatching.
Heal-rest.
Heliograph.
Heliotype.
High-relief.
Inlaying.
Intaghio.
Japanuing.
Lay-figure.
Lithography.
Lithophotography.
Lithotint.
Lithotype.
Low-relief.
Marquetry.
Mat.
Maul-stick.
Medal.
Medal-machine.
Medallic-engraving.
Metallo-chrome.
Metallography.
Mezzo-relievo.
Mezzotint-engraving.
Miniature.
Monogram.
Mosaic.
Nature-printing.
Negative.
Niello.
Palette.
Paneiconograph.
Pinorama.
Parian.
Parquetry.
Passe-partout.
Paste].
Pencil.
Photogalvanograph.

Photograph. Rilievo.
Photograph-cutter. Scribbet.
Photographic-apparatus. Sculpture.
Photographic-camera. Scumbling.
Photographic-engraving.
Photographometer.
Photolithograph.
Photosculpture.
Photozincograph.
Piqué-work.
Plaster-cast.
Plate-holder.
Polychrome.
Pottery-painting.
Print-holler.
Printing-frame.
Pyrograph.
Reisuer-work.
Relief.
Relief-linc engraving.

Sepia.
Silhouette.
Statuary casting.
Statue.
Statuette.
Stencil.
Stereochromy.
Stereograph.
Sterenscope.
Stretcher.
Stump.
Vignette.
Wax-modeling.
Xylograph.
Xylopyrographs.
Zincography.

Fine-draw/ing. A finishing process with cloth in which it is subject to a strong light while all faulty parts or breaks in the fabric are closed by sound yarn introrluced by a necdle.

Fine-mail. A name used in some trades to dis. thiguish a relatively thin from a coarse nail, such as a funcing nail or clont. A finishing nail.

Fine'ness. The quantity of pure metal in an alloy expressed in 1,000 prarts ; as the fineness of United States coin is 900 , the other 100 being alloy.

Fin'er-y-fur'nace. A slecies of forge-hearth in which gray cast-iron
is smelted by fuel and blast, and from which it is sun into iron troughs for suduen congelation. The result is a finer quality of cast-iron of whiter color, which is sulsequently puddled and made malleable. The furnace is of brick with hollow iron liming, through which water circulates. The fuel is

Fig. 1979.
 coke or charcoal, and the melted metal is run from the crucible into a pit, where it is quenched with water to render it brittle, and nerhapss oxidize it somewhat.

Fine-stuff. Lump lime slaked to a paste with a moderate volume of water, and afterward diluted to the consistency of cream, and then left to harden by evaporation to the required consistency for working over a floating-coat of coarse-stutf.

In this state it is used for a slippocd-coat, and when mixed with sand or plaster-of-paris it is used for the finishing-coat.

Fin'ger. 1. (Machincry.) a. A small projeeting rod or wire, which is lronght into contact with an olject to effect or restrain a motion. The derivation of the name from the homan finger is apparent, and the action is sometimes marvelonsly similar ; as in the delicate pieces of tactile and prehensile mechanism in the stop-motions of machines working in fiber. Known as a gripper in printing-machinery.
b. One of a row of similar projections, as the finger of a rake. Sometimes, as in the example, synonymous with tooth.
2. (Husbardry.) One of the projecting pieces one a finger-bar of a harvester, withim and against which the kuives play. See Finger-bar.

Fin'ger-bar. (Aqriculturc.) The bar of a reaping or mowing machine, whose front edge has pro-
jecting fingers, called grards, throngh whose horizontal slots the serrated knife reciprocates. (Sre Guanit.) Moving in either direction, the knife sections make a shear cut against the sharp edges of the guards, so as to sever the stalks of grain or grass which are divided either way by the guards, which hold the stalks laterally as the knives make their draw-cuts against the stems. The illustration shows the finger-bar in its relation to the quandrantal

Grain-Harvester.
platform, revolving-rakes and driving and suppiorting mechani-m.
Fin'ger-board. The neck of a stringed instrument of the siol, banjo, or guitar class, on which the strings are pressell by the fingers in playing.
Fin'ger-grip. (Well-boring.) A tool for recavering roits ar tools dropped into a hored slaft. It consists of a rod having a foot which is twisted around so as to penetrate beneath the object and enable it to be liftell and withdrawn. See Grab.
Fin'ger-nut. A uut with wings to atford a hold.
Fin'ger-plate. A plate on the side of a door, near the edge, to krep finger-marks from the paint.
Fing'roms. (Fabric.) Cloth made of combed wool.
Fin'i-al. A pointed ornament or pinnacle sur-
Fig. 1981. mounting the apex of a Gothic

Finial.

Specifically, a bunch of foliage which terminates pimacles, canopies, prechiments, etc., in Gothic architectur.
Fin'ing. 1. Naterial used to add to a turbid liquid to clear it. As the isinglass or albumen sub. sitles in the liquor, it carlies down the particles mechanically suspended therein. In this way, wine, cider, sirups, and many solutions are cleared.
2. (Mctallurgy.) Treatment of metal to remove impurities and foreign matters, as the fining (refining) of cast-iron to convert it to malleable iron by the removal of the carbon, etc.

Fin'ing-forge. (Metaliurgy.) An open luarth with a blast by which iron is fieed of impurities or foreign matters, Cast-iron is thus remelered malleable. See Fig. 1979.

Fin'ing-pot. (Metallurgy.) A crucible in which metals are refined.

Fin'ing-roll'er. (Papcr-making.) A cylinulical wire-eloth sieve in the paper-making machim, which allows the finely ground stuff to pass, hut restrains the coarse fibers and knots.

Fin'ings. A salution of isisglass, grlatine, or white of egg, for clarifying liquids.

Fin'ish-er. 1. (Puper-making.) The seennd beating-cngine, or half. stuff engine, which operates ulon the partially worked rags that have been previously reduced in the stuff-enginc and then bleached.
2. The final carclingmachine, whith preficts the flecec ar delivers the sliver; as distinguished from the prior machine, known as the brcuker. A finishing-card.

Fin'ish-er's Press. (Bookbinding.) A small press, like a cutting-press, uspd by the finisher, who does the ornamental work on the cover.

Fin'ish-ing. 1. (Ergraring.) The work of the graver, dry-roint, and machine-ruler upon an etclied plate.
2. (Bookbinding.) The omamental work on a book after it is simply covered with leather or cloth, which is known as forwerding.
The term has many arplications in the useful and ornamental arts, when a second set of workmen take up and finish a work which is systematically passel throuth a series of lands in regular order of tine.
Fin'ish-ing-card. A machine in which the process of carding is repeated. The machine which first operates upon the material is known as the brcakercard. See Caming-machise.

Fin'ish-ing-coat. (Plastering.) The third coat on the lecter style of work. For painting, it consists of the best stull, and is called sturco. For paper, it consists of the same as the previous coat, and is called setting.
Fin'ish-ing-ham'mer. The last hammer used by the gold-beater. The series is as follows:-
The fat or cnlarging lammer; the commencinghammer; the spreading-hammer; the finshinyhammer.

The latter has a more convex face than either of its predecessars; it has a face 4 inches diameter, and weighs 13 or 14 pounds. See Gol.d-neating.
Fin'ish-ing-rolls. A second set of rolls in a rolling-mill. The first set is the rounhing-rolls, which operate on the bloom from the tilt-lammer or stupezer and relluce it ta bar form. This is then cut up, piled, reheated, and taken to the finishingrolls, which make it into bar ar rod iron. The jeheating purifies, and the seconl rolling improves the tenacity hy the renetition of the drawing. The finishing-rolls rub at a speed two or three times greater than the roughing-rolls, according to size.

Fire-a-larm'. An automatic arrangement by which notice of fire is given. It depends for its action mon the increased temperature of the air in the vicinity of the fire, or upon the burning away
of certain connecting cords which are stretched in exposed situations.

Some of thesc alarms are designed to give audible notice in a central situation, say at a police or firealarm telegraph station, the office of a warehouse or store, the bedroom of a dwelling, the cabin of a ressel. Others, in addition to the said notice, turn on a body of water to the floor whence the notice has come, or hreak a bottle of acil to liberate car-bonic-acid gas in a reservoir of chemicals previously prepared.
a. That form of fire-alarm which depended upon the burning awiy of hempen springs to give the alarm, was patented in England by Joseph Smith, 1802. Cords are stretched through varions rooms in the house, and connect with an alarm apparatus in the office or the bedroom of the person in charge. The cords are saturated with inflammable material, which assists in their combustion when the fire reaches them, and the breaking of either causes its alarm-weight to fall.
b. Another kind of fire-alarm has tubes throughout the building. The tubes proceed from each floor and apartment to a central office, and the occurrence of fire in either canses an expansion of air which is evidenced hy a hlast of air from the tube.

In the example, a farther arrangement is made, by which from the office M a stream of water from a

tank T on the roof may be turned on to the floor when the alarm has been transmitted.
c. The increased heat of the apartment causes expansion of a bolly of mercury, and brings it in contact with a wire of a metal which readily amalgamates. The wire then hreaks with the strain applied to it. The fracture of the wire releases the escapement of the clock-work, and the hammer strikes the alarm-bell. The same automatic agency turns a cock and admits an extinguishing agent which is kept in reserve.
d. A thermostatic arrangement by which a closure of an electric cireuit is made when the metal expands under the increment of heat. The thermostat is a column of mercury, which ascends in a tube and makes the electric connection; or a plate or coil of two metals on the principle of the clironometer-balance, or it is an elongating rod.
The connection made, an armature in the tele-graphic-wire circuit is attracted by its magnet and releases a clock-work alarm.
The Tunnicliffe fire-alam has a erlindrical barrel 3 inches loug hy $1 \frac{1}{2}$ inches in diameter, which,
hy a screw attached midway along its length, may be readily secured to the ceiling or any part of the room desired. It contains, when ready for use, a small charge of powder, to which is attached an inch of fuse. This fuse is formed of a chemical mixture that will ignite whenever the surrounding atnmosphere is heated to $200^{\circ} \mathrm{F}$. In case of fire, the heat which ascends to the ceiling quickly ignites the fuse and causes an explosion sufficiently loud to he heard all over an ordinary four-story building. The alarms can be so arranged as to ring bells in any desired room in the building where placed, and may be attached to wires connected with burglar-alarms in stores and residences.

Fire-a-larm' Tel'e-graph. The name at licul to the system of telegraphy usually adopted in this comntry for giving notice of fires.
The first practical applications of the telegraph to this purpose were in 1851 in the cities of New York and Berlin, that in the latter under charge of one of the Siemens hrothers. These systems simply connected a series of watch-towers, wherein watchn:en were stationed, by an ordinary Morse line, so that the watchmen could telegraph to each other the locality of a fire.

The present system is that of Farmer and Clian. ning, American patent of May 19, 1857.

Mr. Clamming first devoted his attention to this subject in 1845, and published several articles that year attempting to show its feasilility. In 1848, Mr. MI. G. Farmer invented a method of ringing bells by electricity, and in an experimental tiinl that year the bell in the tower of loston City Hall was rung by an operator in New York.

In 1851, Boston appropriated money to build a fire-alarm telegraph, and early in 1552 the line was completed, put in operation, and proved a surcess.

That system is still in use, the implovements heing in the mechanical devices for carrying it into effect.

It comprised a central station, a series of signalboxes at suitahle intervals over the city comnected in one or more circuits to the central station, and a series of alarm-bells connected to the central office on another circu t.

The signal-boxes contained a circuit-breaking wheel, having upon its periphery cogs or teeth, upon which a spring, pressing, closed the circuit. These cogs or teeth and their interdeutal spaces were so arranged on each wheel that, when tlee wheel was revolved by hand, the circuit was made and broken, to indicate the number given to the box making the signal. This number, being received at a central station, was inmediately thansmitted on the bell-circuit, bells heing struck so as to indicate the hox from which the alarm originated.

In the original boxes the circuit-wheel was turned by hand; in the later boxes the wheel is turned ly clock-work driven by a spring. lit lieu of an operator at the central station, a repeater is thene used, the alarm from the box-circuit being antomatically repeated thereby upon the bell-circuit. Sometimes the bells and boxes are united in one cirnit. so that from a box the general alam is directi'y given. These modilications constitute what is known as the "Farmer and Channing improved" or "automatic system," from the fact that no operators at all are necessary, the turning in of an alam at any station setting in motion all the machinery of the system.

William B. Watkins, in his patents of January 31, 18i1, hes extenled the system so that fire or the oprcrations of burglars automatically given alam at a
central station. In each house (and each room, if clesired) thermostats, composed of metallic strips, are so arranged as to close the vironit of a local line upon a certain elevation of temperature, expanding the strips. Sach closing actuates a local nagnet, whose armature releases a detent of the signai-box mechanis:n, allowing the signal-box in main cirenit to send in the alarm. On the same local circuit are also arranged burglar-detectors, so that a door or winlow being opened closes the local circuit with the same result
Fire-an-ni'hi-la'tor. Invented by Phillips in 1849. A vessel is charged with a mixture of dried ferro-cyanide of potassium, sugar, and chlorate of potassa. It is set in action by a blow on a glass bottle which contains sulphuric acid, which llows over the clarge and liberates gas which is emitted at a nozzle and expended upon a fire to quench it. See Fine-extinguisuel.

Fire-arm. A weapon which projects a missile by the explosion of ganpowler. It succeeded the long and cross bows, but the periods of the two weapons in Europe lapped upon each other. (See Ansow ; Bow.) The bow and arrow are yet used by millions in Asia, Africa, and America, but the owners are always glad to trade for muskets and riftes.

The first fire-arms were doubtless rockets, in which the force of th: explosion carried the tube. To these probably succeedel something of the nature of the fire-works known as lioman cantles, in which pallets are loaded into a tube and fired by a match at the tube-month. The tubes were of banboo, paper, or cloth, probably each of these, accorling to circumstances. (For early notices, see GunpowDER.) The cracker was nsel as a grenade anciently in China, and in the Sth century by the Greeks.
The first fire-arms used in Europe were cannon. (See Arthlery ; Cannon.) Fite-arms to be carried hy the soldier were a later invention. The arquebus was used in 1450. The musket by Charles V. in 1540. These used matches or match-locks. The wheel-lock was invented 1517 ; the flint-lock about 1692. The percussion principle by the Rev. Mr. Forsythe, in 1S07. See Gun-Lock.

For varieties, see under the following heads:-

Accelerator.
Armstrong-gun.
Ariuebus.
Barbette-gın.
Battery-gun.
Birrling-piece.
Blunterbuss.
Bombard.
Breech-loader.
l’yssa.
Calabiass:
Cunnon.
Carbine.
Carronale.
Casemate-gun.
Chassepot-yua.
Coehorn.
Columbiail.
Culverin.
Dahlgren-gun.
Double-barreled gun.
Enfield-rifle.
Eprouvette.
Field-grn.
Fowling-piece.
Fusil.

Gatling-gun.
Gnn.
Howitzer.
Jingal.
Lancaster-gun.
Magazine fire-arm.
Mitrailleur.
Mortar.
Musket.
Musketoon.
Needle-gun.
Orlnance.
Parrot-gun.
Pistol.
Pistol-carbine.
Pivot-gun.
Repeating fire-arm.
Revolver.
Rifle.
Shot-gun.
Shunt-gun.
Si ge-gun.
Small-arm.
Swivel-gun.
Tinker.
Whitworth-gun.

This article treats of breech-loading small-arms generally; mayuzine fire-arms, ncedle-guns, rcrol-
$v e r s$, pistols, camon, and battery-guns are also considered under their respeetive heads.
"It was in 1430," says Biblius, "that smallarms were contrived by
the Lucquese, when
they were besieged by
the Florentines." A
French translation of Quintius Curtins, preserved in the British Museum, has the earliest illustration of land fire-arms yet discovered. The cut is from the "Peuny En. cyclopadia."

In the Musée d'Artillerie, Paris, is a breech-loading am of the time of Henry II. of France, prior to 1550 , and a match-lock revolver of the same leriod.
In the United Serrice 1/useum, of London, is a revolver of the time of Charles 1. It is called "a snap." haunceself-loading petronel." Fire-Arm of the Fifieenth It has a revolving cylinder-

Fig. 1983.
 containing seven chambers with touch-holes. The action of lifting the hammer causes the cylinter to revolve, and a fresh chamber is bronght into connection with the barrel. Six of the seven chambers are exposed to riew, and the charges are inserted without the aid of a ramrod.

Speaking generally, the early hand-guns were breech-loaders. Sec Revolver.

Abraham IIall's English pratent, 1664, had "a hole at the upper end of the breech to weeive the charge, which hole is opened or stopped by a piece ol iron or steel that lies along the side of the piece, and movable by a ready and easy motion."

Henry VIII. took much interest in fire-arms, and two weapons, yet extant, manufactured during his reign, were substantially the same as the modern Snider rifle.

Among the curiosities of this branch of invention is Puckle's English patent, No. 418, May 15, 1718. The accompanying illustration is from the original drawing attached to the patent, and the description following is that filed by the inventor.

"A DEFENCE.

Defenting Iing George, your Country and Lates
Is defending vourselves and Protestant cause.
A Portable Gun or Machine, called a Defence. For Bridges, Breaches, Lines, and Passes, Ships, Boats, Houses, and other Places.
No. 1. The barrel of the gun.
2. The sett of chambers charg'd put on ready for fireing.
3. The screw npon which every sett of chambers play off and ou.
4. A sett of chambers ready eharg'u to lee slip'd on when the first sett are pull'd off to be recharg'd.
5. The crane to rise fall and turn the gun round.
6. The curb to level and fix the guns.
7. The serew to rise and fall it.
8. The serew to take out the erane when the gun with the trepeid is to be folded up.
9. The trepeil] whereon it plays.
10. The chain to prevent the trejeids extending too far out.
11. The hooks to fix the trepeid, and unhook when the same is folded ap in order to be carried with the gnu upon a man's shoulder.

BREECII-LOADING FIRE-ARMS
Plate XVi.
(American and European.)

No. 12. The tube wherein the pirot of the crane turns.
13. A charge of twenty square bullets.
14. A single bullet.
15. The front of the chambers of a gun for a boat.
16. The plate of the chambers for a gun for a ship, shooting square bullets against Turks.
17. For round bullets against Christians.
13. A single square ehamber.
19. A single round chamber.
20). A single bullet for a boat.
21. The niold for casting single bullets."

The parts of a gon are :-
Ante-chumber; the cavity which connects the hollow of the nipple with the chamber in the hreech.

Barrel; the tube out of which the load is discharged.

Berd; the silver knob for sighting on the end of the barrel.
Bolt; the sliding piece which secures the barrel to the stock.

Brech: the piece containing the chamber which screws into the barrel.

Butt; the broad end of the stock which is placed to the shoulder.

Cap; the brass tube which incloses the worm of the ranrod.
Clumber; the cavity of the breech in whieh the powder is deposited and exploded.

Fielse-breceh; the iron piece on the gun-stnck which reeeives the hreeeh-claws, and assists in holding the barrel firmly to the stock.
Guard; the metallic scroll which defends the triggers.

Heel-plate; the plate on the butt.
Lock; the piece of many parts by which the gun is fired. See Gun-lock.
Loop; the clasp on the barrel through which the bolt passes and secures it to the stock.
Nipple; the tube on whiel the cap is placed, and throngh which the powder reaches the charge.
Nipple or cone wrench; a small turning tool for securing or looseuing the nipple, to and from the barrel.

Pipes; sbort tubes which hold the ramrod to the barret.
liib (upper and under) ; the center-piece which unites the barrels.

Side-nail; the screw which fastens the lock to the barrel.

Sight (breech and muzzle) ; an olyject or depression on the breech, a bead or knoh on the muzzle, by bringing which into line with the ohject the line of lire is directed.
Trigger-plate; the iron plate in which the trifgers work.

Horm; the screw at the end of the ramrod.
Of the gun-lock the parts are the

Bridle.
Chain, or swivel.
Cock, or hammer.
Lock-plate.
Main-spring.
Sear.

Sear-spring.
Spring-eramp.
Trigger.
Tumbler.
Tumbler-serew.
See Gun-lock.
The first patent in the United States for a breechloarling fire-arm was to Thornton and llall of North Farmouth, Mass., May 21, 1811. Between that time and 1839 more than 10,000 of these arms were made and were issuled to the troops in garison and on the frontier. This gun is represented at N, Plate 16 , and had a breech-block, which was hinged on an axial pin at the rear, and tipped upwardly at front to expose, the front end of the charge-chamher. The llint-lock and powder-pan were attached to the vibrating breech-block. The arm is showil and described in detail in General Norton's "American Brecel-Loading Small-Arms," New York, 1872.
Before the war of $1861-65$, the principal breechloarling small-arms were Sharps's, Burnside's, Maynarcl's, Merrill's, and Spencer's.

Sharpis's rifle (0 , Plate 16) has the barrel rigilly attached to the stock, the rear being opened or closed by a vertically sliding breeeh-block, which slides up, and lown in a mortise operated by the trigger-guard, which is piroted at the front enrl, or by a lever.

The primer consists of small pellets of fulminate inclosed in a copper casing so as to be water-proof. These are placed in a pilte in a hole in the lock-plate, forced upward by a spital spring, the upper one fed forward by a plunger, caught by the cup of the hammer, and carried down upon the nipple. The cartridge is in cloth, the end covered with tissue-paper saturated with saltpeter, through which the fulminate will ignite the powder.

Burnside's rifle $(P$) has the barrel attached to the stock, the breesh-piece being jivoted beneath the barrel, so as to swing downward and expose the chanber in the front end of the breech-piece for the insertion of the cartrilge.

In Maymard's rifie (D) the hatrel is pivoted to thas front end of the stoks, and its rear end tips upwardly, exposing the chamber for the cartridge, when the burrel is tipped down against a solid breech-piece and lockel. The Mrynard primer consists of pelleta of fulminate placed at regular intervals between narrow strips of paper. This is coiled in a chanber in the lock-plate, and is fed forward by a wheel operated by a hummer, so as to bring a pellet on top of the nipple at each disehrege.

The Merrill gun (E) was constructed for a paper cartridge. The breech was closed by a sliding iplug locked in place by a combination of levers. The charge was exploded by a eopper cap, placed upon the nipple in the ordinary monner.

The spencer ritle (F) is both a magazine and a single breach-loaler, seven cartrilges being plaeed in a magazine in the but, and being thrown forward to the chamber as required. The breech-block is a sector pivated beneath the level of the larrel, and retreating bickward and downward to expose the rear of the bore for the insertion of the cartridge. The trigger-guard forms the lever for moving the breech-block.
The Roberts gun (L) has a breech-block pivoted at the rear, operatell by a lever which extends backwardy over the small of the stock; the forward end of the breech-block being depressed, the center of its motion and its abutment in firing being a concave solid bass centering on the exast prolongation of the axis of the barrel. The hreech parts are four in number, articulated withont pins or serews. The firing-pin passes centrally throngh the breeehblock, and is driven forward on the center of the cartrilge by a blow of the hammer.

The Martini gun (A) is the invention of a Swiss, The breech-block is pivoted at its upprer rear portion, being moved up and down by a lever at the rear of the trigger-guard. The firing is by a spiral spring, which actuates a firing-pin. The cartridge-shell extractor works on a pivot below and behind, the barre] being oprerated by the descent of the front end of the breech-block upon one arm of the bell-crank lever.
The Chassepot ginu $\langle B\rangle$ is the Freneh arm, and is named after its inventor. It is what we term a bolt-gun, an opening on the right hand of the chamber admitting the insertion of the cartridse. The forwarl thrist of a knob drives the eartridge into the breech, and a partial rotation of the knob locks the breech-piece. The firing is by a needle.
The Prussian ncedle-gun (C) is also a bolt-gun, having an inner bolt which forms the firing-pin, a sleeve around it, and an onter cylinder. The parts are shown with the needle in its fired position. In preparing to reloal, the rear knob is withdrawn, and the axial bolt retained by a catch which engages a projection, withdrawing the needle. The chamber is then unlockel by the knoh and slid baek, the cartridge inserten and driven into the breech by the chamber, which is locked by a partial
rotation. The firing is done by releasing the needfebolt.
The Laidley gun (G) has a breech-block pivoted bencath the barrel and rotating back ward and downward to ofen thechamber. When in position for firing, it is fastened by a locking-brace which is operated by a spring, and vibrates on the same axis as the hammer: The breech-block is unlocked ly a can and thrown back by a pawl attached to the locking. brace and actuated by the hammer.

Tlie Westley-Richards gun (H) is an English arms having a livoted breech-block whose front end is depressed by the action of a lever pivoted to the stock beneath the rear of the buyrel.

The Snider gun (I), huilt at Enfiell, Englane, is similar to our Springfield converted vifle, of which presently. The breech-block is hinged to the rear of and above the barrel, the block throwing ulward and forward, exposing a chamber in rear of the bore. Into this the cartridge is dropped,]mshed into the bore, the block brought down and locked ly a latela in the rear. The firing-pin passes obliquely through the block and is struck by the ordinary hammer.
The Berdan form of this type is shown at J, and has a breecl-block in two sections linged together.
K is the Peabody gum, which has a falling breechblock, hinged at the rear and depressed by the guard-lever, whose short armengages in a recess of the block and controls its movements. When the block is down, the cartridge is slipped into the bore, and the piece is fired hy the fall of the hammer upon a firing-pin sliding in a groove in the side of the block. In opening to reload, the block dropis upou an elbow lever and withdraws the spent cartridgeshell.

Allen's gun (M) is double-barreled, and the hreeclhock is hinged at the side, swinging upwardly and laterally. It carries both firing-pins, and is locked shut by a latch.

Plate 17 gives views of the three arms recommended this year (1873) by the army commission at Springfield.
R is the Springfield arm, having a breech-block hinged to the upper edge of the barrel and swinging upward and forward. The indorsement of the buard, as the best all things considered, entitles it to an honorable place in the series of examples. R is a side view of the gun, with the breech-block d thrown u]; a is the bottom of the recpiver, c the brecch-pin, with its circular recess to receive the cam-latch f, which locks the breech-block in place; g is the cam-lateh spring, h is the firing-pin, which transmits the blow of the hammer to the priming of the cartridge, and is pressed lack by a spiral spring after the delivery of the blow; j is the cart-ridge-shell ejuector, k its spring; l an incline which tips up the ejected shell so as to throw it out of the receiver.
R^{\prime} is a top view of the gun with block closed. R^{2} is a longitudinal vertical section with the breechblock closed. The dotted lines show the block raised.
The breech-hlock is raised upward and forward in the aet of opening by a thumb-piece m, which reJeases it by turning un the cum. latech out of its recess in the breech-pin. When fully open, it discloses the chamber, or rear end of the barrel, realy for the insertion of the charge contained in a coplper carthidgecase, holling seventy grains of musket-powder, and firing a hullet thof of inch in diameter and weighing ahout 400 grains. When the breech-block is closed, it is held lown aud hraced against the effort of the heaviest charges by the cam-latch, which flies

BREECH-LOADING FIRE-ARMS.
Plate XVII

BREECII-LOADING FIRE-ARMS.
into place in closing. The piece is fired by the ordinary side-lock taken from the old muzzle-loaders. In opening the piece after firing, the breecli-block strikes the lump on top of the extractor, and revolves it so as to carry the now empty cartridge-shell to the rear. After passing a certain point, the spiral spring in front of the extractor is released, and accelerates its motion, so that the cartridge is thrown sharply against the bereled surface of the ejector-stud, hy which it is deftected upward and expelled from the gun.
$S S$ are two riews of the Elliot carbine recommended by the same board for trial in the tield, as exhibiting "remarkable facility of manipulation in requiring but oue hand to work it." This arm has a breech-block hinged to the lreech-pin and aperated by the hammer. Fig. S shows the gnn in loading position, and 5 " in the position "ready to fire." After firing, the hammer d is pulled back to the position shown in S, and in so doing draws by the yoke b npou the breech-block a, to which it is pivoted at c. This pulls down the front end of the breech-block, exposing the rear of the harrel for the insertion of the cartridge. Having done this work, the pin e of the yoke slips out of the socket f into the lower portion of the groove, while the lower branch of the yoke engages orer the pin g, so that when the hammer is again pulled back, the breechblock is puslied up again into the prosition shown at S, where the hamner is on full cock and the arm ready to fire. h is a strap which works the retractor, so that the shell is ejected as the breechblock is pulled down. S shows the cartridge-ejector pulled ont ; S shows it in its bed. One pull on the hammer depresses the breech-block and ejects the empty shell; another pull closes the breech-block and puts the hammer in position for firing; a pull on the trigger fires the arm.
$T T$ are two positions of the Ward-Burton gun, which is on the bolt principle, like the Prussian needle-gun and the French Chassepot. This gun, in its magazine form, was also recommended "for farther trial in the field." This gin, having beco fired, is openel by raising the handle a of the bolt and withtrawing it directly rearsard; the position is shown in Fig. T' of Plate 17. As the cartridgeshell is pulled out by the spring-hook on the upper edge of its flanged rim, the pin which rests against its lower portion comes in contact with the front end of the trigger-pin, which tips it up and throws it out of the receiver. Another cartridge is then introduced by hand or hy automatic devices from the magazine, and pushed intn the bore of the gun by the longitudinal formard motion of the bolt. Near the liead of the bolt is seen a part of the sectional screw which engages with a corresponding section within the gun when the picce is closed, and the handle turned down into place, so as to support the bolt against the force of the discharge. The tiringpin is an axial spring-pin released from the bolt by a downward pull ly means of the trigger and lever. Fig. T is the position "ready to fire," the drivingspring being condensed and ready to act. Fig. T' shows the bolt withdrawn and the cartridge tumbling ont. When the holt is withdrawn, the sleeve of the firing-pin is so far retracted that a shoulder catches behind the trigger. When the bolt is puslied home, diving the caltidge intn the barrel, it leaves the shoulder of the firing-piu resting agaiust the trigger, as slown in Fig. T.

Plate 18 shows three other American forms of fire-arms, and the Swiss adopted pattern, which is a bolt needle-gun.
$U U^{\prime}$ are two positions of the Remmington gun ;
the left-hand figure is "fired," the right-hand "ready to load." The breech-hlnck b swings niton a strong pin within a martise of the stock. c is a tumbler which braces the breech-piece against recoil at the time of firing, and forms a part of the lammer which strikes a firing-pin, which passes through the tumhler and is driven against the cap or part of the cartridge-case containing the fulminate.
The breech-piece b and tumbler c are so formal that when the former is closed the rounded ulluer portion of the tumbler works in a concavity in the back of the breech-piece, as shown in Fig. U, and when the hammer is drawn lack to half-eock or full-cock the rounded hack of the breech-priece works in a concavity in the front of the tumbler, as shown in Fig. U^{r}. This mode of matching the lreechpiece and tumbler prevents the possibility of the hammer falling until the breecl-piece is perfectly closed, and so obviates the possilility of premature explosion of the charge. The extractor, by which the discharged cartridge-shells are drawn out from the chamber of the barrel, works between the receiver and the breech-piece, and is operated by the opening movement of the latter. The hreech-piece is opened by the thumb-piece. A guard-lever d prevents the trigger leeing drawn when the breechpiece is open.
$\|^{*} W^{\prime \prime}$ are two niews of the Dodge hreech-loader, shown as a double-barreled treech-loading fowling1 iece. $\quad \|$ is a nerspective riew, and $W^{\prime \prime}$ a sectional ries: The barrels are hinged to the front end of the stock, so as to tilt upwardly at the rear and nearly halance upon the hinging-joint, the motions heing made by means of the pivoted lerer d, which laps orer the trigger-guard and locks the harrels in fring position by engagement of a hook c with a pin passing through the lug g. The front end of the lever extends beyond the pin on which it turns, and works in a slot in the center of lug g beneath the barrels, which it serves to elevate and depress. As the barrels are elevated, the front end of the lever strikes against a pojection on the stem of the extractor, and retracts the syent cartidge capsule. The frame c is made of a single piece of metal extending from the front, where the 1 arrels are hinged, to the grip in the rear of the breech; and the locks are fitted in recesses therein, dispemsing with senamate lock-plates. The locks are "rehounding," that is, they go forward and fire the cap and return to half-cock. The haumers draw back the firing-pin when full-cocked. The barrels are adjusted on the frame, and wear is compensated by means of the hlock b. In use, the left land need not be moved from where it is in fring; the breech is lorought under the right arm, the lever thrown down, fresh cartridge inserted. the lever returned, the hammer cocked, and the piece is ready to fire.

The gun adopted hy the Swiss Federal government has the magazine and cartridge-cartier of the Winchester, with the needle-expooder and bolt lieech. The large ficure is a longitudinal central section ; x is a pernpective riew of the lolt, filing-pin, and lever detached; x^{1} is a view of a piece of th breech-cylinder ; x^{2} is a view of the cartridge-carrier detached. The motions are as follows : the lever α is raised, rotating on the firing-pia b, and coching the latter by the pressure of a cam upon the Uansvelse tuigger-lar c; the bolt is then drawn back, carrying the firingrin and the hook, whicl retracts the slent cartridge; the motion eventually rocks the hell-crank lever d and raises the carrier e, which briugs another cartridge in line with the barrel. The holt h is then jushed back, pressing down the carrier e and driving the cartridge into the barrel ; a partial rotation of
the bolt, by means of the lever a, locks it firmly by the catching of studs f on the bolt behind lugs g on the breech-cylinder. The firing-pin has rewained on cock since the first motion of semi-rotation of the bolt, and is now pulled ofl by the trigger. The combination is known as Vettertin's.
Y^{\prime} is the Henry magazine rifle, now known as the Winchester repeating-gun. It may be used as a sin-gle-loader or a repeater. As a repeater, the motion of the lever a withdraws the spent shell of the previous charge, raises the hammer, recharges the gun, and relocks the breech methanism. The magazine contains seventeen cartridges, which can be discharged in as many seconds. With single loading, the cartridge is placed in the earrier-block, and a single motion puts it in order for firing. The cartridges are placed in the magazine by pressing them through the trap b on the right-hand side of the gun, the magazine being easily filled while the gun swings at the side. They are fed from the magazine into the carrier-hock by a spiral spring.
Y is a sention of the gun immediately after discharge ; e is an empty shell ; d one in the carrierblock; e, one in the magazine; by the forward motion of the lever a the links take the position shown in Y^{\prime}, the piston g is withdrawn, raising the hammer to the full-cock, and extracting the empty shell c, which is thrown upward at the same time the carrier-block h with the carriage which it contains is raised by the lever i placing the cartridge opposite the chamber. This position is seen at \boldsymbol{Y}^{\prime}. The retuming notion of the lever drives the piston forward, leaves the hammer at full-cock, forces the
cartridge contained in the carrier-block into the chamber, drops the carrier-block to receive the following cartridge from the magazine, and places the arm in readiness to be fired.
The United States has adopted the Springfield.
England adopts Suider's improvement on the Enfield.
France, the Chassepot.
Belgium, the Albini.
Holland, the Snider.
Turkey, the Remington and Winchester.
Austria, the Wanzl.
Sweden, the Hägstrom.
Russia, the Laidley and Berdan.
Switzerland, the Winchester.
Portugal, the Westley-Richards.
Prussia, the needle-gun. The well-known form shown at C, Plate 14, has been superseded by the Mailser gun. See Needle-gun.
The breech-loaders purchased by the American government between January 1, 1861, and January 30,1866 , were of number and kind as follows :-

Ballard	1,500	Maynard	20,002
Ball	1,002	Palmer	1,001
Burnside,	55,567	Remington.	20,000
Cosmopolitan	9,342	Shatps	80,512
Gallagher	22,728	Smith	30,062
Gibbs	1,052	Spencer	94,156
Hall	3,520	Starr	25,603
Joslyn	11,261	Warner	4,001
Lindner		Wesson	151
Merrill	14,495		

CLASSIFICATION OF BREECH-LOADING FIRE-ARMS PATENTED IN THE UNITED STATES.

[^8]
CLASSIFIED LIST OF BREECH-LOADING FIRE-ARMS PATENTED IN THE UNITED STATES.

[The star (*) designates magazine-guns.]
Class A. - Barrels moving with Relation to the Stock or Breech.

Class B. - Breech-Block moving witi Relation to Barrel.

1. Siding Longitudinally Eachward. (a.) Operated by a Lever.			1. Sliding Longitudinally Barkzard. (a.) Operated by a Lfier. - Contioued.		
No.	Name.	Date.	No.	Name.	Date.
747	W. Jeaks	May 25, 1838.	86,739	T. M. Deprez	Feb. 9, 1869.
7443	W. W. Marstou	Juae 18, 1850.	84,911	T. B. Cooklin	Feb. 16, "
*8,317	11. Smith	Aug. '26, 1851.	87,997	D. Williamsoo	Mar 16, ${ }^{6}$
* 10.335	Suith and Weasoo	Feb. 14, 1854.	-111,500	L. Wheelock	Juae 31, 1871.
15,995	6. W. Morse	Oct. 28, 1856.	*113,563	11. J. Drew	Mar. 14, "
16,99]	W. C. Hicks.	Mar. 10, 185 y .	-112,564	11. J. Drew	Mar. 14, "
20, 25	G. I1. Soule	July 6, 1858.	*114,642	G. R. Stetsuo.	July 4, "
20,934 $-30,44{ }^{2}$	J. II Merrill	July $20,{ }^{\text {act. }} 16,1960$.	1125,988	O Wh Robinsoe	$\begin{aligned} & \text { Apr. 23, } 1872 . \\ & \text { Juue 11, } \end{aligned}$
30,714	J. Boynton.	Nor. 27, "		Whiam If. Haugau	
30,032	J. 11. Merrill	A pr. 9, 1861.			
32,033 32,451	J. 11. Merrill	Apr. 9, ${ }_{\text {May }}$	1. (b.) WThslraven by Hand by a Thumb or Spring Catch, or by a Handle, and fastened by a Bayonet-Catch.		
33.533	J. 11. Merrill	Oct. 22, "			
33.847	D. Moore	Dec. 3, "			
34,309	C. B. 11 otd $=$ n	Apr. 1, 1862	6,871	C. Hartuog.	Nov. 13, 1849.
$35.24 \pm$	IV. 11. Elliot.	May 13, "	-6,973	1. Jeonings	Dec. 25, ${ }^{1}$
35,943	C. C. Brind	July 29, "	7,334	J. Murflein	Apr. 30, 1851.
*3n 1it	J. Q. A Scott	Aug. 12, "	11,198	A. N. Newton	${ }^{1}$ une 2\%, 1854.
3n, $\because=1$	J. V. Meits	Oct. 21, "	11, 835	C. F. and A 11. Paluire	Oct. 24, "
35,79	S. Howard	Oct. 28, " ${ }^{\text {c }}$	11,938	F. Maton	Nov. 14, ${ }^{6}$
$3 i, 3,5$	Le Roy S. Wh	Jaa. 6, 1863.	15.532	A. N. Newto	Aug. 12, 1856.
38.250	C. 1'. Brand	Apr. 28, "	16,072	C. Sharps	Nov. 11, ${ }^{\text {a }}$
35.145	E. H. Asherof	May 26, "	12,634	J. Durell	Nor 17, 1857.
34,943	© $:$ Brand	June 23, "	25,410	1. Rider	Sept. 13, 1859.
$411,94 t$	J. 11 Merrill	Nec. 8, "	26,475	B. Burton	Dec. 20, ${ }^{\text {c }}$
41. -14	W. C. Hicks	Mar. 1, 1884	32,460	J. 11 Merrill	May 28, 1861
42,941	11. Gross \qquad 11.	May 31, "	34,188	F. G. Woodar	$\text { Jan. T, } 1862 .$
45.202	Burgen and Wi 1. F. Applelay	Nov. $22, \quad "$	$3+422$	J. D. Grceae	Feb. 18, "
${ }^{+15,464}$	J. F. Appleby D. Williamson		34.763 $3+911$	T. Twickele	Mar. 18, "6
$4{ }^{4}+5,95$	D. Williamso	Mar. 21, 1865. June 20,	34,911 35,107	J. L Swan	
$49,+53$	W. F. Witsou aod i1. Flather	Ang. 15, "	31,681	W. Terry	Apt. 14, "
501.1皆	c. lluward	Sept. 26, "	30,854	3. C. Nye	Nov. 4, "
50,378	C. Howaril	Oct. 10. "	35,354	J. C. Nye.	Jan. 6, 1893.
-52, 533	J. D. Smith	Feb 27, 1866.	35,23	J. K. Millne	Feb. 17, "
*52, 33 ${ }^{\text {a }}$	3. D Suith	Feb. 27, "	38,003	O. D. Lull	June 1if, "
-5, 012	N. King.	May 22, "	39.136	W. H. Elliot.....................	July ${ }^{\text {J }}$ "
-5i, 933	11. W. Hayden	Aug. ${ }^{\text {a }}$, "	40,552	W. Margenstera and E. Morwitz .	Nov. 10, "
- 5.818	N. King.....	Aug. 28, "	41,017	W. Palmer	Dec. 22, "1
* 58,937	G. W. Briggs	Oct. 16,	44,127	Townesnd and Clemeot	Sept. 6, "18.
*9, 12i	V. Fonerty	Oct. 23, "	44,545	D. F. Metlen ..	Oct. t, "
-63,54	P Smeekler.	Apr. $2,1867$.	45.2 ¢2	11. Morgenstern	Nov. 29, "
6.5,412	W W Inhhell	June 18, ".	48,133	W. Morgeostern	June 6, 1865.
"3i,51	F. L. Sirurtevant	July 16."	50.334	N. S. Clement.	Oct. 10, ${ }^{6}$
68,185	3. Lidault and G. Elieze (dit Lagieze)		60,883 63,217	A. A. Chassepot	$\begin{aligned} & \text { Ja. } 1,186 \% . \\ & \text { Mar. } 26 \text {, } \end{aligned}$
*82, 819	v Fogerty	Oet. 6, 1868.	63,303	Thomas Restel	Mar. 26, "
-84.39.9	1. Wheelock	Dec. 1, "	655,509	F. K. Root	June 4, "
85610	P. Schuler	Jna. 6, 1869.	73,351	11. Lord	Jan 14, 1868
*86,123	S. G. Bayea	Feb. 9, "	14,387	H. Lord	Feb. 11, "

FIRE-ARM.

2. (c.) Hinged beneath Barrel, etc. - Continued.

No.	Name.	Date.
51100	C. E. Billiogs	Apr. 24, 1868.
54, 113	Laidley und Eunery	May 15, "
56,339	G. 1' and G. F. Fuster	July 1i, "
55,3919	J Bralley.	Aug i, "
58,144	18. MeChesney	O.t. $2, \quad "$
${ }^{6} 5,187$	C. M. Speacer	Uet. 9, "
*58,739	C. M. Speacer	Oct. 9,
59,500	(1) C. Coleman	Nov in, "
60, 103	II. II. Wolcote	Nov. 37
*60,910	T. W. Lane.	Jan. 1, 1837.
60,933	11 M. und M. J. Chamberlain	Jan. 8, "
61,129	Sil is Crinpin.	Feb 5, "
62,873	A. A. Munger	Mar 12, ${ }^{\text {a }}$
64,736	W. 11. aud G. W. Miller	Mıy 1t, "
65,103	R. McCueancy	May 5x, "
*60,242	J. A. W'aitocy	July 30, "
$68,251)$	W. S. Smoot.	Aug ${ }^{2}$
68,293	W. If. tilliot	Ang ${ }^{\text {de }}$
72813	L. Conroy	Dec. 31, "
7 $\pm, \pm 38$	J. Riler.	Feb. 11, 1808.
it, 5)	B. II. Jeaks	F-b 25,
76.535	J. Brougriton	Apr 11. ${ }^{6}$
80, 399	A. 1. Stevens	Mty $\frac{1}{1,15: 99 .}$
91,121 92,393	1. Conroy ...,	June 15, "
$\begin{array}{r} 92,393 \\ 104,11 \end{array}$	${ }_{\text {J. }} \mathrm{T}$ W Staikes. Schoicld	
[191,33	J. M. Whittomore	June 11, 6
111,314	M J. Chamberlun.	Feb. 14, 1871.
112,55	Smith und Cat umberlain	Mar í, "
112,931	W. C. and P. 'T. Dolse	Apr. 4, "
112.937	E. Whitnoy	Mar 21, "
113,403	W. C. Dodye	Apr 4, "
113,179	Tresing and Gerber	Apr. 4, "
114,712	J. Yritesius	Mly 9, 6
115,977	Eli Whitney	June 13, "
116,13	W. S. Sunoot	Jnne 20, "
116,3 3	W. T. Snellen	June 27, "
116,331	W. T suedden.	June 27, "
117,931	Jumes M. Mason	Aug. 8, "
*118,1.92	d. Rider	A17\%. 15, "
*119, ${ }^{(2)}$)	W. R. Evans	Sept 19, "
119, 333	1 Iorace Uplograt	Sept 13. "
120,733	W. S. Smoot.	Nov. T, "
122, 163	B. B. Hotchkiss.	Jan. 2, 1872.
122,170	James Lee	Jan. 2, "
123,117	A. T. Freem	Jan. 16, "
124,331	Eli W'nitaey	Mir 20, "
125,329	John F. Thom is	Apr. 2, "
12 $i, 145$	John W. Cocirsuo	May ${ }^{\text {b }}$ "
12, 33;	Jobn F. Tham 13	May 28, "
12,7333	W. C. nud P. T D.dye	Juae I1, "
12:9,393	M. J. Cla mberlaio	July 10, "
129,133	D Sutich	July 13, "
-129,523	A. Burgess	July 13, "
123. $3.3 i$	E. Whitney : 1 d E E Tresiag	July la, "
131,15]	11. Up Ierr b.I	Aug. 6, ${ }^{6}$
131,137	J. M. Whittemo:e	Sent. 17 '
131, 131	J M. Whitiemme	0 ct. 1, "
13, 510	W Nont Storn	Nov. 5, "
1 33.10 \% 3	W S. Smoot.	Nov. 12, "
*131.549	A. Burge a $^{\text {d }}$	Jad. 17, 1873.
133.40.	M. I. Chanberlin	Feb. ${ }^{\frac{1}{4},}{ }^{4}$
135,671	C. In Spenc	Feb. 11, "
137,625	C. Slanes	Apr. 8, "6
132,15\%	Holt and Marthall	Apr. 22, "
132.27	D. Smith	Apr. 22, "
141,333	J. Rider.	July 20, "
111,331	J. Riler	July 20, "
111.603	Smith and Murshal	Ang 5, "
142,3:3	D. Hug. .	Sept. 2, "

2. (d.) Swinging on Centers or Trunnions.

*10,094	E. H. Graham	Oet. 4, 1853.
10,3.31	J. I) Gruene	Jan. 3, 1854.
*11,944	E II. Oraham	May 16,
12.24t	A. D. Perry	Jan. 16, 1455.
12,43)	11. Gross	May 22,6
14.819	E. Sniter	May 6, 1856.
*15,731	F. It Graham	Scpt. 16. ${ }^{\text {\% }}$
17,13)	G. A. Blittows	Apr. $28,1857$.
39,200	O. R. Baeon	July 21, 1863.
39,455	J. 8. Adams.	Ang. 12, "
$4 \pm, 377$	J. 8 Alams	Sept. 2\%, 1864.
45,495	11. W. Ilayden	Dee. 20,

2. (e.) Hinged at Rear to swing Upward and Backward.

No.	Name.	Date.

	Willian Thornton and J. II. Itall	ay 21, 1811.
865	11. L. Thistle .	Aug. 1, 1838.
1,141	N Start	May 3,1539.
3,686	Savage and North	Jnly 30. 1844.
5,141	II. S. North	June 5, 18 ± 7.
11.536	W. A Siveet	Aug 15, 1854.
*12,567 -	A. T. Watso	Mar. $20,1855$.
15072	11. Gross	June 10, 1856.
18,472	Skioner aod T	Oct. 20, 1857.
19,063	W. Burghart	Jan. 12, 1858.
20,503	G. W. Mors	June 8,6
-21,149	F. B. Prinale	Aug. 10, "
23,224	Barber and lec	Mar. 15. 1859.
23,378	E. Lindner	Mat. 29, "
24,334	D. Leavitt	June [H_{1} "
25,259	II. Gross	Aug. 30,
23,076	W. II. Arnola	Nov. 15,
32,897	W. l'alue	July 23, 1861.
\#34,922	C. Dragar	Apr. 8, 1862.
-35,518	N. Smich	June 10, "
33.891	Bostwick and Sargent	Nov. 11, "
37,048	1. M. Milbank	Dec. 2, ${ }^{2}$
37,407	J. Oliphan	dan. 13, 1803
37.764	C. Perley	Feb. 24, "
+39,511	J. N. Smith	Aug. 18, Aug. 2, 1864.
43,733 47,088	J. Browness	Aug. 2, 1864.
47,088 51,213	J. W. Cochrao	Apr. 14, 1865
51,213	F. B. Prindle	Nov. 28, ${ }^{6}$
52,159	J. W. Cochra	Febs. 20, 1866.
*135,947	Swidgle and Innntington.	Feb. 18, 18 i3.

2 (f.) Hinged at Rear and swinging Laterally.

409	C. Parkhurst..	Sept. $25,1837$.
34,319	C. M. Spencer.	Feh. 4. 136\%.
44,991	E. Whitacy	Nov. 8, 18 Gt .
43,073	B. F. Joslyn.	Juдe 6, 1865.
133,70	A. T. Freemao	Dee. 10, 1572.
133,190	T. Restell	May 20, 1873.

2. (g.) Hinged at Rear and swinging. Downward and Backward through Mortise.

2,627	C. II Ballard.	Nov. 5, 1851.
12,528	R. White	Mar. 13, 1855.
$35,5 \pm 7$	II. O. Peabody	July 22, 1862.
36,509	E. Gwym and A. C. Campbell	Oct. 21, ${ }^{6}$
-38,702	C. M. Speacer	May $26,1863$.
*38,935	A. Ball.	Junc 23, "
39,479	II. Gross	Aug. 11, "
41,166	J. Merwin and E. P. Bray.	Jan. ${ }^{\text {J, }} 1864$.
41342	W. I. Steveus.	Jan. 12, "
* 43,827	A. Brll	Ang. 2, "
60,607	T. Iates.	Duc. 18, 1866.
65,607	B. S. Roberts	Juae 11, 1867.
70,111	1. Wheelock	Oct. 22, '4
72,076	1I. O. Peabody	Dec. 10, "
76,305	II. O. Peabody	Apr. 14, 1868
83, 142	E. F. Anno	Dec. 29. 1868.
* 89,705	L. Z. Terrell	May 4, 1869.
90, 034	13. S. Roluerts	May 11, "
90,614	F. Von Martini	May 25, "
91,658	W. Richnrds.	June 22, 6
99,673	Z R. Von Wessely	Jnly 13, "
95,395	A. J. Varney...	Sept. 28. ${ }^{16}$
*105,093	J. Kraffirt.	July 5. 18,0
110,021	W IL. Elliot	Dee. 13, ${ }^{6}$
112,565	J. Duval	Mar. 11, 1871.
114,54"	W. II. Elliot	May 9, 6
114.951	Jnares Lee	May 16, ${ }^{6}$
115,511	F. Yon Martini	May 30, "
116.068	Janies Isee	June 20 , "
117.552	J. Manton	Ang. 1, "
-119,115	A. Burgess	Sept.19, "
119,218	A. Inurgess	Sept. ${ }^{\text {264, " }}$
120,5.6	W. 1I. E!tiot	Nov. 7, "
120.800	F. Yon Martiai	Nov- 7, "6
121,499	W. II. Eilliot.	Dee. 5, "
123.172	Jnmes Lee	Jan. 16, 18 -2.
123,159	d. Dnval.	Jan 30, "
125,127	W. H. Ellio	Apr. 2, is
127,737	A. Burgesa	June 1I, is
128,208	A. Burgess	June 25,
132,229	F. Voa Martidi	Oet. 15, "

5. (b.) Huving Chamber in the Barrel in Front of Faucet.

Class C. - Revolyers.
[The dagger (\dagger) signifies that the cylinder bas a cartridge-shell extractor.]

1. Ciambered Cylinder revoluing on Parallel Axis. (a.) Behin 1 a Frurrel; Cy!inter charged at Front.
No

No.	Name.	Date.

1 Chambered Culinder revolving on "Parallel Axis. (a.) Be-
hind ad Barrel: Cylinder charged at Front. - L'ontinued.
-

FIRE－ARM．

1．Charbered Cylinder recolving on Paranti Axis．（a．）Be－ hind a Earrel；Cylunder charged as Frons．－Convinued．		
So．	Same．	Date．
40,00	W．H．Elliot	May 9， 1585.
4 i .112	G H．Gariver	Msy ln，${ }^{\text {a }}$
45.20	B．F．Jaily．	Jane ${ }^{\text {on }}$ ，＂
51． 2	F．T．Ersir	Dec． 14.
51，64）	G C．Bursen	Dece $23, \quad "$
52．15	S．IT．Toas	Jnd．10， 1530.
53.975	G．S．Croxell	Apr 1\％．
55.043	Tillixm Tibhals	Jube 19，＂
5s．t3i	Tillixm Tibba＇s	Joly 17．
－ 5.512	E．J．Frost	June 11， 135%.
65.542	R．Thite	July y^{+}＊
72.14	J．Gorloo．	Dec．31，＂
82， 25	P．A．Thaer	Sept 19，1503
94，3．5	B．R．Uill	Feb．15，13：0．
110，， 14	Linłery and Pbilip	Dec．E，＂
112．151	E．S．Lesyeroft	Mar－＇， 18.1.
112．4\％	E．L Lesictoft	Mar．${ }^{\text {M }}$
115，255	E．Whitues	May 23,
123－331	J．Gorloa．	Joiy 13，13，2
134．48？	O．Echjeeloch	Dece 31，
142．3．5	B K．Dorma	Sepr．2，15．3．

1．（b）Behinf a Barcl；Cy：inter charged at Rear．

12.64	F．White	Apr．3， 1355.
15，13．	F．B．E．Bennmont	Juae 3 13j．
19，1il	f ifrise	Apr．13， 1555.
30， 31%	F II Itrrington	June 15，
2140	En Allea	Sept．－${ }^{\text {－}}$
22，15	E．A．ler．	Sor．9，＂
22，313	E．Clarale	Dec．21．
21， 3 3i	smi：h 371 T	July 5，1：59．
24， 23	Els and Thite	Juty 12，
25,43	Morris and brox	J32．2t，1830．
27.523	J．M．Cosper	M3r．21，${ }^{\text {\％}}$
29，43	A．J．Gibson	サxy 22，＂
28.951	E．Allea．	Juty 3，＂
2，${ }^{2} 123$	A J．Gibson	Juir 19，＂
3）， 1.9	D．Mose	Sepin 15，＂
3） 243	E．A．Prescost．	Oct．2．＂
31，3）	A．J．Gibzon	Ock．9，＂
3）．7i5	C．Eiarpz	Sor．2i，＂
3），4010	smith anl Weison	Dece 13，＂
33325	E：hav Allen	Sept．－2 1－51．
33，3， 3	E Allea．	Oct．22．
$33.33 ;$	II．Grass	Dec 3．＂
34.113	A．smizi	Dec．21，＂
31.450	D． 11 zore	Jan． 7.15 2
31， 1 C4	C．E．Saeile：	Mar．12，＂
3： $3_{1}+2$	C．Drsez	Apr．8，＂
35.150	E．Alleo	Apr．27，
35．41．	C．IV．Порiv	Myy ${ }^{\text {a＇，}}$
23，323	L．$T 1$ Panl	Joae 15，${ }^{\text {a }}$
35．5\％：	J．H Tiekes	Jone 1：，＂
33，515	C．C．Bran 1	Sept．23，＂
35，932	S．W．Tool	Sor．15，＂
31	T．J．Matall	Nor．25，＂
35.55	J．Rupertu：	Dec．2，＂
38.90	J Jeakinson	Dice 2 ＂
3．011	A．T Freem 37	Dec．9，＂
	F．P．Stosum	Jan 2－，1：3．
31.293	J．C．Hore	Feb．17，
3．24	F．P．Socum	Apr．11， 6
32．20）	c．C．Bran	Apre 2，＂
3， 3 －1	D．Moore	Apro－
$33+1$	－miti and Wessoo．	June 13．＂
3931 C	E．fi＝and thite．	Joly 21，＂
34,15	B．F．Joilru．	Aリブ． 4
	B F．Joslsm	Аワワ 4 ＂
31，111	2．W．Wool	fug．15．＂
3．，i4？	M．F．Gerse3ty	A0s 25，＂
3.15	11．Grose．	$A D=25$.
37．3j）	H D．Wand	Feprs－
1）． 19	E．H．Grabam	रor．－1，＂
41115	Brizef and Hopkins	Jav． 5.1234
41．：3i	W．Palmer	Mar E．＂
$4 \geq .173$	B．F．Joslrn．	Apr．19，${ }^{\text {c＊}}$
＋12．${ }^{\text {d }}$	11 Ternolds	May 10，＂
12－23	D Tillismion	Mar I－，＂
43， 24	P．${ }^{\text {P O Smith }}$	July 12．
41123	Tr．Tileston．	Sppt．6，
44.333	F． 7 Hood	\ッ\％．ह．＂
45.15	II．Remold＝	x－5．22，＂
＋45． 129	W．C．nodse	Jan．1\％，125．
＋45，9＞3	W．C．Doule	Jau．24，＂

So．	Name．	Date．
45.023	R．H．Plaze	Jan．24， 1035.
＋40．205	W．H．Ellios	feb．：，＂
40.243	B．F．Jaisn	Feb．${ }^{-1}$
$4{ }^{4} 5{ }^{\text {a }}$	P．Hadghain	Feb． 2 ， 4
40.252	A．Gnerriere	Apr．11，＂
40,000	J．H．Tickers	May 16\％＂
45	B．F．Jcalm	June 23，＂
＋48．73	S．Crispin．	July 11.
51．0if？	Emishand iT	Nor 21，＂
＋51，11\％	IT．Ma＝0n	خот．21．＂
51.399	J．Rider	Sor．25，＂
51.533	B．F．Joslrin	Jan．2， 1866.
＋51．935	E Whitner	Jan．9，＂
＋52． 135	H．Hammond	Jan 23，＂
52.243	H．S．Jassels	Jsn．23，＂
325 2	B．T．Loomis	Feb．13，＂
53.539	IT．Ma＝a	Mar ${ }^{\text {ain }}$ ，＂
＋53．349	P．Polain．．．	Mar．2－，＂
＋53， 381	S．H．Roper．	Apre 10.4
totus	J．B．Doolirtle	Apr．1\％，
59，623	A．L Mueson	－ cos ，13，＂
63． 439	R T ．Drew	Apr．2． 186.
65.519	E．K．Root	June 1．＂＊
75.15	G．Holman	Mar．3，105．
55，359	J．Adsins	Dere 2.
433.50	R．Mhite	fog．10， 1 －69．
＋133，5， 3	R．White	Aug．10，${ }^{\text {a }}$
t94． M 23	C．A．Kiug	Aug 24.
9 9.03	F．A．Le Ia	Dec．14，${ }^{16}$
199，505	R．Whise．	Feb．1．16：0．
tap，	J．M．Marlin	Feb．Es，${ }^{\text {c }}$
98.043	J．C．Ville	Feb．\＆，＂
10020	R．White．	Feb．29，${ }^{\text {a }}$
$10 \% 2$	Felix and De Dart	May lig，＂
173,13	G．W．H．Calre	Mas 15，＂6
174.531	W．I．Page	Jone 21，＂
＋109， 41%	B．F．Josin	Sor． 2 ＂
\＄111．534	G．H．Harringtoo	
113，（123	S．S Hopkins	Mar．29，
115． 4×3	IF．F．Joelyn	Mas 37，＂
115.916	F．Treson	June 13，＂
113．0：9	Moss and Johoson	June20，＂
115， 272	Foreband and Wel	June2ブ，＂
＋113，	F．G．Corbran	July 4．＂
＋113．933	F．W．Hood	Joly 4，＂
＋117， 1 ， 51	C．B．lichand	July 25，${ }^{\text {a }}$
＋11．－620	C．Shars	Eerit．${ }^{\text {a }}$ ，${ }^{\text {a }}$
113.14	C．F．Fichand：	Sept．19，＂
121，193	J．Roperta	Nor．21，＂
1201：2	T．Lee	Der．26，＂
＋129．54t	W $313=00$	July 2， $15,2$.
＋120．921	Wesson and King	July 15，＊
132.350	J．Daris．	Oce． 2 ．${ }^{\text {a }}$
133．53	C．S．Tells	Dec．10，${ }^{\text {a }}$
13536	O．A．Smith	Jan．2x．15．3．
135.35	O．A．Smit	Jan．2¢，＂
＋133．131	T．Clewr	Teb．25， 4
$113133{ }^{2}$	D．B．Tessor	feb．25．4
＋133．57	Smith，Smith，and E	Mar．18，＂
＋13－943	D．William：00	Mar．15，＂
13\％${ }^{\text {a }} 13 \times$	O．A．Smitb	Apr．15，
＋13＊．47	G．W．Schofield	Amr．22，＂
13， 4 ， 61	C．Fcehl	June 3，＂
14ines	C．F．Galsnd	June 1\％．＂
140．515	J．Y Marlia	Jaly 1，＂
120，275	T．H．Philip	A听．23，＂

1．（c．）Cylinder withous other Barrel（＂Pepper－Box：＂）

	B．and B．M．Parling	Apr．13．1－35．
3498	E．Allen．	Apr．17，1－45．
5．f\％ 3	J．Pact	May 15， 14.49
6.023	G．Leomard，Jr	Sepis 13．
6.925	Pecare aud Smitu	Dec．$\frac{1}{1 .}$
－．31］	D H Chamberlaib	A Fr 23．155）．
－ 24.4	G Leonaril．Ir．	2 day 9．
－＜${ }^{-1}$	S．W．Marston	Jsn．－．181．
$90(2)$	Georse leomani．	Aly G－16：3．
13581	W．J．Mantoo	Sepre 12． 165
14.113	E．T．Start	Јап．1－，1－55．
15．70	J．Adams	Sept3］${ }^{\text {a }}$
21.15	W．H Emliot	Ang．17．1css
25.450	W．H．Ealiot	May 24，1－59．

1. (c.) Cylinder without other Barrel, ete. - Continued.			2. Chambered Cylinder revolving on Vertical Axis behind a Barrel. - Continued.		
No.	Name.	Date.	No.	Name.	Date.
$\begin{aligned} & 23,461 \\ & 33,332 \\ & 39,032 \\ & 42,549 \\ & 43,309 \\ & 51,75 \\ & 55.43 \\ & 57,622 \\ & 84,966 \end{aligned}$			12,235	E. 11 Graham..	Jan. 16. 1855.
			14,880	S. F Stanton.	Apr. $69,1856$.
			15.731	E. I1. Graham	Sept 16, ".
			16,4\%	H. Genhart.	Jan. 27, 1857.
			3. Cylinder revolving on Horizontal Axis behind a Earrel.		
			$\begin{array}{r} 8.210 \\ 10.944 \\ 11,917 \end{array}$	P. W. Porter E. II. Graham. W Wright.	
			$\begin{array}{ll} \text { July } & 8 . \\ \text { May } & 1651 . \\ \text { Nov. } & 1854 . \\ 4 . \end{array}$		
2. Chambered Cylinder revolving on Vertical Axis behind a Barrel.					
			4. Revolving Hammer acting on several Stationary Barrels.		
$\begin{array}{r} 183 \\ 188 \\ 603 \\ 677 \\ 7,218 \end{array}$	J. W. Cochran . J W Coehran. LIavilind a.d Bennett............. II. and C. Daniels. II. Iverson	$\begin{aligned} & \text { Apr. } 281337 . \\ & \text { Apr } 29, ~ \\ & \text { Fib. 15, } \\ & \text { Apr. } 53, \\ & \text { Mar. } 23,1850 . \end{aligned}$	$\begin{array}{r} 6,960 \\ 17.39 \\ 24,753 \\ 42,698 \end{array}$	C. Sharps W. W. Marston. C. Sharps. E. T. Starr	Dec 18, 1849. May 2f, 1857. Јаı. 25, 1859. May 10, 1864.

For illustrations of revolvers, see under the head Revolver.

Fire-ar'row. An arrow carrying a combustible for incendiary purposes.

Fire-back. The back-wall of a furnace or fireplace. It is frequently of fire-brick, in order to protert the iron walls of the furnace, but is sometimes of iron ribbed, partly to protect and stiffen it and purtly to allow access of air close to it. Som stimes the fire-hack is perforated to almit air at that point ; on it may he hollow, and form a heater for water fur honsehohl purposes.

Fire-ball. A projectile of oval shape, formed of a sack of canvas filled with combustible composition. They are thrown into an enemy's works for the purpose of lighting them up, and are loaded with shells to prevent them from being approarhed. A wrought-iron buttom is attached to the bag to prevent breakage when discharged.

Fire-bal-loon'. 1. A balloon whose ascensional power is derived from a body of heated air rising from a fire beneath the open month of the bag. Moutgolier's balloon was of this kind. See BaL-

Fire-Eell. LOON.
2. A balloon sent up at night with firc-works.

Fire-bar. A grate-har in a furnace resting on a frame, called the firc-bar frame: insile the fire-box. See Grate-bar.

Fire-bas'ket. A portable grate or eresset.

Fire-bell. A fire-alarm bell. One designed to indicate by a definite number of strokes the district or locality in which a conflagration is prevailing.

The illustration showsa strik-ing-apparatus consisting of a
series of levers connected with the clapper of the bell, and operated by a person stationed in a lookoutlanterin above.

The signal-bells are now usually sounded by electricity. See Firfealai:m Telegliaph.

Fire-board. A hoard to close a fireplace in shmmer.

Fire-box. The fire-chamber of a locomotiveboiler. It is jacketed with a water-chamber to prevent radiation of heat. The fire-box door may also be double and have a circulation of water thiongh the hinges. A partition in the box sometimes divides the fire-space into two parts, and, being full of water, increases the fire surface.

Firc-box stays are rods which prevent the crushing down of the top of the box by the pressure of steam.

Fire-brick. A lirick of refractory clay for lining furnaces, ovens, ete. Fire-clay is a mparly pure silicate of alumina.

Fire-bridge. A plate or wall at the back of the furnace to support the ends of the grate-bars and prevent the fuel heing carned over. It also serves to give an u] turn to the Hames against the bottom of the boiler.
Fire-buck'et.
One made of eanvas, leather, or wood, and kent in readiness for emergencies. On board ship, a firebucket has a sennit lanyird of a length regulated to reach the water alongsile, from thestation whence the fire-hucket is to he thrown orer-
 board to be filled.

The illustra-
tion shows the firemen's apparatus of old time, buekets, fire-hooks, hammer, and squirt.
Fire-cage. A skeleton box or basket of iron for holding lighted fuel. A cresset.

The form illustrated was invented by Inr. Franklin. The cage turns mpon axes supported by a erotchet fixed on a stem. The stem may set in a step in the hearth, when used as a domestic grate,

Fire-Cage.
or the fire-cage may be used for a beacon light. The fuel is intro. duced after withdrawing the upper bar, and when the kindling on top lias begun to burn well, the cage is upset, bringing the lighted kindling to the bottom.

Fire-cham'ber. (Puddling.) The chamber at the end of the puddling-fumace, whence the flame passes to the reverberating chamber where the charge is placed.

Fire-cock. A street μ lug for attachment of hose for extinguishing fire, or for other municipal purposes.

Fire-damp A-larm'. One which indicates the presence of dangerous quantities of gas or tire-damp in coal workings. A gas-alarm or gusoscope.

Fire-dog. An Andinos (which see).
Fire-door. The door of a furnace ; feeding and stoking are usually performed at the opening.

Fire-en'gine. A torm of pump for throwing water to extinguish a fire.
The original fire-engine was probably a large squirt, the piston being worked by manual pressure, the barrel being filled from a tub after each discharge. In tbis form it existed till a late day.

The oldest known engine is described in the Spiritalia of Hero, abont 150 B. c., and the deseription might stand for the ordinary form of hand-engine used at the present day. The drawing is made from

Hero's Fire-Engine ($150 \mathrm{~B}, \mathrm{c}$.).
the description. The engine had two single-acting pimps worked by one beam by means of brakes. The streams united in a common discharge-pipe linsing up a trunk in which was an air-chamher anl out at a nozzle which was capable of being presented in any disection.

The fire-brigtule of 1 mperial Rome was a company of six hundred freedmen, organized by Augistus Cæar, A. t. c. 732 . A fire-preventive committee, consisting of seven freedmen and a president of the equestrian order, was organized fifteen years afterwards, say B. c. 7. Augustus gave the form stated to a preëxisting organization.

We do not find in any Roman writer a description of a machine so perfect as that of Hero. Thu sipho of the Romans is referred to by Pliuy in a letter to Trajan: he states that the people of Nicomedia were too lazy to put out a fire in that city, and that they had no sipho. Strabo alludes to the siphones, which it appears were kept in a house. in prepara. tion for accidental fire. A pollodorus, the architest of the bridge of Trajan across the Danube, mintions the sipho. Its construction seems to be unknown.

Apollodorus recommends a leuthern bag of water with hollow canes for discharging-nozzles.

The first notice of the modern fire-engine is in the Chronicles of Augsburg, 1518, which speaks of the "water-syringe useful at fires." They were mounted on wheels, and worked by levers. Sinilar devices are referred to by Lucar, 1590 ; Greatorix, 1656 ; and Morland, 1670.

The fire-engine of Nuremberg described by Caspar Schott, 1657, was of a different character. It was mounted on a sled 4×10 feet, and drawn by two horses. It had a cistern 2×8 feet and 4 feet deep, in which were two horizontal cylinders. The brakes were worked by twenty-eight men, and the combined streams from the cylinders issued at a one-inch orifice, and reached a hight of 80 feet.

An English patent appears of the date of 1632 to Thomas Grant, and one to John Van der Heyden (or Heide), of Ansterdam, 1663. He is credited with having brought the machine to the present nodern form of hand-engine. The brothers Van der Heyden alpear to hare heen the inventors of the leathern hose in detachable sections.
ln 1699, a patent was granted in France to Duperrier for a pompe portative for extinguishing fires; to this Perranlt added the air-chamber. I'apin also adopted it. Hooks and fire-ladders must be assumed to have been long in use, but come into historic notice about this time. Fire-plugs were laid down in the strepts of London in 1710; previous to that time the water was carricd in buckets and poured into the fire-engine reservoirs.

Much attention was drawn to the matter of fireengines by the disastrous fire of London in 1666 , and an act of Common Comncil was passed shortly after the event, compelling parishes and incorporated companies to maintain an efficient supply of "buchcts, hund-squirts, and fire-engines."
it we may julge by the description in Clare's "Motion of Fluids," 1735 , some of the features of the Continental engines had not yet been receired in England. He states: -
"Engines for extinguishing fires are either forcing or lifting pumps, and, being intended to project water with great velocity, their effect in great meas. ure depends nnon the length of their levers and the force with which they are wrouglit. A common squirting-engine, constructed on the lift principle, consists of a large circular cistem, like a great tub mounted on four small solid wheels. A perforated cover was fixed inside the cistern about three feet from the bottom. In the center was fixed a liftingpump, to the piston-rod of which was attached a cross-tree carrying two vertical connecting-rods, which were simultaneonsly worked up and down by manual labor by means of handles on opprosite sides of the machine. During the downward motion of the piston a quantity of water passes throngh the valve on to its upper side, and, when the piston ascends, this water is projected with great velocity through a branch pipe provided with a flexible leather joint, or by a ball-and-socket motion, screwed on top of the pump-barrel. Betwern the strokes the strean is discontinned. The cistern is supplied by water-buckets."

Towarls the close of the seventeentla century the double-cylinder portable pump with air-chamber was introdnced into England by Newsham; single. eylinder engines, like the modern garden syringe, being used in France and Germany, and credited to Duprerrier and Leupold respectively.

The Newsham engine was improved from time to time, retaining its main features, and was still in use in London till 1832, when it was superseded by
a more compret form, which was adapted to be drawn by horses, and from this priud dates the etheient fire-biggade system of London.

Newshau's fire-engine was a side-brake double-

ern hand-worked fire-engine, which has two singleacting cylinders with induction-valves in the branches of a pipe which connects with the cistern or watermain; and eduction-valves in pipes which diseharge into an air-chamber, whence the water passes by a hose to a nozzle.
C is the English form of hand fire-engine which las hrakes h on side-levers p. The suction is united at f, and the lischarge is at $m ; n$ is the air-chamber.

Steam-power for extinguishing fires was in use in manufacturing establishments many years before it was employed on prottable machines. Every factory of any pretensions had its steam-driven punip, with hose and other attachments calculated to reach every portion of the establishment. About the year 1830, Can-

Barton's Engine.
cylinder engine, mounted on four wheels, and with ant air-chamber, goose-neck, and suction-pipe. The work on the hrakes was assisted by men on the box, who threw their weight upon trealles on the fumplevers. Pumps were single-artion force-pumps, worked by chains passingover segmentson the pumplevers. The engime was perhaps the first successful fire-engine, and Newsham dill very well by it. His patent was extenclell for a second term.

The engine which eventually superseded that of Newsham was mule, rather than invented, hy Simpkin, and patented in 1792.

The main improvement was in compactnoss and adaptation to traveling with speed to the spot where its services were demanded. The valves were eontained in separate shambers, insteal of being placed in the cylinders and air-ehamber. By this means they were easily reached, withont the discommection of the main portions of the pump.

Another form of fire-engine was invented by Bramali, 1793 , improved by Rowntree and eventually by Barton. The engine of the latter (A, Fig. 1989) was on the vibuting principle. To the levers $h h$ was attached a radial piston b, which oscillated in the cylindrival chamber:. As the biston mored in one 2 direction, a valve beneath this piston opened to allow water to prass from the cistern e, and the water in front of the piston was forced through the valve-way above it into the airchamher aml passed oint at the pouction-pipe to the hove. The ditheulty with this engine, as with the rotary stem-engine and other pumps with ammlar chamber, was to keep the end any sides of the piston tliectually packed.
B, Fig. 1989, shows the prineiple of the mod-

Eng'ish Steam Fire-Engine.

gines, was built in 1853, and thirteen years afterward gave the following record: Time of raising steam, three minutes and forty seconds from the time the torch is applied until water is thrown from the nozzle ; size of nozzle, $1 \frac{1}{2}$ inches ; distance thrown, 310 feet, measuring from the end of the nozzle to the place where solid water fell; size of steam cylinder, 10 inches bore, $2 \pm$ inches stroke; pumps, 6 inches bore, $2 \pm$ inches stroke; double engine-cranks at right angles ; large air-vessels, connected together; length of hose, 100 feet; steam, 100 pounds to the square inch; pressure on water cylinder, 240 pounds to the square inch ; speed of engine, 110 revolutions; 220 strokes of pumps; grate surface, 16 feet; heating surface, 560 feet.
The chemical fire-engine is one on the principle of the fire-extinguisher (which see), in which, by throwing a body of sulphuric acid on to an alkali, a body of carbonic acid is generated and ejected into the Hlame, usually in combination with a spray of water which is ejected from its reservoir by the pressure of the gas, or by the play of the pump-brakes.

In connection with this subject it may be stated that the rate of insurance by land and sea among the Hindoos was left to the custom of the trade, according to the risk. - Institutes of Menue A. D. $\$ 80$.

Nicholson states that fire-insurance offices were first introduced under the reign of the Emperor Claudins.
The "Hand in Hand" Fire lnsurance Company was the first established in London, 1696. The "Sun" Fire Insurance Company was established in 1700. Marine insurance had long been common in Venice. The "Amicable" Life lnsurance Company of London was chartered in 1706 .

Fire-insurance offices established in Paris, 1745.
Fire-es-cape'. Fire-escapes are divided into three classes:-

Ladders.

Portable escapes.

Carriage-escapes.

1. Fire-ladders are made of several lengths, to reach second, third, or fourth story windows, and are mounted on a suitable carriage for transportation. The upper ends are usually provided with hooks which catch against the building, on a window-sill, cap, coping, or cornice, and give some degree of security to the ladder.

Another form of the ladder is made of several sections, which may be united to form a larder of any length required. The sections are united by tubular sockets or clasps.

Another form is that in sliding sections of gradually decreasing width, so that when packed the different sections form a nest of pramallel lengths. The sections are slipped on each other by cogs and pinion or by tackle.
2. Portable escapes are those which are contained in a compact form to be raised and placed in position in an emergency.

Among these are -
A knotted rope.
Rope-ludders kept within the house and proviled with a means for lashing to some stationary object in a room or on a staircase, while the ladder itselt depenils from the window,

Wire or chain laddcrs, on the same principle, are compact and strong, not subject to decay or to he burned away when in position.
Both descriptions of ladders are also made with grapmels, so arranged as to be elevated from the outside and attached to a windor-sill for the escape of the occupants of the house.

Slings are used, and forms of tackle.
One sling lias the bight of the rope secured be-
neath the window-sill and the ends held apart by persons in the street. A clasp is bnckled to the person and slides on both ropes, the descent being checked by the divergence of the ropes.
Of forms of tackle, onc is the single whip, the person sitting in a sling at oue end and veering out the fall through his hands. In another form the person sits in a sling suspended from the bight of a rope, and lowers limself by allowing the rope to

Fire-Escapes.
veer throngh the holes of a block, like a euphroe. It is a tackle with deall-cyes instead of sheaves. It is mentioned in Rees's Euryclopedia.
The Edinburgh (Scotland) fire brigade is furnished with cross-hows and three-ounce lealen bullets to which are attached fine cords 130 feet long. The bullet is fired over the house, and persons in the rear of the building pull at the cord to raise a stronger one from which a chain or ladder or escape is sus-
pended. The men are regularly trained to the exercise.

Of carriage-escapes four types may be cited, but room cannot be spared for a treatise. They may be called the catension-ludder with guys and stays, a; the ludder with segment rack, b; the boom or erane, c; and the lazy-tongs, d. The cuts will be understood without lengthy description.

Fire-ex-tin'guish-er. A portable apparatus for extinguishing fires either by ejection of water, saline solution, or carbonic-acid gas.

1. The vessel contains chemicals whose reaction, when brought into contact, releases a gas which presses upon the surface of the water and ejects it at the nozzle.
a. The chemicals may be contained in two chambers; inversion of the apparatus or the breaking of a bottle of acid mixes the ingredients, and the chennical reaction evolves a gas which presses upon the water.
b. The chemicals may be mixed in the water and generate the pressure which is immediately available when the nozzle is opened and air admitted.
c. The water is saturated with gas, in the manner of the soda-fountain, so as to forcibly expel the water when the outlet is opened.
d. A body of mechanically compressed air is contained in a comprament of the ressel, and is admitted to the water, when required, by turning a stop-cock.
2. a. The receptacle contains two vessels, one of which is usually a salt and the other an acid.

When it is to be bronght into play a plug is driven in, which breaks the bottle containing the acil and allows it to fiow over the salt of soda, potash, magnesia, or ammonia, as the case may be, the evolved carhonic-acid gas flowing in volumes from the nozzle of the vessel.
The acid used is usually sulphuric, but hydrochloric and tartaric are occasionally employed.

The salt is a carbonate of an alkali; solla, potasl, ammonia, or magnesia being enployed, as just stated. Other combinations of salts, chlorides, and sulphates, are employed.
lu some of the apparatus, water is ejected along with carbonic acid ; in others, sufficient heat is generaterl to evaporate the water, and steam is ejected with the gas.
b. The vessel contains inflammable substances

Fig 1993.

Fire-Extinguishers.
which generate carbonic acid when air is admitted, ant eject the gas in volumes.

The chemicals used are phosphate of lime, nitrate ant chlorate of potash, carbon, sulphur, and various other materials in a multitude of combinations.
There are perhaps sixty patents for various forms of the firc-annihitator. The devices particularly refer to the modes of construction, the acid and alkali
chamber, the modes of precipitating the former upon the latter and availing the proluct. The Phillips firc-annihilator, so called, patented in 1849 and shown at A, has a compound of sugar and chlorate of potash so placed as to receive the contents of a bottle of sulphuric acid which is broken by stiking a pling on the top of the can when a fire occurs. The nass of salt and sugar h is in the inner chamber, and the vial of acid imbedded in it, so as to be broken by a blow on the central plunger, when the lid is taken off for that purpose. Around the perforated case containing the filling h is another one, and that is in a third, between which and the outer one is a bolly of water. The carbonic acid produced by combustion passes out of the top of the machine, meeting, on its passage out, with the water which is raised in the side pipe by the pressure and heat of the combustion in the can, thus saturating the gas.

The -nso-called - American fire-extinguisher has a cylinder containing bicarbonate of soda in solution, and an interior tube, containing crystallized tartaric acid, the whole being hermetically closed, but a communication left at the bottom of the tube, through which a reaction takes place, gradually converting the bicarbonate into tartrate of sola, and liberating the carbonic acid. This reaction being complete, the apparatus is ready for use, and on opening a cock at the bottom, the contents can be violently ejected through a short hose.

The Gardner consists of two cylinders, in one of

Fig 1994.

Fure-Ertinguisher. which is diluted sulphuric acid, and in the other the aqueous solution of bicarbonate of soda. When the apparatus is required for use, connection is made by opening cocks between these two cylinders and a drum below them, into which the liquids flow, and where the carhonic acid is liberated, and the necessary pressure acquired to throw a jet through the hose.
The machine shown in Fig. 199t contains acid in a glass bottle, which is shattered by dropping upon a stud when forceil below the flanges of the tin cylinder which holds it.
The National has a glass tube which contains the sulphuric acid. It is protecterd from accidental shocks by a metallic tube which surrounds it, and which is perforated to permit the free passage of liquil throngh its walls. When the apparatus is to be used, a piston is serewed down upon this glass vessel, crushing it, and permitting its contents to escape.

The Babcock (B, Fig. 1993) contains the sulphuric acid in a leaden bucket, hung apon trunuions below its center, so that, if set free, the bucket itmmeliately turas upside-down. It is kept riginlly upright, however, by a stopper attached to a rod passing through the cap of the apparatus. This stopper also completely prevents conmunieation between the acid and the alkali. When the extinguisher is to be used, the stopper is pulled up by means of an exterior handle; the bucket instantly turns over, and empties itself into the liquid in the cylinder.

In another form, the marhine is set in operation by tipping. Another is set in action hy a fuse tippel with a substance ignited at $120^{\circ} \mathrm{F}$., or some other degree, as may be thought desirable. The ap-
paratus is mounted on a carriage to operate on a larger scale.

A different description of fire-extinguisher consists of an arrangement of pipes throughout a building, so arranged as to throw water into the apartacents and on the walls, when the water is turned on. With some of these arrangements the water is contained in cisterus on the roof; in others the Iif 's are connected with the water-distilbuting mail.s co the town.

Au early instance of the kind is the English I atent of Sir William Congreve, dated Felmaiy 7, 1809, and No. 3201. In it almost all the more morlern devices of this kind are shown. The pelforated pipes run along the cornices and ceilins's, the showers or jets proceed from center to circimference and conversely. On the chandelier pendant rotates a rimless wheel whose spokes distril utr jets of water.

The apparatus is actuated by the heat of the rocm by means of fusible matters, such as wax which melts at $92^{\circ} \mathrm{F}$., or a trinaly alloy of lead, tin, and kismuth, which melts at 180°. An arrangetment is also described by which the rising of the column in the mercurial thermometer is made to set the apparatus at work.

The general discharge may be made by a person in any one of the rooms of the huilding so furmished.

A common form has a cistern on the roof, ceninal rertical trunk, and radiating pipes with jet-liokes. See Fig. 1982, under Fire-alainis. Modein lata.ts concern mere details.

Fire-fan. A small blast arparatus adapted to a portable forge, or one - say a lorksmith's - which has small proportions.

Fire-gild'ing. The mode of gilding in wlich the gold is put on in the form of an annalgam and the quicksilver afterward driven off ly heat.

Fire-guard. A wire frame jhaced before an oren fire to aryest sparks and burning coals. Sce Fender.

Fire-hook. 1. A large hook on the end of a pole for tearing down buildings on fire, or to autest a fire.
2. (Steam-cugincering.) A kind of hook for reking and stirning the fumace fire.

Fire-i'rons. The implements for ter ding a fire. Poker, tongs, and shovel.

Fire-lad'der. Thee were introducerl, as a part of the machinery for extinguishing tires, about 1672 . They seem to have originated in the Netherlands.

Miany and ingenious have heen the devices for enabling the firemen to reach the sccne of contiagiation, and to pour in the jet ot water at close quarters or into a fiart of the building which cannot be reached from the ground. Experienced men seem now to have settled down upon a set of ladders of varying length for different occasions, and mounted upon a long carriage drawn by a pair of horses.

Some forms of ladders are cited under Fire-escape (which see).

Fire-lock. A musket or military rifle. See Fire-arm.
Fire-pan. A pan for holding fire. The pan which held the priming of the old flint-lock gin.
Fire'place. That part of a room in which the fire is built.

1, slab.
2, lirarth.
3, jamb.
5, mantel-piece.

4, fireplace.
$\frac{6 \text {, throat. }}{7 \text {, gathering. }}$
8, funnel.

9, flue.	12, grate.
10, mantel.	13, breast.
11 , back.	14, damper.

The carliest example of a fireplace cited in this work is that of Coninsborough Castle, in England, of the Anglo-Norman period. The mantels are constructed of that arches. The example is adduced to show the earlier form of chimney, and perhaps the most ancient one in existence, anticipating by several centuries the first chimneys erected in Italy. (See Uhisney.) The fireplace (A, Fig 1996) in the hall of Vicar's Close, Welis, England, is an example of the fireplace of some centuries back.

Louis Savot, of the Faculty of Medicine at Paris (1579-1640), published a work on warming and

Fig 1996.

Fireplaces
ventilation in 1624. His is the first recorded attempt at combining the checrfulness of an open fire with the economy of an inclosed stove. Fig. B shows a front view and an elevation of his ingenious arrangement. The hearth, covings, and back were lined with thick iron plates three inches distant from the masonry. Air entered at a, passeel along the chamhers b, and entered the room at $c c$.
D is Prince Rupert's fireplace, somewhat cele. brated in its time. It hail a diving flue and false fire-back.

About 1658, Sir John Winter invented a coke furnace or fire-cage (C) which was placed on a close box about eleven inches high, in front of which was an opening d, fitted with a dowr, which always kept closed except when the ashes were being renoved. A pipe a communicated with the external air, and was closed, when required, by a damper. When the valve was opened, a brisk draft urged the fire. The thee was closed by an iron plate or register at c.
Cardinal Polignac, in 1715, published noder the name of another man (Gauger's
"Treatise on the Art of warming Rooms") an account of improved mechanical arrangements for fireplaces. This is shown at E in the tigure. The hollow metallic ease forming the back of the chimney is divided into three or more caliducts which are not in contact with the back wall. The jambs are iron plates, solid backed. The channel a condocts the external air into the caliduets, which form a fire-back, and the warmed air escapes into the room at z. He also introduced the parabolic sides.
Rumford contract. ed the fire-chamber and throat, and in. elined the jambs. See Coving.

In 1745, Dr. Benjamin Franklin in.

Fig. 1997.
 troduced a fireplace which he named the "Pennsylvanian," in which Prince Rupert's deseending flue was combined with Polignae's caliducts. This is shown at F. (Fig. 1997.)

Count Rumford's improvements consisted mainly in the contraction of the chimney at the throat, the rounding of the breast-work, and the flaring of the covings, as illustrated in the accomprany. ing plan and section G II. He preferred an angle of 45° for the covings.

Arnott also made himself a name in this line.
$I J$ are a vertical section and plan showing an English tubular fireplace designed to warm a current of $p^{\text {nure air }}$ derived from the outside, and direct it into the interior of a room ; the air passes from the
 flue a to the nuder side of the hearth-plate b (shown in the plan), thence upward through the upright tubes at $c c$ to a horizoutal tube d (shown in the elevation), which has an opening throngh its entire lengtl on the upper sile, whence the hot air passes into the room, through the aperture $h i$ over the mantel. The supply of air may be regulated by moving the strip i-which directs the air upward-nearer to or farther from the ledge h.

Fire'place Heat'er. A stove or closel grate set within or prineipally within the fireplace, and

Fig. 1998.

Fireplace-Heater.
serving to warm the room, the pipe discharging into the chimney. The kind known as the Latrube is a basc-burniug lireplace-heater whose pipe passes up the brick flue to heat the air which passes between the pipe and the Hue to the rooms above, into whiell it passes through registers.

Fire-plug.

 A device for connecting a fire or watering hose with a branch from a nain. lt usually consists of a screw nozzle to which the hose may be coupled, and a key and rod by which the ralve is mored. In the example, at the point where the branch pipe is coupled to the main, the stop-cock is placed, and it is operated by gearing and
ronnecting shafts from a hand-wheel in the vicinity of the julug.

Fire-pot. 1. The box or pot in a stove which holds the fuel. Especially applied to a frustum of a hollow cone or conoid, used in base-burning and other heating stoves (which see).
2. A crucible. In varions metallurgic operations the crucible is always termed the pot.
Fire-proof Fab'ric. The term incombustible cloth was originally applied to fabric matle of asbestus, which was used among the ancients to a considerable extent. See Asbestus.

Cloth or wood impregnated with certain saline substances will not blaze. Borax, alum, and phosphate of soda or anmonia are recommended as most suitable for this purpose.

By treating eloth with graphite in a hath in which the mineral is suspended, and then subjecting it to the action of the electro-metallic bath, the cloth may be coated with metal.

The chemists who experimented on this subject hy direction of Queen Victoria recommend "a conceutrated neutral solution of tungstate of soda,
diluted with water to 28° Twaddell, and then mixerl with three per cent of phosphite of sola." Tissu's dipped in this Huid may char or shrivel, but thry will not blaze.

Woolen and ordinary stuffs may he treated with borax, alum, or sohble glass, but thene cannot well be applied to the lighter descriptions, whicle are most liable to take tire.

A weak solution of chloride of zinc has long louen employed by stage-dancers to render their dresse's incombustible. XI. Lunere recommends adding to the starch with which the material is done up, hatf its weight of chalk, and M. latua proposes a solutiou of 4 parts borax and 3 sulphate of magntsia, in 20 to 30 parts water. By a new process, equal] jaits of chloride of calcium and acetate of lime are combinen, forming erystals, which is mixed with the starch used in stiffening.

Though not strictly coming under the denomination of fire-prooting, an interrsting fact is stated by M. Corne in a communication addressed to the Academy of Natural Eciences, that by previously dipping the hands in liguid sulphurous acid, they may then be immersed in melted lear or iron witiz perfect impunity. This is owing to the extremely volatile character of the acid, which has been made use of in the curious experiment of freezing water in a red-hot erucible.

Fire-proof Safe. One for the safe keeping of valuables for protection in ease of the burning of a building in which they are placed. See Safe.

Fire-proof Struct'ure. A vault, safe, or building proof against destruction by fire, either from the outside or by the burning of its contents.

The provision against outside tire is the usual object, but in fire-proof structmes the internal floors or partitions must also he impenetrable by fire, to make the building technisally forc-proof.

The principal portions of a building are the walls, floors, and roof, and several morks of constructing each have been proposed, to the end that they may be secure from fire.

The term fire-pronf Luilding is somewhat loosely applied, and may he hell to mean, -

A buililing absolutely incombistible, such as one whose walls, floors, and rools are of metal, stone, brick, or s:ement.

A building cajrable of opposing the access of fire from without, having walls, window shutters, and roofs which are incomblostible from external llame and heat.

Among the first instances may be cited some government huilelings, whose walls are of stone aud brick, ceilings and Hoors of brick arches and parement; or of metal, brick, and cement; rafters and roof-covering of metal, or metal and slate.

The Bogardus buildings of cast and wrought iron, and the Paxton buildings of iron and glass, are other illustrations of fire-prool structures, umless the amount of combustibles contained should he such that their conflagration will melt or crumble the material of which the building is constructed. Such was the case with a part of the Crystal Palace at Sydenham, the internal fittings of that portion, the lourer boarding, and the furniture making a bonfire which melted the skeleton frame. lron builrings in serious external fire exposure, or with combustible contents, are far from deserving the name of fireproof, though they may resist a certain amount of scorching.

The usual mode of making fire-proof floors is to construct girders and beams of iron (see BEAM), supporting flat arches of brick, as in the U. S. Treasury, Medical Museum, and other government
buildings, or of a pavement of stone slabs resting on flanges of the beams. The ceiling in such a case may be of plaster on lath made of hoop-iron or wirework riveted to the beams. See Floon; Latin.

Many European bildings are thus constricten, being filled above the areles with incombustible rubbish, and the tiled hoor laid in cement therenpon.

Besides the projects for rendering materials fireproof, a number of plans have bren devised for adling to the security of a building, althongh the structure cannot be considered as actually fire-proof. Some of thest may be mentioned.
The floms of some Elinburgh houses are of plank two and a half or three inches thick, grooved and tongued to cach other or mited by a fin of metal lorming a tongue which runs theentire length. The planking is fitted air-tight to the walls, the object being to prevent the passage of fire, and depend upon the thickness of the Hooring to hold fire at lay in a given part of the luniding, until the usual means of extinguishing it can be brought to bear. It is laid on irom joists. Cement on the uppur and lower surfaces adds to the security. This is an excelleut plan.
Another plan is to form the floors and roofs of hollow earthenware tubes and cement, resting upon joints or rutters, as the case may be. The tubes are made stuare in section. The floor has ahout one fith the weight of stone. Frost's cement of levigated chalk, 2 parts ; clay, 1 part ; dried, broken, burned, and ground to proder. This is an approacle to the poaznolana, and is mixed with twice its quantity of saml and water, sullicient to form a mortar. See Conehete; Cfment.
Thure are various concretes which may be made into slahs, mpable of resting nuon imn beams at the usual distance, and thus lorm a perfectly fireproof llour.

It should be mentioned as an imperative uecessity that the staircas: should be absolutely ineonbustible, of metal or stone, or the two combined.

When a building has some of the protections against fire, without being absolutely proof, the stairs and hatelrvays must he inclosed in such a manner as not to be involvel by a fire breaking out on any of the floors. Otherwise the vertical shaft forms the best possible means of communicating fire from one portion to another, especially if the fire be low down in the building.
Other plans are, -
Iron facing for walls; secured by anchors or studs. Iron skeletons filled with hrick or concrete. Concrete or béton walls. Hollow tile walls. Iron frame with wire-work riveted thereto and covered over with plaster or concrete. See Wall, where many varicties are illustrated.

The means for tire-prooting the necessary openingrs, that is, the door and window ways, are by louvers, folding, sliding, swinging, and rolling shutters of iron. Some made double with intervening air-space ; others made to close antomatically by the increase of heal when exposed to fire.

Hartley's pritent, 1775, consisted of a plan for sheathing wooden work with thin iron plates.
Earl Stanhope's plan was to pack all the interspaces of wood-work with incombustible material ; preferably concrete.
Of other English plans of late date may be cited, iron joists with concrete filling and upper bel supporting the flooring. See Flooning, where several varieties are shown.

Another plan is cellular joists of earthenware tubes imberkled in cement.

Loudon recommends a floor of cement with im-
bedded ties of wronght-iron rods, supported by pillars at intervals; and double sides of concrete sulported by panels or lattice, leaving intervening spaces between walls.

In large fires, cast-iron is found to he a treacherous and destructible material, as was proved in Chicago, Boston, and elsewhere, fairly melting in the fire. Mr. Braidwood, of the London Fire Deprartment, stated that iron columns were liable to give way suddenly, owing to the expransion and contraction ly heat arml jets of water. Mr. Mullett, the supervising architect of the Treasury Department, indorses the statement, and prefers somd oak timber to cast-iron, especially if it be treated with a firguid silicate.

Fire-prooting by rendering the timber of the structure ineombustible has been freguently attempted. layne's process consists of immersion in a solution of barium or calcium. Professor Fuchs of Munich recommends as a material tor rembering wood fireproof a comprosition of potassal or soda, 10 parts: siliceous earth, 15 parts ; charcoal, 1 part, fused and formed into a water-glass and applied in solution. It forms a vitreons coating.

An English composition is as follows: Fine same, 1 part ; wood ashes, 2 parts ; slaked lime, 3 parts. Grind in oil, lay on with a painter's brush, the first coat thin and the next thick.

Fire-proofing may be said to be accomplished when-1, the building is of a materin which neither hurns, melts, cracks, nor crumbles with the heat. Well-made, homogeneous, and well-burned bricks are the best. Granite, marble, and samdstone perish by the heat.
2. Every opening conmmieating with the external atmosphere must he kept closed with tire-prool thoors and shutters, not iron merely, which will buckle up, warp, and melt.
3. The walls must be of sufficient thickness, and should be built with an air-space to prevent tlie transmission of heat.
4. The joists should in no case be carried into the walls, but should be supported on corbel conrses of brick, and connected with the walls themselves only by wronght-iron anchors.
5. The windows and doms to be protected, as before said, with fire-proof shutters, and the rool to be of slate or metal. The use of roufs compensed uf shingles, coal-tar, or other similar substances, shonld be prohibited by law in cities.
6. An isolated stone or iron stairease should reach every story, having fire-proof doors at rarh floor, and a line of water-pipes communiating with the mains in the streets or a cistern on the ronf.
7. l'artition-walls between hous's rising above the rouf. In the case of warehouses, as lew njemings through the party wall as possible, and thesecapable of heing closed effectually.
A refinement ulon the brick construction consists in using fire-hrick with joinings of fire-clay, instead of mortar or cement ; and the isolation of rooms instearl of Hoors only is reconmended in a seport to the London Society of Arts; farther, to have no opening into the rooms except to external fire-proof corvilors on each story ; ascended by circular stairways. Doors, snutters, as well as walls, floors, and roof, to be of fire-brick, making each room an hermetically sealed vault.

For the purpose of extinguishing fire in any of the apartments, it is proposed to lay tubes of fireclay in the spandrels of the building with small jet tubes, or pipes, commanding pach room or corridor of the whole warehouse, so that the water can be turned on to any part required, to Hood if necessary
the entire room. In such case the water would run down the walls to the floor, where, by a system of pipes leading to the main sewer, the proper drainage would be effected. It is also proposed to open and shut all the doors and shutters, and work all the cranes by machinery in another building to be under the supervision of a watchman, properly instructed, and competent to see that the system is in working order at all times. The same system of piping used to extinguish fires may also be used to cleanse the rooms, as occasion may require.

This system of protection against loss by fire, or rather mode of orercoming fire, by abundant ramifications of water-pipes thronghout all the apartments and passages of a bouse, as well as upon the roof and walls, is thoroughly described in Sir William Congreve's English patents, No. 3201 of 1809, No. 3606 of 1812 , and there seems hut little to be added to his proposals where jets are by the turning of a plug caused to issue trom center-piece, cornice, skirting-board, eave, comb, gable, and everywhere else. As this was before the era of water-mains, except in a fer situations, the proposed supply was bronght from cisterns on the roof or from pumns, and each floor or gallery had plugs by which the system of pipes of the respective stories were supplied.

A large flax-manufactory, to be run by steampower, was erected about 1790 , hy Mr. Bage, at Shrewsbury, England. It was four stories high; the floors of brick arches were supported on castiron columins. The roof was also of iron.

Fire-reg'u-la'tor. A thermostatic derice to open or close the access of air to the fire, or to govern the draft-area in the chimmey, in order to urge or moderate the fire as it may sink below or rise above the desired point to which the thermostat is adjusted.

Fire-screen. 1. A fire-guard or fender.
2. A screen to place between a person and the fire to intercept the direct rays.

* Fire-shield. A portable structure on wheels or on legs, used to protect a fireman on duty from the heat of a burning building, or to isolate a fire and prevent its spreading to adjacent buildings. It is usinally a screen of sheet-iron supported by posts and stayed hy guys.

Fire-ship. A vessel freighted with combustibles and explosives, and turned adrift so as to float among the ressels of the enemy, against a bridge or other object which may be hurned by the fire or destroyed by the resulting explosion.

Fire-ships were used at the siege of insular Tyre.
By the Rhodians against the Syrians, 150 b. C.
In the action near Cartlage, when the fleet of Basilicus was destroyed by Genseric.

In the naval warfare of the Kinights of Malta and the Turks.
At the siege of Antwerp, 1585. By Sir Francis Dtake against the Spanish Arimada, 1588.

By the Greeks against the Turks, 1826.
The Chinese against the English in the villainons opium-war.
$\ln 1760$ they formed a regular portion of the British navy. As a distinct class of vessels, they are now discontinued.

They are particularly serviceable in defence and in attacking ships at anchor, and besides the skillfn] but ineffectual use of them by the Chinese, the instance may be mentioned of the fire-rafts which were launched by the Confederate forces against the approaching fleet of Farragut as he forced the passage of the Mississippi.

Fire-steel. A steel used in connection with a flint for striking fire.

Fire-stop. The fire-bridge at the back of a furnace; so called because it prevents coals being pushed over.

Fire-sur'face. (Sterm-cngine.) The area of surface of the boiler which is exposed to the direct and radiant action of the flames.

The heating-surface of a boiler is made up of the fire-surface and flue-surfacc.

With an average boiler 15 feet of heating-surface of the boiler are allowed for each horse-power. The Cornish engine has a much larger heating-surface per horse-power ; as high as 60 feet being sometimes allowed.

The locomotive has a smaller heating-surface per horse-power, a more intense fire being kept up anl less economy of fuel being practiced.

Fire-tel'e-graph. See Firfe-alam Telemiath.
Fire-tube. (Stean-cngine.) A furnace-tube through which the flame and heated air pass from the fire-chamber. A flue; a pinc-flue; or flame-tube.

Fire-work. The Chinese led the worhl in this line in point of priority, and perhaps do yet in quality. Fire-works are said to have been first used in Europe by the Florentines, and are mentioned as a part of the pageant at the marriage of Henry VIII. and Anne Boleyn. They were not common during the reigu of Elizabeth, but cane into popular use during the reigns of the Stuarts.

Marcns Græcus, in a treatise on pyrotechny (Liber Ignium) published ahout A. 1. 825 , descrilues the nature of the composition for making tireworks.
The bearing of fire-works on the invention of firearms is referred to in the article on Guvpowner. (which see). See list under Prrotechnics.

Fir'ing. 1. (Furnace.) The mode of introducing fuel into the furnace and working it.
Hard-firing; charges in quick succession with frequent stoking.

Heavy-firing; large charges of fuel and frequent stoking. Known also as close-firing, thick-finting, and charging, from the large body of fuel introduced at a time.

Light-firing: moderate and frequent in quantity ; coking the charge on the dead-plate and then pushing it on to the coals. Also called open-firing, as the charge is thinly spread on the grate-bars and the draft is free.
2. (Gloss.) The process of fixing the colors upon glass. The colors are metallic oxides, grouml np with flint glass and borax, and laid by a jaint-brush upon the pieces or sheets of crown-ylass. These are then removed to the kiln, where the colors become fused and unite inseparably with the surface of the glass on which they are lail, the flnx enabling the color to melt before the glass plate becomes distorted by the heat. The croum-gless being a silicate of potash and lime is much more intractable than a glass into whose composition lead enters. See Glasscolobing; Glass-painting; Glass-staining ; Examel.

Fir'ing-i'ron. A farrier's cautery.
Firm'er-chis'el. A chisel, nsually thin in proportion to its width. It has a tang to enter the handle, in contradistinction to the framing-chisel, which has a socket into which the handle fits.

Firmer-chisels are usually eight or twelve in a set of different widths. They are shorter than paringchisels and lighter than framing-chisels.
First-coat. (Plastering.) The prinary coat of coarse-stuff. That of two-cnat work is calleil laying, when executed on lath, and rendering, when on hrick.
The first coat of three-coat work is called priching$u p$ on lath, roughing-in on brick.

Fish. 1. A strengthening or stiffening bar laicl alonsside another ; as -
The feshe-brer, which splices the ends of reljacent railroad rails and lecreases the tremor or depression at the joint. See Fisming.

One of a pair of hars laid on opposite sides along and tightly lashed to a spar which has been sprung. Sce Sidice.
2. A purchase for hauling in on to the gunwale the fluke of an anchor.

Fish-bar. The splice-har which breaks the joint of two merting oljects, as of railroad rails or scarfecl timher. See Fisming.

Fish-beam. A beam with a bulging belly.
Fish-bel'iied. Bellying on the under side, as a beam, a rail, etc.

Fish-block. (Nututical.) The block of the fish-tackle for raising the anchor.

Fish-da'vit. (Shipbuilding.) A spar or small crane projecting from the how of a ship for the suspension of the tackle, called the fish-fall, used in hanling up the arms of the anchor in getting it aboard. The fish-davit is sueh a distance abaift the cat-heud as the length of the anehor may require, and is used to hift the fluke of the anchor to the bill-boarl, a roller keeps the fluke from bruising the vessel's side.

In preparing for latting go the anchor, it is suspended by its throat from the fish-ducit by a chan or rope ealled the shank-paiuter, which is cast loose simultaneously with the cat-hcad stopper, the two being secured on board by means of movable pins called tumblers, which are moved by a lever and disengage the chains or ropes at the same instant.

Fish'er-man's-bend. A sailor's knot, used in bending halyards to a studding-sail yarl. Two turns are taken round the spar, the end passed between them and the spar, and half hitched around the standines part.

Fish-fall. (Nenetical.) The tackle depending from the fish-davit and used in hauling up the arms of the anchor.

Fish-Dake. A structure on which fish are spread to he air aml sun dried.
Fish-front. (Fuutical.) Curved picces of timber bound unon the outsile of a broken spar to stiffen it erul make it serviceable.

Fish-garth. A stiked or dammed enclosure on the margi: of a river to form a fish-preserve.

Fish-gig. A spear with several barbed prongs us?d in sprearing fish. It has usually five prongs, called grains.

Fish-globe. A spherical glass vessel forming an aquarium.
"Thence to see my Laily Pen, where my wife and I were shown a fine varity; of fishes kept in a glass of water, that will live so for ever, anil finely marked they are, being foreign." - Pepys's Diary, 1665.

Fish-olue. 1 singlass.
Fish-hook. Fish-hooks are mentioned in the Bible in several places, in connection with brooks, rivers, and the sea.

The first fish-looks were made of bones or thorns, the latter being indieated by the root of the llebrew word.
"Canst thou draw out leviathan with a hook" (amcient version, "thorn"), "or his tongue with a cord which thou lettest down?"
"Canst thou put a hook into his nose? or loore his jaw through with a thorn?" - Job xli. 1, 2.

The latter verse bears a peculiar significanee, referring to the practice of attaching a fish by a hook and cord to a stake, so as to keep it alive in the water. The crocodile, if it be the animal referred
to, would require a hook rather larger than those used by the anglers of the Euphrates, with which river we suppose the patriarch of Uz to have been familiar.

The natives of the South Seas in the regions visited by Magellan, Cook, La Perouse, Anson, and others, made fish-hooks of bone, carved or neatly
 used by Ulysses and his companions in Sieily : -
"All fish and birds, and all that come to hand With barbed hooks."

Odyssey, xп. 322
Athenieus states (A. D. 220) that "the hooks were not forged in Sicily, but were brought by them in their ressel." - Athen. Epit., B. I. 22.

Of the Grecian fish-hooks, some were bent around and others were straight, with a barb.
In the cut are shown a number of fish-hooks, of which $a b$ are two forms of a spring hook in which a mousing-piece engages the harb.
$c d$ are two positions of the same spring hook, one set and the other sprung.
c is intended to give the hook a square presentation, and prevent glancing of the hook in striking.
f has a tripping hook which strikes from above, and supplements the primary hook.
g has a spiral-spring shank.
h has a spring hook attached to the snood, which affords the means of attaching a bait or other hook.
i has an additional hook, which is sprung, and thus supplements the primary hook.
j has spiral vanes, so as to revolve it when drawn through the water in trolling.
$k l$ shows two forms - on different seales - of a spring hook whose claws are thrown down upon the fish which tampers with the bait.

In making the hooks, straight wires of the proper size and length are flattened at one end, and the barb formed by a single blow with a chisel. The point having been sharpened, the proper curve or twist is given to the hook; the soft iron is then ease-hardened, to give it the stiffiness and elasticity of steel, by immersion in hot animal chareoal. The hooks are subsequently brightened by friction, and tempered. In the hook-making machine, the wire is run from a reel into the machine, and on the other side the fish-look drops out completed, with the exception that it must be tempered and colorell. After the wire reaches a certain point, the requisite length is clipped off. The next operation barbs it ; the other end is dlattened. It passes around on revolving dies, whose teeth, formed like the notched spikes of a wheel, catch it, and bear it from one operation to the next until it is smoothed and filed, when it passes between rollers that give it the prescribed twist and turn, and it drops into the receiver awaiting it.

Fish'ing. 1. Uniting by clamping between two

short pieces which cover the joint. As a compound berm, b d c, Fig. 2001.

At f is shown a combination of fishing-pieces, coaks, and bolts; the coaks on the lower surface are substitutes for the indents of the surface above.
$g g^{\prime} g^{\prime \prime}$ show one form of clasping plate in several views.

The fish-plate $h h^{\prime}$ for railway-rails has a bend which laps upon the foot of the rail, and a drooping flange; the bent form giving a rigidity which
strengthens the rail against deflection. The rail is prevented from opening at the joint, or spreading, as is nsual with the ordinary fish-joint, whose strength is only equal to one third that of the rail.
2. (Noulical.) Lifting the anchor-fluke on to and over the grunwale.
3. Fishing, as an occupation, is perhaps almost coëval with our race. The distinction between netting, trapping, and angling was early understood. "The fishers also shall mourn, and all they that cast angle into the brooks shall lament, and they that spreced nets upon the waters shall languish. They shall be broken. . . . that make sluiccs and ponds for fish." (Is. xix. 8, 10.) See also Hahakkuk i. 14, 15 ; Anos iv. 2 (isi b. c.). Oppian wrote a Greek epic on hishes and fishing ahout A. D, 198. Wynkyn de Worde's "Treatyse of Fysminge", appeared in 1496, and Walton's "Complete Angler" in 1653.

Fish'ing-line. A flaxen or fine hempen cord for angling.

The Grecian fishing-lines were of horselair, white nearest to the hook. Horsehair, catgut, and silk are now usell for smoods.

Fish'ing-line Reel. A little winch, usually attached to a fishing-rod, and upon which the line is wound.

In one case it is furnisherd
with an alarm, with an alarm,
so that a sleepy fisher may have notice when a fish rums away with the hait.

Fish'ingnet. See Net.

Fish'ingrod. Angling for fish was common iu

Fishing-Line Reel. ancient Egypt, but they do not appear to have used a float. The line was coniparatively short, and the rod in a single length. They used landing-nets. They do not seem to have practiced fly-tishing. Spearing fislh, especially with the bident, is shown frequently in their sepulelıral paintings. The fisli-spear was attached to a cord which was wound on a reel.

The hook and fish-spear are mentioned in the Book of Job. Fishing-lines of horsehair are mentioned by Aristotle.
The Grecian fishing-rod was, as now, a seed, calamus. It was not made in jointed sections.
Modern rods are made of bamboo lengtlis fastened together by telescopic or screw couplings.

Fish'ing-smack. A sloop having a waterehamber in the hold to keep tish alive.
Fish/ing-tube. (1Ficroscopy.) An open-ended glass tube for selecting a microscopic olyject in a fluid. The tube is closed at the upper end by the finger until the lower end is close to the object. The finger being raised the water rushes in, carrying the object with it.
Fish-joint. A plate or pair of plates fastened upon the junction of a couple of meeting portions of a beam or plate. See Fisuing.

The fish-joint for conneeting railway-rails was first designed hy W. B. Adams, England, 1847, and was soon extensively introduced. It consisted of a pair of plates 18 inches long, 3 by $\frac{3}{4}$ inches, bolted together through the rails by 4 bolts, allowanee being
made by oval bolt-holes for expansion and contrac. tion of the rails.
The tish-joint with keys instead of bolts was first used (Holley) by Barr of Newcastle, Dela ware, in 1843.
In Samuel's fish-joint the bolt passes through a hole in one fish-plate and is tapped into the other. This obviates the nut, which is apt to be in the way of the wheel-flange.

Fish-ket'tle. A long kettle adapted to boil fish of, say, from four to ten pounds' weight, without destroying the symmetry of the fish or entting it into pieces

Fish-lad'der. A ditm with a series of steps to enable fish to ascend the fall by a succession of leaps. Sue Fish-way.

Fish-plate. A plate used to secure together the ends of auljacent rails, to hold them strictly in line, avoiding lateral deflection or sagging. It usually consists of a plate on each side of the joint, clasping the $u r b$ of the rail, and secured by bolts and nuts. See Fishing.

Fish-pot. An open-mouthed wicker lasket containing hait, and sunk in the haunts of fish to catch them.

Fish-skin. The rough skin of the dogfisla or shark is used as a rasp.

Shagreen is a leather of fish-skin.
The skins of the porpoise, beluga, and seal are tamed.

Eul-skins are used as whang.
Sole and other skins are nsed in making a kind of isinglans for clarifying liquors.

Fish-slice. A broad-htaded silver knife used for serving fisl at table. The trowel-shaped blade enables a jortion of fish to be removed from the baekbone without breaking it into unsightly fragments.
Fish-spear. A barbed spear for catching fish. A gig.

Fish-spears are mentioned by Job and by the Greek writers. They had one, two, or more barbed prongs. Neptune's trident was a fish-spear, tridented or thries-toothed.

Fish-tack'le. (Veuetical.) A purchase to raise the llukes of an anchor to the gunwale, for stowage, after being catted. A fish-full.

Fish-tail Burn'er. A gas-burner whose burning jet assumes a two-lobed form, like the tail of a fish.

Fish-tail Pro-pel'ler. A single-winged propeller hinged to the stern-post and osellating like the tail of a lish.

Fish-trap. A box or basket set in a river and having bait slung in a bag to attract fish; it is sprung by hamd.

A hasket, net, or staked area with a divergentsuled or funnel-shaped opening through which fish pass, and in which they find a difficulty in retracing their course, owing to obstacles or blind sacs.

Fish-way. A device to cmable a fish to ascend a fall. It nay consist of a series of steps over which

Fig. 2003.

the water descends, turning a fall into a cascade, and sometimes known as a fish-ladder; or it may consist of a chute with a sinuous track for diminishing the velocity and assisting the passage of the fish to the level above the dam. In the pxample, it is an inclined chute having a series of chambers containing comparatively still water, the current being confined to a relatively smaller space.

Fis'sure-nee'dle. A spiral needle for catching together the gaping lips of wounds. By revolation, the point is made to pirce the Fig 2004. hips alteruately, carrying its threal with it.
T'iemann's needle for cleft palate is hollow thronghout its kength, and carries a silver wire which is left in its place when the seedle is retracted by backward rotation.

Fis'tu-ca. A pile-driver. A monkey.
Fis'tu-la. A water-pipe, according to Vitruvius, who distinguishes three modes of conveying water: by leaden pipes, hy earthen lipes, and by chamels of masonry.

Fit-rod. (Shimorighting.) A gage-rod used to try the depth of a bolt-hole in order to determine the length of the bolt regnired.

Fix. See Fixing.
Fixed Ammu-ni'tion. A charge of powder and shot inclosed together in a wapper or case, ready for loading.

Fixed Light. One character of light displayed from a lighthouse. Its beams are Fissure. constant, dilfering from those termed flash- Needle. ing, rcrolving, and intermittent. It is susceritible of variation, as uhite or colored, single or donble. See light; Catortitc-light.

Fixed Star. (Pyrotcchuirs.) A fomposition introduced into a rocket-case and emitting fire at five holes, to represent a star. The composition is niter, sulphur, gunpowder-meal, antimony.

Fixed Sun. (Pyrotcchnics.) A device composed of a certain number of jets of fire distributed circularly like the spokes of a wheel. All the fuses take fire at once throngh channels charged with quickmatehes.

Glorics are large suns with several rows of fusees.
Fans are portions of a sun, being sectors of a circle. The pattic droic is a fan with only three jets.
Fix'ing. 1. (Photography.) Of a negatire; the removal, by a solution of hyposulphite of soda or cyanide of potassium, of the unaffected denosit of iodide and bromide of silver in the colloclion film after exposure and derelopment of the picture.

Of a positive: the removal of the maltered chloride of silver from the surface of the photographic paper after exposure under the negative.
2. (Metalluryy.) The material used in preparing the hearth of a puddliag or boiling furnace for receiving its charge. A certain amount of ore, cinder, and serap are banked up around the boshes, the amount and kind varying with the character of the iron and the construction of the furnace. It is ealled fottling in some parts of England, the word fettle being provineial English, and substantially the same as our fix.
Flack'et. A barrel-shaped bottle.
Flag. 1. A banner indicating nationality, occu. pation, or intelligence.

Flags of nationnlity are standards, ensigns, penwants (pemilants), jucks.

Flags of occupation indicate service, as war, merchant, desputch, pilot, yacht-squadron, liners, etc.

Flags of intelligence are of various colors and of three shapes: square (a), pointel (b), burgee (c). They are used in various combinations to transmit messages according to a printed or secret code.

The standurd (military or naval) is a war flag.
The ensign (d, American ; c, English) is national. It has the union in the upper comer next the stalf, the other portion of the flag leing denominated the Aly.

In the Eng'ish service the ensign with a white fly, a red cross, and the jack in the corner, belongs to war-vessels. Other government vessels carry the red ensign (red Hy).

The bluc ensign belongs to the merchant service.
The penment (f) is a long strip of bunting, and is used to indicate the commodore's vessel, and formerly, in connection with an ensign, to indicate a government vessel of the nationality to which the ensign belongs.

The juck is a flag haring the union of the eusign without the fly. 9 , American ; h, English.

An antil is a little narrow flag or peunon on the end of a lance.

A banner is a small flag edged with fringe.
A bandrol is a small streamer from a masthearl.
A funtion is a simull fliz for a surveying-station; from the Italian gonfictone, a stamlarl.

A guidon is a smatl swallow-tailed flag used in

cavalry regiments. One is furnished to each company. Sie Guidon.
A streainer is a relatively narrow flag or pennon.
Flugs with special designs are used on particular occasions, as the flag known as " llue-peter" indicates that the vessel is about to sail. It is a blue flag with a white square in the middle. There are many other signal Hags, and some to represent numbers, by which messag's may be signaled according to a printed code. Sce Haswell's "Engineers, etc., Porket Book," P. 149.
The hight. of an ensign is the hoist or depth, and is $\frac{18}{8}$ of its length.
The length from the staff to the outer edge is the fly.

In the United States serriee, -
The garrison flag has 20 feet head, 36 feet fly
The storm-flag has 10 feet heal, 20 feet fly.
The regimental flag has 6 feet head, 6 ft .6 in. fly. Camp-colors are of bunting, 18 inches square.

The ficld has 13 horizontal stripes of red and white alternately, beginning with red.

The union has a blne field in the upper corner, next the head, four tentbs of the length of the field and seven stripes in depth, with white stars rangel in equidistant horizontal and vertical lines, equal in number to the number of States in the Union. See "Army Regulations," ed. 1863, p. 461.
2. A slab of stratified stone for sidewalks, etc.
3. The nneven end of an uncut tuft of hair in a brush.

Flag'e-o-let. (Music.) A wooden musical windinstrument haring a mouthpiece and six pinejpa holes which are stopped by the fingers, as in a t ute.

The double flageolet is said to have been invented by Bainbridge, and upon it duets may be played. It is mentioned by Perys.
"To.Drmmbleby"s, the nine-maker, there to alvise about the making of a flageolet to go low and soft; and he shew me a way which do do, and also a fashion of having two pipes of the same note fastened together, so as 1 can llay on one, and then echo it on the other, which is mighty pretty:" Pepis's Diary, 1668.
"I took my flageolette, and played upon the leads in the garden, where Sir W. Pen come out in 1 is shirt into his learls, and there we staid talking and singing and drinking greater draughts of claret, and eating botargo and bread and butter, till 12 at night, it being moonshine, and so to bed, being very near fuddled." - Peprs's Diary, 1661. (Botargo is a sausage made of eggs and the blood of the seamullet.)

Flag'ging-i'ron. (Coopering.) A prying.rod with a double-hooked head, used in flagging casks.

Flag'on. A pitcher with a narrow mouth to hohl a beverage, ale or wine.
Notably it is of metal, and used to contain the wine of the communion-service, which is poural from thence into the chalice and drank therefrom.

Flag-stone. A sandstone which cleaves into flat slabs suitable for paving.

Flail. 1. (Husbandry.) A wooden instrument for threshing small grain by hand.
"The fitches are beaten with a staff, and the cmmmin with a rod." - Isaich.
It was used among the Hehrews for grain whiclu would not bear the tramping or the grinding action of the sled or cart.
The flail consists of the hand-staff and the soup?e, or suriple, which are joined by a piece of whang or eelskin to a swivel called the hooding.

The images of the Egyptian Osiris are represented

Japanese Thrashers.
with two instruments, nsually called the cronk and flagellum. We are much disposed, however, to consider them a sickle and flail, and the association on the same figure of the plow and harrow renders the
supposition probable. The crook was not held in as much honor as the sickle, nor the tender of animals as the cultivator of the land. A weapon like a flail was used in war, but Osiris was emineutly peaceful and useful, and his emblems had the same character.

The flail is the ordinary means of thrashing in Japan. It diflers in no essential respect frum that of other countries. The illustration, from a native painting, shows that both sexes engage in the work.
2. Au ancient weapon used in war. It was a club swiuging from the end of a long handle, like the morning-stars of the London train-bands, three centuries situce.

A war-elub studded with iron spikes and mounted like a Hail was found at Sakkarah, and is in the Abbott Museum of Egyptian Autiquities in New York.

Flake. 1. A platform of slats, wands, or hurdles, ou which tish or fruit is placed to dry. A fishthaic.
2. A stage suspeaded over the side of a ship for the sonvenience of the painters or calkers.

Flame-bridge. A wall rising firm the floor of a furnace to cause the flame to impinge upon the bottom of the boiler.
Flame-en'gine. An early name for the gas-engine, in which the piston is moved by the expansion due to the sudden combustion of a hody of gas in the eylinder. See Gas-engine.

Flang. A two-pointed miner's pick.
Flange. (Machinery.) A projecting nib or rim for strength, as a guide, or for attachment to another object.

1. A strengthening rib, as in the flange of a fisinbelli d rail, or girder.
2. A guide-tlange, as in the rib of a car-wheel projecting beyond the tread.
3. A fastening tlange, as on the end of pipe, stemu-cylinder, etc.
Flange-joint. A joint - such as that of pipes
 -where the connecting pieees Jave perforated flanges by which the parts are bolted together.

Flange-rail. A
 rail having a bentup flange to keep the wheel on the track.

Flang'ing - machine'. (Shectmotal.) A machine usually laving two rollers so eoustructed and arranged as to bend over the edge of a piece of tin-plate which is passed between them. The modes of bending are known as bemeing, burring, seaming, flanging, etc.

In the example, the outer circumferential comer of the lower disk is tumed out rectangularly, and the other disk lias a peripheral flange, whieh enters the groove and forms an out-turned flange around the elge ol the cylinder. See Double-seaming Marmine.

Flank. 1. (rearing.) The acting surface of a cog, within the pitch-line. The outer portion is the fuce.
2. (Arehitceture.) The haunch of an areln; the shoulder between the crown and the springing.
3. The thin portion of a skin of leather; that which previously covered the flank of the animal.
4. (Forlificalion.) That portion of a bastion

which reaches from the facc to the curtain. The flank of one bastion commands the ditch before the curtain and the facc of the opposite bastion. See Bastion.
5. The return side of any body, as of a house, a wall, an ashlar in position, etc.

Flan'nel. (Fabric.) A soft, open woolen stuff, of which there are many kinds, twilled or plain and undressed, milled, gavze, eolored, and checked. Also made for specific purposes, as loonse, horse, lrinter's blankets.

Flan'ning. (Building.) The internal flare of a window jamb. The cmbrusure.

Or of a fureplace. Coving.
Flap. A hiuged leaf of a table or slutter.
An inside shutter has several pieces, the principal one of which is the front shutter; the one which folds into and is concealed in the boxing is the buch-flur.

Flap-tile. A tile with a bent-up portion: to turn a corner or eatch a drip.

Flap-valve. A valve which opens and shuts upon one hinged side. A clack-valve.

The common punip-ralve consists of a clisk of leather opening upward when the pump-rord descends, and las a Jeaden or brass weight attached to it.
Flarling. Overlanging, as of the bows of a slip, the top side forward.

Increasing in diameter upward, as of an upwardly cxpanding pan, Funuel-shaped, conical, tromepetmowthed.

Flash'er. (Stcam.) A form of steam-boiler in which small bodies of water are injected into a heated boiler and flashed into stean, sufficient being injected at eacli time for one stroke. See lnstantaneousgeneliator.

Flash'ing. 1. (Hy/draulic Enginccring.) Concentrating a fall of water at one point, so as to incroase the depth to allow the jrassage of a loat from one level to another, as at a. The river having a dam across it and a sluice at one point, the sluicegate is opened, and during the temporary increase of denth in the sluice-way the boat js drawn through.

It is a very ancient device (see Sluice), and is still used in many countries with boats of moderate size.

A memorable case of flashing is that when Lieu-tenant-Colonel Bailey rescued the fleet of gunloats on Red River after the defeat of the Union army under General Banks. The gunboats wrre floshicd over the falls at Alexandria by means of a wing-dam made of \log eribs filled in with stone.
2. (Plumbing.) a. A Jap-joint (b) used in slieetmetal roofing, where the edges of the sheets meet on a projecting jidge.
b. A strip of lead leading the drip of a wall into a gntter.
Step-flashings are those sitnated at the junction of the sloping side of a roof and a wall. They are turned in at each course of bricks and stepped down as the roof descends.
3. (Glass-makin.j.) a. A reheating at a fur. nace aperture (c) in connection with a rotary morement, causing the opening in the Hattel sphere of glass to enlarge and eventually to distppear entirely as the table of glass assumes a flat shape.
The tlashing heat is also applied to smooth the sheared ealges of a goblet or other article, or to reheat an article daring manufacture to restore its plastic condition.
b. A mode of covering transparent white glass with a film of colored glass, iu order to give the appearance of color to the whole ware. In some cases, the ruby coating is ground away in an ornamental pattern, so that the glass is party-colored. The colored glass is prepared with a composition called Schiclze (which see).
Flash'ing-fur'nace. One at which a globe of crown-glass is reheated, to allow it to spring ouen flatly as it is whirled. See Flashing.
Flash'ing-light. One character of light as exhibited from lighthouses. It is produced by the revolution of a frame with eight sides, having rellectors arranged with their faces in one vertical plane and their axes on a line inclined to the perpendicular. The rate of resolution is such as to show a flash of light every five seconds, alternating with periods of timness.

This light is one of the modes of varying the appearance, so that a mariner may be able to distinguish one light from another when coming near land on a coast where the number of lights is consilerable; as, for instance, the three kinds on Cape Henry and Cape Charles, at the moath of Chesapeake Buy, and at Hog 1sland, on the coast of Northampton County, Virginia, abont thirty miles north of Cape Charles.

Lights are distinguished as -

Fixel.	Flashing.
Revolving.	Colored.
lutermittent.	Double.

These are variously combined, as: revolving whits, rcvolving red and white: revolving red and two whites; double fixed; duuble rerolving, etc., retc. Soe Light ; Lishthotse. See "Lighthouses, their Construction and lllumination," by Allan Stevenson; Weale's Series, No. 47.
Flash-pipe. A mode of lighting gas by means of a supplementary pipe pierced with numerous small holes throughont its length. The flash-pipe reaches from the burner to a position within reach of a person, and is proviled with a stop-cock. The cock being turned, gas issues from each orifice. One jet being lit, the flame flashes along the whole
length of the pipe, and communicates flame to the jet. The stop-cock is then closed, and the row of small jets is extinguished. Substitutes for the flaskpipe are fonnd in the various modes of lighting gas by electricity (which see).
Flash-wheel. A water-raising wheel baving arms radial or nearly so to its axle, and revolving in a chase or curved water-way by which the water passes from the lower to the higher level as the wheel rotates. See Scoor-wheel. See also Hrdraclic Devices.
Flask. 1. (Founding.) A frame or box which holds a portion of the mold for casting. Fithe mold be contained in two pieces, they constitute a teo-part flask. The upper part contains the eope (a), the lower part the drag (b).

In hollow-ware, kettles, etc., the cope comsists of two paits e d, which divide laterally, and the drage e

has one part and holds the core, or nourcl g, which is the mold of the interior. This requires a threepart flask.

An example of a four-part flask is one in which the cope or casing is in three pieces; one upper piece h which is lifted off, and two side pieces $i k$ which are removable laterally: The core or nourel m resting upon the fourth part l, the drag. The drag l rests upon a bottom hoard m, and has ears at the sides into which the pins of the cope enter, so as to preserve the parts in relative lateral position. When the object is molded and the pattern withdrawn, the parts of the flask are secured letween top and bottom boards by means of the clampls u. See Mold.

Fig. 2011 shows a car-whcel in a mold with its upper and lower parts and a circular ring which forms and at the same time chills the tread.
Fig. 2012 shows a two-part flask with the mole of seeuring exact correspondence of the parts by locking hooks and keepers.

Fig 2011
2. A leathern or me-
tallic case for holding gunpowder or shot.
3. (Glass.) a. A kind of bottle for oil, liquor, or quicksilver. The latter is of iron.
b. A vessel used in a laboratory for sublimation or for digesting in a sand-bath.

Two-Purt Flask.
Flask-clamp. A binding device for securely holding together the parts of a flask. In the example it is a hooked bar and a lever cam.

Flask'et. A long shallow basket with two handles.

Flat. 1. A Western river-boat or barge for carryiner produce, coal, or morchandise.
2. A piece of bone for a button-blank.
3. A surface of size nver gilding.
4. A story in a dwelling.
5. A platform railway car.
6. (Curding.) A strip of wood clothed with bent teeth, and placed above the large cylinder of a card-ing-machine.
The elothing is known as the finl top-cards, in contralistinetion to the cards which clothe the drum, liuter-in, card-rollers, teazer, and doffor, whose surfaces are curved.
7. (Shipbuilding.) a. A flat part in a curve; as a timber which has no curve, as the floor-timbers of the dead-flat. amidslips.
b. One of a number of ship's frames of equal size, and forming a straight mildle borly.
Flat'band. A plain, square impost.
Flat-boat. A barge for transporting produce on the Western rivers. A flut : an ark.

Flat-cap. A size of writing-paper usually 14×17 inclies.
Flat Chis'el. A sculptor's chisel for smoothing surfices.
Flat File. A file wider than its thiekness and of rectangular section. When bellied, it is known as a taper file; when the size is maintained from end to enul, it is known as a prerallel file.
Flat Ham'mer. The hammer first nsed by the gold-heater in swaging out a pile of quarticrs, or pieces of gold ribhon, $1 \times 1 \frac{1}{2}$ inches square. These are placed 24 in a pile and beaten till they are two inches square. They are then packaged with interleaves of vellum and beaten by other hammers, known as the commencing, spreading, and finishing hammers.

Flat-head Nail. A forged nail with a round, flat head and a light, counded, pointed body.

Flat-i'ron. Au iron with a flat face, userl for smoothing elothes. A sad-iron. See SmootumgIRON.

Flat-i'ron Heat'er. A stove sperially alapted for heating smoothing-irons. A laundry-storc.

Flat-lead. Sheet-lead.
Flat-nail. A small, sharp-pointed wrouglat mail, with a Hat, thin head, larger than a tock."

Flat-pa'per. That which has not been folded.
Flat-press. A press used in the india-rubber husiness for flattening together a number of piles of fohled cloth while they are vulcanized and blended together by a steam heat of say $280^{\circ} \mathrm{F}$.

Flat-rail. A railroad rail consisting of a simple Hat bur, spikes to a longitudinal sleeper. Tramways of wood were laid down by Beammont at Newcastle, in 1602 . They were proteeted by flat straps of iron in 1738, at Whitehaven. Flat cast-iron plates were laid at Coalbrookdale in 1767 . The angular cast-iron rail was used in 1776 . Eilge rails of eastiton in 1789 . Folled rails in 1820. See Rall.

Flat-rope. A rope made by plaiting yarns together instead of twisting. Gcishet; senuit.

Some flat ropes, for nining-shafts, are made hy. sewing together a number of ropes, making a wide, flat band.

Flat-rope Pul'ley. A pulley having a true cylindrical surface and two rising flanges, to keep the band from munning off. See Pulley.

Flat'ten-ing-fur'nace. A furnare into which cylinder glass split longitudinally is placed to flatt+11 out ly heat. A spreading-oven. See Flaticingfurnace.

Flat'ter. 1. A hammer with a very broad face, used by sn iths in flat-facing work.
2. (Wire-drauing.) A draw-plate with a flat orifice, to draw flat strips, such as watch-springs, skirt-wire, etc.

Flat'ting. 1. (Painting.) c. A style of insjde house-painting in which the colors, preparel with oil of turpentine only, are dead, without luster.
b. A covering of size over gilding.
2. A rolling of metal into plates.
3. (Glass-making.) The operation of opening ont a split cylinder of glass so as to make it tiat. This is performed in a Flatting-fubiace: (which ser), and is assisted by a tool having an ion liandle and a wooden cross-juiece at the end.

The plate on which it is tlatted is of devitrified ghass, fire-proof clay, sandstone, or other matrial which will resist heat and maintain the essential jerfectly smooth surface.

It is known as the spreading-plate, flatting-plutc, flrtingl-stome, or fatting-hcarth.

Flat'ting-fur'nace. One in which a split cylinder of glass is opened ont. See Flapting.
William Coffan, of Hammonton, New Jersey, patented a machine for flattening cylinder glass, October 1, 1830, which was intended to prevent

Fig 2014. injury to the glass while cooling by shifting the stone on which it was flattened from the flattening to the cooling oven.

Flat'ting-mill. 1. A rolling-mill producing sheet-metal.

In the Mint; the rolling-mill for producing the ribbon from which the planchets are punched.
The first flatting-mill in England was erected at Sheen, near Richmond, hy a Dutchman, 1663.
2. A mill having a pair of hard, polished steel rolls, through which grains of nietal are passed to be flatted, for ornamental purposes. The produce is known as metallic deest.
Flat-tool. A turning-chisel which cuts on both sides and on the end, which is square. It is used as a bottoming-tonl for boxes.
Flaw. 1. (IVeaving.) A bore, tangle, or skip.
2. (Metal.) In casting or forging; a fault, as where the parts of the metal are not fiirly joined.
Flaw-piece. (Wood.) A slab, from the outside of the log.

Flax. The first mention of flax in history is perhaps that in the account of the hail-storm in Lower Egypt, Exodus ix. 31: "The Hlax was bolled." The Helrew word is rendered linon in the Septuagint; lineun in the Vulgate : with us it is line and linen. (See Linen.) Flax was used to the exclusion of wool for priestly garments and cerements. Isaialh refers to the fine linen of Egypt; Herodotus refers to linen shirts as the ordinary dress of the people of the Nile land.

The manipulations of flax to render it fit for use are shown at Beui Hassan in Egypt, about 1500

B. C. In the illustration the men on the left are carrying water in jars to pour on the flax, which is placed in an elevated cistern, partitioned off into cells. Another man removes the rotted flax and lays it out to dry, as represented by the six bunches. Another bunch is shown in a loose condition, probably a handful in condition for the next operation, which is performed ly the three kneeling men, who beat upon a stone with a mallet a. The flax is thus made into a rough hank, and is then cleaned
and opened out more fully by striking it uron a stone. The hank is held in two places, swung in the air, and beaten upon the flat stone. In the next scene the hank is twisted and worked to give it a farther finish.

The description given of the process by Pliny, Who wrote about 1500 years afterwarls, will nearly apply to the serial picture just described. He says: "The stalks themselves are innmersed in water, warmed by the heat of the sun, and are kept down by weights placed upon them; for nothing is lighter than flax. The membrane or rind becoming lonse is a sign of their being sufficiently macerated. They are then taken out and repeatedly turned over in the sun until perfectly dried; and afterwards beaten by mallets on stone slabs. That which is nearest to the rind is called stupa (tow), inferion to the inner fibers and fit only for the wicks of lamps. It is combed out with iron hooks until all the rind is removed. When made into yarn it is polished by striking it frequently on a hard stone, moistened with water ; and when woven into cloth it is again beaten with clubs, being always improved in proportion as it is beaten."

Answering to the "iron hooks" described by Pliny, and to onr haekle, were the combs like that shown in the cut b; two of which were found at Thebes, with some flas-tow attached, and are now in the Berlin Nuser:m. One of them has 29 and the other one 46 teeth. c is a netting-ntedle from the same place.
Flax was exported from Egtpt to Gaul as late as the Christian era, and was ondered to be grown in England by statute of Henry V111., 1533. A braking and scutching machine was 1 un by water-power in Scotland in 1750.

To prepare flax for manufacture, after the removal of the seeds, the hare (useful, fibrous portion) is separatet from the doon (the refuse portions of the stalk). For this purose the uniting gluten must be dissolved and removel. This is eflected by rotting, cither in jonds or by exrosure to dew. In either case a fermentation ensues which renders the gluten solulle in water. Carstic alkali has the same effect on gluten, and forms the hasis of many modern processes whercby woody tiber is rendered suitable for spinning or for pajer pulp. The next process is to break and scutch the fiax to detach and remove the rind and cellulose matter, and prepare the fiber for kackling and subsequent operations.

In one large establishment in Leeds, England, the series of machines is as follows:-

The seed is removed by rollers which act upon the bolls. Then come the fiax-braking machincs; these have fluted or grooved rollens, between which 1]e flax stem is made to pass, so that the woody inrtion becones thoroughly broken without entting the fiber. Next come the flax-scutching machines, in which revolving blades or arms beat out the woody fragments, and the fhers are to a certain degree separated. After this the focchachling mathines give the flax a thorough combing, ly means of long rows of teeth or spikes; the fibers are combed out straight and tolerably clean ; and the tow or short fibers are removed, to be used for other puroses. The backled flax is then in a state to be acted on by the various machines which bring it into the state of yarn for weaving; these machines are of three kinds, according as tow, long flax, or cut flax is to be acted upon. The tow-carding and the tou-rocing machines serve for the first kind; the flax-spreading, flax-carding, and flax-roving machines for the second; and the flax-cutting machine, followed by those for carding and roving, for the third. The
spinning-machine follows all these ; and it differs from cotton-spinuing machines chiefly in having a provision for wetting the flax either with cold or hot water; there is still a little guin or mucilage among the fibers, and this becomes more manageable in the machine when moistened.
A Swedish method of treating flax is by boiling in sea-water with the addition of birch-ashes and quicklime. It is then rinsed in sea-water ; soaped, rabbed, bleached in the air, being turned and watered every day. The washing, soaping, and bleaching are repeateci. The flax is beaten, dried, and then carded and spun like cotton.
For list of appliances in the treatment and manufacture of flax, see Cotrun, Flax, Wiol, etc., Appliances.
Flax-brake. 1. A machine for remoring the wootly and eellular portion of flax trom the fibrous. The hemp-brake is substantially similar in its construction and identical in its purpose.
The first mole aulopted may be assumed to have been beating the rotted flax with a stick on a flat stone, alternating with rubbing by the hands. A sword of wood which descends upon the stalks laid over a pair of slats set edgeways, a farther improvement, which is shown at α, in which the sword is drawn down by a treadle and lifted by a spring-pole. T'o this succeeds a pivotert jaw with a series of parallel longitudinal serrations descending upon a similarly provided jaw on the bench.
b is a machine having a system of three rollers, the upper one of which is attached to a lever which draws it down upon the other two by means of a treadle, clamping the flax, which is then drawn through by hand, breaking the shives from the hare. This is repeated as often as may be neccessary, raising the hexd each time for the insertion of the flax. This part of the process being completed, the flax is rednced to a fine straight fiber by means of the haekle ahove the lever.
The machine shown in side and end elevations $c d$ has cast-iron fluted rollers, tive in number, arranged in

Flax-Brakes.
two vertical series, the front one of two rollers and the back one of three.

The flax straw fed into the machine at m passes between the top and middle rollers of the back series, and is directed downward by the back plate g, so as to pass between the middle and bottom rollers of the same series and then through tbe two sollers of the front series. The rollers are all driven and their ends have plain parts truly turned so that the flutes of one roller wark into the spaces of the next adjoining roller, and leave a space for the flax straw to pass through. The rollers are weighted, and the pressure can be regulated as required.

Fig. 2017 shows a machine for consecutive rotary

Flax Brake and Cleaner.
treatment. The devices are for drawing, straightening, and extending a layer of tangled flax so as to reduce it to a thin, even sheet of parallel staiks ready for the breaker, scutcher, beater, and picker, to which it is passed directly and continnously.

The drawing-cylinder has alternately long and short teeth. and the roller ahove has indentations in the peripheries of its anuular rings for impaling the
stalks. The scutching and cleaning cylinders lave Hat, narrow, deep treth, with inclimed front edres, slightly hooken at the emps. The teeth of the pick-ing-cylinder are made of pninted round wire, and are inclined hackward at their bases, their points curving forward. The concave of the cleaning-cylinder is formell of parallel curved grate-bars, between which pass the teeth of the cylinder. The fiber is
formarded between each cylinder by chute and toothed shell roller.
2. A machine for shortening flax staple to adapt it to be worked by a given class of macbines.
Flax-cot'ton. A process was invented by Chevalier Claussen for cottonizing flax, to render it suitable for manufacture, the objects being to expedite the processes of separating the fiber from the cellular and glutinous matters, and then reducing the fiber to a staple which can be readily treated by machinery. The flax-straw is boiled for four hours in a solution of caustic alkali in a stone vessel, by which the extraneous matters are loosened; it is then placed for two hours in a bath slightly acidulated with sulphuric acid. It is then dried and scutched to remove the cellulose. The cottonizing is performed by steeping the fiber in a bath of dilute bicarbonate of sada, and subsequently in an acidulated livuid. The action of the acid and alkali within the flax fiber generates carbonic-acid gas, and bas the effect of bursting apart the fibers, which assume a cottony appearance. 1 lt is then bleached and spun, either mixed or otherrise.

In the first volnme of the "Transactions of the Society of Arts" is a paper detailing the experience of Lady Moira, about 1770, in attempting to introduce flax cotton. She states that tow and refuse flax of all kinds, boiled with an alkaline solution, and atterwards soured, is converted into a sort of cotton which takes dye better than flax. Her comments are really noteworthy, and illustrate the oft-told tale of the difficulties which inventors and discoverers have to struggle against in the preconceived opinions of others.

Flax-cut'ting Ma-chine'. Flax is sometimes cnt before hackling in order to enable its separation according to quality. The machine for this purpose bas a circular saw which partly cuts and partly tears its way through the bunch of flax which is presented to it by pairs of parallel rollers on each side of the saw.

Flax-pull'er. A machine for pulling flax-plants
Fig. 2018.

Flax-Puller.
in the field. In the example, the flax passes between a series of diriding fingers, and is seized by the endless rubber belts which are so inclined from the
horizontal as to draw the flax from the ground aud deposit it on the platform.

Flax-scutcher. See Scutcher.
Flax-seed Mill. One for grinding flax-seed for the more ready abstraction of the oil, generally known as liuseed (lint, flax) oil. It is nsually a coarse grist-uill, but is sometimes of a portable form and size for farm or plantation use, and adapted for other grain and seeds. See Grinding-mill.

Flax-thrasher. One for beating the grain from the bolls of the cured flax-plant. In the example, the tangled flax is impaled by the spiked roller against the indeuted roller above, while the drawing rollers straighten the stalk and feed it to the thrashing

Flax-Thrasher.
cylinder, which removes the bolls: the latter then fall between the crushing rollers, which release the seed to be cleaned by the vibrating winnower beneath.

The difficulty in thrashing flax consists in its tendency to wrap around the shafts and thrashing cylinder.

Fleam. A spring lancet for bleeding horses.
A guni-lancet. The fleam (phlebotom) was used by the Greeks.
Fleam-tooth. Of a saw. One in the form of an isosceles triangle. A peg-tooth.

Fleche. (Fortification.) An adranced work at the foot of the glacis, consisting of a parapet with faces forming a salient angle, open at the gorge. It has a communication with the covered way cut throngh the glacis.

Fleece. 1. The fine web of carded fibers which are remored by the comb or doffing-knife from the doffing-cylinder of a carding-machine.
2. The wool of a sheep in an unbroken mat.

Fleece-fold'er. A kind of press used in condensing tbe folded flecce so that it may be tied by twine into a compact bumdle for shipment. The platform is composed of leaves hinged to a central piece. The wool is laid on the leares, which are then raised and held in position by notched bars until the package is bomm, when they are lowered. A plate, connecting with a springbalance scale, is placed in the central piece and raised by a lever until the package of wool rests upon it. See Woot--packer.

Fleet. (Nautical.) a. To draw apart the blocks of a tackle.
b. To allow the cable or hawser to slip on the whelps of the capstan or windlass, from the larger to a part of smaller diameter.

Flem'ish-eye. (Nautical.) An eje made at the end of a rope, without splicing. The ends of the strands are tapered, jrassed over oppositely, marled, and sewed witl spun-yarn. A made-cye, in contradistinction to a spliced-eyc.

Fig. 2020.

Fleece-Folder.
Flem'ish-horse. (Nautical.) A foot-rope for the man at the earing in reeting. The horse extends below the yard; the Flemish horse is the outer portion.

Flesh-brush. A soft hrush to be used on the skin to momote circulation and excite the surface seeretions.

Flesh-hook. A hook to hang meat.
A hook to handle meat in a pot or caldron.
Flesh'ing. (Leather-mrnuficture.) The oneration of removing fat, tlesh, anl loose membrane from the flesh side of skins and hides. The operation follows that of unhairing, and is performed on a beam by a convex knife with a sharp edge.

Flesh'ing-knife. A convex knife with a sharp edge used in removing the flesh and fat from the inner surface or flesh-side of the hile.

Flews. A sluice for letting waters off irrigated neadows (Scoteh).

Flex'i-ble-bind'ing. (Bobkinding.) A book sewn on bands raised above the back of the folderl sheets, so as to allow them to open more freely. The sewing-thread passes aromul the bands.
Flex'i-ble-coup'ling. Thirion's flexible coup-

Fig. 2021.

Thirion's Flerible Coupling. ling is used for conveying power fro:n one shaft to another when they are not in line. It is a spiral steel hand attached at its opposite ends to the two shafts to be connected. The diameter of the spiral is larger than that of the shaft, and the attichment is shown as consisting of a east-iron cap. For a joint of transmission amounting to a right angle, fifteen coils of a spiral will be sufficient. Another form is a cylindrical plug or rod of india-rubber connecting the shafts. See also Universal Joint.
Fli'er. See Flyer.
Flight. 1. (Carpentry.) A series of parallel steps proceeding in one direction withoat turning.

In dog-legged stairs, the lower is the leading flight, the upper the rcturning flight.
2. The slone or inclination of the arm of a crane or of a cat-hearl.
3. A spiral wing or vane on a shaft, acting as a propelleer or conveyor.

Flight'er. A horizontal vane revolving over the surface of wort in a cooler, to produce a circular eurrent in the liquor.

Flint. A variety of silicious stone used to strike fire; also largely used in making the fine kinds of pottery. Its uses - domestic and for fire-arms for striking fire are now much abridgell among eivilizel nations. The friction-match and fulminatingpowiler have superseded the flint and steel.

Flint-glass. This description of glass is made into tumblers and other drinking-vessels, fine ta-
the mold and press, and frequow-pipe, or ponty, tion of blowing and pressing. The silien for its facture was formerly derived from pulverized flints, and hence its name. The presence of leal gives it a peculiar property of refracting light, which causes it to be used for lenses, and it forms one of the parts in nchromatic compound lenses.

It fuses at a lower temperature than ordinary glass, such as the croun, plate, or window glass. It has also less color, owing to the use of the alkali jotash, instead of soda, the latter imparting a greenish tinge to glass.

Flint-glass is softer than some other varieties, and is the kind which is cut.
Artificial gems consist of flint-glass, colored in imitation of the natural tints of the gems. See Strass.

Pure white sand free from oxide of iron is required for flint-glass, as iron imparts a green color.

The liohemian glass is a silicate of potash and lime, a little of the silicate of alumina being substituted for the oxide of lead. The silica for this glass is obtained by pounding pure white quartz.

Flint-glass work is classed as -

1. Blown.
2. Mulded and pressed.
3. Cut and engraved.
4. Reticulated and syun with a variety of colors, incrusted, flashed, enanueled of all colors, opalescent, imitation of alabaster, platinized, silvered, etc.
5. Glass nosaie, Millefiori, Aventurine, and Venetian glass weights, etc.
6. Beads, imitation pearls, etc.
7. Glass accessories to lamps, gas-lights, brackets, etc., such as globes, chimneys, drops, bells, reflectors, etc.
Flint-knife. A knife of archæological interest, male from flint chipped to shape.

Flint was very early used as a cutting implement by the nations so fortunate as to possess it. A sort of saw, which passed for a knife, consisted of flakes of fint inserted into wooden handles and secured by bitnuen or by lashings of gut or sinews. Ohsidian was used in the same way. The South-Sea-Islanders had no flint or obsidian, and used shell, splinters of hambon, and flakes of tortoise-shell. See Knife.

Flint-lock. The old-fashioned lock for firearms, in which the cock held a piece of tlint and came glancing down upon the steel cap of the pan which contained the priming.
Flint-locks were invented early in the seventeenth eentury, and gradually superseded the mateh-lock. Pyrites or mareasite was also used. See Gun-lock.
Flint-mill. 1. (Pottery.) A mill in which burned flints, having been previously stamped to reduce them below a certain size, are ground to powder for mixing with clay to form slip for porcelain.
The flint-mill is a strong circular pan ten or twelve
feet in diameter, having a botton of quartz or felspar blocks, and a rumuer or runners of hard silicious stones, called chert, lime in any form being inadmissible, as it forms a flux for the other material which would ritrify in the scggars or becoune blistered by the escape of carbonic acid.
The mill is of the nature of an arrastra, as the running stones are blocks driven by depending bars from the arms which project radially from the rotating vertical axis.

The fractured tlint is fed into the pan, and water to the depth of eight inches is added. The flint is ground by being levigated betweeu the runners and the bed, and by grinding the particles against each other.
The machine resembles the arrastra of Spain and the Spanish countries of America, excepting that in the arrastra the blocks are dragged around in the bed, being connected by thongs to the revolving arms; and also that the argentiferous slimes are treated with mercury in the arrastra, instead of being merely levigated in water. See Arrastra.
The fint-pan is the invention of Brindley, so celebrated for his energetic prosecntion of the British canals. Before its introduction the flinis were ground dry, and the dust proved very fatal to the work-people.
Mills of similar character, on a smaller scale, are used for grinding felspar, broken porcelain, and other ingredients used in the pottery and porcelain manufacture.
2. (Mining.) A mode formerly adopted for lighting mines in which flints studded on the surface of a wheel were made to strike against a steel and give a quick succession of sparks to light the miner at his work. Sparks will not inflame the fire-damp.

Flint-wall. A wall common in some parts of England, made of broken flints set in mortar, and with quoins of masonry. The black surfaces of the broken flints are exposed on the face of tire wall.

Flint-ware. (Pottery.) A superior kind of earthenware into whose composition ground flint largely enters. See Porcelain.

Flisk A large-toothed comb.
Flitch. (Cierpentry.) a. One of several associated planks which are fastened side by side to form a compound beam, or built-bean.
b. A bolt of planks, unitell by the stub-shot.

Float. (Hydraulic Enginecring.) 1. One of the boards or pudules attached to the radial arms of a paddle-wheel or water-wheel.
2. The hollow, metallic ball of a self-acting faucet, which floats upon the water in the cistern or boiler. See Ball-cock.
3. The quill or cork from which the bait line is suspended, and whose motion indicates the bite of a fish.
4. A plasterer's trowel (r), used in spreading or floating the plaster on to a wall or other surface.

The long that is of such a length as to require two men to use it.
The hand-floxt is that in ordinary use.
The quirk-float is used in finishing moldings.
An angle-flout is shaped to fit the angle formed by the walls of a room.
5. A sing'ceeut file, or one in which the teeth are parallel and moroken by a second row of crossing teeth.

The usual horizontal obliquity of the teeth rela-
twely to the central line of files is 55°, but single-cut files are much less inclined, and the teeth of foats are sometimes square across the face of the file.
The floats of comb-makers and ivory-carvens are made of varions shapes ($b b$), and those of the former

are known by specific names, as graille, found, carlet, topper. (See Conb.) The teeth have a forward inclination of about 15°, and are made by a tile, not a chisel. They are of a lower temper than usual, and are sharpened by a burnisher.
6. The serrated plate (ed) used hy shoemakers for rasping off the ends of the pegs inside the boot or shoe.
7. (Tempering.) A contrivance for affording a copious stream of water to the heated steel surface of an object of large bulk, such as an anvil or die in the process of tempering. The rapid production of steam prevents the constant coutact of cold water when the olject is merely dipped, as a borly of steam intervenes. The dashing stream of water exposes constantly a new hody of water to the hot surface, and makes the hardening more complete.

In the English Mint, a powerful jet of water is used in hardening the dies.
S. A coal-cart.
9. A small raft of timber, say 18 feet square and 1 foot deep.
10. A polishing-block used in marble-working. A runner.
11. An inflated bag or pillow to sustain a person in the water. A cork-juchict. Ormshee's float is an annular bag placed as a sleeve upon the arm or around the buttocks. It is made of water-proof material, and is inflated when required. See Lrfepreserver.
Float-board. One of the boards of an undershot water-wheel or of a paddle-wheel.

Float-case. (Hydraulic Engincering.) A caisson to be attached to a submerged ship or other body, to float it by the expulsion of water and substitution of air in the case.

Float'er. (IFydraulic Engineering.) A registering float on a graduated stick to indicate a level attained betreen periods of observation.

Float'ing. 1. (Weaving.) A term applied to a thread which spans a considerable number of threads without intersection. This is an incident to twilling. (See Twill.) Diaplers, for instance, are freleaf tuills; that is, every warp flnats under four
threals of woof, and is raised and interwoven with the fifth. Also called thushing.
2. The second coat of three-oat plastering.

Float'ing - an'chor. (Nautical.) A frame of spars and sails dragging overboard, to lessen the drift of a ship to leeward in a gale. A Drag-anchor (which see).

Float'ing-bat'tery. A vessel strengthened so as to be shot-proof, or as uearly so as possible, and intended for operating in comparatively smooth water, for defending harbors or attacking fortifications.
We are told that a ship of this kind called the "Santa Anna," she ith. 1 wit: lead, of 1,700 tons barden, curyas Jug.an; and having a erew of 300 men, was built at Nice in 1530. She belonged to the Kuights of St. John, and was employed by Charles V. against Tunis in 1535.
At the siege of Gibraltar in 17S2, by the French and Spanish, ten Spanish war vessels were converted into floating-batteries by strengthening their sides with timber, raw hides, and juak, to a thickness of

Fig. 2024.

Crimean Floating- Battery.
seven feet; they were also fitted with sloping bamhproof roofis or decks, and are said to have inounted 212 guns, principally 32 -pounders, which wereconsidered heavy guns in those days; they were manned with more than 5,600 men, and provided with furnaces for heating shot and arrangements for extincuishing fires. They were constructerl by D'Arcon, a French engineer, and were first pmployed in the attack of Spptemher 13, 1782, and sustained the heaviest fire of the British during nearly the whole of that day without apparent injury, but were at last set on fire by lint shot.
In 1813, Robert Fulton submitted a plan to the United States govermment for the construction of a large floating battery, which was accordingly built; she was 156 feet in length, 56 feet beam, and 20 feet deep, propelled by a single wheel 16 feet in diameter ; her siles were very thick, and she is said to have attaincd a speed of five miles an hour against the tide.

During the Crimean war the French constructed several floating-hatteries, which were sent into the Black Sea, and rendered very efficient service at the eapture of Kinburn. The English shortly after-
wards commenced building vessels of a similar class, but none of these were completed in time to be of service during that campuign.

Those of the Frencli were of wood, and plated with iron four inches in thickness ; they were built very flat, but were to a certain extent sea-going vessels.

The English ones, such as the "Erebus," were constructed ahnost exclusively of iron, and mounted a very heavy battery, consisting of thirty 8 -inch guns.

The Stevens floating-battery is a very sharp screw steamer, designed for great speed, and will he found more fully described under the head of Anmorplating. See also lrun-clad; Monitor; ete.

Float'ing-bridge. 1. A form of ferry-boat which is guided and impelled by chains which are anchored on each side of the river, and pass over wheels on the sides of the ressel, the wheels being driven by steam-power. Lifting phatforms at each end atmit vehicles.
2. The floating-bridgc for canals rests on a caisson or ponton, and is opened and closed by chains and windlasses. When it is npen, it lies in a recess in the side of the canal made to receive it. The ponton is made of sheet-iron, and is designed to aet as a girder when the bridge is closed.

Bridges across the Llamoaze, Humber, and Itchin, in Eugland, and the brielge which so long cressed the Susquehanna at Havre de Grace, Maryland, are instances of tloating-bridges which might almost as well be called ferry-boats; the distinetion is not easy to draw, and is not rery innportant. The train ran on to a high deck and was floated across; the differences of level due to tide were met by a hinged trainway.

Float'ing-clough. A barge with scrapers attached, which is driven by the tide or current, to rake up the silt and sand over which it passes, so that the sediment may be removed by the current.
Float'ing-dam. (Hydraulic Enginecring.) A caisson used as a gate for a dry-dock.
Float'ing-der'rick. Oue adapted for river and harbor use, in raising sunken vessels, moring stone for harbor improvements, ete. See Derrick.

Float'ing-dock. An iron vessel of a rectangular shape, with a rounded bow and a strong caisson gate at the stern. The vessel has a double skin, with a large intervening space. Into the immer hasin a ship is Hoated while the dock is partially submerged; the caisson being closed, the water in the dock and in the space intervening between the two skins is pumped ont, so that the interior may be dry, to allow work on the vessel, and the jacket may have sufficient flotative power to carry its load.
The estimated proportions of the inner and outer skin are : the latter should be one third broader and deeper than the former. The intervening space is divided by bulk-heads.

The weight or unloaded displacement is estimated at $\frac{f}{10}$ to $\frac{i_{0}}{10}$ of its load displacement, giving from sin to to for its lading.

The largest vessel - for such it is - of this class is the "Permuda," built in England and navigated to the Bermudas, being towed by two war vessels hy way of Madeira, where there was a relay of tugs. This dock cost $\$ 1,250,000$, and is represented on the opposite page. It has the following dimensions: extreme length, 381 feet; width inside, 83 feet 9 inches; width over all, 123 feet 9 inches; depth, it feet 5 inches. The weight of the dock is 8,350 tons.

The dock is U-shaped, and the section throughout is similar. It is built with two skins fore and alt, at a distance of 20 leet apart. The space between

the skins is divided by a water-tight bulk-head, running with the middle line the entire length of the dock, each half being divided into three chambers by similar bulk-heads. The three chambers are respectively named "load," "balance," and "air" compartments. The first-named chamber is pumped full in eight bours when a ship is about to be docked, and the dock is thas sunk below the level of the horizontal bulk-heads which divide the other two chambers. Water sufficient to sink the structure low enough to admit a ressel entering is forced into the balance chambers by means of valves in the external skin. The vessel having floated in, the next opreration is to place and secure the end caissons, which act as gates, and eject the water from the "load" chimber. Then the duck with the vessel in it rises, the water in the dock being allowed to decrease by opening the sluices in the eaissons. The dock is trimmed ly letting the water out of the "balance" chamber into the strncture itself. The inside of the tlock is cleares of water by valyes in the skin, and it is left to dry. When it lecomes necessary to uniock the vessel, the valves in the external skins of the "balance" chamber are opened in order to fill them, and the culverts in the caissons are also opened, and the dock sunk to a given depth. From keel to gunwale nine main water-tight ribs extend, farther dividing the distance between the two skins into eight compartınents. Thus there are altorether forty-eight water-tight divisions. Frames made of strong plates and angle-iron strengthen the skius between the main ribs. Four steam-engines and pumps on each side - each pump has two suctions, emptying a division of an "air" clamberare fitted to the dock, and these also fill a division of the "load" chamber. When it becomes necessary to clean, paint, or repair the bottom of the dock, it is careened by the weight of water in the load chambers of one sille, and the middle line is raised about five feet out of the water.

The "Royal Alfred," bearing the flag of the admiral on the station, and weighing 6,000 tons, was lifted by this dock, her keel resting on a central line of blocks arranged on the floor of the dock, the ship being shored up with timbers all round the top-sides.

A similar dock was sent in sections to Cartlagena, and lifted several vessels of from 3,800 to 5,600 tons, in one case (the "Numaucia") supporting the vessel eighty days.

Float'ing-har'bor. A breakwater of cages or booms, anchored and fastencd together, and nsed as a protection to slips riding at anchor to leeward.

Float'ing-light. 1. A light exhibited at the mast-head of a ressel moored on a spit or shoal where no adequate foundation exists for a permanent structure. The screw-pile, in affording a new means of founding struetures, has enabled lighthonses to snperserle floating-lights in numerons cases. A light-ship.
2. A life-preserving buoy with a light to attract the man overhoard, and to direct the crew of a boat coming to his rescue.

Float'ing-plate. (Stercotyping.) A flat castiron plate placed at the bottom of a square cast-iron tray in which a stereotype is cast. The plaster mold is laid, face down, on the footing-plate, and the two are 1 !aced in the heated dipping-prn, the corer of which is screwed on. The diping-pan is plunged in at iron pot contaning the molten alloy, which luns in at the gates and floats the plate and mold; the lntter has notehes at its elges, which allow the metal to penetrate hetween it and the plate. The result is a casting with a flat back, and a faer with camco impression resembling the original type.

Float'ing-safe. A huoy-shaped receptacle for papers, letters, and valuables, to be cast overboard in case of foumbering or wreck.

Float'ing-screed. (Plastcring.) A strip of plastering tirst lail on to serve as a guide for the thicknens of the coat.

Float-stone. (Bricklaying.) A rubber used by bricklayers for smoothing compass-bricks for curved work, such as the cylindrical backs and spherical heads of niches. It takes out the axemarks aequired in roughly dressing to shape.
Float-valve. A valre actuated by a float so as to open or close the port, according to the level of

Float- Valve.
the liquid in the chamber where the float is placed. It is the equivalent of a lall-cock:

Flock. 1. Wool-dust used in coating certain portions of the patterns in wall-papers. The wool is the short refuse of the factory, much of it being derived from the eloth-sheating machine. It is seoured, dyed, dried, and ground, sifted into grades, and dustell over the varnished surface of the paper.
2. A fibrous material for stuffing upholstery, mattresses, etc. It is male by retheing to a degree of fineness, hy machinery, coarse woolen cloths, rags, tags, old storkings, ptc.
Flock-cut'ter. A machine for cutting fiber to a very short staple, called fluck:

Tikon and litson's Flock-Cutter.

In Barber's patent (1846) it consists of a cylinder with spiral knives rotating in contact with a concave having straight knives, the effect being a shear cut upon the fiber passing between the edges, which shave past cach other. See also Chase, 1862; Pitts, 1856; Marble, 1872.

The example (Fir. 2026) has a bed in which knives are arrangell in parallel grouns, of which one in each group is radial and the others of the group parallel therewith. The lower cutter H has a rotary motion and a vertical adjustment. The other cutter J has a self-idjusting movement, without rotation, but flanting, as it were, on the surlace of the rumer.

Flock-dust'er. For removing dust from tlock.

Watrrhouse's Flock-Duster. The material is agitated by beaters in a ganze cylinder with interior ribs ; or it is fed into the hopper at onc end of the case and is dis. charged at the other end, being dusted and loosened by the iuclined brushes which imprel it forwarl. The dust escapes through a semi-cylindrical screen.

Flock-grind'iug Ma-chine'. A case of the form of a hollow cour, containing a revolving cylinther of the form of the frustum of a solid cone. Both are providel with spimally arranged knives, hed between segmental binder-plates. Apertures at both ends are proviled, so that the machine may be fed and run in either direction, to sharpen the knives and grind at the same time.

M'Allister s, 1870, has a cylinder of oblique blades operating upon vertical parallel blades on the concave beneath.

In some cases the grinder is a frustum of a cone discharering at the bass.

In the example (Eig. 2028), the box has radial a critators on a vertical, rotatiug shaft. The endless

Fig. 2023.

Flock-Grinder.
apron passes $u p$ one side, and has eups carrying up the material and conveying it to the hopper of the tearing cylinder. The material is forced down upon the tearing eylinder by reciprocal plungers.

Flock'ing-ma-chine'. One for distributing flock on a prepared surface of eloth or paper.

In the example, the cloth is passed on an endless

web with its rarnished side uppermost, beneath a brusk whose upper portion rotates in a box of tlock.

Flock-o'pen-er. A machine with pickers or stift brushes for tearing apart the bunches of flock, so as to make a light, loose fiber which shall feed regularly to the cloth or paper to whose varnished surface it is to be attached.

Flock-pa'per. Wall-paper on which pulverized wool is attached by size.

Flog'ging-chis'el. A chipping-chisel of large size, used in chipping off certain portions of a casting.

Flog'ging-ham'mer. A hammer used by machinists, etc., intermediate in size between the sledge and hand hammer.

Flood-fence. 1. One anchored to prevent its heing upset, floated off, or carried away during time of high water : or,
2. One which is laid over hy the force of the current, and is prevented by its moorings from being carried away.
Flood-flank'ing. (Hydraulic Engincering.) A mode of embanking with stiff, moist clay, which is dug in spits, wheeled to the spot, and then each spit, separately being taken on a pitelfork, is tashed into its place so as to unite with the spit last thrown. The crevices whieh appear after the contraction of the clay in drying are filled by sludging.

Flood-gate. J. A tide-gate or sluice.
2. a. A gate or sluice-doer in a water-way, arranged to open when the water attains a hight alove a given level, and so allow it to escape freely, to prevent injury by flood.
b. A gate which lies down when the stream becomes deep and jowerful, so as to avoid being carried off.

Systems of irrigation including flood-gates, wheels, and pumps, were introduced into Spain by the Saracens. The country is gradually drying up. In the time of Pliny it was more populous and prosperons than now. Since the time of Abderrahman it has beconte still more dry and sterile.
Flook'an. (Mining.) The shifting of a vein or loile by a cleft. Flooking.

Floor. 1. (Building.) The surface on which a person walks in a room or honse.
It may be of masonry, bricks, tiles, concrete, earth, boards.
The term usually refers to boards laid tightly together and nailed to timbers which are termed joists. A sinyle-floor (A) is one in which the joists a a

FLOOR.
pass from side to side of the house, resting upon wall-plates and sustaiuing the floor above, and the ceiling of the room below.

A double-floor (B) is one in which the primary timbers are binders b which rest upon the wallplates and support the floor or bridging-joists a a aud the ceiling-joists c c.

A framed floor (C) has an additional member, which assumes the primary position. The girder d rests on the wall-plutes and supports the binding. joists b, whose ends rest thereupon. The bindingjoists support the hridying or floor-joists a and the cciling-joists c, as before described.

Diagonal cross-pieces nailed between the top of one joist and the bottom of the next are called struts, and the floor is said to be strulted (D). The effect is to prevent the lateral deflection or tilting of the joists, and to make them mutually sustaining when an excessive weight is imposed on one or more.

Fire-proof floors (E) are usually constructed with iron girders e a short distance apart, which serve as

abutments for a series of brick arches f, on which either a wooden or plaster floor may he laid.
F is a floor with beams e supported on iron girders g. G is a fire-proof floor of brick and cement, supported on iron framing on iron columns. Over the cement is a wrooden floor for comfort. It is from the Harpers' establishment in Ner York.

See also Stable.floor.
A folding-floor is one in which the heading-joints of a numher are in a straight line.
In a straight-joinl floor, each board breaks the joint of the preceding.
A floor without girders, joists, or pillars ras laid in Amsterdam for a room sixtry feet square. Very strong wall-plates were secured in the walls, and the floor consisted of three thicknesses of one and a half inch boards nailed to the wall-plate. The first two courses were separately laid and nailed diagonally across the space and crossing each other at right angles. The next course was laid in the usual manner,
square with the building. The floor was thus suspended, aud strained from the wall-plates.
Among the modes of constructing fire-proof floors may be cited girders and beams of cast-iron and trusses of wrought-iron. (See Beas.) Spanuing the interrals between the beams, brick arches are placed, and upon these concrete floors, with a siople covering of boards for comfort or appearance.

Fig. 2031 shows a number of modes of construc. tion.
A has a truss of three members resting on I-shaped iron girders a, and supporting similarly shaped joists b, on which a floor is laid.
B has a sprung arch d of concrete or béton resting on a skew-back on the wall and the foot flange of the iron girder. On it rest the joists and flooring e. C has hollow bricks f, which are suspended from

Fig. 2031.

H
J

I

Fire-Proof Floors.
the foot flanges of the angle-iron girders g, and support the ceiling.
1 has blocks i of cement, concrete, or plaster-ofparis cast on temporary molds between the beams h and around cores.
E has arched and hollow tiles l which rest ou the beams k and support the floor j.
F has hollow tiles m which meet above and below the beams. The tiles are in two tiers, and their thrust is sustained by a tensinn-rod.
G has arched tiles, three voussoirs a in a set, and these rest on the beams p.
H has five voussoirs q forming a flat arch resting on the beams r.
I has ceiling tıles s suspended from cleats on the ribs t.
J has I-shaped girders w supporting tiles whose soffits have coffers and moldings.
K is a roof in which the concrete surface x is held by corrugated plates y tied to the rafters z by anglepieces.
L is a similar arrangement for ceilings; a the joists, c the suspension bolt, b d d the sheet-iron, e the plaster.
$1: 2$ Fig. 2032, A, the joists have iron lath, and strips of metal are spiked to the joists to support arehes of concrete beneath the flooring. The studding has also metallic lath.
E has girlers of iron, with metallic plates for bolding the ceiling laths, which are completely covered by the plaster. The Hoor rests upon con-

Fig. 2032.

crete bellded upon corrumated plates, and these rest upon transverse cross-plates which tie the girders together.
2. The bottom part of the hold on each sile of the kerlson. The flat portion of a vessel's hold.
3. The inner picce of the two which together form the bucket of an overshot water-wheel. See Bucket.

Floor-cloth. 1. A heavy painted fabric for covering lloors.
The canvas or backing of floor-cloth is a strong textile fabric of hemp or Hax, known as burlups. it is woven of a width of from four to eight yards. The pieces of convenient size are stretched in a vertical frame, and size is applied by workmen who stand on ranges of scaffolding in front of the canvas.

It is punice-stoned to remove asperities. The color for the back is a thick paint laid on with a peculiar trowel. The front is then sizen, pmomicel, and receives several coats of paint. The pattern was at first stenciled, but since 1780 has been put on with blocks about 18 inches square, one for cach color, and the blocks register with each other as in ealico-printing or paper-staining. The canvas is spreal upon a large table. Each block in turn is dipped face downward upon a cushion wetted with paint of the particular color for that block. A layer of paint is thus taken up and transferved to the canvas, as in printing. The colors are applied one by one, occupying their proper places in the pattom, which is male of little square types answering to the pattern and the color.

The printing-tablc is 30 feet long and 4 wide; the roll of painted cloth is noderneath it, and is gradu-
ally unwound, passing over the surface of the table where the printing-blocks are applied. As it is printed, the cloth slips over the talle and hangs down through a slit in the Hoor, so that it may remain vertical while the paint is drying.

A United States patent has been granted for a printing-block in which each square is represented by a square prism in a chase of the requisite size, say 18×18 inches. Each prism is sequrately novable and may be set out to the plane of the face. Any set of the prisms may be furwarded according to the pattern required.

The art uriginated with Nathan Taylor, in Englaul, in 1754, at Knightsbridge, near London.

The canvas for the purpose was originally made of orlinary width and the strips sewed together. It was afterwards woven four yards, then seven yards, and eventually nine yards wide.

At the original Knightsbridge factory it is now made in pieces 8×20 yards and 7×30 yards.
2. An artificial fabric painted, varnished, or saturated with a water-proof material. The kinds are numerons; e. g. :-

Whiting and ocher, mixed with glue dissolved in milk.

Leather scraps treated with alkali, ground, mixed with flax or hemp fiber, and rolled into sheets.

Cotton batting treated with a cement of heeswax, glue, venice turpentine, and boiled linseed oil; covered with a pigment of burgundy pitch, litharge, and boiled linseed oil, colored to snit.

Wall-paper vamished.
Wall-paper on canvas, sized and varnished.
Painted cloth.
Sheets of rubber and cork dust, softencd with benzole rolled hetween two fabrics, a coarse and a fine; the latter is stripped off, leaving the composition attached to the other.

Painted paper.
Duck treated with hoiled oil, resin, and cork dust, or saw-dust. Varnished.

Paper printed in oil and rarnished with solution of caoutchouc.

Cloth rarnished.
Manila paper on both sides of burlaps.
Fabric coated with paper-pulp in the machine.
Roofing-paper treated with warm linseed oil and naphtha, to which is pasted a sheet of wall-paper, varnished.

Burlaps, sheared, damped, ealendered, printed.
Paper Hoor-cloth treated with varnish, having in it powdered felspar or glass.

Fabric covered with paper, treated with oil, resin, and japan varnish. Omaments of water-color placed thereon and fixed with white glne.

Jute and manila grass combined and colored in stripes.
Fabric coated with ground slate or clay; with linspel oil, japan varnish, and paints.

Ground leather, vegetahle fiber, and bullock's blood or fibrine,]ainted, stained, or printed.
Jute fiber printed with aniline.
Canvas sized with glue and painted.

Lamina of wood backer by fabric or paper.
Paper cemented on cloth, printed or grained, and varnished.
See also Lfather, Artificiais
Floor-cloth Knife. A pmsling knife for slitting floor-cloth. The caster keeps it a bove the floor.
Floor-head. (Shipbuilding.) The puper extremity of a floor-timber.
Floor'ing-clamp. An implement for closing up the joints of flooring-hoards. In the example, the clamp straddles the joist; is retained by the serrated

Flooring-Clamp.
cams, and the forward thrust of the lever is maintained by a piroted brace, which engages the joist behind it.

Floor-plan. 1. (Shipbuitding.) A Iongitudinal section, showing the ship as dividerl at a water or rib-band line.
2. (Architecture.) A horizontal section, showing the thickuess of the walls and partitions, the arrangement of the passages, ajartments, and openings at the level of the primeinal or receiving floor of the honse.
Floor-tim'ber. (Shipbuilding.) The lower section of a rib secured between the keel and kicelson, the flat timbers crossing the keel forming the floor of the hold. The timbers in continuation of the rib are called first, second, third, ete., futtocks.
Flop-damp'er. A stove or furnace damper which rests by its weight in open or shut position.
Flo'ran. Fine-grained tin ; either scarcely perceptible in the stone or stamped very small.
Flo'ra-scope. A microscope contrived for examining flowers.

Flor'ence-leaf. Fine leaf yellow alloy. See Benize-puwner.

Flor'en-tine. (Ficbric.) A kind of silk.
Flor'en-tine-re-ceiv'er. A form of receiver (n) for the results of the distilla-
Fig 2035.
 tion of essential oils. It is conical in form, and has a side spout at which accumnlated water discharges as it rises to the level of the bend of the spout, while the oil, which is lighter that water, collects at the top, and may be decanted off.

Oils heavier than water are collected in the separator b and drawn off at bottom.
Flor'et-silk. Floss-silk (which see).

Flosh. (Metallurgy.) A hopper-shaped box in which ore is placed for the action of the stamps. The side of the box has a shutter which is raised or lowered to allow the ore to escape when it has acquired the desired lineness.

Floss. Fluid glass floating in a puddling-furnace.

Floss-hole. (Metallurgy.) a. A hole at the back of a puilding-furnace, beneath the chimney, at which the slags of the iron pass out of the furnace.
b. The tap-hole of a melting furnace.
Floss-silk. The exterior soft envelope of a silkworm's cocoon ; the raveled downy silk broken off in the filature. It is carded and spun for various

purposes.

Floun'der. A slicking-tool whose edge is used to stretch leather for a boot front in a blocking or crimping buarci.

Flour-bolt. (Milling.) A gauze-covered revolving, cylindrical frame or reel, into which meal or chop from the stones is fed, in order to have the flour sifted throngh and separated from the othal. The cylinder is large and long, and its axis is usually inclined; the bolting-cloth with which it is covered is of different grades of fineness, the meshes at the reception end being closer than towards the discharge. The matters passing through at the different portions of the length are of different grades, and are hept separate.
The "fine-flomr" of Scripture was doubtless bolted flour, in contradistinction to unbolted flour or brown meal.

Pliny spreaks of sieves of horsehair as first made by the Gauls, and those of linen by the Spaniards. The method of applying "a sieve in the form of an extended bag to the works of a mill, that the meal might fall into it as it came from the stones, and of causing it to be turned and shaken by the machinery, was first made known in the beginning of the sixteenth century" (Beckanin). The best bolting. clothe used in Germany, when Beckmann wrote, came from Encland, and were made of wool.

Flour-cool'er. (Milling.) A chamber, trunk, or machine in which meal from the stones is placed to cool, or is stirred by a blast before arriving at the bolt.

Flour-dress'ing Ma-chine'. The flour-dressing machine is a hollow, stationary, inclinel cylinder or frame covered with wire cloth of different degrees of fineness, $64,60,38$, and 16 meshes to the inch, the finest being at the upper end. Within the cylinder is a reel whose mils are covered with brushes, which, in their revolntion, act against the interior wire surface of the cylinder. The meal is conducted within the cylinder by a spont or hopper, and is thus rubbed through the wire meshes, the finest at the top, the next at the succeeding grade, and so on. The varions qualities are collected in the separate partitions of the box.

The machine is described in the patent of John Milne, 165^{5}.

Flour-mill. Sue Grinding-mill.
Flour-pacis'er. A machine for compactly filling harrels or bags with flour. It is usually a follower or piston which presses upon the flour, but in some cases the flour as it falls into the barrel is continuously packed by a spiral, as in the example.

The barrel is placed on a platform suspended by a steelyard and by a weighted cord passing over a pulley. The steelyard takes under and clamps another pulley attached to the former one, driving it against a block above. On sutficient deposit of flour the steelyard is depressed, the roller freed

brate over the meshes of the sieve and expel the Hour.

from the uper brake, and the berrel of flowr descends.

Flour-sift'er. A domestic sieve for separating lumps or accidental trasli, such as iusucts, from the flour of the bin or barrel. As a substitute for the hands, a tlat coil of silvered wite is adapted to vi-

Flour-Sifter. a stem.

Flow'ers, Ar'ti-fi'cial. Ornaments simulating the natural moducts of the garden ; made from wire, ganze, cloth, pajer, shavings, wax, shell, feathers, etc. Cutting-punches and scissors are used for slaping; gautfering-presses for stamping into the various graceful shapes and puekers.

The feather-flower makers of Sonth America and Mexico had attained great skill in the time of Cortes. Italy led the way in Europe; France followed, and now leads.

Fig. 2038 shows a French machine for branching artiticial flowers, that is, braiding them or leaves to

The basis of the stems is wire, and two threarls of suitable material are laid along this wire to prevent subsequent slipping of the colored thread, which forms the onter covering of the stems. The ends of the short stems of leaves, flowers, buds, and fruits being laid against the wire are wound under the outer covering, and are thus fastened to it.

The wire is fed from a spool a, passes throngh a hollow spindle b, and lies upon an endless feedbelt c, to which it is clamped by small pinchers.

The belt is driven by gearing underneath, and carries with it the wire sten, which is slowly unwound from the spool α. Two threads, lassing through an eje c, are also drawn throngh the hollow spindle b, in conjunction with the wire, by the motion of the endless belt. These threads are unwound from the slools f. At the same time a rapid rotary motion is given to the hollow spindle by a suall belt from the driving pulley y.

On the revolving hollow spindle b is fixed a spool-frame h, which carries two spools. The covering threads are led from these spools through the loop of a small flyer on the end of the hollow spinille b, and being held in contact with the wire as the latter is slowly fed through the spindle, are wound uniformly over its surface, the spool-frames revolving with the spindles.

The ends of the stems of leaves, fruits, or flowers being thrust into the ends of the hollow spindle are at once caught, and firmly wound under in a rapid manner.

The upper figure is a general view, and the lower an enlarged view of the principal working parts.
Flow'er-pot. A flaring earthenware vessel to hold a plant with a sufficient quantity of soil for its growth.

Flow'ing-fur'nace. (Fornding.) Another nante for the eupola for melting iron in foundries.
Fluc'can. (Mining.) A soft, clayey substance, generally accompanying the cross-courses and slides. Flookun.

Flue. 1. A passage for the conveyance of the volatile results of combustion. A sinoke-duct or chimncy. Sce Fireplace; Chimney.

One of a cluster of smoke-dncts in a stack of chimneys.

The longest flue with which we are acquainted is that of the lead-furnaces, Allen Mill, Northmmberland, England. It is used for cooling the volatile products of combustion, and condensing the escaping lead fumes. It is 8,789 yards in length (nearly five miles), is 8 feet high, 6 wide. It may be called a condenser, so far as the fume is concorned.
2. A pipe for the conveyance of the caloric current through a boiler, to heat the surrounding water. It is usually secured in the sheets of the fire-box and smoke-box respectively, as in the loco-mative-hoiler. Perbaps invented by Smeaton.
3. The technical abbreviation of fute; used by
organ-builders to signify a flute-pipe, in contradistinction to a mouth-pipe or rect-pipe.

Flue-boil'er. A steam-boiler whose water space is traversed by flues; that is, a tube in which the heated gases are conveyed. There are several varieties, as, drop-flue; multiple-flue; return-flue, etc.

Sneaton is credited with the invention. It is now the usual form on our Western rivers ; the cylindrical boilers bave usually two flues. The fire heat first passes beneath the boiler, and theu returns through the flues.

The term fuc, properly used, distinguishes the builer from those which have tubes, which are full of water, and the heat surrounds them, but does not fill them.

In the boiler represented, the fire is built in the flues, and the caloric current returns beneath the boiler.

Fig. 2039.

Fairbairn's Flue-Boiler.
Flue-brush. A cylindrical brush of wire or steel strips used to clean the scale anil soot from the interior of a flue, to lay bare the metallic surface.
Flue-clean'er. A brush of wire or steel slips, or a scraper to clean flue surfaces of stean-boilers.
A device by which a jet of steam may occasionally be projected along a boiler flue to blow out the scale of soot.
Flue-ham'mer. (Coopering.) One whose peen has a working edge, the length of which is in the plane of the sweep of the hammer. It is used in llaring one edge of each iron hoop to enable it to fit the bulge of the cask. See Peer.
Flue-plate. A plate into which the ends of the flues are set.
Flue-scrap'er. An implement having circular or spiral blades to scrape the scale from the fire-surface of thues of steam-boilers.

Flue-sur'face. (Steam-engine.) The area of surlace of the boiler which is exposed to the action of the flame and heated gases after they have left the fire-chamber or furnace.

The heating surface of a boiler is made up of the firc-surface and fluc-surface.
Fluid-com'pass. (Nautieal.) That in which the card revolves in its bowl floated in alcohol.

Fluid-lens. One in which a liquid is imprisoned between circular glass disks of the required curvatures.
Attempts to obtain achromatism have been made by using metallic solutions and other liquids having a higher dispersive power than flint glass. Though several of these liquids appear to have given excellent results experimentally, they have never been brought into general use.

Fluid-me'ter. A device to ascertain the quantity of fluid passing a selected point.

Some of these are driven by clock-work or other motor, others by the pressure of the fluid. When this is an elastic body, as air or gas, the question is complicated by the compressibility; when the fluid
is such as water, alcohol, or oil, the probleno is more simple. See Liquid-meter.

Among fluid-meters proper may be cited Gasmeters (which see). As to mechanical construction, they may be described as fans rotating spiral vanes, expanding bags, cylinder and piston, revolving partially submerged meter-wheels, inverted cylinders. See Air-holder, etc.

Fluke. 1. (Nautical.) The palm of an anchor. The broad, holding portion which penetrates the ground. See Axchor.
2. (Mining.) The head of a charger : an instrument used for cleansing the hole previous to blasting.

Flume. A chute or penstock, open or covered, for the passage of water to a wheel or washer. Used with water-wheels and gold-washers of rarious kinds. A penstock.
The illustration shows a flume crossing a valley

Flume near Smartsille, Fiba County, California.
in California, uniting the feeder canal on one ridge with the distributing canal of another ridge.

Flu'or-o-type. (Photograph.) A process into which fluoric acid enters in the shape of fluorate of soda.
Flush. 1. A term signifying an unbroken or even surface, or applied to surfaces on the same plane.
2. To turn on a sudden dash of water. See Flushivg.
Flush-bolt. a. A screw bolt whose head is countersunk so that it shall not protrude from the surface of the object.
b. A sliding bolt let into the face or edge of a door so as to make an even surface therewith.
Flush-deck. (Nautical.) One running the whole length of the ressel, from stem to stern, without forecastle or poop, as in a frigate. The "Great

Eastern" has a flush-deck 692 feet long and 83 feet wide.

Flush'ing. 1. (Ifydraulic Enginecring.) To turn on a sudden and copious dash of water as in Alushing a sewer to cleanse it of silt. When a collected body of water is turned into the chanmel of a harbor to deepen it and keep it navigable, it is termed sluicing; the sluice being oprened to let the water out of the reservoir. Where the water of a river is dammed to obtain a fall, and the head of water is turned through a sluice-way to increase the depth of water at that point to float a boat on to another level, it is termed flushing.

When the water from a dam is suddenly turned by a shince-way down a ravine, to turn up the earth and stones and expose ore, it is called hushing.
2. (Weaving.) A term applied to a thread which spans a number of other threads without intersection. (See Twill.) Usually called Floating (which see).
Flush-joint. One in which the abutting parts make no prujection beyond the general face of the olje et.
Flush-pan'el. (Joinery.) One whose surface comes out even with the face of the stile.
Flush-wheel. A wheel used in raising water for draining ; it is shaped like a breast-wheel, but is drivin by power to raise water. See scoop-ivheel.

Flute. 1. (Music.) An ancient wind instrument which had several furms in ancient times, which it still maintains anong sivage nations. The New.

Fiutes of ancient Esypt and of Brazil.
Zealanders play it with a blast through the nose. In some barbarous countries it has two barrels. The mouth-piece is generally at the end, like our clarinet. Captain Speke found one of the native kings of Equatorial Africa proficient after his style.

The instrument called a flute in the translation of the Book of Daniel may have been the prandean pipes, which are very ancient, or it may have been the Hute as used in Egypt.

The flute is very common in the paintings of the Egyptian tombs. The accompanying cut is from a painting in a tomb near the Pyramids. The action indicates the side position of the month-pieces and holes. Of the chromatic seale we may learn more from what l'ythagoras has written, for no donbt he lerivel his information from the Egyptian priests, who were scientific musicians.
The flutes of ancient Egypt were single and double; the latter are shown on the paintings of Eléythya. In one case the thute is apparently blown through the nostril, like the New Zealand tlute.
Ilerodotus ($450 \mathrm{~B} . \mathrm{c}$.) mentions the marching of the troops of Alyattes the Lydian "to the sound of pipes and harps, and flutes masculine and feminine." This has been understood to refer to the sexes of the players, but more probably indieates lower and higher musical pitch.

Flutes among the classic Greeks were made of asses' bones, which are said to be remarkably solid. The euphony of the sonnd may be presmmed to be in the inverse ratio of the natural tone of the original proprietor.

The same much-belied animal contributes his hide to the making of drum-heads, which have a fullness of tone highly suggestive of the inflated style of the creature
"Out of whose mouth there issues a blast."
See Drum. The ossea tibia was made of the leg-bone of a crane.

Aleides loquitur:-
"The Alexandrians are especially skillful with the flute; and not only in those kinds called girl's flutes aud boy's flutes, but alsn in men's thutes, which are also called perfect and snjer-perfect; and also in those which are called hatp-thutes, and tingerflutes. For the flutes called clymi, which Sophocles mentions in his 'Niobe,' and in his 'Drmmers,' we do not understand to be anything lut the common Phrygian flute. And these, too, the Alexandrians are rery skillful in. They are also ac.quainted with the flute with two holes, and also with the intermediate flutes, and with those called hypotreti, or bored underneath.
"We know of some that are called half-bored, which Anacreon mentions:-

'What lust has now seized thas upon your mind, To wish to dunce to tender half-bored Hutes?'

And these flutes are smaller than the perfect flutes. I am acquainted, too, with other kinds of thates, the tragic Ilute and lysiodic flute [used by the actor personating a female] and the harp-like flute; all which are mentioned by Ephorus in lis 'luventions,' and by Euphranor the Pythagorean in his 'Treatise on Flutes,' and also by Alexon, who wrote another treatise on 'Flutes.' But the flute called titurinus among the Dorians in Italy, and the flute magrdis [a lydian instrument], sends forth a sharp and a ileej note at the same time, as Anaxandrides says in his 'Armed Fighter': -

' I will speak like a magadis, both loudly and gently.'

And the flutes called lotus-futes are the same which are ealled photinges by the Alexandriuns; and they are made of woorl growing in Libya. But Juba says that the flute which is made out of the leg-bones of the kid is an invention of the Thebans; and Tryphon says that those flutes which are called elcphan-
tine [ivory] were first hored among the Phœenicians." - Deipnosophists, by AThEN.EIS, A. D. 220.
"'The Plirygian deep-toned fute had a bell mouth, like a trumpet." - Lbid.

So they had no lack of flutes and writers on the same 2,000 years ago.
Flutes are extensively made and used by the Brazilian natires. The hones of which they are made are yellow, jagged, and far from inviting to delicate lips. Their tones, however, are singularly soft and nellow. The largest has two bones, each 12 inches long and $\frac{3}{8}$ inch bore. They are united by twine neatly wound and worked. On the back of the lower part are finger-holes, shown in Fig. 2042. The whistle part is constructed by a cone of resinous cement beneath the mouth-orifice, the ridge of cement rising to the center of the tube. The instrument is played by blowing tbrough the upper end, as in a clarinet. A smaller flute is made to play by blowing in at either end. Another has a swelled, wooden mouthpiece, and no side opening. Dual bone-flutes with finger-holes are yet used in the northern provinces of Brazil; besides bamboo flutes and instruments, with which the voices of wild beasts are imitated with singular accuracy.
The Peruvians, among a multitude of musical instruments, had Hutes of varions sizes, the tambourine, and the tinga, a kind of guitar with five or six strings. They had also a syrine, or pan's reed, with eight pipes, - one more than the classical and the molern.
The flute, as we now know it, was long known as the German flute, having one end closed by a plug, the mouth-orifice being on the side. The common varieties of this flute have six open holes and a seventh closed by a key, as in oboes, bassoons, etc.

Fig. 2043.

Flutes are now made with from seven to ten keys, by which the fingering of many musical passages is much facilitated.
Flutes are made of hard wood, ivory, glass, metal, or vulcanized rubber.
In the Smithsonian Institute, Washington, is a Guiana native flute made of the thigh-bone of a tiger.
Vaucanson's automaton flute-player was a lifesized figure dressed in the habit of the period (1730), and standing on a pedestal. The figure and the stand were filled with the machinery. The figure was wound up with a key, and played'music on a real flute. Air was emitted at the mouth of the figure and projected into the mouth-hole of the flute. The force of the blast was proportioned to the londness or softness required, and we presume the size and perhaps shape of the embonchure formed by the lips whs variet according to the pitch and perhaps the timbre. Thr details of the invention in this respect have not come down to us. The fingers were made of some elastic material, and were made to stop the holes in the order required. The compass of the machine is not stated, nor the number of tunes within its repertoire.

In a flageolet-plaver subsequently made by the same artist, the mumber of holes was but three, and the variation of the pressure on the bellows was from one n'mee for the lowest to fifty-six pounds for the highest.
About 1820 two automaton flute-players were exhibited in London. They played eighteen duets.
2. (Architecture.) a. A long vertical groove in the shaft of a column.
It is nsually circular in section, but, when angular, the shaft is called a canted column.

The Doric column has twenty flutes.
The Corinthian, Ionic, and composite have each twenty-four fintes.
The Tuscan none.
b. A hollow, concave chamfer, gutter, groove, or channel ; the receding member of a compound molding.
3. A species of ruffle.
4. A stop in an organ.

Flute-bit. A wood-horing tool adapted to be used in a brace, and used in boring elony, rosewood, and other hard woods. See Bir ; Boring.

Flute-or'gan. (Music.) An organ in which the sound is produced by the action of wind on a cutting edge, in contradistinction to the recd-organ, in which the sound is produced by a vibrating tongue of metal. See Refdorgan.

The futc-pipe has a hollow foot to conduct the wind to the body, which is fastened thercto. Between the foot and the body is a diaphragm with an aperture through which the wind escales, coming in contact with the upper lip of the mouth and being set in vibration, thereby causing the sound. As in the flute, the quality of the sound is governed by the proportions of the pipes.

The pipes are made of metal or wood, are generally cylindrical and open at the end.

The wooden pipes are square in section, their ends being stopped with tompions, whose distance from the lip modulates the tone, as in the flute.
The longer the pipe the graver the sound, - like the finte again, as may be observed ly blowing it after stopping all the side holes in the Hute with the fingers, and again after raising the fingers.
The flute-organ is also called the mouth. organ, and the mouth or flutc pipes are technically known as flues; a contraction of futes.
Flute-pipe. (Music.) An organ-pipe having a sharp lip or wind-cutter which imparts vibrations to the column of air in the pipe, producing a musical note. See Mouth-pipe.

Flute-stop. (Music.) A stop of an organ in unison with principal, and tuned one octave above open-diapason. See Stor.

Flu-ti'na. A kind of accordeon resembling the concertina.

A form of melodeon. An instrument worked by a bellows and keys in bank, and having one set of reeds.

Flut'ing. 1. A species of ruffle.
2. One of the longitudinal grooves in a screw-tap, giving cutting-edges to the thread. See Flute.

Flut'ing-cyl'in-der. One having longitudinal grooves to corrugate, crimp, or flute thin sleeet-metal plates or fabrics.

Flut'ing-i'ron. A species of laundry-iron which flutes the clothes. In the example, the iron has a segmental corrugated face, and works upon a flat corrugated bed.
An Italian-iron; a gunffering-iron.

Fig. 2044.

Flut'ing-lathe. One
which cuts flutes or scrolls upon columns or halusters. The flute proper is the vertical groove in a
column or pillar, but the flute of the lathe is a spiral. Several forms of machines are adapted to this purpose. One is allied in its principle to the rifling-machine, as in Jamuary's patent, 1829. The balnster is fed endways against a lateral tool, being rotated on its axis at such a rate as shall impart the number of turns or part of a turn to the foot in length. Of this kind is lig. $2045(\mathrm{~A})$, in which the piece a

Fig. 2045.

to be cut is moved longitudinally through the holder b, and at the same time is rotated so that the tool c in its revalutions may cut the spiral groove shown at a^{\prime}.
B is a fluting-lathe in which a pair of cutters revolves in a plane oblique with the line of motion of the baluster. The latter is moved longitudinally by the rack and pinion eg, and rotated by the wheel and pinion $h i$; the cutters $m m$ rotating in parallel planes cut two groves at once.
Flut'ing-ma-chine'. One having a pair of rollers, each one having projections which enter the interdental spaces of the other. By turning the operating screw, the bent bar, and with it the upper

Fiuting-Machine.
roller, can be adjusted up or down at will to regulate the distance between the two rollers.

Flut'ing-plane. (Joinery.) A plave adapted to cut grooves.

Flut'ter-wheel. A water-wheel of moderate diameter placed at the bottom of a chute so as to receive the impact of the Fig 2547. head of water in the chute and penstock. lts nane is derived from its rapid motion.
Flux. A salt added to assist the fusion of a mineral.

Limestone is used with iron ore.
Crude flux is a mixture of niter and tartar added to a metal in the crucible.

White flux is oltained by projecting, in small portions at a time, equal parts of niter and tartar
 into a red-hot crucible.

Black flux has double the proportions of tartar, and the resulting product is dark colored.

Nowean's flux consists of pulverized glass, 16 parts; calcined borax, 2 parts; charcoal, 1 purt.

Lime acts as a flux, when in excess, in brickmaking.

Lime, soda, potash, lead, borax, are used, as fluxes in glass-making

Fluor-spar is used in certain metallurgic operations.

The fluxes used by solderers are, -

Borax.
Sal-ammoniac.
Chloride of zinc.
Resin.
Flux-spoon. (Metallurgy.) A small Jadle for dipping out a sample of molten metal to be tested.

Fly. 1. (Horology.) A regulating device (n) used formerly in clocks, and litterly in nusial hoxes, to control the rate of specd.

The vanes impinge um the air and meet with a resistance depending upau their area, radial wilth, angle, number, and speed. By changing these conditions, or any of them, the rate of going of the machine may be regulated; the resistance of the air increasing in a rery rapid ratio.
The device is still used in the striking parts of clocks and watches.

Fig. 2048.

Fiy.

In musical boxes the position of the wings is adjustable, so as to vary their angle of impact upon the air, thus increasing or diminishing the resistance of a given surface of wing and modifying the speed.

This regulator was probably the first device attached to the going works of a clock, many centuries before the oscillating arm or the pendulum were adapted to the purpose. See Pendulus.

Among the clocks thus regulated may be cited that of Richard of Wallingford, abbot of St. Albans, A. D. 1380. It is likely that the clock ereeted in the Old Palace-Yard, London, in 1288, and that of Canterbury Cathedral, A. D. 1292, were similarly constructed. To go a step farther back, we may suppose that the clocks presented by Pope Paul 1. to Pepin of France, A. D. 760 , and to Chartemagne by the Caliph Haroun Al Rasehid, A. D. 810 , were of similar construction ; or perhaps were clepsydras.
2. (Printing.) A vibrating frame b with fingers, taking a printed sheet from the tapes and delivering it on to the heap.
3. (Knitting-machine.) Anuther name for the Latce (which see).
4. (Spinning.) The arms which revolve around the bobbin in a spinning-frame, to twist the roving or yarn which is wound on the hobbiu. See Flyel.
5. (Machinery.) A Fly-wheel (which see).
6. (Weaving.) A shuttle driven through the shed by a blow or jerk.
7. a. The length of a flag from the staff to the outer edge. The perpendicular hight is the hoist.
b. The part of a flag beyond the jack, which occupies the upper left-hand corner. See Flag.
8. (Nautical.) A compass-card having marked upon it the points or rhumbs, thirty-two in number. The card is moved by a magnetic-neerlle heneath. The angle of the ship's course with the magnetic meridian is shown on the marginal plate by a line called the lubber's line. See Mariner's Compass.
9. A kind of carriage ; usually a closed vehicle plying for hire and drawn by one horse.
10. A certain part of theatrical stage scenery.
11. The swinging weighted arm of some kinds of presses. See Fly-press.
12. A factitious insect as a bait for fish in angling. A hackile.
Fly-block (Nauticnl.) A large flat block, doable or single. The double block sometimes has two sheaves at one part and one sheave in the other portion. Used in the hoisting-taekle of yarls.

Fly-board. (Printing.) The board upon which the printed sheets are laid by the $f l y$.
Fly-boat 1. A tapid passenger-boat on canals.
2. A large, flat-bottomed Dutch coasting-vessel. An ironical term.
Fly-drill. One haring a reciprocating fly-wheel which gives it a steady momenturn. The driving pow consists of a cord winding in reverse direetions upoa the spindle as it rotates first in one di-

Fig. 2049.

F:'y-Drill. rection and then in the other.
Pressure on the end of the spindle keeps the drill to its work. The fly-wheel pulsates like the balance-wheel of a watch, and as it reaches each end of its stroke the cord has hecome wound on the spindle, so as to be ready to communicate the impulse in the other direction, by a pressure on the bar which unrrinds the cord by rotating the spindle. A relaxa-
tion of pressure on the bar allows the spindle to pass beyond the point of unwinding, and the cord winds upun it in a reversed spiral.
This drill may be run by a bow.
Fly'er. 1. A contrivance with arms which revolves around the bobbin in the bobbin and fly frame, or the throstle. frame, which suachines draw aud twist the sliver into a roving, or the latter into yarn.
The flyer fits on to the top of the spindle, and one arm (in the bobbin and $f y$ frame) is made hollow to form a passage for the yarn, which enters at the cup above the top of the spindle, and after a turn or two round the end of the arm is distributed on the bobbin. In the throstle-frame the roving entering above is wound round the arm of the flyer, instead of passing through a tubular arm. See Throstle.

The flyer rotates with the spindle, and their rotation gives the trist to the yarn. The bobbin is independent of the spindle motion, but in roving-machines has a surface motion equal to the rate of de-

Fig. 2050.

Fiyer. livery of the yarn from the draw-ing-rollers. See Roving. The same also occurs in the Bobbin and Fly Frame (which see).

In the throstle, the winding occurs by the detention of the bobbin, which rests on the copping-ruil, the bobbin being dragged around by the yarn proceeding from the end of the flyer, the resistance to revolution on the part of the boblin etfecting the winding. See Throstle; Equatohial Box.
2. The fan-wheel on the vane of a windmill cap which rotates the latter as the wind veers. See Cap.
3. A step in stairs that ascend in one inclined plane, without winding.

A straight reach of stairs. A fight.
4. (Printing.) A vibratory rod with fingers which take the sheet of paper from the tapes and carry it to the delivery-table, the sheet resting flatly against the flyer-fingers by the resistance of the air. See Fey.

Fly'er-lathe. (Wearing.) A lay, lath, or batten for beating up the weft into the shed, compacting it. Specifically, it nay mean a suspended lathe, as distinguished from the batten in a frame journaled below.

Fly-gov'ern-or. One which regulates speed hy the impact of vanes upon the air. A $f y$.

Fly'ing-ar-til'ler-y. Fiell artillery when the gunners are all mounted; either on horses, or on the limbers.
Fly'ing-bridge. A temporars bridge, suspended or Hloating. A military, ponton, or boat bridge. See Bridge for varieties.
Fly'ing-but'tress. A structure spanning the roof of an aisle between an nuter louttress and the wall of the nave. It assists in resisting the thrust of the roof.
Fly'ing-jib. (Nratical.) A sail extended by the flying jibhoom berond the standing jib.

Fly'ing Jib-boom. (Vautieal.) An extension of the jib-boom. It is sometimes in one piece with the latter, and sometimes connected therewith by means of a boom-iron, in a manner analogous to that of the iib-boom on the bowsprit.
Fly'ing-ma-chine'. To Drdalus, who is said to have flourished about 1300 B. c., is ascribed the invention of the first flying-machine. Being de-
sirous of eseaping from the wrath of Minos, king of Crete, and no method of sea converance presenting itself, he resolved to attempt Hight through the air, and made accordingly wings of feathers united by wax for himself and his sun Icarus. They ascended into the air, and Dedalus arrived safely in Sicily, but lcarns rose too high, and approaching too near the sinn, the wax of his wings was meltel, and, the uncemented fabric falling asunder, the rash youth fell into the sea and was drowned. Notwithstanding the multiplicity of attempts which have been made to accomplish the feat of rising above the earth by means of wings, l carus remains a solitary warning of the danger of approaching too near to the sun.
Roger Bacon asserted in his time that there existed a flying-machine; he had never seen it himself, nor did he know any one who had seen it, but he knew the name of the inventor.
In 1709, Gusuian, a Portuguese monk, constructed a machine in the form of a bird. He was pen-ioned for this, and was thus perhaps enabled to rise in the world, which his machine signally failed to do. Not discouraged, however, in 1736 he constructed a wicker basket covered with paper, which rose to the hight of 200 feet in the air, by which he gained at least fame, if not money, for he was afterwards reputed a sorcerer.

It was in 1783 that the Montrolfiers discoveret that the lesser specitic gravity of heated air created an ascensive force by which heavy oljeets might be raised through the atmosphere; and in less than a month afterwards hydrogen gas, which had then been known for about seventeen years, was successfully employed in a balloon for the same porpose.
This seemed to render the idea of aërial navigation more feasible, and accordingly Blanchard, one of the earliest aëronants, on his first ascent from Paris in March, 1784 , proviled his balloon with wings and a rudder, but found them useless. After this we hear little of attempts to guide or propel balloons through the air until abont 1843, when Mr. Monck Mason proposed the Archimedean screw as a motor, and constructed an egg-shaped balloon, which was placed on a woolen frame in the form of a canne, with an Archimedenn screw at one end and an ovalshaped rudler at the other. A morlel of this machine, set in motion by a screw maved by clockwork, was propelled around a room by this means ; but the larger machine appears to have met the fate of all its kindred contrivances.
About the same time, a Mr. Heuson, in England, patented a machine consisting of a car attached to a huge, rectangular, wing-like frame, covered with oiled silk or canvas, and to be propelled by a steanengine in the car working two vertical fan-wheels with oblifue vanes; while a frame like the tail of a bird was to act as a rudler, and make the apparatus ascemd or descend at pleasure. It did not ascenl.

In 1850, a Mr. Bell ascended from Kennington, Fugland, in an "aërial machine" in the form of a prolate spheroid, which, it is said, he propelled by a screw, and steered lyy means of an apparatus for that purpose, luring a flight of nearly thirty miles. If this be so, it must have been probably owing to the serenity of the atmosphere.

During the same year, 11 . Julien at Paris made a model balloon, shaped like a fish, which was made to move in the air loy clock-work nperating a pair of wings. The model was fnur yarls long, formed of gold-beater's skin, and filled with gas.

A similar machine on a large scale hal been tried in England some twenty years before, and failed, though a ruodel of it had been to a certain degree successful.

Mr. Petin, a countryman of Julien's, projested at the same tinue (1850) a "system of aerial navigation." Certainly a high-sounding name; but then the machine itself was to be on a large scale. It was to consist of an immense framework 480 feet long, supported by four balloons, each 90 feet in diameter, was to have four parachutes, and a platform for passengers. Two horizoutal serews were provided for its propulsion. See Balloon.

Fly'ing-pin'ion. (Horolugy.) 'the tly of a clock.
Fly-net. 1. (Mcnage.) A net of meshes, or a fringe of leather strips, to protect a horse from Ilies.
2. A net in an open window to prevent entrance of llies and other insects.

Fly-nut. A nut with wings, to be twisted by the hand; as the screw-nut of a hand-vise.

Fly-press. A screw-press in which the powes is derived from a weighted arm, swinging in a horizontal plane, as in embossing and die presses. l'resses of this kind are used in making buttons, washers, flat links for chains, cutting and gunming saw-teeth, making percussion-caps, steel-pens, etc.

Fly-punch/ing Press. A press for cutting teeth on saws and for
other purposes.
The $f l y$ is the wrighted lever, which acquires an impetus in its descent.

Fly-rail. A hinged cleat or lyracket attached to the trame of a talle, and turned ont to support the leaf.

Fly-shut'tle. A shuttle driveu by a picker, in contradistinction to one thrown by hand. The picker was invented by Kay, abrut 1750 .
Fly-trap. A device for catching dhes. There are several forms. In Fig. 2052,

Fig 2051.
 the faces of the hait-pans are brought together by spiral springs on the removal

Fig 2052.

of the detent-pin. On separating the pans for resetting, the flies drop into the receiver beneath.
Another form is that in which the flies unconscions. ly walk into a cul-de-siuc, whence they fail to find a way of retreat.
Other forms have rollers baited and tumed by clockwork so as to gradually carry the t'ies aromul into the gauze trap or to a position from whence they drop into the drowning-tray.
Fly-wheel. A heavy wheel attached to machin-
 ery to erfualize the morement. Ry its inertia it oppo.es any sudden accelera-
tion of speed, and by its momentum it prevents sudden diminution of speed; in the latter case it acts as a store of power to continue the movement when the motor temporarily flags, or in passing dead centers when the motor is inoperative.
Fly-wheels were first mounted with teeth on their peripheries, to act as first motions, by Fairhairn of Manchester, England.
The fly-wheel attached to the engine set up at Millwall by Boulton and Watt, for rolling arnorplates, weighs 100 tons.
The Mahovo is the name given by the inventor, Captain C. Von Schubersky, of Russia, to an adap-

Fig. 2054.

Von Schubersky's Mahovo.
tation of the fly-whel to accumulate a reserve of force to be used at interrals when a greater lower is neerled.
A pair of heavy cast-steel fly-wheels have an independent truck of their own, which is introduced into the train inmediately behind the engine. The truck has three pairs of rumning-wheels approaching each other very nearly by their circumferences. In the intervals between these wheels are placed two pairs of friction-wheels resting immediately on them ; and in the interval between these rests upon their circumferences the large axis of the mahovos; the huge fly-wheels themselves overhanging the truck upon the two opposite sides. When the train moves, the running-wheels impart motion to the friction-wheels, and the latter transfer this movement to the fly-wheels. The diameters of the wheels, and that of the axis of the fly-wheels where it rests upon them, are so related that a veloeity of 18.6 miles in the train will generate in the circumference of the fly-wheel a rotary velocity of 466 feet per second; and as the fly-wheels themselves weigh 26 tons, it is computed that, with this velocity, they will embody a living force of $144,000,000$ footpounds.
As the train moves from rest, the velocity of the fly-wheels is gradually accelerated until it attains a maximum corresponding to the maximum velocity of the train. If steam be now shut off, the fly. wheels become a source of power, and will return the work stored up in them. To stop the train without expending this accumulated force, the fric-tion-wheels are raised out of contact with the drivingwheels. In ascending a grade, the force of the flywheels comes in as anxiliary to that of the engine.
Foam-cock. (Stccem-engine.) A cock at the water-level to blow off scun.
Foam-col-Iect'or. (Stcam-boiler.) A pan or other device at the water-level in the steam-boiler, to catch, retain, and discharge the foant which rises to the surface of the water.
Fo'cal Length. (Opties.) The distance betreen the object-glass and eye-glass of a telescone.
Fo-cim'e-ter. (Photooraphy.) An instrument for assisting in focusing an object in or before a
camera. This consists usually of a lens of small magnifying power. Formerly, when the fact that the actinic spectrum was mainly outside of the violet end of the spectrum was not properly understood, and lenses were not corrected so as to make the visual and chemical pictures coincident, an instrument was used to determine the amount of movement necessary to throw the actinic picture upon the sensitized plate, subordinating the visual image.

In Claudet's instrument, a number of oljects are arranged in a spiral form around the horizontal axis at different distances, so as to be all visible at once from the lens. If, when one of them is in the exact visual focus, another is found to come out more distinctly in the photograph, the discrepancy evidences that the visual and actinic foci do not coincide, and the glass should be rejected.
G. Knight's plan was to place a sheet of negative paper in an inclined position in the camera. A printed sheet being placed before the camera and a picture taken, the relative clearness of the inage will determine the true photogenic focus.

Fo'cus-ing-glass. (Photography.) A glass used for magnifying the image on the ground glass in the camera, to enable the operator to get it in better focus.

Fog-a-Iarm'. (Nautical.) An audible signal waruing vessels from shoals or other dangerous places. Fog-alarms are various in their kind, their operation, and their construction. As to kind, they consist of bells, whistles, and trumpets. As to operation, they are sounded by the current, by the ebbing and flowing tide, by the swaying of the waves, by the wind, by bellows, by clock-work impelled by weight or spring. As to construction, they are adapted for headlands, light-ships, buoys, or to be anchored by piles on spits, sand-bars, or shoals.
A somewhat notable signal of this kind was the bell on the lucheape Rock, which was placed there by the "good old abbot of Aberbrothock," as sung by Southey in his ballad of "Ralph the Rover." The bell or its clapper was swung by the motion of the waves, and was anchored to the dangerous submerged rock, in the track of navigation in the Frith of Forth. A substantial lighthouse now stands on the rock, which is named from the bell formerly placed on the spot by the courageous, pious monks.
In A the apparatus is erected on the deek of a ship which is moored in the position required. From posts on the hull is suspended a pendulous frame which is swung back and forth by the motion of the vessel. A transverse bar in the lower part of the swinging frame actuates the wheel, which is journaled between the pendent arms. Thus the motion of the frame partially rotates the wheel and rings the bell, by means of a band passing over the wheel and over a pulley on the bell-shaft. In B the clapper is moved by cam-wheel actuated by chains, which run over pulleys as the float-arn rises and falls by the motion of the waves.

Another form is a bell-buoy with paddles which move the clapper. The clapper of another is moved at regular times by a train of clock-work.
C has a spiral coil of tubing journaled upon standards, and oscillating by the motion of the vessel. Each end of the spiral has a whistle and a valve opening inward. The coil contains a quantity of water, which, as the coil is oscillatel, changes its position, and forces the air out through the whistles with a prolonged sound.

In D the air is mechanically condensed and stored in a reservoir. The cam on the rotary shaft actuates

FOlL.
the valve for the purpose of varying the sounds, to give a series of autible signals more intelligible than mere independent sounds repeated. A trumpet and whistle are attached to connecting pipes proceeding

Fig. 2055.

Fog-Alarms.
from the reservoir. The valve governs the air-aperture in the pipe leading to the trumpet.

Among other devices may be cited:-
One drives enmpressed air or steam through perforated, rotating disks or plates. The sound-trumpet has a parabolieally shaped extension.

Another has cylinders provided with interior elap-per-valves near the heals; these admit air when the water recedes, but prevent its escape at the valveway when the water rises; the air has its exit through the whistles, and sounds the alarm.

Annther lias two whistles and a single mnuth-piece, the aim being to produce discordant sonnds, which arrest attention.

A very large fog-whistle, worked by a ten-horsepower engine, is placed on Thatcher's Island, oft Salem, Mass.
Fog-bell. A bell upon a vessel, bloy, or spit of land, and rong by the motion of the waves or force of the wind, as a warning to mariners. See Fogalabm.
Foge. (Mining.) A forge for smelting tin. (Cornwalh.)
Fog-horn. See Fog-alarm.
Fog-trump'et. A horn or trumpet placed on a projecting headland, a ves ele, or a spar, and blown by meehanical means or by the wind, as a warning to mariners. See Fog-alarm.
Fog-sig'nal. A detonating ball placed on a railroad track, to indicate danger ahead to the engineer of a plassing train.
For nantical, see Fog-alarm.
Fog-whis'tle. (Nautical.) A signal of warning for vessels ofl' a coast. A sounder on the principle of the steam-whistle is exposed to a blast of air or of stean, according to the facilities of operation. Usually, motion derived from the waves, the tide, the wind, ol clock-work, make it antonatic. In

Fog-Whistle.
the example, the semicircular tubular vessel is mounted upon a rack-shaft, and has at each extrenity an ordinary whistle and a ralve opening inward. When the vessel is partially filled with water and rocked to and fro, the air is forced through the whistle and sounds an alarm.

On dit: The most powerfnf log-whistle in America is at Cape Fourcher, N. S. It can he heand fifteen miles in clear weather, and twenty-five with the wind.
Foil. 1. A thin leaf of metal, for plating, or to color a gen behind which it is placed. A colored foil imparts its tint to a gem whose natural color is vague and insipid.

Foil is made by rolling into thin sheets a plate of copper covered with a layer of silver. The silver surface is polished and covered with a clean varnish, colored or white.
Tin or lead foil are very thin sheets.
2. An amalgam of silver and tin at the back of a looking-glass.
3. A blunt weapon for fencing. A thin blade with a button on the end.
4. A leaf in architecture or carving ; as a trefoil ornament ; or a window, having lobes like clover.

Fold. 1. A fenced-in inclosure for stock 2. A doubling of fabric ; a plait ; a hem. Fold'ed-an'gle Joint. See Angle-Joint, Fig. 221.

Fold'er. 1. An ivory or bone blade, used in folding sheets for binding; also in forwarding sheets from the pile in feeding to presses.
2. A form of spectacles in which the lenses fold together for the pocket, and grasp the nose by a spring bow or stifl joint when in use.
Fold'ing. The process by which printed sheets are so doubled up as to bring the payes into consecutiveness for gathering and binding.
Sheets are of rarying sizes, as dcmy, medium, royal, imperial, etc.
The number of pages to each side of the sheet is indicated by the name 4 to, $8 \mathrm{vo}, 12 \mathrm{mo}, 16 \mathrm{mo}, 24 \mathrm{mo}$, $32 \mathrm{mo}, 48 \mathrm{mo}$. The folio sbeet has two pages on each side and is once folded.
The size of the book will therefore depend upon the size of the paper and the number of times it is folded. Each distinct sheet of a book has a certain mark, called a signaturc. These are gathered consecutively to form the book.
Fold'ing-boat. One whose frame is collapsible for compact stowage, either on shipboard or for

Folding-Goats.
transportation on land. In a military point of view; the folding-boat may be used for crossing streans or reconnoitering, or it may be for use as a bridge ponton. Such boats are also used by sportsmen who travel a distanre to meet aquatic game, finny or feathered, in coast, lake, or river.

The illustrations show several kinds, and a score more might be readily given would room permit. The upper one is a davit-boat, which lies compactly against the ship's side until the toggle-frame is extended, and the elastic skin distended thereby. It is then swung clear and lowered.

Next are two views, in the extended and collapsed forms respectively, of a boat whose sides are hinged to the keel, and whose stem and stern nay be laid over towards the midship section in a similar manner, though this does not appear in the engraving. $c c$ are bags nf cork which are pendent in the collapsed form, but are caught up against the gunwale when the boat is ready for duty.
The lower figure has a frame which may be folded up to the length of the ribs, and a width equal to the thickness of the ribs when laid up close together. In use, a skin of sufficiently tough waterprouf material is stretched over the extended frame. See also Life-boat.

Fold'ing-chair. A chair which is collapsible for carriage or stowage. One of the examples is a

library-chair. Another is a camp-chair in two positions. The lower oue is in its most prolonged form, and is a lounge.

Fold'ing-door. A pair of donss hung from opposite sides of the aperture, and meeting midway of the passage.

Fold'ing-ma-chine'. 1. A marhine for folding printed sheets for books; or newspapers for mailing.

The hook-folding machine illustrated is for octaro work, sixteen pages on a sheet, cight pages on a side. The sheet is placed on the table, so that two register-points pass through holes in the sheet previously made on the nrinting-press. The folder b comes down upon the folding edge, the pins give way, and the sheet passes, doubled-edge first, between a pair of roller's which compress it; tapes deliver it to a second table beneath, where a second and a third folder act upon it in turn, and it is delivered into a trough.

With 12 mo work, imposed in two parts of sixteen and eight pages respectively, the machine cuts
them apart, folds the larger part like an oetavo, the smaller folds but once, and is then inset into the octavo portion which forms the outset.

The two-sheet folder and paster, for large 24 -page periodieals, folds one sheet of sixteen pages, $30 \frac{1}{2} \times 45 \frac{1}{2}$ inches, and another of eight pages, $22 \frac{3}{4} \times 30 \frac{1}{2}$ inches, insetting the eight pages within the sixteen, and
four folding-machines, an attendant being at rach machine to secure accurate pointing. This economy of time in feeding, etc., makes easily possible the printing, folding, pasting, trimming, and mailing (by Diek's system) of nearly 150,000 papers every week, within two and a half working days.
2. (Metal.) One which bends pans and tin-ware to form. Some are rollers, others presses, and yet others act like the envelope-machine, lhaving hinged leaves which press up the sides against a former.
Fold'ing-net.
A bird-net shuting upon its prey.

Fold'ingvalve. A flexible thap which lies upon the perforated plate forming its seat, and rolls or unrolls thereupon to open or close the ras-sage-way. The hand is connected to an arm on a shaft which passes throughastuffingbox to the outside of the casp.
Fo'li-at'edarch. (Architecture.) One having a number of lobes or leares. See Arch.
pasting and trimming all, delivering a complete copy of twenty-four pages ready to read. It will fold eight pares alone, sixteen pages alone, with or withont pasting, or trimming ; or will fold, paste, and trim the sixteen pages, and fold, paste, and trim the eight pages, insetting same without pasting in the inset.

Machines of this general character are also made for folding, pasting, and trimming; or for folding, pasting, trimming all round, and putting on a cover of different colored paper. Rev. H. W. Beecher's weekly journal, the "Christian TVion," is folded, inset, and covered in this manner. This paper uses a single large sheet of 43×47 inches, making twenty-forr pages, and, with the added cover, twentyeight. The sheet is printed on a four-cylinder press, and, by an ingenions arrangement of rollers and tapes, ferl mechanically froms the imp-pression-cylinders into

Foli-at'ed-joint. (Carpentry.) A rabbeted joint, where one part overlies another.

Fo'lio. 1. The ruming number of the pages of a book. The cuen fulios are on the left-hand pages, the odd upon the right. The folios of prefatory matter are frequently in lower-case Roman numerals.
2. A book whose sheets are folded but once, four pages to the sheet.
Folio-post. A flat writing-paper, usually $17 \times$ 24 inches.

Fol'low-board. (Founding.) A board heneath the pattern, and on which it lies while the loam is heing rammed. See Flask.
Fol'low-er. 1. A portion of a machine, usually sliding in guides, and moved by another portion; as the reciproeating punch-stock in a fly-press, which is moved by the serew to which it is swiveled. It is analogous to the platen of many presses.
2. The cover or plug of a stuffing-box, which rests upon and compressps the packing. A gland.
Fol'low-er-wheel. The driven wheel, as distinguished from the driver, or the wheel which impels.
Fon'dus. A style of calico-printing or laperhanging in which the colors are in hands and blend into each other.

Font; Fount. (Printing.) An assortment of type of one size, of a given weight, containing large and small capitals, small letters, points, asents, figures, spaces, quads, etc. The weights of fonts vary aceording to the business requirements of the printer. While a 500 -pound book-font was considered a good weight during the last century, some American houses
now keep a font of from 20,000 to 30,000 pounds in use.
The following table gives an English bill of Pica, weight 800 pounds, italic one tenth.

a,	8,500	1,	100	$!$	150	P	400	I,	400
b,	1,600	$\dot{\text { c, }}$	100		700	Q,	150	J,	150
c,	3,000	u,	100		100	R,	400	K,	150
d,	4.400	a,	200	+	100	S,	500	L,	250
e,	12,000	e,	100	\pm	100	T,	650	M ,	200
f,	2,500	i,	100		150	U,	300	N,	200
g,	1,700	i,	100	II	100	V,	300	0 ,	200
h ,	6,400	u,	100	§	100	W,	400	P ,	200
i,	8,000	à,	200	(300	X,	180	Q,	90
j,	400	\hat{e},	200	T	60	Y,	300	R,	200
k,	800	i,	100	1,	1,300	Z,	80	s,	250
l,	4,000	o,	100	2,	1,200	※,	40	T,	320
m,	3,000	t,	100	3 ,	1,100	E,	30	U,	150
n,	8,000	a,	100	4,	1,000	A,	300	v	150
o,	8,000	$\ddot{\text { ë, }}$	100	5	1,000	B,	200	w,	200
p ,	1,700	i,	100	6 ,	1,000	c,	250	x ,	90
q,	300	ö,	100	7.	1,000	D,	250	Y,	150
r ,	6,200	ii,	100	8,	1.000	E,	300	z	40
S,	8,000	$\overline{\mathrm{a}}$,	100	9,	1,000	F,	200	*	20
t,	9,000	$\overline{\mathrm{e}}$,	150	0,	1,300		200	©,	15
u,	3,400	i,	100	\$	100		200		
v,	1,200	$\overline{\text { on }}$	100	A,	600	Spaces.			
w,	2,000	u,	100	B,	400				
x ,	400	${ }_{\text {a }}$	100	C,	500	Thick .			
y ,	2,000	ě	150	D,	500	Middle.			2,000
\dot{z},	200	İ	100	L,	600	Thin. .			8,000
\&,	200	ú	100	F,	400	Hair Em-quadrats			3,000
ti,	500	u	100	G,	400				2,500
ff,	400	c,	100	H,	400	Em-quadrats En-quadrats			5,000
H,	200	ì	100	I,	800	Large Quadrats.			
ff ,	100		4,500	J,	300	2-ern)			
fi,	150	;	800	K,	300	$3 \cdot \mathrm{em}$ 80 pounds.			
\mathfrak{x},	100	:	$\begin{array}{r}600 \\ \hline\end{array}$	L,	500	4-em			
œ,	60		2,000	M,	400	Metal Ru'es.			
á,	100	-	1,000	N,	400				
é,	250	?	200	O,	400	1-em, 2-em, 3-em.			

For iudexes and similar matter, the above would be deficient in capitals.
For setting up French or Italian matter, it would be deficient in accented vowels.
It comprises, -
Capitals ; as, A, B, etc.
Small capitals ; as, A, B. etc.
Lower case ; as a, b, etc.
Figures and fractions ; as, $1,2,3 ; \frac{1}{4} \frac{1}{8}$, $\frac{1}{20}$, etc.
Points, 一, ; : . ? ! - ' () []* $\dagger \ddagger \S \| \mathbb{I}$ ——
Spaces. Quads.
Accents ; as, á, à, â, ä, ā, ă.
The above bill does not include, -
Superior letters in caps or lower case; as, $A^{\wedge}, B^{\mathbf{D}}$, etc. ; $A^{\mathbf{a}}, \mathrm{B}^{\mathrm{s}}, \mathrm{C}^{\mathrm{d}}$, etc. ; $\mathrm{a}^{\wedge}, \mathrm{b}^{\mathrm{c}}$, tetc. ; $\mathrm{c}^{\mathrm{b}}, \mathrm{d}^{\mathrm{b}}, \mathrm{h}^{\mathrm{d}}$, etc.

Inferior letters in caps or lower case ; as, $\mathrm{A}_{\mathrm{C}}, \mathrm{C}_{\mathrm{B}}$, etc. ; A_{2}, B_{2}, B_{b}, etc. ; a_{B}, c_{E}, etc. ; a_{3}, b_{2}, c_{b}, etc.
Superior figures in Arabic or Roman ; as $\mathrm{B}^{1}, \mathrm{C}^{2}$, D^{3}, etc. ; $\mathrm{a}^{1}, \mathrm{~b}^{\mathrm{n}}, \mathrm{c}^{\mathrm{v1}}$, , etc.
Interior figures in Arabic or Roman; as, $\mathrm{A}_{1}, \mathrm{~B}_{3}$, C_{8}, etc. ; $a_{2}, b_{1 v}, c_{v}$, ete.
Prime letters; $\mathrm{A}^{\prime} ; \mathrm{B}^{\prime \prime}, \mathrm{C}^{\prime \prime \prime} ; \mathrm{a}^{\prime}, \mathrm{b}^{\prime \prime}, \mathrm{c}^{\prime \prime \prime}$, etc.
Arithmetical signs; such as $+, x,-, \div,:,::$, $=, V$.
Notation of arc: ${ }^{\circ}$ (degrees). ' (minutes), " (seconds).
Of quantity: $\mathrm{tb}, \mathbf{3}, \mathbf{3}, 9, \mathrm{~m}$.
Commercial:
Besides these, there are linudreds of arhitrary signs, which are found in the most jerfect fonts, and used in astronomical, classic, commercial, musi-
cal, chemical, hotanical, arithmetical, and mathematical dissertations.

For these, see an excellent digest on pp. 1692-96 of Webster's Unabridged Dictionary, edition of 1867.

Almost every science has symhols of its own. Algebra has one set, chemistry another. For a dictionary which attempts to represent the nimute slades of pronunciation a great number are required. Thus in Webster or Worcester, what with letters with dots above and dots below, lines above, below, and across, there are probably a hundred additioual characters. Some foreign languages have a very complieated alphabet. The Greek, with its "accents" and "breathings," requires about 200 . Formerly there were so many logotypes and abbreviations as to require 750 sorts. The Oriental alphabets are complex. The Hebrew, with the Masoretic points, requires about 300 sorts, many differing only by a point, stroke, or angle. The Arabic has quite as many. In Robinson's Hebrew Lexicon, eight or ten Oriental languages appear, and reguired 3,000 sorts distributed through at least forty cases.
Fools'cap. A size of folded writing-paper named from the water-mark of a "foolscap and bell" which formerly ornamented (?) it.

In England, it has four grades of size and weight.
Sheet and a half foolsap, $25 \times$ Size. Weight.
Sheet and third "
Extra thick \quad " $16 \frac{1}{2} \times 13 \frac{1}{4} \quad$ " 18 "
Ordinary " $16 \frac{1}{2} \times 13 \frac{1}{4}$ " 15 "
The American average may be stated at $16 \times 12 \frac{1}{2}$.
Foot. 1. (Music.). The lower end of an organ-pipe, which conducts the wind to the recd or lip, which gives the vibration to the air and causes the sound.
2. (Neutical.) The lower erlge of a sail.
3. (Machinc.) A flange at the lower end of a leg to give a wider basis of support.
4. A third ol a yard. See Unit.

Foot, Ar'ti-ficial. A prosthetic contrivance which eopies the articulations of the matural foot. In the best efforts in this line, the ankle-joint is a

Fig 2061.

bolt which is transverse with the foot, a certain degree of lateral flexure in a vertical plane being also permitted, as seen by the interval slown in the lefthand figure opposite to a. The other figure also shows a certain liberty of forward and hackward racking motion. The iniddle rod c is a permanent tension-rod, and the rods $m n n^{\prime}$ have a certain amount of elasticity by means of rubber nuts, so as to allow Hexure of the joint.
Foot-bel'lows. A form of bellows with a collapsible hag, or an ordinary bellows arrangel to he worked by treadle. It is shown (Fig. 2062) as adipted to a spray apparatus.

Foot-board. 1. A treadle.
2. A board at the foot of a bed; a board for the feet on the driving-box of a coach.

3. The platform on which the driver and stoker of a lo. comotivestand. A foot-plate.

Foot bridge. 1. One for pedestrians over a railway or crowded city thorouglifare.
2. (Machinery.) A curved bar supporting the foot or toe of a mill sjuindlc. See Strep. Foot-guard. (Menayc.) A boot or pad to prevent the cutting of the feet by interfering or overreaching. See Leg and Foot Guard.
Foot-ham'mer. One worked by a treadle. The hammer is adjustably pivoted to the upright, and has toggle connection with the treadle, whose depression causes the descent of the hammer upou the anvil. The hammer is raised by a spring.

Fig. 2063.

Foot-Bridge.
Foot'ing. 1. (Hydraulic Enginecring.) The lower portion of the slope of a sea embankment. It shoulh have a base of five feet to one foot perpendicular and be protected ly gravel. The portion above the footing is the outburst bank, and has a base of two to one perpendicular. The crowning portion is the surash-bank, which has a base of two to one perpendicular, the level on top, being four or five feet. In Hollam, where the summit is used for roads, this width is much increased.
2. (Alusonry.) The spreading courses at the bottom of a wall, to give a greater basis of suppert.

Foot-i'ron. A carriage-step.
Foot-key. (Music.) An organ pedal.
Foot-lathe. A lathe driven by the foot on a treadle, connected to a crank on an axle beneath the hench. A driving-wheel on the axle is connected by a haul to a cone-wheel on the mandrel of the head-stoek.
Foot-lev'el. A form of level used by gunners in criving any 1 roposed angle of elevation to a piece of nilnance. See Level.

Foot-light. A light on the fiont of a stage.

Foot-Hammer.
Foot-pace. A dais, or raised floor.
Foot-pad. (Mencge.) a. A piece of elastic substance, say rubher, to cover the sole of a horse's foot and prevent balling.
b. An anklet or ridge-pirce on the corona to prevent cutting of one foot by the other in traveling.
Foot-plate. The platform for the driver and fireman of a locomotive.

Fig. 2065.

Sellers's Foot-Lathe.
Foot-pound. A term in mechanics; the unit of energy, 1 pound avoirdupois raised 1 foot. See UNit.
Foot-press. A form of standing press in which the upper die or follower is depressed by a treadle.

Foot-Press.

In the example, the motion is obtained by the mashing of two segmental camgears forming a toggle.
Foot-rail. A railroad-rail having wide-spreading foot flanges, a vertical web, and a bullbshaped head. Such a rail may be spiked to the sleepers, dispensing with chairs.

Foot-rest. (Menage.) A stake in a shoeing shop oll which a horse's foot is rested to relieve the shner from the labor of supporting it.
Foot-rope. (Nautieal.) a. A rope stretched beneath a yard, uron which the seamen stand in reefing or furling sails.
b. A rope at the foot of a rail.

Foots. Sedimentary matter; the remainder or refuse of decantation or distillation.

Foot-screw. A supportiug foot, for giring a machine or table a level standing
Fig. 2067.

Foot-Screro. on au uneven floor.

Foot-stalk. (Machinery.) The lower portion of a mill spindle; it rests in a step.

Foot-stall. 1. (Arehitceture.) The plinth or base of a pillar.
2. (Menage.) The stirrup of a woman's saddle.

Foot-step. An inclined plane under a hand printing-press.
Foot-stick. (Printing.) A wedge-shaped piece of fumiture placed against the foot of the page. The quoins are driven in between the foot-stick and the chase in locking up the form.

Foot'stool. A low stool for the feet.
Foot-stove. A foot-warmer ; usually heated by amp.

Fig. 2068.

Foot-Stove.
Foot-valve. (Sterm-engine.) The lower valve between the air-punp and condenser. See AlrPUMP, p. 53.
Foot-vise. A vise whose jaws are brought together by means of a strap passing through the two and operated by a treadle. It has not a very powerful grasp, but from the facility with which the
jaws are opened or closed is useful in operating on objects which do not require to be held very firmly.

Foot-wal'ing. (Shipbuilding.) The inaer shin of a ship between the deck-beains and the limberstrakes on each side of the keclson. Also called the ceiling.

Foot-warm'er. A heated stool for the feet. A chating-dish. A foot-stove.
A hot-water bottle shaped to fit against the soles of the feet of a person lying in bed.
For'ceps. A tool applied to grasping, and consisting of two portions pivoted together, the ends forming respectively handles and jaws.

Shears, scissors, pincers, plicrs, tongs, ealipers, nippers, punches, and some other tools, agree in the pivating of duplex parts, but they differ in some peculiarity of the jarss or in their special application for cutting or grasping. See Jaw-tools.

Forceps for teeth, urula, arteries, esoplagus, etc., were found in a house in Pompeii in 1819. They were of iron and copper.
Specifically : in obstetrics, an instrument having a pair of curved blades for grasping the head of the fetus and assistiag delivery.

See under the following heads:-

Alveolar forceps.
Artery-forceps.
Bone-forceps.
Bullet-forceps.
Caleuli-forceps.
Cow-horn forceps.
Crane's-hill.
Craniotomy-forceps.
Crow's-bili.
Dental forceps.
Dissecting-forceps.
Esophagus-forceps.
Eye-forceps.
Fulcrum-forceps.

Locking-forceps.
Needle-forceps.
Oustetrical-foreeps.
Placenta-forceps.
Plugging-forceps.
Polypins-forceps.
Screw-forceps.
Speculum-forceps.
Spicula-forceps.
Stage-forceps.
Strahismus-forceps.
Trachea-forceps.
Uvula-forceps.

Force-pump. 1. A pump which delivers the water nuder pressure, so as to eject it forcibly or deliver it at an elevation. The term is used in contradistinction to a lift-pump, in which the water is lifted, and simply runs out of the spout.
The sing? e-acting force-pump is that in which the lift aud delizery are alternate. The double-acting is that in which the passages are duplicated, so that a lift and delivery are obtained by each motion of the plunger : the pump has a distinct water-way both abore and below the piston, so as both to draw and force water at each stroke, and thus cause a continuous stream, which is rendered more uniform by an air-chamber.
The invention of the force-pump is ascribed to Ctesibus of Alexandria, who is assumed to have been the tutor of Hero, who wrote so largely on hydraulics. It was also described by Vitruvius.
In 1582, Peter Morice, a Dutchman, erected a pumping-engine at London Bridge, where it or its successors remained till 1821. The power was a current-wheel turned by the flow and ebh, and first placed near the bridge, then under the northern arch ; afterwards three wheels were added under the thind arch; Smeaton added another under the fifth arch, and afterwards a steam-engine to assist at low-water and neap tides. See Current-whefl.

The water-wheel of Morice worked sixteen forcepumps, each seven inches in diameter, the pistons having a stroke of thirty inches, throwing 216 gallons per minute into a cistern elevated 120 feet, whence the dwellings in the vicinity were supplied with water by leaden pipes.

In 1731 the works are again describerl. Sixty-
eight pumps were then at work, throwing 2,052 gallons per minute. The cylinders were of castiron, 4 feet 9 inches long, 7 inches bore, and discharged by a stand-pipe into a cistern elevated 120 feet.
The Verpilleux pump (a) is a single-acting forcepump in which a culumn of water communicates between the working cylinder and the water level. When the plunger if rises, water ascends and passes throngh C into B and upward into A; owing to the pressure of air upon the surface of the water in the cistern, supplemented for lights above, say 30 feet, by the weight of the loaded piston D. When the

Force-Pumps.
plunger H descends, the column of water in B acts upon the p istou D, and raises water in E to the reception cistern F above.
$b c$ are two forms of double-acting force-pumps, in each of which I is the induction and E the eduction.
2. The boiler-supply pump connected to the pis-ton-rod of the cylinder of a locomotive.
For'cer. A small pump worked by hand; used in sinking pits, draining cellars, etc.
Forc'ing-pit. A sunken hot-bed.
Fore. (Nautical.) The term expressive of the forward portion of a vessel, or the appurtenances of the saicl forward portion. The tern is used in contradistinction to aft.
Fore-and-aft Sail. (Nautical.) A sail whose middle position is fore-and-aft; one which is at-
tached to a spar or stay in the milship line of the vessel, and not to a yard, which is athwart ship.

It may be three-cornered, as a stay-sail or jib, or four-cornered, as a try-suil, spunkicr, etc.

Of the latter, -
The upper, after comer is the peak:
The upper, forward corner, the throat or neck.
The lower, after corner, the clew.
The lower, forward conner, the tack.
The clcw is hauled aft by a rope called the shect.
The tack is hauled forward by a rope also called the tack.

In a fore-and-aft sail, -
The heved is the upper edge if the sail be fomr-cornered, or the upper corner if the sail be threc-cornered.

The foot is the lower edge.
The foremost edge is called the luff or wcather. lecch.

The aftermost edge is called the lee-lecch, or the leech.

Schooners, smacks, and cutters are fore-and-aft rigged. The spankers, drivers, jibs, try-sails, and stmy-scrils of other vessels are also fore-and-aft.

Fore-bay. (Hydraulics.) A reservoir or conductor between a mill-race and a water-wheel. The discharging-end of a head or mill-race. The term is the equivalent of penchute or penstock, but is used especially in regard to watcr-wheels, which receive and discharge water at their peripheries, such as the under-shot, over-shot, breast, and flutter-wheels.

Fore-beam. (Weaving.) The breast-beam of a loom.

Fore-bow. (Menage.) The pommel or horn of a sadille.

Fore-car'riage. (Vehiclc.) The forward part of the ruming gear of a four-wheeled vehicle. The fore-wheets, axle, and hounds; with or without the pole and the perch.

Fore'cas-tle. (Shipbuilding.) a. In flushdecks; a part of the upper deck forward of the after lore-shrond.
b. A short upper deck forward. Formerly raised like a castle to command the enemy's decks. A top-gallant forecastle.
c. A forward part of the space below decks in merchant-ships, for the seamen.

Fore-edge. The front edge of a hook or a folded sheet; in contradistinction to the back, which is folded, and holds the stitching.

Fore-foot. (Shipbuilding.) The forward end of a vessel's keel on which the stem-10st is stepperl.
Fore-gang'er. (Nautical.) A short rope gratted on to the harpoon, and to which the rope is bent.

Fore-ham'mer. A sledge-lianmer, working alternately or in time witl the hand-hammer.
Fore-hook. (Shipbuilding.) A strengthening piece in the stem, binding the bows together. A breast-hook.
Fo'rel. (Bookbinding.) A kind of parcliment for book-covers.

Fore'land. 1. (Hydraulic Engineering.) That portion of the natural shore on the outside of the embankment which, standing several feet above lowwater mark, and having a considerable breadth, acts as an advanced grard to the embankment to receire the shock of the waves and deaden their force uron the bank.
2. (Forlification.) A space between a fortified wall and the moat.
Fore-lock. A cutter or split pin in the slot of a bolt to prevent retraction. A linch-pin. A pin fastening the cap-square of a gun. A key.

Fore-lock Bolt. One retained by a key, gib, or
cotfer passing through a slot of the shank. See Key ; Cotter.
Fore-lock Hook. (Rope-mahing) A winch or whirl in the tach-le-block by which a buach of three yarns is twisted into a strand.

Fore'mast. (Nautical.) The one nearest to the bow, in ressels carrying more than one mast, except in the case of a ketch, whose forward mast is the main, as being the longer of the two, the after-mast being the mizzen.
Fore-part I'ron. An edge rubber or burnisher for bont and shoe soles.
Fore-piece. (Suddlery.) The flap attached to the fore-part of a side-saddle, to guard the rider's dress.
Fore-plane. (Joinery.) Intermediate in length and application between a jack-plane and a smooth-ing-plane.
Fore-rake. (Shipbuilling.) So much of the forward part of a vessel as overhangs the keel.

Fore-run'ner. (Noutical.) A piece of red bunting on a log-line at a certain distance, say twelve or fifteen fathoms, from the log-chip; the fathoms begin to count at the fore-rumer, and the noncounting portion is called the stray-line. The latter is an allowance to allow the \log to be out of the ship's dead-water. See Log.

Fore-shore. (Hydraulic Engineering.) a. A bank a little distance from a sea-wall to break the force of the surf.
b. The seaward projecting, slightly inclined portion of a breakwater.
Fore-shot. The first portion that comes over in distillation of low wines. lt is a milky liquid and abounds in fusel oil.
Fore-sight. 1. A sight forward at the levelingstaff or through the sights of the circuunferentor.
2. The muzzle-sight of a gun.

Fore-staff. (Optics.) An instrument formerly used at sea for taking the altitude of hearenly bodies, and also known as a cross-staff. The observer faces the object, the nosition being the reverse of that assumed in using the buck-stuff for a similar purpose. The fore-staff las a straight, square staff graduated like a line of tangents, and four crosses or vanes which slide thereon. The first and shortest of these vanes is called the tcu-cross, and belongs to that side of the instrument whereou the divisions begin at 3° and end at 10°. The next longer vane, called the thirty-cross, belongs to the side of the staff gradnated from 10° to 30°. The sixty-cross belongs to the side graduated from 20° to 60°. The nimety-cross belongs to the side of the staff graduated from 30° to 90°.
Fore-starling. An ice-breaker in advance of the sturliny of a bridge.
Fore-wale. (Saddlcry.) The smaller roll of a horsc-rollar.
Forge. 1. A hlacksmith's open fire, where iron is heated by the aid of a blast. The illustration shows a portable form, in which the bellows is worked by a treadle, the air-pipe passing upward and through a tuyere into the coal-hox a, which is shown empty. b is the slake-trongh.
2. A building in which blacksmith's forges or furnaces are arranged. When on a large scale, furnaces, cranes, and steam-hanmers are necessary adjuncts. A smithy.
3. A place where iron is puddled and shingled.
4. A field-forge in military service. See BattentFORGE.
The subject of forging is incidentally considered under Cannon, Armor-plating, and elsewhere, and the appliances under Anvil, Hasmer, etc. See

Hammer; also list under Blacksmith's Tools, etc.

Considering how lately it has been deemed possible to forge very large masses of iron, and how all

Portable Forge.
the best modern appliances of furnaces, cranes, and stean-hammers are engaged in the production of beavy cannon, screw and paddle shafts of steamslijps, anchors, etc., we may well besurprised at the existence within the cincture of the ancient Mosque of the Kutub, near Delhi, of a wrought-iron pillar of a size which would be deemed a first-class forging in the most capable works of Europe or America. The pillar is, however, more than 1,000 years old, and may be as monch as 1,500 . It is believed that the ornamental capital was chipped from the solid. Digging has shown that the greater portion of the length is buried in the ground. It has about midlength an inscription in Sanscrit, in a character which has been assigned to the period A. D. 300 to 400 . It has been described at length by Mallet in the "Engineer." The present writer concludes that it is a casting from iron smelted by a process allied to the Catalan, - the orilinary smelting process of Asia and Africa, in fact, - from a magnetic or hematite ore by charcoal. Such an iron may be worked to some extent by the hammer.

The iron pillar of Delhi has the following dimpusions:-
Hight above ground
Depth beneath ground, so
far as is known by digging .
Estimated hight .
Hight of capital
22 feet.

Upper diameter of shaft 12.05 inch Lower diameter of shaft 16.4 "، Weight (calculated) . 38,080 lbs.

Forge-rolls. The name conferred upon the train of rolls by which the slab or hloom is converted into puddled bars.

Fig. $20 \pi 1$.

Iron Pillar of Delhi.

FORK.

They consist of two pairs, the roughing-down rolls and finishing rolls.
For'gette. (Glouc-making.) Fr., fourgatte. The piece jut between the fingers of a glove, and to which the front and back parts of the tingers are sewed.
Forg'ing-ham'mer. A hammer used by goldbeaters. It weighs three pounds, has a head at one end and a wedge at the other, the face having a square area of $1 \frac{1}{2}$ inches on the side. Its handle is 6 inches long. It is the first hammer in the series, and reduces the ingot of gold to one sixth of an inch. The anvil is a mass of steel four inches long and three broad. The laminuting-macline is often used instead of the forging-hammer.
Forg'ing-ma-chine'. A machinc having a number of plunging mandrels and stakes between which a heated bar is pressed to form. The opposing faces of the plungers and stakes may be merely hammerfaced, or may be shaped to act as swages.

Bessemer's Forging-Press. or throwing. Its uses may be prineipally included nnder the heads of agricultural and husbandry uses and domestic uses.

Of the iormer are :-
Dung or manure forks.
Ilorse hay-forks.
Digging-forks.
Grain-forks.
Hoy-forks.
fitch-forks.

Of the domestic are :-

Culinary or flcsh forks. Table-forks.

1. The fork of the lusbandman is shown on the Egyptian tombs, and referred to in the Book of Judges, 1093 B. C.: "Yet they had a file for the mattocks, and for the colters, and for the forks."

The jitch-fork is used for grain in the straw or sheaf, hay, and manure. It has from two to fonr teeth, according to its purpose. The four-pronged is used for manure, the others for straw, sheaves, or hay.

Another form of grain-fork (a) is of wood, the operative end being slit into three prongs, which are held apart by wedges and braced by rods.
It is used in delivering the gavel of grain from the platform of the reaping-machine, and is preferred for the reason that its tines do not injure the platform, or offer so much danger to the person or the machine as do sharp iron tines.

Forg'ing-press. One for forging by means of pressure, as in the Bessemer press (Fig. 2072), which acts by hydraulic pressure. j is a piston working in the cylinder h to drive the water against the base of the piston g, on which is the anvil face. e is the forging which is raised lyy the piston g against the face d of the hammer c, if it may be so called ; $f b$ are the means for lowering the hammer $c d$ to such a distance as may suit the sizc of the work, a a are throughbolts which sustain the pressnie.

Fork. An implement with prongs for Tifting, digging, carrying,

In the scenes where the thrashing of grain is repre. sented on the tombs of Egypt, we see several instances of the three-pronged fork. It appears to be of wood, the end split into three tines, which are

Fig. 2073.

held apart in some way, perhaps, as with us, by wedges.

The digging-fork has four flat steel tines, and is a very eflective tool.

The pitch-fork has two or three long, round tines, and is used for pitching lay or sheaves. The bar-ley-fork is a peculiar fork having a guard on the head, and used for pitching gavels of short grain without binding.
The horse hay-fork is designed to obviate the great labor of pitching hay from the wagon into the mow, or from the wagon or the ground into the stack. They are of four kinds : -

1. The harpoon-fork.
2. The jointed-fork.

Operating Horse Hay-Forks

3. The tongs-fark.

4. The corksercu-fork.

Fig. 2074 gives a general idea of the mode of operating the fork. A rope passes from the single-tree of the horse over three pulleys to the fork, which is thrust into the load. When the horse starts up, the load is lifted, and when it has reached the desired hight a trigger is pulled and the load dropped. The horse is backed, allowing the fork to deseend, assisted ly the weigbt which takes up the slack of the fall.

1. The harpoon-fork is thrust endwise into the hay, the tines heing sheathed; then, by the motion of a lever, the tine or tines are exposed so as to catch the hay and elevate it when the fork is lifted. On reaching the place where the forkful is to be deposited, the catch which holds the tines in their ex-
tended position is dropped by drawing on a trigger ; the tiues becoming sheathed by the pressure upon them of the hay, the latter slips off. Two forms of this are shown, but twenty-eight are before the writer while making this notice. Fig. 2075 has a tube from which protrude two prongs $F F$, which are thrust out into the hay after the stem has been driven in to the required depth. When lifted, the load rests on the prongs, and when a trigger on the stem is pulled by the cord y, the prongs retreat ; the tube falls until it catches on the cross-picee of the stem D. In Fig. 2076 the parts E aud F form the entering portion and maintain a general longitudinal direction while the fork is thr'st into the hay, and are vibrated outwardly to hold the hay by the pivoted rod, which is actuated by a lever and auxiliary rope, to drop the load when it has arrived over the desired spot.
2. The single-jointed fork is one in which the tines are hinged to the stock, so as to assume a position in which the hay will be sustained, but capable of being dropped from this position so as to allow the hay to slip off. The modus operundi is this:

Fig. 2075.
Fig 2076.

Harpoon-Forks.
tripped by lifting the trigger e on the end of the rope f.
3. The tongs, or grabling -fork, has two hands, so to speak, which clasp upon the bunch of hay, and are locked in their closed position while the hay is being lifted. When arrived at the place to drop the hay, a rope attached to a trigger is prulled, the two heads of the fork are
 unlocked, and the weight of the hay presses them open, the hay falling ont. The two forms shown are held closed by a straight toggle, and opened when the toggle is bent hy a pull on the rope. In Fig. 2079 the fork is swung from one prong, and in Fig. 2080 from both prongs.
4. The corksercu-fork is screwed down into the hay, turning in its handle or stock; a lateh holds it in position while the hay is

Jointed Forks. lifted. A trigger then releases the catch, and the tine being freed is rotated by the weight of the hay which slips therefrom.

The tines of the fork in its effective position are thrust into the hay, and the fork with its load is then elerated. On reaching the place where the load is to be deposited, a trigger is pulled, releasing the tines ; the weight of the hay canses them to drop, and the load slips off.

Of fifteen kinds at hand, two may be selected as representative. In Fig. 2077, the tines are on a head attached to the stock C and hinged to the bail D. F is a hinged brace, which thrusts against a stud in a slot of the stock C, to hold the tines in their holding position. The tines are tripped by the rope and trigger i, which pushes the brace F of the detent and allows the head and stock to rotate on the hail.

Fig. 2078 bas its tines a hinged at midleugth, and

As the vertical tines descend into the bunch of hay, the spiral tines are rotated and then locked. The load being elerated, the corl is pulled, disengaging the detent and revolving the spiral tines to discharge the load.
2. Forks for culinary purposes were conmon in ancient times, vide the observances of the Hebrew priests, who dipped their forks into the seethingpot and lifted the meat thenee. The table-fork is a modern invention, deriving its name from the Italian forca.

The Greeks and Romans had also flesh-forks or rakes to lift meat from the pot, but they harl no table-forks. The carver, carptor, hal a knife for carring, and the guests furnished their own. The meat was grasped by the finger and thumb of the

Corkscrew Hay-Furk.
chop-sticks instead of forks.
Bronze forks were used by the Egyptian priests in presenting offeriugs to the gods. Two of them exhumed at Sakkaralı are in the Abbott collection.

A lork is mentioned in the accounts of Edward I., and is supposed to have been brought from the East by a returning crusader. Voltaire says that they were used by the Lombards in the fourteenth century ; and Martius states that they were common in Italy in the fifteenth century.
Table-forks are heard of in ltaly from 1458 to 1490. An Italian at the court of Matthias Corrinas, kiner of Hungary, notices the lack of the fork in the table furniture of the king. A century after, they were unt known in France or Sweden.

Coryat, in his "Crudities," 1611, says: "J observed a custonz in all those Italian cities and towns through which I passed, that is not vsed in any other country that I saw in my traules, neither doe I think that any other nation in Christendome doth rse it, but only ltaly. The Italians and also most strangers that are commorant in Italy, doe alwaies at their meales vse a little fork when they cut their meat."

Fyne Moryson's "Itinerary," in the reign of Elizabeth, refers to their use in Venice.

Heylin in his "Cosmograph," 1662, says: "The use of silver forks, which is by some of our spruce gallants taken up of late, came from China into Italy, and thence into England."

Table-forks have long been in use in Feejee. At a time when all Northern Europe was destitute of the article, these remarkable savages, the most cruel and ingenious of all the natives of Polynesia, used forks in conreying to their months morsels of puakn-bulava, long-pig, as they called cooked man.

Table-forks of the best quality are forged from the end of a rod of cast-steel, abont three eighths square. The tang, shoulder, and shank are roughly formed and cut oft, the prongs being a flat portion which is stamped out by a swage drop. The film between the tines is cleaned away by the file. These processes are followed by hardening, tempering, grinding, and hafting.

Fork-beam. (Shiphuilding.) A half-beam to support a derk where hatchways occur.

Fork-chuck. (Turning.) A piece of steel projecting from the live spindle and carrying the front center and a pair of joints which enter the wood and rotate it.

Fork-head. The double bead of a rod which
left hand, and a
piece excised. The
pin.
divides in order to form a connection by means of a
Fork'staff-plane. (Joincry.) A joiner's plane for working convex cylindrical surfaces.

Fork-wrench. A spanner with two jaws which embrace a nut or a square on a coupling.

Form. 1. (Printing.) a. A body of type, composed and made ready for printing.
b. A stereotype in the like condition of readiness. The one containing the first page is the outer form. The form for the opposite side of the sheet is the inner form.
2. A shape or mold for metal, glass, or jelly.

Form'er. A shape around which an article is molded, woven, wrapped, pasted, or otherwise constiucted.

A templet, pattern, or gage by which an article is shaped, as pottery, or an olject in the lathe.

A cutter by which patterns, blanks, wads, or pieees are cut from sheets for varions purposes.

Form'ing. (Shipbuilding.) Shaping exactly the converted (partially shaped) timhers, so as to give
them the required tigure. This consists in :-
Silling; giving them the correct brealth.
Molding; giving the correct outline and depth.
Beveling; giving the faying surface the proper shape to meet the planking or iron skin.

Form'ing-cyl'in-der. (Puper.) That rylinder in a paper-making machine on which the film of pulp is gathered, and which delivers it as a soft and weak web to the hardening and drying devices.

For'ril. Lambskin parchment. Vellum.
Fort. A small fortification.
The orthography of a fort is its profile.
The ichnography is its ground plan. See Forti-

FICATION.

Fortlal-ice. An outwork of a fortification.
For'ties. (Printing.) A sheet of paper having forty printed yages on each side. 40 's.

For'ti-fi-ca'tion. Fortifications are known
as,
Natural, when cliffs, swamps, rivers, etc., conduce to give the adrantage to the defending force.

Artificial, when labor and skill create advantares or add to the natural ones.
lefensire, when opposed to an attacking force.
Offensive, in investing a place.
Permunent, of a lasting character.
Field, for emergency or temporary uses.
There is $n \mathrm{n}$ room here for a treatise; see details under the following heads:-

Abattis.
Ante-mural.
Approach.
Arrow.
Augette.
A vant-fosse.
Banquette.
Barbacan.
Barbette.
Barrier.
Bartizan.
Base.
Basket-work.
Bastion.
Bastioned fort.
Batarleau.
Battery.
Bavins.
Berme.
Blind.
Blindage.
Block-bouse.

Body of a place.
Bomb-proof.
Bonnet.
Bomnet de prêtre.
Boom.
Branch.
Bray.
Break.
Breast-hight.
Breast-work.
Bridge-head.
Brisure.
Bulwark.
Buttress.
Caltrop.
Camouflet.
Canditeer.
Capital.
Caponniere.
Casemate.
Cavalier.
Cavin.

Chamber.
Chernin des rondes
Cheval de frise.
Circumvallation.
Citadel.
Coffer.
Coffin.
Contour.
Contravallation.
Cordon.
Corridor.
Counterguard.
Countermine.
Counterscarp.
Counter swallow-tail.
Counter-trench.
Countervallation.
Counter-works.
Coupurus.
Coverell way.
Cremaillere.
Crenette.
Crest.
Crotchet.
Crown-work.
Crow's-feet.
Cunette.
Curtain.
Dead-angle.
Deblai.
Deni-bastion.
Demi-lune.
Demi-revetment.
Detached works.
Ditch.
Econte.
Elevated hattery.
Embrasure.
Enciente.
Envelope.
Epaule.
Epaulement.
Escarp.
Esplanade.
Estacade.
Exterior slope.
Facp.
Fascine.
Fansse-braye.
Fiell-work.
Flank.
Fleche.
Fort.
Fortalice.
Fortress.
Fosse.
Fougasse.
Fraise.
Front.
Gahion.
Gallery.
Glacis.
Gorge.
Half-moon.
Half-sunken battery.
Herrison.
Herse.
Hersillon.
Horn-work.
Hurdle.
Hurter.
ludented line.
Indented parapet.
Interior slope.

Intrenchment.
Iron fortitication.
Klicket.
Line.
Liziere.
Lodgnent.
Loop-hole.
Linette.
Magazine.
Magistial.
Mantlet.
Martello tower.
Masked battery.
Merlon.
Mine.
Mloat.
Mloineau.
Orgues.
Orillon.
Outwork.
Palisade.
Parados.
Paralle].
Parapet.
Picket.
Place of arms.
Plane.
Platform.
Plongée.
Portcullis.
Postem.
Priests' cap.
Profile.
Ramp.
Rampart.
Ravelin.
Redan.
Relloubt.
Re-entering-angle.
Relief.
Remblai.
Retired flank.
Retrenchment.
Revetment.
Revolving-tower.
Rilge.
Rifle-pit.
Rimer.
Salient-angle.
Sally-port.
Sand-bag.
Sap.
Sap-roller.
Saucisse.
Scarp.
Shoulder.
sill.
Sillon.
Slope.
Sole.
Spur.
Star fort.
Stockalle.
Sunken battery.
Superior slope.
Swallow-tail.
Tenailles.
Tenaillon.
Terre-plein.
Tete de pont.
Tower.
Trace.
Traverse.
Traversing-platform.

Trench.	Turret.
Trench-cart.	Van-fosse.
Trench cavalier.	Zigzag.

Trous de loup.

For'tress. A large permanent fortification, such as, on our continent, Fortress Monroe, Quebee, St. Juan de Ulloa, Moro Castle. They are too numerous in Europe to be thus summarily cited.

For'ty-eightmo. (Printing.) A book made up of sheets printed 48 pages on a side. 48 mo .

For'ward-fire Car'tridge. One in which the fulminate is at or in the base of the ball, formard of the powder. It is exploded hy a stem d, as in the figure, or else by a needle which penetrates the whole extent of the
 powder, and strikes the
fulminate in the base of the bullet. See Needle-gun.
For'ward-ing. (Bookbinding.) That department which concerms the operation of plain cosering a sewed book, ready for the finisher.

Fosse. (Fortificalion.) A moat or ditch aronnd a fortification.

An advance fosse is a ditch encircling the glacis or esplanade of a fortification.

Foth'er-ing. (Nautical.) A mode of stopping a leak at sea by thrumming a sail with oakum and yarn and drawing it under the bottom so as to clog the aperture.

Fou'cault's Pen'du-lum. A pendulum for rendering visible the diurnal motion of the earth.

It consists of a bob suspended from a considerable hight, say the apex of the dome of the Pantheon or Capitol, and set to vibrating above a circular table marked with degrees. Owing to celtain independence of motion which the bob possesses, vibrating in space, as it were, the earth in its diurnal motion turns round beneath it, as is evidenced by the apparent change of direction of the bob relatively to the graduated table. See Pexdulum.

Fou-gasse'. (Fortification.) A small mine, consisting of a hole charged with combustibles and projectiles hidden by earth, and placed in a position liable to fall into the hands of the enemy.

Fou-lard'. (Fabric.) A thin silk or silk-andcotton dress-stuff.
Found. 1. A three square, single-cut file or float, with one rery acute angle, used ly comb-makers. Sce Comb.
2. To cast ; as metal.

Foun-da'tion. 1. The bed or basis of a structure.
2. (Hat-making.) The body of a hat, of wool or inferior fur, npon which the napping of superior fur is laid and united at the batlery.

Foun-da'tion-bolt. One which keeps a bedplate - of an engine, for instance - down to its substructure.

Foun-da'tion-muslin. (Fabric.) An openworked, gummed fabric, nsed for stiffening dresses and bonnets.

Foun-da'tion-pile. (Hydraulic Enginecring.) One diven into soft or treacherous ground to form - with others - an unyielding hasis for a structure.

Eoun-da'tion-plate. 1. (Bookbinding.) The base plate on which ormaments are arranged in the stamping or embossing press.
2. (Sicam Enginsering.) The bed-plate of a steam-engine.

Found'er's Cleans'ing-mill. A tumbling-box in which small castings are cleansed from adhering
sand. In a similar box articles may be polished or rounded by mutual attrition, assistel, if need be, by an abralant, such as sand or emery.
Found'er's-lathe. A lathe used in preparing the cores for loam-molding, such as those for iron jipes. A central spindle, heing prepared, is placed on centers or ou V's, and the clay loam covering is plastered on and regulated by a templet or pattern.
Found'ing. The art of casting metals. See under the following heads : -

Blackening.
Casting-ladle.
Chamber.
Cheek.
Chill.
Chipping-piece.
Cleaner.
Cliché.
Compression-casting.
Contraction-rule.
Core.
Core-bar.
Core-box.
Core-print.
Cricible-tongs.
Deal-head.
Dryer.
Facing.
False core.
Flask.
Flask-clamp.
Follow-board.
Founder's lathe.
Gagger.
Gate. Geat.
Gland.
Grunter.
Hollow board.
Ingate.
Laille.
Lingot.
Lorm.
L am-cake.
Mantle.
Match-rlate.
Mitrix.
Mold.

Molder's clamp.
Mobler's flask.
Molder's table.
Moh-facing.
Molding and casting apparatus.
Nlolding-board.
Nowell.
Parting.
Perier.
Pickle.
Pig.
Plasm.
Rammer.
Runner.
Sand.
Shank.
Shuttle.
Slicker.
Sow.
Spill-trough.
Spray.
Sprue.
Stalk.
Statuary-casting.
Steady-pin.
Stopping-off.
Strickle.
Strike.
Sullage.
Tamping-bar.
Tedge.
Tile.
Trowel.
Tumbler.
Tumbling-box.
Unilercut.

Foun'dry-crane. One used to lift and trans-
port molds, flasks, castings, etc., in a foundry. Also known as a molding-crane, from its being used for lifting into and out of position the drags of molds, cores, and what not, in heavy casting, loamwork, and pit-casting. Sce Crane.
Fount. An assortment of printer's type. See Fost.

Foun'tain. 1. An upward jet of water, natural or artificial. With the latter we have alone to do.

Many ingenious pneumatic and hydraulic devires are shown in "Spiritalia Heronis," 150 B. c. Some were toys merely, and some, probably, were a part of the illusive machinery of the temples.

In the fountain of Hero, the motion of a column of water is transmitted to another by the intersention of a body of air between the two. The pressure of the elevated body of water compresses the air in a lower chamber; the pressure is transmitted to the air in a chamber above, the water of which is ejected in a jet.

The principle has been made use of in emptying the water from the mines of Schemnitz, Hungary. (See Fig. 58.)

Hero has anticiprated by 2,000 years some of the modern parlor fountains, in which a bouly of compressed air above the water in the reservoir helow is made the means of driving a jet of water into the air. An
 adjustment in two planes is given to the nozzle, so as to direct the stream in the required direction.

This contrivance, which appears simple enough when exhibited in section, was one of the hydraulic marvels of the pagan priests. Fig. 2085 is a late form, which has an ice-chamber and non-conducting casing. The gardens of Montezima were adomed and nourished by streams antl fountains. For the former they were indebted to extensive aqueducts. The possession of the latter shorrs that they were acquainted with the principles of hydranlics.
Among the most remarkable fountains are the Fon-

Fig 208.

Foundry-Crane.

Portable Fountain.
tana di Trevi at Rome, constructed for Pope Clement XII. in 1.35 ; the Fontana Paolina, erected for Pope Paul V. in 1612; the Fontana dell' Acqua Felice, or Fountain of Moses. The fountains of Versailles, made for Louis XiV., and the Jet d'Ean of St. Cloud, are much admired. The fountains of Chatsworth, in Derbyshire, England, the residence of the Duke of Devonshire, are particularly grand; as are also those of the Crystal Palace at Sydenham, near London. Cincinnati is also proud of a fountain made in Germany, and of a very Teutonic asplect.
2. The "beer fountain," as it is called, used for drawing liquors in a tarern bar from barrels in the cellar, by means of a force-pump, is the invention of Bramah, and was patented by him.
3. A copper ressel A (Fig. 2086) coutaining aërated water for a beverage. It is used iu connection with

Soda-Fountain.
an ornate connter arrangement through which the liquid is drawn into tumblers. They are lined with block-tin to prevent corrosion of copper.
4. A hox B containing ice and a coil through which aërated water, known as "soda-water," is conducted to the nozzle, when it is drawn into glasses.

The sirup fountain is for the supply of the sirup which flavors the "soda," so called.
5. An upper reservoir chamber to contain a liquid and supply a wick, a dip-hole, a trough, etc. As in the oil-chamber of an Argand lamp, the reservoir of an inkstand, a drinking-glass in a bird-cage, etc.
6. The ink-reservoir in a printing-press.
7. The supply-chamber in a reservoir pen.

Foun'tain Ink'stand. One which has a continual supply of ink from an elevated fountain (see Fig. 208i), or which has an elastic diaphragm by which the dip-cup may be supplied or enuptied, as in Fig. 2088.

Fig. 2087.

Foun'tain-lamp. One with an elerated reserroir for supply, as in most forms of the Argand, - the student's lamp, for instance.

Gerard used an air-pump to force oil from a low chamber to the burner of an Argand lamp, so as to avoid throwing a shadow upon surrounding objects.

Foun'tain-pen. One which has an ink reservoir for the supply of the pen.
Scheffer's fountain-pen, introduced in Fig 2089. England about 1835, had a reservoir of ink in the holder, and the ink is admitted to the pen by the pressure of the thumb on a projecting stud.
Parker's hydraulic pen, inrented about the same time, had a piston in the holder, operated by a screw stem and a nut on the end of the holder. The lower end of the reserroir being dipperl in ink, the piston was drawn up by rotating the nut, filling the reserroir. The ink was ejected as required by the contrary motion of the thumbnut.

Foun'tain-pump. 1. One in which a istream with a natural head is led throngh a

Fig 2090.

Fountain-Pump.

Fountain-Pen.
stock and nozzle, and thus bears the appearance of a pump, though perennial.
2. One in which a packed piston is replaced by a plunger with a leathern annular disk or diaphragm. Four-cant. (Neutical.) A rope of four strands. Four-chette!. 1. (Surgical.) An instrument
for holding up the tongue while the frenum is being cut.
2. (G/ouc-making.) The forked piece between two arljacent fingers of a glove, uniting the portions of the hack and inside of the finger. Fougettc.
Four'dri-nier'-ma-chine'. A paper-making machine, the first to make a continunus web. It was invented by Louis Robert, of Essonne, and patented by him in France. He experienced some pecuniary dilficulties, and sold the right to M. Leger-Didot. The latter came to England and made arrangements fur working it. A Mr. Gamble and the brothers Fourdninier improved it, and made a valuable machine which was pirated, and Lankrupterl the gentlemen whose name is imperishably associated with it. The enterprise is the glory of the mechanical grenius, and the disgrace of the law loris ant law courts of the "tight little islanil."
The machine was perfected by Bryan Donkin, John Wilks, and others not known to fame.

The esse itioll features of the machine are :-

1. A stream of paper pulp fowing on to the surface of an malless, horizontal, wire web.
2. A tremulons motion to the web to shake out the water, which falls in a rain heneath, and to felt the fiber.
3. A traveling deckle which keens up with the motion of the weh, and forms the lateral margin of the paper.
4. A porous dindy which presses the pulp and absorbs some of the water.
5. A couching ro'ler to take up the web.
6. A pressure roller to abstract moisture.
7. Drying, sizing, finishing, measuring, cutting devices, al. lib. See Paper-Machine.

Fourgon. 1. A tumbrel or ammunition-wagon. 2. A French bagrage-vehicle.

Fourth-rate. Formerly a 50 to 70 gun vessel, now a gunhoat carrying from 1 to 4 gims.
Four-way Cock. A cock having two separate

Fig. 2091.
 passages in the plug, and communicating with four pipes. The inventior. of James Watt.
Fowlingpiece. A fire-arm aulapted for ordinary sporting. See Fire-arm.

Fox (Nauti-
cal.) A small strand of rope made by twisting several rope-yarns together. Used for scizings, mats, scunits, geskets.
Fox-bolt. A descrintion of bolt which is made tight by a fox or wedge driven into a split in the end. See Bolt.
Fox'ing. (Shocmrking.) 1. An outer covering or upper leather over the usual uppor. One mode of repairing a worn upper by clothing it.
2. Ornamental strips of a different material on the uppers of shoes.
Fox-key. (Machinery.) A split-cotter with a thin wellge of steel driven into the end to prevent its working back.
Fox-tail Saw. A dovetail saw.

Fig 2092.

Fox-Tail Wedging.

Fox-tail Wedg'ing. A mode of spreading the end of a tenon in the mortise, so as to give it a dovetail character to resist withdrawal. The same is applied to wooden pins which occupy holes not bored throngh. In the point of the pin is inserted a thin wedge of hard wood. When this reaches the hottom of the hole, it sinks into and spreads the end of the pin so as to bind it very firmly in the hole.

With a tenon, it is usual to insert a number of small wedges, so that it may not be split much at any one point.

Fox-type. (Photography.) A printing process in which a transparent positive is used, and the action of the light is the reverse of the usual process.

Foy'er. The crucible or basin in a furnace, to receive the molten metal.
Frache. A shallow iron pan to hold glass-ware while being annealed in a lecr.
Frag'ments. (Printing.) A few pages at the end of a book. The title, preface, contents, etc., imposed so as to print off economically. Oddments.

Fraise. 1. (Fortification.) Palisading placed horizuntal at the crest of the scarp and projecting over the ditch.
2. A tool used by marble-workers to enlarge a hole made by a dirill. It is grooved, and slightly conical.

Frame. The skeleton of a structure.

1. (Shipbuilding.) The parts of a ship's frame are shown in Fig. 2093, which represents a midship section.

Ship's Frame.
a, keel.
b, keelson.
c, keelson-rider.
d, middle line or center line.
n, water-ways.
e, floor-timber, ground- o, plank-shears. futtock, or navel-fut- p, shrer-strakes. tock. q, wales.
f, chock for filling to the r, bilge-planks, inside and timbers.
g, second futtocks. s, futtock-planks.
h, top timbers. t, clamps or sea-crafts.
i, rougl-tree timber or u, limber-boards. stanchion. u, shelf-pieces or stringers.
2. The strong work which supports the engine and boilers of a locomative unon the wheels, and known as inside frame or outside frame, according to the position of the wheels relatively to the frame.
3. The head of the batten in a luons.
4. The ribs and stretehers of an umbrella, or other structure with a fabric coverng.
5. ((ierpintry.) a. The skeleton structure of a woolen lmilling. consisting of sills, posts, beans, sleepers, joists, and rafters, with the studding that is to form partitions.
b. The outwarl work enclosing a door or window.
c. The part of a loor or window enclosing panels.
d. A border or inclosure for a picture, or panes of glass.
6. (IForologm.) That which contains the mechanism of a wateh or elock. It consists of two plates and a sulliciency of pillers; usumbly tour.
7. (Printing.) A desk containing two pairs of cases, containing roman and italie letters for the use of a compositor (see CasE), or the stand supporting then.
8. A structure of four hars arranged in a square and adjustable in size, on which clotlı or other fabric is stretched for quilting, embroidery, etc.
9. A tem applied, especially in England, to machines built upon or within a thamework of tim-bers- e. ©. the stocking-frume, luce-frame, waterfrome, silk-frathe, etc. It is one degree more complex than the quilting-frame, tumbom-fiame, embroilery-fmme, glass or picture frame; or a window or door frame.
10. (Sortp-mating.) A box whose sides are removable when reguired, and locked together when the soap is to be poured in. As soon as the soap' has acquined suffeient solidity, the sides are unlocked and taken down, exposing the block of soap, which is then ent up by wires which are passed throuch it to divide it into parallelopipeds.

Frame-lev'el. A mason's level.
Frame-saw. A thin saw stretehed in a frame which gives it sufficient rigidity in its work.

The buhl-stu, for enlarging, is of this character. It is common to make the hamule-ittachment at each

end rotatable, so as to present the saw-edge in any direction.

A frame-saw is shown in a painting at lleremlaneum. The sawyers are at each end, ous standing and the other sitting. The beinch to which the timber is secmed by cranps is supported by four-learged stools. The saw-frame is stuare and the saw-hlate is strained in the midille ; the teeth stand perpendicularly to the plane of the frame.

Frame-siws were common in Egyl many centuries previous to this time.

Fram'ing 1. A tuode of putting parts of a structure together

Joinery framing is of rarionsulescriptions, as square, bead, beal and fillet, ogee, ete., , ite. See the following examples, whicl all hatre flut pancts and square bucks:-
a, orolo and square.
c, quirk-ovolo fillet. b, yuirk-ovolo.
c, quirk-ovolo cock-bead g, quirk-orree.
or bead and tillet. i, prirk-ogee, bead, and f, ogee and square. fillet.
h, quirk-ogee and quirk- j, carutto. bead. l, cavetto, bead, and fillet.

The following rary in the poncls:-
7, quirk-ovolo and bead, raised panel and square bate.
m, quink-ovolo and head, raised panel with osolo on the rising, and square back,
n, quirk-ovolo and head, raised panel, with orolo on the rising groove round the fice, and square back. The list might he much extended.

0 is square-framing, the simplest description of framing, having no molding on either side.
2. (Mining.) An operation upon potnded or stamped ores hy which they are sorted into grades of comprative weight and consequent riclness.

The framing-tabic is eight feet long, four feet wide, and has a leclge around it. It is suspended in m inclined position, on pivots, so that it may be tipued into a vertical position when full, discharging its contents into separate cisterns beneath; the reason for the separation of the receptacles will be apparent presently.

At the upper end of the frame is the jagginghoard, over which the sluices are so distributed that a small stream of water shall carry them gradially down on to the frame. The richer portions of the ore rest upon the upper part of the frame, and the boorer, lighter portions are carried farther down; light impurities escape with the water at the lower part ot the frame. The ore on the frame is ocea. sionally stirrel with a rake, that every portion may he subjecterl to the action of the water:

When the frome is sufficiently full, the latch which leple it horizontal is lifted, and the frame tippud up into a vertical position, so as to tip out its contents, which fall into the vats beneath. These

vats are arranged in a row, so that they may re. spectively receive the slimes which haw ancommlated nearer to or farther from the heal of thr: frame, the richness being eletermined by the moximity to the hearl or upper portion. The frame is then realjusterl, a yuantity of slimes spreall on the juygingbaurd, and the operation recommenoes.

The contents of the cistems are treated by sub)sequent processes of a nature allapted to their respective fualities. Analogens processes are described muler Budule; Thunk; Keeve; Jugueli; Tye, etc. (which see).

Fram'ing-chis'el. (Carpontry.) A heary chisel for making mortises. It has a socket-shank which receives the wooden hamdle on which the blows of the mallot are delivered.

Franking. (Joinery.) The notching out a portion of a sash-bar fur the passage of the transverse bur, to make a miter-joint.

Frap'ping. 1. (J'mutical.) a. The binding together of the several ropes of a tarkle at a point between the blocks, so as to increase still farther the tension.
b. Securing a slip in emergency by wrapping ropes around it, to prevent starting of the planks.
"They used lu-l ןs, undergirding the ship." Luke's necount of Paul's moyaje.
2. liracing the cords of a drum by pulling them tornther.

Free'board. (Shipuorighting.) So mnch of the ressel's side as is included between the plank-sheer and the water-line.

Free-reed. (.1/usic.) Anelastictongue, usually of brass, aud playing
Fig. 2097. in a long rectanmular opening in a plate to which one end

Free-Reed. of it is rivetel. The name frec-real is given to distinguish it foom the reed which latters against the seat, as in the charinet, some organpipues, the bassoun, and oboe. Thuse bettering-rerels are usually of wool. The free-rced is uses in the acenideon, melorleon, concertina, harmoneon, parlororean, aud in most of the rued-pipes of organs.
The opening in the plate is slinhtly larger than the margin of the tongre, so that the portion of the latter concermed in the vibration loes not batter arainst or tomeh thr plate. At one end is a stud by whicll the plate is drawn in or ont from the seat
of the reed over the aperture whenee it derives the air-blast producines the vibration and the conse[flunt musicia] tont. At some point on the plate is shenoterl the note to which the tongre is tumed.

Free'stone. An oolitie stone, so called liom the lacility with which it is rived in any direction.
Eree-stuff. (C'urpontry.) Timberfrefrom knots. Clewr-stuff.

Ereez'er. An apparatus in which cream or other food is placed tu be trozen. In the eximple, the lijuid to be congealed or cooled is contanined in a

Freezing-Arparatus.
metallic cylinder inclosed by another cylimber and surrounded by the chemical refryerating snbotances, the appuratns being rotated or oscillated to thoroughly agitate the liquids, and bring new particles to the cold surface.

Naster's machine for icing dinks consists of a central cylinder for the confectionery, a surrounding cylinder for the freczing mixture, and one outside of this again, for containing water. The inner cylinder is rapilly revolvel, its contents lecome frozen, and the water in the outer vessel becomes a hollow cylinder of ice, in which a decanter may be set to ice its contents.

Freez'ing-mix'ture. A mixture of salt and pommed ice ; or a combination of chemicals with or withont ice. See Ice-makivg.

Freight-car. One constructed for the carriage ol merchandise.

Freight-en'gine. (Steam Fhagincering.) A locomotive alapted for drawing heary trains at morlerate spered. Thu drivers are coupled torether so as to increase athesion, and ate of smabler diameter than usual with passenger engines arlapted for more rapid transit.

French-bit. (Carpentry.) A boring tool adapted to use on a lathe-head or by a bow. It is iutended for boring hard wool, and alproaches the characteristios of a drill. Sce Brr.
French-fly'ers. (C'urpentry.) Stairs that fly forwarls until they reach within a length of a stair from the wall, where a quarter space occurs ; the steps next ascend at a right angle, when another quarter space oremrs; they then ascend in an oprosite flight. pradlel to the first direstion.
Erench-horn. A wind-instrument formed of metal, having a circular shape and in gradual taper lion the monti-ppece to the flarint pasilion. See Hows:
French-pol'ish. A solntion of resiu or grun resin in altohol or wood naphtha. A good recipe is, shellac, $1 \frac{1}{2}$ pomuls ; spitits of wine, I gallon. Or, shellac, $2 \sqrt{2}$ lus. : gum mastic and samdarac, each 3 ounces; alcohol, 1 gallon; copal rarninh, 1 piut. Or for a dark color, shellac, 1 pound; benzoni, $\frac{1}{2}$ pound; alcohol, I gallon. Or, shellac, It pound ${ }^{\text {; }}$ guaiacum, $\frac{1}{4}$ pound ; alcohol, 1 grallon.

It is laid on with a sponge, a brush of walling enveloped in a rag, or a rubber made of a roll of list. These are saturated with the varnish which they gradually yield by pressure to the surface of the wood, over which they are kept in constant motion in uniform circular strokes. The surface of the rubber is covered with an oiled cloth, which is renewed as it becomes clogryed.

French-roof. A root having portions of two different pitches. A curb roof. A Mausard roof.

French-win'dow. A large casement window, moving on hinges instead of sliding vertically in grooves. A cascment.

Fres'co. A mode of painting in which the colors are mixed with and laid on in the manner of plaster.
The picture is prepured as a cartoon, and is pricked through on to the soft surface of plaster "pmen which the fresco is to be placent.

The surface is rough, and is damped to recrive the colors, which are mixed and ground ul with lime.
A solntion of silex instead of lime was nesed hy Oberrath von Fuchs, being laid on a chemically prepared ground. It becomes exceedingly hard.

Fret. 1. An ornament of zigzag, interlacing, or variously contorted fillets, used as an architectural

Fig. 2100.

decoration. Some frets are included in the following: 一
a, intersecting firet.
, zigzag or cherron mokling.
c, embattled fret.
d, triangular fiet.
2. (Music.) One of the bars of wire on the fingerboard of a guitar and some other instruments, to indicate where the fingers are to be placed for playing certain notes.

Fret-saw. 1. A saw (n) with a relatively long, natrow blade, used in cutting the frets, serolls, etc., on verge boards, onnamented screens, etc. A kcyhole sazv ; a comprass-sau:.
2. A machine (b) mounted on a stamd with a treadle to give the reciproeating motion to the gig-saw. The

machine shown is specially intended for fret-work on a small scale, omamental inlaying, buhl and reisner work (which see).

Fret-work. 1. (flazing.) A morle of glazing in which a aumber of separate pieces of stained glass are fitted together in leaden cromes so as to form paterns. The cames are fastened by leaden bands to saddle-brers of iron, which cross the window-fiame.
2. (Whorl.) Carved or open wood work iu ornamental pattems aml devires.

Fri'ar. (Printing.) A pale patch in a printed shept.

Fric'tion-balls. Balls placed beneath a traversing olject to relieve frirtion. Some forms of swing1ridges are thus supported. Properly, anti-friction balls.

Fric'tion-brake. A form of dynamometer in-

vented by Prony, in which a pair of friction-blocks are screwed to a journal rotating at a given speed,
and tightened to such an extent that the unweighted lever will remain horizontal between the sturls $\mathrm{ma}^{2} \mathrm{~m}^{\prime}$.

The shatt is now set in mution by the pime mover, the serews are then gradually tightemed to such a degree that the shaft moves exactly with the velocity at which its uselinl effect hats to be determined. Were it not for the stud m, the lever, with the whole brake apparatus, would move round in a cirele with the shatt, so that this stud has to withstand a certain force from the lever pressing against

Fig. 2103.

Brown's Friction'-Clutch.

it. Now place gradually upon G such a weight as will countermet the pressure of the lever against m, and bring it back to its horizontal position. It is evilent that this weight, in combination with the lever F, expresses the amount of friction between the blocks and the drum.

Fric'tion-clutch. A device for connecting two shatts by binging in piece on one shaft in contacet with a piecennanothershaft, which revolves with surh force that the fomer partakes of the motion of the latter.

Friction-Hammer.

In Fig. 2103, the shipper-hanulle F carries the shalt, and with it the toggles $J J$, expranding the segments against the rim of the palley. See also C\&"ない.

Fric'tion-cones. A fomn of friction-couplingr in which the combeting jortions have uspectively a conimal disk and at hollow cone, which become frictionally wherent by wontact.

Fric'tion-coup ling. See Fhiction-clutch.
Fric'tion-gear. It heels which act upon each other by the adlesion of their contacting surfaces, instead of by cogs, bands, or chains.

Fric'tion-ham'mer. One leriving its name from the hamme being lifted hy means of the friction of revolving rollers, which nip the hammer-rod. The framework ronsists of a pillar A, to which are bolted the two cheeks C C carrying the working appratus. On the oscillating frame $E \quad E$ are the plummer-blocks for the spimtles, carrying the driving gear and tifiction-rollers. The motion is, in the first instance, communicated to the drum G, and consequently to $G^{\prime \prime}$, fixeal upon the same shalt ; thus communicates the motion by means of it crossed strap, to the drum H, and hence also to a ginion which works into the spur-wheel L fixed upon the same shaft with the friction-roller N : in a similar manacr, a friction-roller on the otlicr side of the hammer-rof is set in motion by means of a spur-wheel and pinion deriving motion from the drum G^{\prime}.

The friction-rollers have woolen rims. The oscillating frame E, when tilted upon its axis, causes the friction-rollers to mip the hammer-rod, the one a little ahove, the other a little below, the axis. When the frame E resumes its horizontal position, the hammer is allowed to fall, being guided by the rollers $P P$ and Q Q. The tilting of the frame is done by means of the lerer, connected with the same loy means of the rod and chain passing over the fixed pulley J.

Fric'tion - pri'-
mer. A small hrass tube filleel with gunpowder, and haring a smaller tube containing friction composition inserterl at right angles near the top. The composition is ignited hy neans of a roughed wire inserted in the snaller tube, which is minilly drawn out by a lanyard having a look at the end.

The composition consists of 2 prarts sulpluret of antimony and 1 part chlorate of potassa, moistenuel with gum water and driecl.

Fric'tion-pul' ley. See Fhetiosclithe ; Cinten.

Fric'tion-tube. (Ordnance.) A tube containing a composition which is intlimed by friction, and which is placed in the vent of a gun to ignite the charge
when the lanyard is pulled. See Fiaction-phiMER.

Fric'tion-wheel. A wheel the motion of which is cansed by the triction of a moving body, or, convispely, whinh communicates motion to a body by frictional contact. In the ammex illustration $a b$, one wheel being driven hecomes a motor to the other, their prerimeters heing in contact. The surfuee is usnally clothed with leather, rubler, or some: sufficiently elastic material which does not polish too readily, and thus induce slipping.

By groowing the perimeters of the wheels, the contact may lee made more intimate, as the surface Ploraged is increasmal, and the elastic naterial of the resperetive faces cansel to bind.
I'lue term friction-wheel is often, hut erroneonsly, applied to wheels which diminish friotion ; these are groperly called Anti-frictus. Whelels (which see.)

Friction-Gearing.

Howlett's frietion gearing chats an upper indiarubler wheel with a V. edge, clamperl between two metallic plates. By screwing up, the nut which lands the jarts together, the disk is made to expand radially, and thus increase the tractive power on the lower driv-ing-wheel.
d shows another form. A collar fastened to the central shaft has four piroted arms. When the rim turns in one direction, the arms turn on thpir pirots, leaving the rim and failing to transfer the motion to the shalt.

When the rim turns in the contrary direction, the arms catch against it and are rotated by the contact, tuming the shatt als?
The frictiom-wheel feed, by which logs are fed to the gang-saws in the large lumber-mills of Ottawa, Canala, consists of a horizontal wheel 40 inches in diameter, and an upright one driven by band from the encine-shaft, and 24inch sdianteter. (s.e Fig. 1601.)
The horizontal wheel is vertically arljustable by a hand-wheel and shaft on the working floor of the mill, the friction-wheel slipping on a spline. As the said wheel approaches towarls the center of the driving-wheel, the speed of the feed is lessened, and conversely; if it cross the renter, the motion is in the nther direction, and the feed is reversent.

Frieze. 1. (Architchure.) A tlat member of an entalbature between the arehitrave and cornice.

Fricze-prencl; one of the upper panels of a sixpanel door.

Friczo-rail; the one next to the ton rail.
2 (Firbric.) A coarse woolen cloth.
Frig'ate. (Tessel.) The original frigate was a Meditcrranean ressel propelled hy sails and oars.

It is now a vessel of war, having an upper tlush deck (spar-tleck) and one covered gun-deck (maindeck). The armanment is from $2 s$ to 44 guns.

The grade is below a man-of-war and above a corvette. The rating of iron-ciads is different; the guns being larger and fewer in numher.

Frig'a-toon. A Venetian vesspl with a square stern, main-mast, jigger-mizzen, and howsprit.

Frig'er-a-to-ry. A cooling-chamber.
A chamber maintained at a low temperature for the preservation of meat or vegetahles.

Frilling. A species of plaited or lluted edging or trimming of fine linen. The gathersel or plaited edge is sewn to a band, and the crimpeel or ruttled ellge forms a collar, a cufl; or an ornanient to a shirtfront.
Fringe-loom. One in which the weft-thread is carried and detainel beyond the limit of the warp, which has thus a series of loopis beyond the selvage.
Frisk'et. (Printing.) A rectangular frame having tapes, cords, or praper stretched across it for holding the shaet to the lympan. 2
The frisket is a frame aromd the trpe-form, and keeps the margin of the paper elean.
Frit. (rloss-making.) A calcined mixture of sanil and fluxes ready to be melted in a crucible to form glass.

The tem is also applied to other vitreous combinations or compositions for use in manufactming. It is not applied to manufacturel articles, but to those in course of conversion, as the calcined kelp and leas, which are ingredients in the glaze of delft-ware.

A frit-mixer is a horizontal cylinder with oblique beaters, or a box with semi-cylindrical bottom and a rotating slialt with heaters or stirring arms.
Frit-brick. (flass-muking.) A lump of calcined glass materials, which have heen mited and brought to a pasty condition in a reverberatory furnace preliminary to the perfect vitrification in the melting-10t. See Erating-Fumace.
Frith. (IIydranlics.) A fislu-weir.
Frit'ting-fur'nace. (Glass-mationg.) A reverberatory furnace in which the materials for making glass ate calcined (fritted) as a process preliminary to melting. The object is to efleet a prartial mion of the silicic acisl and alkali, to arnitl volatilization of the latter in the snbsequent vitrification.
The materials (sand, chalk, sodla-ash, and cullet) heing introduced into the furnace, the temperature is gradually raised for thre hours. The pasty mixthre is stirred, and the temperature increased to incipient fusion. The stufl is then raked out and transferred to the melting-pot, or is placed in castiron trays, cut into blockis by a spade, and stored away as frit-bricks.
Fri'zel. The movahle plate of steel placerl vertieally above the pan of a gun-lock to receive the blow of the smephance. The form of tlint-lock which superseded the wheel-lock.
Friz'zing. 1. (Leather-manufacturc.) A process to which chamois and rash leather are sulyjected after the skins are unhaired, butcd, scroped, fleshed, and ruised.

It consists in rubbing the skins with pumice stone or a blunt knife till the grein appearance is entirely remored, the surface softened, and an even thickness obtainell thronghout.
2. (Frbric.) A peculiar finish given to certain kinds of cloth. See next article.

Friz'zing-ma-chine'. 1. (Fabric.) A machine on which the nap of woolen cloth is formed into a number of little prominences or tufts. Petershans cloth, so called, is thens formed.

The machine consists of three parts, - the frizacr, the frizing-table, the drowing-bcam. The cloth is drawn ly the beam between the two former fortions, which are respectively about ten fect long, fifteen
inches wide, and latid parallel, a shart distamee aphit. The table is unlemeath, and its upher surfice is covered with a conse mappy cloth. The frizeer has a slow semicirentar motion, and its surfiace is incrusted with a cement composed of glue, gum-ambic, and yellow samd.
'Jhe devering-betem is coverel with sharp points, and drags the cloth between the frizare and the table, the later preventing its loeing shifted about by the rotary reciprocation of the frizzer above, whose mmerous protuberanees catch the fibers of the cloth umler treatment and roll them into little argregated tutts or bunches, as the cloth is fed grablually through.
2. (IVond-working.) A bench with a circular rutter-heal slightly protruding above the working surface, and adapted to dress boarls which are passed over it.

Frog. 1. A sectian of rail at a point where mils divelye, of one track leads to two lirameles. In the illustration, a feature of comection is introduced,

Fig. 2106.

Raituray-Frog.
the end of the frog heing dovetailed to receive the neeks of the rails, and a chair placed under the dovetailed end. The ohair has one or two recesses to support the rails, and suitable holes to receive the bolts.

A cross-frog is one placed at a rectangular intersection of railroat tracks.
2. A bitton or toggle of spimile shape and covered with silk or other materiil, which is passed through a loop on the oplosite sinte of the breast of a militiry cloak or overcoat, serving to fasten the two breasts torether.
3. The loop of a bayonet or sword seabbard.

Fig. 2107.

Cross-Frog. each other, and leaving opeu tigures lietween, which is done prepuratory to forming vases or ormaments. Although it apprars covered with fractures, it is juerfectly sonorons." neath the oit-tube of an Argand lann to kecp the oil in a flowing condition on cold nights. ITsed espuc. cially in lighthouses.
Frost-nail. A roughing mail ; thiven into a horse's shoe in slippery weather.

Frow. (rompring.) A cleaving tool for riving staves, shingles. or claphoards from the balk or juyyle. Frower, froe.

It has a slarp pelge, wedgeshaped hade, and a hamule set in the plane of the blalle, but at right angles to its length. It is driven by a mallet.
omitted. It is surposed to resemble the horr-frost, and herse the name.
Frosted work is introduced as a foil or contrast to burnish work, in which the metal receives the full luster ly an agate or dint bumisher.
Elce:tro-plated work is in the frosted condition as it comes from the bath, and may be burnished in whole or in frart.

The frosted alpuarace on glass is given by grinding, making gromel gloss, which ditlises the mys, and dows not transmit a divect my or a dear inage.

Frost'ed-glass. (riluss-manufiecture.) A form of glass formerly made hy the Vometians, and recently revived by Apsley Pellitt, who thus deseribes it :-
"l'rosted glass hats irregulaty varien marbe-like projecting dislocations in the intervening fissures. suddenly plungiug hot glass into cold water produces crystalline convex fractures, with a polished exterior, like Derligshire spar ; lat the concave intervening figures are eansed, first by chilling, and then rehating at the funare, and simultanemsly expanding the reheated hall of glass hy hlowing, thus separating the erystals firm

Frost-lamp. An oil-lamp plared he-

Fig. 2108.

Frow'er. A Frow (which sep).

Fruit-box. A suall hox of certain dimensions in which fruit is shipred to market. Bury-boxesare made of strawhoard, scaleboarcl, splints, and many other materials. Some of them are intemed to
Frog-plate. An accessory to the compound mi- be so cheap as to be sold with the fruit, others are crosenge in which the web of a frog's foot is exposed on the stage, to exemplify the circulation of the blond.
Front. (Fortification.) Two half-bastions and a curtain.
Fron'ton. (Architecture.) The decorated entrunce to a bilding consisting of a comice supported ly consoles and sulmounted by a perdiment.

Frost'ed. The deal or lusterless appearance of gold, silver, or glass, when polishing the surface is
frustums which pack in nests, others are collapsible for hack slijpurent.
The larger fruits are earried in small crates, or opern hoxes made of slats.
Fruit-dry'er. A small honse ar kiln with furmace, shelres, and means for rentilation, used for drying fruits. There are many forms, which differ mainly in the arrangement of the parts named. In the example, the fire is made in furnace B, the heated surrounding air is dellected by plate C, passes in a

sinuous course up amone the she!res $c c$, and ont at the duct f. The famane B has its own the B.

Fruit-frame. A trellis or espalier.
Eruit-gath'er-er. They are of two kinds. One in which a canvas is stretelhell beneath the tree to cate.h the fruit without bruising, as in Fig. 2110, which

Fig. 2110.

Fruit-Gatherer.
shows a jointed frame, nver which a sheet is secured by the pins, the inner ring encircling the trunk.

Another form is really a fruit-picker, being on the end of a loug statf, as in Fig. 2111, in which prongs

hook off the frnit and a hag eatehes it. This latter kind has nany varieties, with different moles of gm-ping or cutting, eatching, and leading down the fruit.

Fruit-house. A stotage laouse for fruit. The walls hore double thickness, with intervening non-

Fig. 2112.

conducting material, and provisiou is made for effective veutilation.

The walls and floors liave wooden surfaces with mon-comelucting lininers or bank spaces hetween all immer surfices and the outer walls or the earth. V 'entilating entrances are at the level of the ice-floor, with latehes opening down to the storage rooms, and indosed spaces to carry ofl had air through the mass of ice plwarl when, it is light ain, and downward out at the buttutn of the entrance-donrs when it is carhonic-acil gas, the light air passing through the upper space alhove the ice, and thence out at the winlows of the obervatory.
Fruit-jar. Jars for pueserving fruit are male of earthenware or glass, especialiy the latter. Some have been made of metal with poreelain (so called) lining, but these have met with little faror, as the acids of the fruits attack the leal of the enamel and destroy it, and themselves hecome unwholesome. The same remarks alply to the earthenware, whose glazing has gemerally salts of leal, and is therefore undit lor the purpose. Sume kinds of glass eren, where lead has been used as a flux, are not entirely berond suspicion. Glass jars weve formerly blown, like bottles, but are now usually pressed amd hlown in molls. The exercise of ingenuity has principally concerned the modes of closing, to renter them air-tight, protecting the contents from aceess of oxygen and consequent fermentation. Among the deriees for this purnose are hids whieh screw lown on the threadel neck of the jar, the edge of the lid coming against a eaontelone gasket on a shoulder of the jar. or a gasket on the lip of the jar coming against the inner surface of the lid. Another favorite form is a flat or flatnged lid pressel down upon a gasket on the lip by sone mechanical locking contrivanee.

In the illustration are shown sereral forms of fastening the lisl lermetically to the jar, after filling the latter and triving out a small remainder of air by the steam of the heated contents.
α is a tin can with a lid whose flange dips into a
trough on the can, which is closed by wax that is rum into the trough.
b hats a corer secured by hooks and a yoke, and pressed down upon a gasket on the lip. The hok's in the lid are for the filling of any remaning spase and the escape of the residual air. They are then both stopped.

c has a cover secured by an elastic band which is held by lugs on the neck of the jar.
d has a cover secured by a yoke whose ends palss beneath inclined lugs on the neck so as to screw down the lid as the yoke is rotated.
e has a glass lid, depressed by a sleet-metal screw collar, which engages the threaded neek of the jar.
f has a glass screw-stopprer whose threads imbed themselves in the elastic gasket which is held in an interior groove of the neek.
g, a yoke fits in slots in the neck, and holds a center screw which presses the cover upon the gasket.
$h i j$ kil are all forms in which an oval month admits the oval flange of the lid; the rotation of the latter brings the major diameter of the flange coincident with the minor axis of the opening, and locks the flange under the neck of the bottle.

m has a cover locked by a yoke and cam.
n has a sroovet lid which holds the lip of the neck, imel has a shoulder which fits agoinst a gasket romel the work.

Fruit-knife. A knife for cutting frnit, having a blade which is not acted upon peremotility ly the acills of the frome. Silver is the namal material.

Fruit-lad'der. A light ladder to rest against the limbs of the tree, or stand ly itself while the picker stands upon it to gather fruit.

Fruit-mill. A mill lor griuding grapes for must or apples for vider. (Nowe ('iner-3ulh.) The example shows a pair of studded grinding rollers, an apron

on to which the fruit falls and is cartied hetween sevoral consecutive pairs of rollers, which (xxpess the juice.

Fruit-pick'er. An implement for reaching up to and picking fruit from a tree. Fig 2116. Three forms of many are shown. One (Fig, 2116) has two sliding the ropere are pulled lown upon the jaws e. The fruit thoys into a lasket.
Fig. 2117 has a metallic hoop around the mouth of the bag. The ulges of the flange around the motch are sharpened, the better to cut the stem and dutarla the fruit; ame the hand or casting has a stem or projection by which it is Fruit-Picher.
attachect at an angle to the handle.
In Fig. 2118 a vertical blade is fixed to the end of the liandle, and against this harle another is caussel to work like a pair
of shears, the movable blate being operated by a cord and spring. The sten of the fruit is cut, the fruit falling into a pocket attached to the top of the pole.

Fis. 211%.

Fruit-Pickers.
Fruit-press. Oue for expressing the juice of

Fruis-Press. fruit. The subject is considered under Cidera-phess (which see). The example shows a small domestic press for fruit, such as those used in limited quantities for currant-wine, jellies, ete.

Fry'ing-pan. A pan in which from is cooked in fat. In the illustration, a duct leals the fumes of the conking down into the stove-Hue.
Fudge-wheel. (Shocmuking.) A tool to ormament the elloe of a sole.

Fu'el, Ar'ti-ficial. Agglomeratel peat, sawdust, coal-thlet, and slack, one or more of them in various combinations, homel together, by heavy presure, with cements, clay, coal-tar, or the residuim of

Fig. 2120

Fryins-Pan.
starch-manufarture. The latter is used in the Belgian and Austrian works. Dehaynin's works in Belgium turn out 175,000 tons of this fuel per vear. It leaves six per cent of ashes. The Northern Railway of Austria has works which produce 15,000 tons per ammom; prisms $9 \times 5 \times 4 \frac{3}{2}$ inches, weighing eight pounds, evaporating seven
pounds of water per ponnt of fuel. The coal is compressed with the refuse of stawh-works as a cement, and dried in a kiln heated urerliead by a current of hot air.

Sinall coal two barts and clay me part, molcierl into blocks like camon-balls amid divil, lave berm used for a century past in llainanlt. - London Monthly Mogozine, April 1, 1:00.

Prat ant turf cut into hlocks and driod have been nsed any time these thousands of years past, but the business of preprang $]^{\text {peat-fucl hy mechani'al mans }}$ and by adnixtures is compratively motern. (See Peat-sachise.) lıj60: Sir Hugh Platt jrilished a book in which he deseribed a new fucl hlock made of coal and loam in "the mamer of Lnkeland of Germanie." He also used coal-slack, sawrhest, tanner's bark, accorwgated ly loam anul cow-thong. Chahanne's Encfish pratent of $\overline{5} 09$ claimed srparating the large coal from the shall coal hy passing the latter throngh sieves or gratings madis of wood or metal, and then consolidating the amall coal hy mixing it with earth, clay, cow-dung, tar, pitch, lwoken glass, sulphur, sawdust. oil-cakes, tan, or woot, or any other combustible ingerlient, to le mixed together and gromul with a wheel in water, in a rooden ressel; this nixture he altomads plared in pits provided with ilrains for the water to run off, and then, when dyy, molded the mass into cakes of a considerahle size.

The following E'nited states patents may be cou-sulted:-

Fuel-dry'er. A kiln for drying lhocks of artificial fince. The thays supporting the blocks of fuel run upon rollersupon the angle-iron bars secured in the walls. The walls have perforations to allow the escape of the rapors resulting from the drwing of the blocks. Either heated air or steam1-1י1י"s may be placed between the trays. The ends of the chamber may be closest by metallic doors.

Fu'el-feed'er. A ilevice for leeding fuel in graluated quantities to a

Fuci-Dryer. limuace, either for metallurgical purpinses or for steam-hoikers. The example shows an apparatus for carrying coal, sawdust, and other fuel, from a lunker to the funtace, and feeding it regnlarly and evenly upon the grate unter the boilers. It is worked hy the engine. It will be readily understood without specifir descipition. James Watt, 7669 , and some even hefore him, tried to feed furnaces mechanically to sare fuel. Some of the devices are noted unter Shone-constmang Furxace (which see).

Fu'el Press, Com-pressed'. A machine for compressing coal-dust and a cementing material into a block.

In one form the material is forced within cylindri-

cal pipes of cast-iron by the resistance offered to its passiage throngh the pripe, and caused by the friction of the material against the sides of the pipe. The compressed fuel pasises ont of these eatitiron pipen, as a continuons cylimdrical har, which is broken in suitable lengths, and solel in the form of round logs.
Mazeline's machine pulnees bricks of prismatic form. It consists of in mixing apparatus, which feeds the material into a machine, having twolve spuare mokds arranged in a circular fame, which has a rotating movement. Bath lie is worked by a sumare piston projecting into it from the hottom, and aeted upon by an inclined plane which presses the pistons upsard haning the revolution of the circular frame, sis that ewh hrick is completed and delivered hy the repective mohl, making one complete turn roumd the erutall axis of the machine. See Peat-maCHIV.
Ful'crum. A prop or support ; the point on which a lever tums.
Ful'crum For'ceps. A dentist's instrmment in which one bak in firmished with a hinged plate

Fig. 2123.

Fulcrum- Forceps.
Which bears against one side of the object, while the other beak has the nsuitl teoth or gouge shape.

The plate is coverel with an india-rubler pad or enshion about $\frac{1}{8}$ of 'un inel thick, seaned by fine wire. The parl wents on the gnm.
Ful'gu-ra'tion. (Mehicluorgy.) The sudden herightening of gold or silver in the crucible as the last traces of dross leave the surface.
Full-bound. (Bookbinding.) Covered with leather.

Full-cen'ter Arch. A semicircular arch or vanlt. Whe deserihing the fill amount of 180°.

Full'er. (Foryme) 1. A tool, sometimesk known as a cremeer, strack hy the hammer of placed in the lamy hole of the anvil and employed to swage down or spread the iron by a series of paralled indentations.

The tools are known respectively as the top (t) and bottom fullor (b).

Fig. 2124.

2. A tool having grooves, and forming a die or swage into whieh iron is driven by the hammer to emofer a shape. Used in forming the fullering of horseshows.

Full'er's-earth.
thous, aluninove An uncfullers to alsont the at wit Which wool has heen treated in a
previous part of its manufacture.

Fulling-Tools.

Full'ing. A process by which cloth made of a felting ther is comlensed, strengthened, and thickeneld, with a loss ol wilth and lengtl. Some fibers will felt, others will not. (See Felir.) In felting, the fihers - wool, for instance - slip past each other, and their tontheel edges interlock, so that a contimation of the process canses then to he more amd more intimately associated, hurdeling together and holding tight.
The cloth is folted or rolled, and treated with sompy water. It is then beaten with woulen stocks or mallets, by which the serrated edges are forced past eath other and the fibers closely commingled. Preantions are taken in some cases to prepont anhew whe of the folds of cloth by felting taggether. For this purpose cotton cloth may intervene between the folds of woolen clotb in the roll. It is usually foblend, however.

Fulling and folting are dependent upon the same primeiple of action. Fitted cloth is male hy this process of associating the fibers, and is not woven. Woven cloth expused to the fulling or felting action is said to he milled. liepretition of the process constitutes it druiblemilled or froble-millerl, as the ease may he. Each milling thickens and solidities it, while diminishing the irea.

In a tomb at benii Hassan atront the time of Osirtasen, who was probahly the Jharoaln that invitud Jacob to Egypt and settled hime in Guslen, we find a representation of the fulling process chown at a, Fig. 2125). The roll of eloth is wettend :mml worked hetween a block and the inelined table, the water raming into a trongh below.

Alter this record of the eighteenth century b. e., it is easy to discredit the statement of Pliny that the art of scouring and fulling cloth and woolen stufls was invented by Nicras, the son of Hermias, Who was at governor of Megera muler Angnstus. The Romans worked the cloth with Jee and full r 's ("arth, then washed it in a decoction of sapmaceons plants, and then bleached it ky funigation with sulphur.

The instruments of the fuller are mentioned by the Cireek anthors. One form is a pounder, and the ather a womlen moller.
'lhe operations of fulling are slown in the paintings on the walls of Pompeii. At that time the fullers were also the wasker's of ordinary clothes.
"The largent and hest pxpented baintings representative of the art were diseovered in 1820, in the honse of a fuller oprening on one sile on the street of Mercury, and on the other on a street called alter
him, Fullonica. In the court, a pillar corered with / as much to the whiteness of tlre goods as the fumipictures was standing alongside a foumtain. This pillar has been removed and deposited in the Naples Museum. In the lowest division, a woman, sitting, hands a piece of cloth to a little femate slare. A workman, whose tunic is closely tiedaround the body, is looking at them while at the same time carding a white eloak with a purple border, suspended from a stick. Another workman is in the act of sitting down alongside a crate of wicker-work on which the cloth is to be spreal out; in one hatud he holds a vasp, on which sulphar thrown on burning eharcoal will develop a gits capable of bleaching the cloth. This is the same method which is used to-day. On another face of the pitlar arched niches contain large yats where the goods are soaked. Slaves standing in those rats trample the fabric with their bare feet in the same manner as Afalian women wash theil clothes by trampling them against the rocky bed of a strean; this is what the ancients called "the fuller"s dance" (srllus fiellonichs). The artist has painted with the same care the press with its two nprights, its two enormous screws, which were turned by means

$$
\text { Fig. } 2125 .
$$

 gatiou with sulphur." - M1. Ber LE.
The modern fulling-mil\} b consists of an iron framework supporting the shanks of harary woolen mallets, which are raised by projecting cams on a tappet wheel. The mallets heing raised to their full hight are relensed, and drof liygravity on the eloth, which is contaned in an iron trough heneath. Sonp is achlenl as a detergent, grease in any form tending to mar the felting action of the fibers. The emd of the trough is curved, so that the cloth is turned rond and round by the action of the mallets.

Fig. 2126 is a vertical section of a double mill in which a spring or weight forces the tub up to the

beaters with a yirling pressure, remlering the tub capable of adjusting itself to a larger or smaller quantity of gools. The beaters are arranged in pairs, parh pair being connected together by springs and acted ujon by a common eccentric.

In Fis. 2127 the felted cloth is held slack hetween two pairs of fluted rollers while a beater operates upon it. The variation in the relocity of the respertive prais of rollet: is equal to the contraction of the cloth, whichs is clamped and dried at the

Fig. 2127.

commencement and close, respectively, of the operation.
Fig. 2125 shows a marhine for fulling and filting lat borlies, in which the rolloms carry arom the apron, which, by contact, rotates the "form," and acts 11 inn every portion of the perinteter of the hat body, the latter being saturated with water, which may he conducted through the tubular support of the form, and he diffised between the walls of the form, so as to escape outward. Owing to the cecentricity of one the rollers, the apron is repeatedly stretched and relaxed, laterally, and in the act of

Fig. 2125.

Hat Falling-Machine.

drawing narrower the apron produces a greater presswre uron the hat boily, and has the effect to interlock and compant the bibers.

A mroed-cloth having 3,600 threads in the warp, a width of 33^{3} yards, and a length of 54 yards, will le recluced in fulling to $1 \frac{3}{4}$ yards wide airl 40 leet long. The process will take 60 to 65 hours, and reguive 11 pronds of soap.

I Venctirn cloth will require about twelve hours, take from if to 7 pounls of soap, and will shrink in wilth from $1 \frac{5}{6}$ yarls wide to $1 \frac{1}{4}$.

After fulling, the cloth is washed to remove the soip.

The methoil of fulling woolen gools in early times i_{11} Ohio is well eleseribed by Jnige Johnston of Cincinnati, in his aduress lefore the Pionece Society of that eity, 1870.

Rickiva Blankets.

"When wool becane alundant, the method of scomring and fulling blankets, Hamels, cassinets, and evell cloths, was simple. Every honse ham hamb-eards, and as many spinning-wheels as spinners, and no resprectable house was without a lonm. When the gools were earded, spm, and woven, then eame the Kicking frolie. Half a dozen young men, and a comseiponding number of young women, "to make the balane true," were invitel. The floor was cleared for atotion, and in the middle was a circle of six stout spliat-bottomed chairs, comected by a cord to prevent reroil. On these sat six young men with shines and stockings off and tronsers rolled up ahove the knee. In the center the goorls were placed, wetted with warm soapsims, and then the lieking commencel by measured steps, driving the bundle of gools round and romd ; the elderly lady, with a homg-necked gonrt, pouring on more soapsuls, and every now and then, with spectacles on mose and yarditick in hand, measuring the goorls till they wepe shrunk to the desired width, and then calling the young men to o dead halt.
"Then while the lads put out their hose and shoes. thue lasses stript their ames above the elbows, rinsed and wrung out the blanket and flannels, and hung them on the garden fence to dry."

Full'ing-ma-chine'. A machine in which the operation of fulling eloth is performed. See Full1N:。
Fulling-mill. A rommon mame for the fullingmachine. See ficluxi.
Ful'mi-nate. Beckinan states that fulminate of gold was hisemvered by a monk in the fifteenth century. This sulstance, which explodes more rapidly and with greater local force than gumpowder, is made by presipitating a solution of chloride of gold by an excess of ammonia. Mr. Forsyth disonvered that by treating murcury as the old monk had treated gold, an equally powrful but far less expensive fulminate might be made. This he mixed with six times its weight of niter, and the result is the per-enssion-powder which, in the form of paste, is ned for charging roplerer caps for fire-arms. In modern practice the proprortion of niter has been much reduced.
"Dr. Allen tells me that something made of gold, which they call in chynistry Aurum Fulminuns, a grain, 1 think he saiu, of it, put into a silver spoon and fired, will give a how like a musquett, and strike a hole through the silver spoon." - Perrs, 1663.

A fulminating powder which explodes when heated to 360° nay be made of niter, 3 parts; dry carbonate of potash, 2 larts ; sulphur, 1 juipt.

The following patents may be consulted by those desirous of ascertaining the ingredients of various patented fulminates:-

Gutlirie	1834.	Boldt	1866.
Kling	1857.	land	1867.
Ruschanupt et al	1862.	Golelmark	1867.
Lipps	1564.	Ruschaupt	1868.
Stockwell	1865.		

Fu'mi-ga'tor. An apparatus for applying smoke,

 gras, or 1 rertume:-1. To destroy insects or vermin in their holes, or upon clothing, trees, or plants.
2. To destroy infection or miasma in buildings, ships, elothing, or feathers.
3. To difluse a fragrant or invigorating perfume through an apartment or ward.
4. 'T'o sutluse the lungs with a soothing or healing vapor.

The fmaigator involves the use of heat, and generally that of at artificial 1,last.

1. A fumigator for expelling or killing animals usualiy consists of a chaniluer in which lurning matters are placed, ame a bellows by which a blast of air is chivell through the retort, issuing with the fumes at a mozzle directed to the burrow or hanuts of the vermin.

Sometimes powder is substituted for fumes.
2. Fumigators for destroying inlection are sometimes only agents for making a stench which overpowers the precedent misance. The burning of tobaceo, feathurs, leather, brown paper, etc., will conceal, but dows not remore, an umwholesome smell. Nore potent agents, such as pastiles, lerper, hot vinegar, etc., have been used as disinfectints with but small effert.

The effertive agents in fumigating are sulphurous acill gas, chlorine, tar, roasting coffee, etc.
The orlinary lisinfectant is ehlorine, either in the form of chloride of lime or in the divect evolution of gas from a mixture of salt, manganese, suphuric acisl, amd water.
This was the plan adopted by Faraday in the disinfecting of a puntentiary in London. The space being abont $2,000,000$ cubic fret, he used 700 pounds of common salt and the same quantity of
black oxide of manganese. The mixture was set about in numerous pans throughout the wards and corridors. Three and a half pounds of a mixture of salt and madganese were placed in a pan, and on them was poured $4 \frac{1}{2}$ pounds of dilute acid. (Sulphuric acid, 2; water, 1.1
3. The perfuming fumigator is generally of the form of an Atomizer (which see).
4. As applied to the mouth it is an linaler (which see).

Fum'ing-box. (Plulography.) In printing photographically, the semsitive paper, having chloride and nitrate of silver upon its surface, is exposed to the fumes of ammonia immediately before its exposure to light under the nemative; the object being to secure greater depth and brilliancy in the resulting print. The apparatus for this purpose is simply a tight box, in which the sensitive sheets can hang, leaving a space below them for a llat basin containing ammonia. Boxes of this kind are varionsly constructen, the object in all cases being to admit of the ready introluction and remoral of the sherts, as well as of the ressel containing ammonia, withont subjecting the operator to unnecessary annoyance from the fumes.

Fu-nic'u-lar-ma-chine'. One actuated by means of a cord whose ends are attached to two objects and which bears a weirht suspended from the bight. Some double-togigle presses come within the terms of this description. The name is principally applied to instruments illustrative of mechanical principles, and having a rope, pulley, and suspended weights.

Fun'nel. 1. The chimaney of a steamship. It is of sheet-iron, and is carried to a sutficient light to a.ssist the draft of the furnace.

It is made telescopic in war-ressels, so as to be lowered heyond the reach of shot.
\therefore. The pouning-hole of a mold. A gate; a tcige.
3. A conical vessel which terminates below in a spout, ant used for conluctiug a lipuid into a vessel which has a small opening.

An implement with a wide mouth and tapering spont, used for conducting lijuids into a narrowthroated vessel.
$a a^{\prime}$ are elevations and sections of a funnel, which
Fig 2129.

has a discharge around the spout for the air displaced by the liquid.
b is a graduated funnel, which indicates the quantity of the contents. See Menstring-fesinel.
c is a pierced filter of poreflain or glass, used in a laboratory, with a cone of bibulous paper inside.
d is a filter of similar use, but with heary ridges, to keep the paper from adhering to the siles.
ε is a combined measure, fancet, and funnel.
The filter-finmel should have sides which subtend an angle of ev, for the reason that a sheet of bibnlous paper, folded quarterly and one tlap ofnent, forms a cone the vertical section of which is a triangle with sides forming that angle.

Fun'ny. (Aluuticul.) A narrow, clinker-built pleasme-boat, to be rowed by a pair of sculls.

Fuor. (ciarpentry.) A piece nailed upon a rafter to strengthen it when decayed.

Fur'bish-er. A burniher.
Fur-cut'ter. 1. A machinc for cutting the fur from the skin.

Johnson, 1037, has a knife hinged at the end, and descending to make a slyear cut against a stationary blade. The skin passes over a suall roller, which displays the fur and emables the knife to rearh the hais near the roots, without to any great extent cutting to waste or rutting the same hairs tuice.

Petre, 1827, has a pair of collers, between which the skin passes. As the skin is bent orer one of the rollers, the lairs are displayed and thos laid orer a straight edge. The knwes are fixed radially to a rotating disk, and shear past the straight-edge, set-

Pring the hairs with nearness to the skin determined by the sel of the marhine.

Williams, $1 \$ 32$, has a frame with a series of parallel knife-edges presented upwardly. Over them is a block carrying an oblique knife which makes a shear cut unon the fixel knires in succession.

Flint's fur-matting knife, 1837, has an edge on one jaw and a cuslion on the other.

See also Harlow's patent for cutting bristles, 1808.
2. A mechanical contrivance for shaving the backs
of peltry skins, to loosen the long, deeply rooted hails, leavinis the fine lur umbisturbed.

Fur-dress'ing. limr, in its usual trade aterpotation, is the short, lime lair of extatn animals, growing thick on the skin annd deprived of the long, coarse, protelotiug hairs.

Furs are dressitil hy gredsing and trampling, or by beating in a fulling-mill, the skin being softened ly the absomption of grease and the mechameal tieatment. Thary afe then wetted, Hesleed, cmmied, tramperl in vats with sawdust, aurl again with whitening to remove the grease. They are then beaten with a stial: amel comblued.
I'le torm dressing ineltules the cleaning, cutting, and dyeing of furs. Thae lons latir that covers the fur is removid by a process carried on in but lew places successfully. The skins are placed on liames, and the immer surface parm! off, until the ronts of the heir. are rompletely severch, while the roots of the fur remain untomelsm, on acconnt of their manness to tha ontside surbece. The hair is then vory easily removere, anul the lisht yellow far mate realy for alyeins, sither to at more rolden yollow, it ark purple, or hlark, and is afterwards brought to the genentil fur-matket.

In one provess, the hair and skin are seprarated and a substitute for the skin "pplied to ronts of thes hatr to retain them. Cielatime is applien in solntion to the hair, so as to form, when cool, a hoily to hold the hajr in position during the removal ot the natural skin and the applioutiom of a sulastitute to the roots. The bair and natual skin are loomened by somking in lime-water or other smitable menas. The artificial skin may be lommed of imh a-mblars, gattaperelat, of compounds thereof, luiked or thying oil, or other allesive matter's, strenethened, il desired, by woven litbries, and when applied and set, the ghlutimus matter employed as temprory lobling medimm maty be removel by dissslving in warn witter or steam.

Furl. (.Veutical.) To roll a sail and confme it to the yard.

The satil being gathered by the men on the yaml, the leceh is passed along the yard to the buen, where the bouly of the satil, the font and fows, are collected.

Cumbiugham's paterat (Enstish) mode of setting and lurling sats is, ly folling the yard hy means of ropes from the leck, unwindiag or wimblas the sall, as the case may be. The flata involves a vertienal division of the sail, and las not conne moto general use.

Furling. The wrapping or rolling of a sail on a yam or twom and secming it.

Fur'nace. A chamber in which fuel is burned for the protuctions of heat, which is directed mon an oligect in the vicinity, such as an ore or metal number treatment, a stemm-builer, an air-heating chamber, a glass-pot, or what mot.

Fumates are distinesushed ly ponstruetion, by mole of opration, and by purpose. See muder the followintr leeads:-

Air-furnatee.

Air-leatingr furnace.
Almond-furnace.
Ahetel-limuate.
Anmenlingrare.

- Intralinsformace. Antimmy-furmace. Arsemb-funace.
Ash-finm:u:e.
Asphaltum-finnace.
Assity-fumace.
Athanor.
Balliugr-furnace.

Bar-lueating furnace.
Bath-fumace.
Dual-firmace.
lise:nyarforge.
Bismutl-fumace.
Ihlast-furnace.
Ikhnary-furnace.
Blowing-furnate.
Poilef-finnate.
Boiliug-lurnace.
Bone-black finmace.
Pottominir-hole.
Brass-furnace.

Brick-kiln.
Burning-house.
('aluar.
t'alciniug-furnace.
Cialonizingrfunace.
C'aryuaise.
('in-wlieel furnace.
C'astilian-finnter.
C'ast-stecl fumbere.
Catalau-furnare.
Charnting-lumace. C'lastler.
Charcoal-furnace. Clascoal-kila.
Chanfer.
Chemuical-furnace.
Coke-fimmace.
Coke-oven.
Converting-fnrnace.
Copler-fumace.
Cujulo.
Cupola-furnace.
1)+carbmizing-fumace.

Dental-fumate.
() \times sul] hurizing-linnace.
1):aw-kilı.

Dimb-fimnace.
Dust-fuel firmare.
Enansling-lumace.
Enamel-kiln.
Engint-furnaer.
Evilnotating-finnace.
Finury furnate.
Fire-bick.
Fire-bar.
Fire-door.
Flashing-furnace.
Flatting-furnace.
Fore.
Furge.
lrittiug-furnace.
Fruit-iluyer.
Fuel-fererler.
riallery-fiumace.
Gas-furnace.
Cas-Itated fimmace.
Gas-leverberatory
מatere.
Glass-lımace.
Class-inmealing furnace.
Glaz"-kila.
Glory-hole.
Glosi-oven.
fiold or stlver furnace.

(iypsum-furaace.
Ulurlening-kiln.
Haymaking-lurnace.
Hesatiag-furnace.
Hot-air furnace.
Hot-blast fimmace.

Hydro-carbon furnace.
lyor-furnatce.
Kilı.
Kilu-dryer.
Lamp-black furnace.
Iext-furuace.
Lerr.
Lime-kiln.
Liguilation-furnace.
Liquid-earbon timnace.
Lononotive-lımace
Lamber-kiln.
Malleableiton furnace.
Malt-kiln.
Noreury-fumace.
Nuthe-fimace.
Nitric-aciel furnase.
Nose-hole.
Oast.
Ore-calcining furnace.
Ore rousting lurnace.
Ore-smelting finnac.
Oven.
Oxilizing-luruace.
lerat-hurning furnace.
Petrolmum-fintace.
lortable-limates.
Pottery-kilu.
I'udelling-fumace.
Quirksilver-furnace.
lixducing-limate.
lictining-furnace.
Fiegem-rating-famace.
lieleating-finsace.
lieverberating-furnace.
Riveting-heatth.
lioasting-furuace.
Salt-fmane.
Silver-fimate.
Slag-firmace.
Slip-kilu.
Simelting-furmace.
Smoke-consmming furmaer.
Soldering-furnace.
Spreadins-fumace.
fur- Steam-boiher furuace.
Stuldinmator.
Stiick-lımace.
Sugar-furmace.
Sulplur-lumace.
Sweating-formace.
Test-firmact.
Tils-kiln.
Tin-furnace.
Upetting-furnace.
Vhleanizer.
Wrlding-furnace.
Wiad-furnace.
Wrought-iron furnace.
Zinc-furnace.

Fur'nace-bridge. A barrier of fire-luricks or of iron plates containing water firown across the furnow at the extreme cad of the fire-birs, to prevent the fitel being carriel into the llus, and to quiclien the leaft by contracting the area.

Fur'nace-grate. The bars supporting the fuel in a fomace. See Gintr.

Fur'mace-hoist. An elevator for raising the oure, lime, and coal to the month of a blast-furnace. These are of several ditherent forms; the example shown is on the phemmatic primeiple. It consists of a central tube a in which is a heavy jiston b,
whicl forms a connterweight for the platform c, which works against guiter on the outsinle of the tube. The piston is lighty packed by cutton gaskets, and is connected to the platform liy four wireropes, two of which only alluear in the rentical sectional riex.

The hoist is worked hy an engine with a pair of inelinal cylinders. opreration a pair of single-acting air-pumpra, which can be make to rompreas air into or exhathst air from the space in the tube below the piston. Suplosing the empty table with the emply batrows to be at the toj, and the piston at the loottom of the cylinder, the air-pmans are connceted with the batter so as to deliver air into in, and thus lift the piston, a pressure of sbout two ponnds per stuare inch being sufficient to do this. On the other hianl. if the tahle is at the bottom of its travel and loaded. the exlausting sille of the airephanp is, by means of the reversing slide, placed in commmoication with the eylinuler, and a partial vacum produced under the pistom. If the table be loaded with the heary iron-stone wagons, carrrines ahout "5obit pounds of stone, there is a weiglit of about 1 , 110.1 pounds left unhalancerl, and exhatustion of alout 4 ponmla per spuare inch is requiren to brines the piston down, while, with the cokn-hurrows, woighing only 2,000 pounds, there is bat about $1,0 \mathrm{~m}$ pound of mabalaneed loal, and the piston is lyought down and the table rised by a vacuun of about one poind only.
Fur'ni-ture. 1. (Noulicul.) The mats and rig ging of a slij].
2. The mountings of a gun.
3. Builders' hardrare, such as locks, door and wiudow trimmings, etc.
4. Novable articles of use and lecoration in a house.

The ancient Eofptians excelled in furniture, chairs with arms and backs magnificently upholstered, with seats like our rush-huttoms, or folding like our cam ${ }^{\text {1 }}$ stools.

Their bedsteads were couches, generally designed for one prron, and rariously ormamented. Sume have legs representing those of men or of dors, the bed portion heine a ridiou-jou-ly aitenuated boly to éurrespoml. See Cualr; Bedstean, etc:

Their tables were romnd, square, oblong; of wood, stone, metal ; carred, painted, gilded; with a central column or with several legs.
5. (Printing.) The wooden inclosing strips and quoins ndich surround the matter in the cluse.

The pieees are about half an inclu high, of varions lengths. The strips are called head, foot, or side stichs, according to their position in the chase.

Strips between the pages are gutters.
The sticks are slightly tapering, so as to allow the wedre-shaped quains to jam the matter firmly together in the chrse.

The quoins are driven by the shooting-sticl: and a mallet.

Fur'ni-ture-pad. A piece of india-rubber or similar thing attacherd to a piece of furniture to prevent ruhhing or striking against olijects.

Fur'ni-ture-spring. A coiled spring beneath the hair filling which forms the seat. lack. or side of a cuslioned ehair. A spring of a bed-lnttom beneath a mattress, or forming the lower portion of
one beneath the elastic material which constitutes the top.
Fur'ni-ture-tip. An india-mbler alisk placed on the foot of a chair-log, to enable the chair to be

mored and replaced noiselcssly upon bare boards or marhle floms.

Fur-pull'er. The fine fur ol fur-hearing animals is protected by a cont of long, straight hairs. which is remored before the fine hair is sheared off to furnish the material for felt.

This operation, formuerly effected ly hand, is now performed by marhines. The skin is masuel around the projecting edge of a bell, the tension of the skin heing maintalined be weights. As the skin is drawn forward over the proiecting edge of the bed, the long hairs stand out nearly at right angles, and are seized
anl extracted ly ribs on a pair of revolving cylinders Which are placere in fiont of the hect.
Grahm's machine, 1835 , passes the skin betwerm two feed-whers ower a third higher rolher, whith spreads the hairs, which are pinched between a revolving blade aud the clastie surface of a leathercoverel cylinder, and so pulled ont of the skin, which is stretehed and fed by two pairs of rollers between whicla it passes.
Fur'ring. 1. Fixed thin pieces on the edge of timber to mike the surface even.
2. Double planking of a ship's side.
3. The sealy deposit on the insile of a boiler.
4. A lining of samtling and plaster-work on a brick wall, to prevent the dampless of the latter reaching the room.
Fur'row. 1: (Agriculture.) The trench made by a plow.
2. (1)illing.) The grooves in the face of a millstone; the plane surfice is land.

A leader:furrow extemis from the eye to the skirt of the stone at such droft as may be determimest. The draft is the degree of difleetion from a radial direction. II a seven-inch draft the track edges are tangential to a seven-inch "ircle aromul the eye of the stone. The step edge of the furrow is called the trach-etige ;othe more inclined edge is callerl the fouther-erlge.
The second furrow is that branching from the leater nearest to the eye.
The shirt-furrow departs from the leader nearer to the skirt.
A gouyc-furrow is concave at bottom. See Mill. Stunim
Fur'row-ing-lam'mer. A mill-stone dresser's hammer. Sue Mha-stone Hasmers.
Fur'row-ing-plow. One with a double moldboird for throwing the earth hoth ways.
Fu'sa-role. (Architecture.) A moliting or ormament phacel immediatily under the echinus in the Dorie, Imic, and composite capitals.
Fuse. A tube or casing filled with combustible material, and used for igniting a charge in a mine or hollow projectile.
The invention was undonbitedly contemporaneons with that of hollow projectiles.
Blasting-fise; used in mining and quarrying is fillel with a slow-buming compusition, allowing time for the operatives to reach a place of safety before it burns down to the charge.

Combination-fuse ; for hollow projectiles, comprises a time-fuse and a precussion or concussionfuse mated in the same case.

The fomer is designol to explote the charge in case the latter fails to act ou striking.

Concussion-fuse ; for hollow projectiles. Desigmol to explode the charge when the shell strikes an ohjert. Ectric-fuse. One alapted to he ignited by the passage of an electric spark throngh it.

Premssion-fuse; cmbraces a eapusule charged with fulmimate, which is exploded ly a plunger or its equivalent, when the projectile strikes. The phuger is leld by a pin sutliciently strong to keep it in place in ease of a fall, yet weak enough to be severen by the shook of striking.

Suffery-fuse : a corl or ribhon-shaped fuse filled with a fulminating or yuick-hurning composition, and sufficiently long to he ignited at a sale distance from the chamber where the charge is phaced.

Toprefuse: lelongs to the class just mentioned, and is su called from its shape.

T'ime-fuse; one whinh is alapted either by cutting all a purtion of its length or by the chameter of its composition to burn a certain definite time.

Fig. 2132, $a b$ is the common woolen fuse for shells; the central cavity is fillell with a complosition of niter sulphur and mealed powder thorombly incorporated together, and unilormly and compactly driven by means of a mallet and drift. The open cond is capped with water-proof paper or parchment.

For use, a part is sawed off at the sinaller end. The number of seconds which the remaining composition will burn is indicated by the amular lines, so that cutting ofl a greater or less portion regulates the time of bursting of the shell. The fuse is inserted in the fuse-hole when the projectile is required for use, and the cal removed previous to loading the piece.
Paper fuses containing eomponsitions which burnel at the rate of two, three, four, and five scconds to

Fig. 2132.

Fuses.
the inch were formenly amployed for field artillery in the United States service. A woolen fuse-plug was driven into the propestile whon proped for servier, and the fuse inserted therein at the monent of londing. The different kinds were indicated by their calor.

These were succeerled by the Bormann fuse c, which consists of a that, circular, serew-theated piece of an alloy composed of erlual parts of tin and learl, having a deep annular channel extronding nearly around its lower surface, into which the fuse composition is pressed, commmicating with a magazine of fine powder. The composition is protected ly an annular piece of the sane metal, which is foreed down over it by pressure, and turnel to a smooth surface. The upper part of the fise is graduated to quarter-seconds ul to five seconds, so
that by removing the thin metal covering with a small gouge at any barticular mark, the composition, when ignited, will burn the length of time that the mark iudicates before reaching the magazine which communicates lize to the bursting charge of the projectile. This fuse rests in lart on the walls of the shell and in part on a perlorated iron fuse-plug, set in a smafler orifice central to the exterior fuse-hole. When screwed in, it is cemented to the shell by white lead ground in oil, rendering its extraction somewhat difticult and dangerous. To obriate this a modification has hren contrived consisting of a flat riug which contains the composition inserted into an annular groove surrounding the hole through which powder is poured into the shell. As this myy be made smaller than the ordinary fise-hole, the efficacy of the bursting charge for shattering the shell is increased, while the charge may be removed without disturling the fuse; thus greatly lessening the danger of aceidents, when it is desired to remove the powder. This form also admits of longer burning fuses than the original Bormann.

Brass fuses having a crooked channel to prevent the entrance of water between the exterior priming and the fuse composition are also employed, more particularly in the naval service.
The English Boxer fuse has a main channel for the fuse-composition, and two smaller channels filled with mealed powder communicating therewith and with each other. Holes corresponding to the lengths required to burn various times are bored from the exterior of the fuse-case to these, and filled with pipe-clay, which is removed from the proper hole when the projectile is inserted into the gun.
Powel's fuse l (Fig. 2132) admits of being turned within the plug, which is serewed into the shell so as to bring corresponding apertures in the fuse and the plug into communication. These are so adjnsted to each other that the composition may be maile to fire the bursting charge at the expiration of a greater or less number of seconds.
Fuses on this principle have been combined with the percussion-fuse, constituting the combination fuse.

Previous to the introduction of rifled cannon and elongated projectiles, a number of attempts hat been made to produce a fuse adapted to spherical projectiles which would explode on striking.
One of these, of Prussian origin, was composed of a glass case coutaining strong sulphuric acid, and wrapped with cotton wick soaked in a composition of chlorate of potash and flowers of sulphur, with pulverized white sugar and alcohol added to give consistency. This was capped with a lealen breaker, shich projected beyond a paper case in which the tube and wrapper were enclosed, and the whole inserted within a fuse-case partially tilled with hard driven mealed powder. This was ignited on firing, inl soon hurned away. leaving the glass tube unprotectel, so that the weight of the breaker would eause it to be shattered on striking an oloject, setting fire to the wrapleer, which in turn exploded the barsting charge.
Splingaril's Pelgian concussion fuse contained a conical tube of plaster of paris closed at. top surrounded by ordinary fuse-composition, which in burning left the tulve musupported, allowins it to loreak when striking, so that the fire should communicate directly with the charge.
Fuses which explone by perenssion or coneussion present no difficulty when employed with elongated projectiles for rifled guns, which strike point foremost; and a variety of such, differing slightly in
details of construction, have been successfully employed.

Bickford's fuse, English patent, 1831, was specially intended for miners' use.
lt consists of a cylinder of gunpowler or other explosive matter corered by a double layer of cord and vamished. A similar fuse covered with a water!roof composition was desigued for submarine blasting.

In electric fuses the heat necessary to fire the charge is imparted either by the passage of the current through a fine wire, usually jlatinum, or through a chemical mixture rendered condueting ly cuntaining a salt of coppure f ilustrates one of the former, in which the gutti-perela covering is removed from the ends of the conducting wires, which are comected by a time wire of platinmm these, with the charge of fine grained porder, are enclosed in a water-tight envelope of gutta-prercha. g is one of the second class, known as statham's. Its operation depends on the fact that a enpmer wire covered for some timw with vulcanized rubber leeomes coated with a layer of sulphide of emper, which is a moderately good electric conductor. This is utilized l:y twisting a piece of rubber-covered wire so as to form a loop, when part of the covering is removed as shown at a, and the wire severech. Consequently, when a sprark is passed along the wire, on reaching this spot it must follow the film of sulphide aulhering to the rubber; and the resistance which it has to orercome causes the sulphide to ignite.
$i j k$ illustrate shaffuer's blasting fuses and cartridges. i, a hollow cartridge provided with central and diverging spaces occupied by a series of fuses and loose nitro-cotton, the whole covered with a water-proof casing into which the ends of the conducting wires pass.
j. The main wires which pass to the mine or cartridge are eonnected by smaller wires to the fuses, a number of which are placed in a single charge of explosive material.
k is proviled with a wooden head encloserl in an indented cylinder closed by a cap; the head has a recess for the fuse composition, and another for the non-condncting cement which surrounds the wires where they enter the head.
h is the Abel fise. This consists of a wooden hearl having a central longitudimal opening and two parallel transverse ones. Through the former two insulated couducting wires are passed, the ends b of each being ont ofl smooth at sume distance from the hearl, and covered with a tin-foil cap containing priming. The gutta-lureha is removid from the other ends of the wires, and they are inserted and secured in the two transverse holes hefore mentioned. When required for use, a case containing fine grained powder is titted over the shonlder c and secured by twine.

Bishop,'s electric fuse $d e$ comprises an inner and outer eylinder protected by a priforatel cap through which the separatcly insulated conducting wires pass.

Fuse-cut'ter. An implemsent for gaging timefuses to the desired seconis and fractions. The Pormam, or motal-fuse cutter, is merely a small gonge, about one tenth of an inch in wilth across The blarle, and is used for cutting away the thin shell of metal which overlis's the fuse-composition. The cutter for paper fuses for rithel guns, which necessarily are required to burn much longer, is more uchally callod a fuse-gage. It is a block of wood with a graduated hrass gage let into one side, and haring a hinged knife working on the same side, like a tobacco-knife, by which the fuse, which is
marked on the side to secomls and fractions, is cut ofl' so as to bum any reunimed length of time.

Fu-see'. 1. A conical pulliy u used in connection with a spring, and elesigneal to equalaze the power of the latter. The spring is coiled within the barrel b, and when fully wound up and at its greatest tension the chain c is wound upon the fusee and draws ment its smaller portion. As the fusee unwimls, by the motion of the train of gearing in the watch, the spring also uncoils aud loses a part of its tension; as this proceds, the chain draws upon a larger portion of the fusee, and attains an increased leverage on the latter to counterbalance the decreased power of the spring. The object is to obtain an equal power at all times, so that the wateh may run regularly.
The first wheel of a watch is attached to the fusec.
The going-fresce, invented by Harrison to continue the motion of the watel while it is being wound un, has an anxiliary spring a throngh which the power of the mainspring is communicated to the whecls. While the watch is being wound, a ratehet and click prevent the reaction of the auxiliary spring, which

acts during the time of winding, although the power of the mainspring is removed. The chain comnecting the barrel and fusee has hooks at ench end; in winding, the chain is wound ofl the former on to the latter. The fusce cannot be introluced into very that watehes, mul the first wheel, in that case, is attaehed to the burrel. The latter is then called a going-berret, having teeth cut on its sides.

A donhle fuse (c) to communicate a variable reciprocating motion is used in Roberts's self-acting mule.
2. A cigar-lighter made of cardboard impregnated with niter and tipled with a composition which ignites by friction.
3. A fiuse.
4. A light firelock or musket. The name is antiquaterl. A fusil.
Fu-see'-ma-chine'. A machine (Fig. 2133) for cutting the shail-shaperd of spirally grooved wheel on which the chains of certain leseriptions of wat hes are wound. It was invented by the renownel Dr. llooke ahout 1655. The machine (f) shown is the form that was used in 1741, and illustrates the idein thoronghly. It is also interesting as heing the first machine in which changr-acheels were nsed, and is the grim of the serew-cutting lathe. - Thinion, tto, liuris, 1741.
Fu-see'-wind'lass. A pump-windlass with is conical barrel (! 1 , lig. 2133).
Fuse-ex-tract'or. This implement is designed for extracting wooden fuses from shells. It has jaws which grasp the fuse while the lower part of the
extractor rests upon the shell. The jaws are attaehed to a screw, which works in a screw-socket in the body ol the extractor, and has an iron lever passing throngh its head. The jaws being clasped around the prujecting part of the fuse, it is drawn ly turning the lever.
Fuse-lock. For miners.
A spur on the spring attaches the lock to the luse when the hammer is set. The dog is pullet by a long cord from a distant position of safety, releasing the hammer, which exploiles the cap and lights the fusc.
Fuse-mak'ing. A machime laving a vertical rota-

Fig. 2134.

Fuse-Lock. ry shaft throngh which the 10wder descends around a central cord delivered from the spool K^{*}. Threads from the spools $d d$, etc., placed on a rotating frame, are wond about it as it descends, foming a twofold covering, which is compacted around the composition as the fuse passes

Fig. 2135.

Fuse-Making Machine.
through the ring t at the upper part of the slotted shaft $1 /$.

Fuse-saw. A tenon-saw used by artiliery-men.
Fuse-set'ter. An implement for driving home wooden fuses. It consists merely of a cylinder of wond or lirass, with a recess at the end fitting the end of the fuse, which is driven into place by a mallet.

Fuse-tape. A flat form of fuse, coatell extermally with pitch or tar, and served to prevent the coating from eracking, or covered with two warps and an interposed lap of cotton. Other forms might be noticerl.

Fu'si-ble-al-loy'. An alloy, usually of lead, tin, and bismuth, compounded in such definite propurtions as to melt at a given temperature.

Used as plugs in steam-boilers, so as to melt when

a eertain pressure and heat is attained and allow

 stem to uscape. Sce Alloy,]. 62.Fu'si-ble-plug. One placed in the skin of a ste:am-boiler, so as to be melted and allow the diselarge of the contents when a dangerous lieat is reached. See "Le Dictionnaire de Industrie, Manufac., Commerc., et Agricole." Par A. Baulrimar: Blanque ainé et autres. Paris, 1833. Vol. 1. p. 326.

Fu'si-ble-por'ce-lain. A silicate of alumina and soda obtained from cryolite and sand, fused and worked as glass.

Cryolite is a mineral consisting of flunvile of alnminium and sodium. It is found in great abundance and purity in Greeulanel, and serves to make a fine milk-glass, which is called fusible porcelain. It is known in Bohemia and Silesia as milk-glass. One part of cryolite is mixed with two to four jarts of quartz or pure sand, thus being a silicate of almmina and soda, containing some fluorine that has not heen dissijated during the melting process. The material is easily wrought into any form, and may be readily ground and polishen. It is stronger than common glass, and is said to withstand fhe fire better.

Fu'sil. A light fire-arm or musket of an antiquated pattern.

Fus'ing-points. (Some boiling-points and other (lata are added for the purpose of comparison.) By P. H. Van der Weyde, M. D.

Platinum ; iridium ; osmium
Dempees

Manganese
3,992
3,452
Cobalt
Melted tin hoils
3,272
3,092
Pure har-iron; nickel.
White leat of iron
2,912
2,372
Gold; white cast-iron .
2,25:
Silver 1,832
Copper
1,742
Briss ; lironze
1.652

Aluminium
1,562
Full rel-heat of iron
Magnesiuma.
1,472
Cherry-red heat of iron
1,38.
Iron, red-hot, visible in daylight
1,292
Iron, red-hot, risible in daik-
1,112
Parinm
Sulplur boils.
Antimony melts ; cadmium rolatilized
932
S57

Tellurium
Zinc
Mereury and whale-oil boil
Lead; cadmium.
542
797
752
707

Amher melts; linseed-oil and phosphorus boil
Wateh-spring temper (deej, blue)
Sword temper (blue)
Kinife tensper (pink)
Steam at 50 atmospheres
Bismuth melts; steam at 45° atmospheres.
Penknife temper (brown yellow)
Steam at 34 atmospheres.
Chisel temper (yellow)
Tin melts; steam at 24 atm.
Razor temper (straw) ; steam at 20 atm.
Pale yellow temper
Steam at 10 atmospheres
Camphor
Saphitha boils; sulphur ignites
Turpentine boils
Low rulcanizing temperature
Steam at 3 atmospheres
Steam at 2 atmospheres
Snlphur.
Water boils

Fahr.
Degrees.
Alcohol and benzine boil . . . 176
Stearic acid; white wax 158
Yotassium ; suermaceti 131
Phosphorus 113
Blood heat 104
Lard 95
lee melts 32
Mixture of salt and snow 0
Linseed-oil and brandy frceze . . . 4
Mercury freezes -40
Lipuid ammonia freezes -49
Carlonic aeid freezes - 112
Aleohol (thick as eastor-oil) at . . -202
For fusing points of alloys, see p. 62.
Fust. The shaft of a column from the astragal to the capital.

Fus'tian. (Fubric.) a. A heary moolen cloth with a napped surface for men's wear.
b. A coarse, thirk, twilled cotton stuff for men's wear, and generally of a dark color. The plain, common fustian is sluecifieally known as pillour-fustian; other varieties of fustiau are known by the names of corduroy, velverelt, velretecn, thicksetf, double-jean, vclecl-lujt, malcslizn (cropled before dyeing): beacerteen (eropped after dyeing), canfoon.
These goods were first made in Norwich, England, in 1554 , and were ealled " Jorwich satins."

Fut'chel. (Carrinye.) The jaws between which the hinder end of a tongrue is inserted; the sinilat parts in a wagon are called tongue-hounds.

Fut'tock. (Shimerighting.) One of the timbers in the compround rib of a ressel. A timber of the dimensions and form for the rih of a vessel cannot be procured in one piece ; the rib is built up of pieces searfed together. The number is according to the lengtl of the sections of the requisite hight. They are known as the first, sccond, and third fullock, terminated by the top-limber. Swe Frame.

Fut'tock-hoop. (Foulicel.) A hoop encircling the mast at a pinint helow the head, and serving for the attacliment of the sliackles of the futtockshrouds. See Fig. 2136.

Fut'tock-plank. (Shipluidding.) The first plank of the ceiling next to the Leclsom. The limberstrake. The first plank of the skis next to the keel is the garboard-strake.

Fut'tock-plate. (Nautical.) An iron plate on the edge of the top, to which the futtock-shrouds and the dead-cyes of the topmast shroudsare secured.
$s s$, futtock-shrouds.
b, lower mast.
e, futtork-hoop.
r, dead-eyes.
c, topmast.
d, mast-battens.
h, cross-trees.
i, trestle-tree.
m, futtock-plate.
r, cheek or homad.
t, holster.
Fut'tock-shrouds.
(Firutical.) The short shrouds attached to the chain-arcklaces on the mast, and to the sides of tbe tor, by which ascent is had
 from the principal shrouds Futtock Prate and Shouts. to the top. See Fig. 2130°.

Fyke. A bag-net, open to allow fish to enter, but opposing their exit.

G.

Gab. The hook on an eccentric-rod which engages the wrist on the rock-shaft lever of a valuemotion. The word gut means mouth in several langmages, and the term signities that it is open to bitc upon that placed within it. See Gab-lffter.

Gab'ar-age. (Fubric.) A coarse linen packingcloth.

Ga/bi-on. A long basket of osiers or withes. When filled with earth, they are adapted to revet

parapets and embrasures of fortifications. They are also usel in other earthworks, such as batteries or rifle-pits.

Gubions filled with stones are used in civil engineering as defences for starlings of bridges; for making dikes or river-walls, where the sbore is subject to washing; for making isolated islands, or chains of such, off shore, as a breakwater; also to arrest silt, sand, and mal, and gradually raise the bottom above the level of higli-water, in the manner of groins.

Military engineers make their gabions about 20 feet long, and 3 feet in girth on the mean, with bands at distances of from 1 foot to 1 foot 6 inches; in

Fig. 2138.

Molland the galions are made from 24 to 27 feet long, from 1 foot 4 inches to 1 font 8 inches in girth, and with hands at every 6 inches apart ; and upon the Uprer Rhime the gabions are mule from 2 freet 6 inches to 3 fert 4 inches in girth.
The gabions of the Greeks, used in form. ing foundations or thaking inelined plaues for raising arehitraves of buildings, were baskets of sedge filled with chalk and called herones.
Ga'ble. The triangular portion of the end of a
building, bounded by the sides of the roof and a line joining the eaves.

Guble-window; a window in the gable of a house.
Ga'blet. A small ornampatal gable or canopy formed over a tabernacle ar niche.

Gab-lift'er. A device for litting the gub-hook from the wrist on the crank of the rock-shatt, in order to disconnect the eceentric from the valre-gear. In small engines, the eccentric-rod is simply lifted by means of the handle on the end.

In the apparatus A, hy pulting up the spring han-

Gab-Liflers.
dle below until it catches in the noteh a, the pin is disengaged from the gab on the ectentric-rod.

In B, the y reb is lifted by the oscillation of an eccentric. When the handle of the latter is raisel, the eccentric surface bears down on the pin and pries out the gub-hook.

In C, the operating rod proceeds from above and oscillates a rock-shaft, from which is suspended a link reaching to the eccentric-rol.

Gad. (Nining.) a. A steel wedge for opening erevices, natural or made by the pick.

The figure shows the mode of carrying them.
b. A small iron punch with a wooden handle, used to break up ores.
c. A jumpcr; a
boring-bar.

Gaff. 1. (Nauti-
cal.) The sjar which extends the upper elge of fore-and-aft snils, such as the main-sail of a cutter, smack, or other one-masted vessel ; the main and fore sails of a sehooner, the spuenker of a ship, the try-sails or spencer of a brig or ship.

The lower end of the goff has joues which rest against and partially grip the mast. It is supjorted by the throat-halyfards at the mast and the peakhutyrerls at the outer end.
The ropes which steady the goff laterally are called vangs.

Gaff-sails are bent at the weather-leech to masts, or to hoops or hank's which run on the mast as the sail is raised or lowered.

2．The metallic spur fastened to the leg of a fight－ inc－cock．

Cock－lighting was a common amusement in Eng－ land in the twelfth century，and Fitz－stephen says that it was enstomary for the schonlmaster to super－ intend the pit on the usual holiday cock－fighting on Showe－Tuestlay：The English，like the ancient Greeks，armed the herls with spurs．so，after all， our St．Domiugo period was not so very long ago．

3．A lish－spear．
Gaff－hook．A heavy，barbed hook with a line， usen in lanting large fish．

Gaff－top＇sail．A sail spread hy a gaff above the main－sall of a cutter，or other fore－and－aft riggred vessel．

Gage．1．In instrument for determining dis－ tanees，sizes，proportions，as the carpenters cagen of various kinds ；sheet－metal and wire gages，which are standards of measurement of thickness；test－ gayes or templets，ly which work in detail is made to an exart set of stambards，so that the pieces may he assembled；as the Springtield and other rifles， the singer and other sewing－machines．There are ahout seventy－eight gages used for determining and verifying linuensions of the parts in the rille musket， pattern of 1855 ；its lock，stock，barrel，ramront， leaf－sight，bayonet，and mountings．

Whitworth＇s contrivance for testing the truth of a solid measure representing an English inch is a remarkable specimen of mechanical skill and ae－ cmracy．The block representing the inch is a ree－ tangular prism of polished steel，originally cubical， but laving its angles so truncated for convenience of manipulation that the terminal surfaces are one quarter inch spuare．At oue of its extremities it abuts against a fixel stop，the other is opposed to the extremity of a scres of twenty threads to the inch，placed directly in the live of the axis．A single revolution of the serew adrances the ex－ tremity，therefore，one twentieth of an inch．But the head of the sorw is ten inhes in ciremmerence． ant is liviled into 200 parts．In turning this whel，every division accordingly adraness the serew one four－thousandth part of an ineh．The divisions， howerer，are not traces，but tecth；and the screns－ head is a gear－wheel，which is driven by a tangent screw lying horizontally in its plame and across its summit．And this tangent serew has also a head of $12 \frac{1}{2}$ inches in cirenmference，which is dirided into 250 parts，each part being the twentieth of an inch．An eutire revolution of the tangent serew advances the gear－wheel ouly one tooth，which，as we have seen，moves forward the end of the measur－ ing serew one four－thousandth of an inch．A single division of the limb of the tangent serew－head will therefore prodace a movement in the direction of measurement of only one two－lundred－and－fiftieth of one four－thousandth of an inch；that is to say， of one one－millionth part of an inh．Between the plane face of the standard inch and the extremity of the measuring serew opposed to it is a little steel plate with parallel and perfectly true surfaces．As the screw adrances towards the plate a point is reached where the latter appears to he in contact， but when lifted it will be found to be free，as it will fall treely back，not being held by friction．If now the tangent screw be turned，a single division at a time lifting the plate after＂ach morement，a point will be reachell at which a single adslitiomal morement of ahsamer will fasten the phate com－ pletely，so that the．friction will prevent its fall．

Between these points the screw is advanced roberov of an inch，and a retraction of the screw to this extent will free the plate so that it will fall ；
care leing taken that clisturbance of the equilibnium of temperature shall not change the conditions．

Whitworth＇s cylinder gages at the P＇aris Exposi－ tion were promated steel plates，the perforations being highly polished within，and ditt ring fron each other in diameter by Totoo of an inch．Cor－ responding to them were plished ster］cylinders， one exactly titted to eaeh．As these cylinders lie side by side，it would be difficult for the eye to dis－ tinguish a difference of diameter between several of them；but when they are tried by the gages，each will pass freely through the aperture correspouding to its own number，but no one can be forced without an effort into one of a higher order．See Measti－ にばMAM－HINE．
2．（Plyssics．）An instrument for determining the comlition of a flurtuating ohject；as a tide，steam， min，water，wimb，currut gage，etr．Soe Meter．

3．a．The prantity of plaster ot paris added to phasturing momtar to facilitate setting．
b．Fine mortar with an addition of plaster of paris for a finishing coat．

4．The width of a railway track．See Railway－ （；Age．

5．The length of a shingle，slate，or tile which is exposed to the weather：Also called the margin． Thee hidten portion is called the corer．
a．Shimples are 18 inches long and expose 6 inelies．That is the gage．There are thus three thicknesses on a mof．
b．I＇lain－tilcs are $10 \frac{1}{2}$ inches long and have a gage of $6 \frac{1}{2}$ inwhes．
c．Pru－tiles are $14 \frac{1}{2}$ inches long ；gage， 10 incles．
d．Sloles vary in length and size．The gage is nsually nearly half the length，so that the slates have a little over two thicknesses on the roof．
6．（Irinting．）A strip of reglet with a notch in it to inlicate the length of a page．
7．The depth of immersion of a vessel．
See umber the following heads：－

Angle－gage．
Anger－gage．
Axle－gage．
Pall－caliber．
Barometer－gnge．
liarrel－gage．
larrel－filling grage．
liilge－water gage．
lisiseting－gage．
Poarling－gage．
Buring－gage．
Broad－gage．
Bur－gage．
Calipr－gage．
Carpenter＇s gage．
Conter－gage．
Chamber－gage．
Claphoari－gage．
Cottin－gage．
Condenser－gage．
Comiter－gage．
Croze．
C＇urrent－gage．
Cutting－gage．
Depth crage．
Inimumbl－gage．
Drill－gage．
Electric steam－gage．
Fiapmation－gage．
Giage and caliprr．
Gigqe－ibox for shingles． Gagn－cock．
Gato－concussion．

Gage－dial．
Gaged brick．
Gage－glass．
Gage－ladder．
Gage－lathe．
Gage paprer－cutter．
Gage－pile．
Gage－rod．
Gage－saw．
Gaige－wheel．
Gaging caliper．
Gaging－rod．
Gas－fitters＇gage．
Gas－gage．
Grain－gage．
Gun－barrel gage．
Hydraulie indicator．
Index－gage．
Joiners gage．
Kinitting－gage．
Liquor－gage．
Narking－gage．
Measuring－apparatus．
Meter（varietics，see Me－ TER）．
Meter－gage．
Mlortise－gage．
Narrow－gage．
Nipper－gage．
Page－gage．
Pear－gikg
Plasterers＇gage．
Pressure－gage．

Printers' gage.

Railway-gage.
Rain-grge.
Recorting-gage.
Ring-grage.
Rounding-gige.
Router-gage.
Salt-rage.
Suw-grage.
Sawing-machine gage.
screw-cutting gige.
Screw-thread gage.
Suribing-gage.
Sea-gage.
Setting-gage.
Sewing-machint gage.
Sheet-metal gage.
Shell-gage.
Shingling-gage.
Shingles. Gage-box for
Shot-gage.
Sliding-gage.

Slitting-gage.
Spectach--grage.
spued-gage.
Spoke-gage.
Standard-gage.
Star-gage.
Steam-gage.
Stepped-gage.
Surface-gige.
Templet.
Testing-gage.
Thernometric steam-gage.
Tide-gage.
Tool-gage.
Tucking-gage.
Turning-gage.
Vachum-grige.
Wrater--rage.
Weather-looarding grige.
Wind-gage.
Wire-gage.

Gage-box for Shin'gles. A box of a certain size in which shingles are laid to form bunches of a certain numbir:. A shingle is about 18 inches long, and every tinches of the etgere counts as one shingle, so that if it were 12×18 inches it would count as 3 . The box being 2 feet square, and the tails of the shingles lapping 6 inches, the butts of the layers are presented in alternate directions, each biyer counting as six shingles. The box facilitates the connting anl humehing.

Gage-cock. (Sicrm-engire.) One of two or more stop-cocks which are serewed into the boiler, one above the level at which watir onght to stand in the boiler and the other below it. The ejection of stram and water respectively from the cocks indicates the water-level in the boiler to be between the two grage-cocks. Steam from hoth shows the water to be too low. Water from both shows the water to be too high.

In the gage-cock shown, the valve is operited in one direction by the tubular cap, and in the other by the steam pressure and a spring.

The woter-yuge is an exterior, vertical tube in connection with the boiler, and in which the water rises to an equal light.

Gage-con-cus'sion. The rocking laterally of a railway earriage lymging the flanges of the wheels in contact with the rolges of the rails.

Gaged-brick. Bricks for arch-binilding, molded or rubbel to a welige shape to suit the ratims of the sollic.

Gage-glass. (Stcam-cnginc.) A strong, vertical, glass tube, comeeted at its ends ly two corks to the boiler, and forming an indicator of the depth of water in the boiler. It is illuminated at night by the yrag-lemp.

Gage-lad'der. A square timber frame for raising the emis of wheeling planks in exeavating. A horsing-block.

Gage-lamp. (Railroad-engine.) A lantern to throw light on the water-gage of a steam-boiker.

Gage-lathe. One designel to turn ont chairrounds, bauister-columns, and all similar objects in
which the cylindrical form is moditied by contractiou or culargement of diameter, the lormation of

beads, etc., so as to present curves or broken lines in its eontonr.
The wood is placed between the centers, and is first brought to the form of a regular eylinder by means of a fixed chisel in a slide-rest. The sliderest has two ehisels, one of which reduces the wood to the form of a uniform cylinder, while the other cuts away the portions of the cylinder which mast he removed in order to produce the varied ontline which the design repuires. This latter chisel is in a linged holder, and a foot finmly connected with it rests on an iron rail or gage, which is ent to the contour which the wool is to lave. As the sliderest advances, this foot rises on the swells and sinks into the depressions of the gage ; and the tool-holder, with its tool, rises and sinks with it, and thus translers to the wood the precise contour of the gage. See Nithen Wohk.

Gage Pa'per-cut'ter. A machine having a guillotine-knife descending with a draw-cut uron a pile of paper on a table. An anljustahke fence regulates the youc, or size. See Pader-cutting Ma(huse.

Gage-pile. (Pilc-driving.) A prelinimary pile to mark the desirenl course.
Gage-rod. A graduated rod, used in measming the capacity of barrels and casks.

Gage-saw. A saw laving an adjustable frame or climp, which determines the depth of kerf. Used by comb-makers and others.

Gage-stuff. A stilf and compact plaster used in making eornices, moldings, ete. It consists of two thinls fine mortar, one third plaster of paris, with a little water.
Gage-wheel. One attached to the forwarl end of a plow-beam, to gage the depth of furrow.
Gag'ger. (Fnudding.) A T-headed piece of iron with a shank grablually enlarging towards the end, and plared in a mold so as to lock the sand together.

Gag'ing-cal'i-per. A tool in which are combined dividers, inside and outsile calipers, and a

graduated double scratch-gage. It is graduated to 16 ths, 32 is, and 64 ths of an inch.

Gag'ing-rod. An exciseman's or inspector's measming-statf, fur dermining the interion dimensions of masks and other vessels holding liquids.

Gag-rein. (Shuldlury.) - win which passes over rumers attarhed to the throat-latho so as to draw the bit up into the comers of the horse's mouth when pulled upon.

GALLEY

Gag-run'ner. (Hurness.) A loop depenling from the throat-latch ; through it the gag-rein passes to the bit.

Gain. A mortise.
A beveled shoulder of a binding joist to strengthen the tenon.

Gain'ing-ma-chine'. A machine for cutting grooves acruss the face of a beam, usually to receive the shoulder of the tenon, so that the stud joist on post framed into the bean may have a strength to resist lateral strain greater than that dne merely to the temon which rests in the mortise proper. The machine is also adapted for rabueting and transwersp cutting generaily. Two circular saws are placed at a distance apart equal to the width of the desired gain. A ronting cutter may clear out the chip, between the kerfs. The bean \dot{i} is dogged on the bench α, and the saw-carriage c reciprocates above it, the

Fig. 214.

Reciprocrting Cross-Gaining Machine.
saws d buing hronght down to the work ly the counterbalaned lever c. f is the wheel whereby the beam is moved longitulinally the distance hetween gains.

Gain'ing-twist. (Rifling.) A rifle-grone whose angle of twist hecomes greater towarls the muzze. This allows the ball to be more easily started, gaining a greater velocity as it proceeds towards the muzzle. Increase freist.

Gai'ter. A covering for the ankle, fitting flown upon the shoe. It is usnally buttoned or bucklet] upon the onter sile, and has a strap beneath the shank of the shoe.

It is sometimes callul a gaiterette, as the term greiter has heen colloquially applime to the half-boot with a cloth top, and more recently to all hontees whieh closely embrace the ankle and the small of the leg immediately above it.

Ga'la. (Fubric.) A Scotch cotton fabric.

Gal'a-o-tom'e-ter. An instrument for ascertaining the quality of milk by its spreefic gravity. A luctometer. The former termis founded unon the Greek, and the latter partially from the Latin.

It consists of a stem and bulb, the latter charged with shot serving as ballast, so that it floats upright in the milk, the relative specific gravity being indicated hy the centessimally graduated stem.
Gal'e-as. A low-built French galley worked with siths and oars. Gulcusse, a Venetian galley. Galiot, a Dutch galley.
Ga-le'na. Native sulphuret of lead ; from galce, to shine.
Gal'ets. The sulinters of stone broken off by the stroke of the mason's chisel. Also calletl spalls.

Gal-i-le'au-tel'e-scope. The original form of reflecting telescope used i,y Galileo. It has a conrex, conserging olject-glass, and a concare, diverging eye-glass. sue Telescope.
Gal'i-ot; Gal'li-ott. (Nuufical.) Formerly, a galley propelled by sails and oars, having one mast and 16 to 20 seats for rowers; nsed by most of the maritime nations of continental Europe, and called by substantially the sume name in the Latinic languages. Now a strong and cumbrous, bluff-howed, two-masted vessel, usel in the Dutch merchant survice.
Gal'le-on. A lirge Sjanish vessel with three decks, formerly used.

Gal'ler-y. 1. (Fortificution.) A coverel passage in a work, either for defcnce or commumication. As one heneath the counterscarp and loopholed, or communicating luetweun the encrinte and an outwork.
A gallery in a scarp having cmbrasures becomes a cascmate.
2. (Nauticat.) A balcony projecting from the after part of a ship, as the quarter-gallery, stern-gatlery.
3. A corridor ; a partial story in a room for auditors or musicians.
4. (Mining.) An adit or drift in a mine, either as a muans of working, of drainage, or of ventilation. The great drainage-gallery of the mines of Clansthal, in the Hartz, is 11,375 yards, equal to $6 \frac{1}{2}$ miles long, and passes 300 yards helow the chuch of Clausthat. Its excavation oceupised fom 1777 to 1 E00, aml rost ahont $\$ 330,000$. Siee Amit.

Gal'ler-y-fur'nace. I furnace used in the distillation of green vitriol, consisting of a long gallury containing two or three tiers of retorts, 100 in each row. The sallery is a thue traversel by the Hame of a fire. The neek of each retort projects through the walls of the gallely and enters an exterior re-

Galley. 1. (Nautical.) a. A low, flat-built ressel with one or more rows (banks) (see Bank, 5, a) of oars, said to have heen invented by the Corinthiaus ion b. c. The birenurs, triremes, quinqueremes, etco, were galleys baving so many bamks of nairs, - two, three, five, etc. The pentccontori had fifty nars in a single tier. The gatcasses of the Venetians han 130 feet keel, 30 feet beam, three masts, thirty bauks (see BaNK, 5, b) of two oars each, each oar manned by six chained slaves. They were intro-
duced into France: in the reign of Chanles V1., and manned by criminals. He kept forty in his service.
They wine abolishad by Lonis SV. in 1748
U. A cliaker-built hoat for ship's nse, liom $2 s$ to 36 feet long, and with a beam ergal to 2 of its longth. It is a light, sharp boat, carrying from ten to twelve oars, and is used for suecty rowing on experlitions. It usually has six altemate oars rowed by a picked crew.
c. I'the cook-house on board ship which is on deck, or in a forwarde part of the versel.

In the example, the caboose has three grates in front so arranged that one or all may be nised at a
column of type in a galley, and the whole lockich up or wedged in place by quoves.

Gal'li-vat. A large List Indian rowing-loat.
Gall of Glass. Sum of melten glass. Sindier.
Gal-loon': (Frbric.) A nurrow cotton habrie used fir linding shors, ete

A narrow binding stuff with threads of sold and silver. A silk, woolen, or mixed tape for edging, binding, or shoc-strings.

Gal'lows. 1. (IIusbendry.) The central core of four corn-stalks interlaced diagonally, and bomed at the intersection, forming a stool or support for cut corn, which is bound around it to form a shock.
2. (Printing.) The rest for the tympan when open.
3. The lrame surpporting the beann of a stean-engine.
4. A frame on which criminals are hangent.

Gal'lows-bitts.
(Nautical.) A strong frame erected amidslipes on the deck to hohi sjare spars.

Ga-loche'. 1. A clog or sabot.
2. An overshoc.
3. A legrging.

Gal-van'ic Ap' pa-ra'tus. (Jedicet.) Contrivances of varions character and ap-
time, and a rear grate, over which are three large boilers. Over a central front grate is a large oven, and between the front and rear fires is another ; the prolucts of combustion from the front fires circulate up around and over the front oven, on top of which are apertures for cooking-vessels; boilers may b. placed over the side fires ; and, on the top of the stove, hoilers or cooking-vessels may be used. Pipus from the top of the barge boibers convey the steam arising in cooking to the smoke-flue. Gonveniont armagements are provided for the dralt and for removal of ashes. The smoke-flue is so dividen by a centril pratition as to give separate prassages from the front and well lives.
2. (Printing.) An ohlong tray which receives

Fig. 2147.

Printers' Galley. matter from the composingstick, and on which it is arranged in a cohum or prige. The galley has a letge on both sides and at top, hallim inch in light. From this it is taken to the imposing-stone and arranged in a chase. "Thu" galley somethues has a groove to almit a filse hotton, callow a guilley-slice.

In that illustrated the space for the matter is ald justable in width hy a straisht sull-stich ant thumb-screws, so as to lork up the multor.

Gal'ley-roll'er. (Printing.) A short inking-roller for taking slip proots of matter in galle.y.

Gal'Ley-slice. (Printing.) A sliling filise bottom of a galley. Soe Galley.
Galley-stick. (Printiny.) A long tapeying stick less thim type high, which is placed beside a
plication, but agreeing in this, that they keep up a certain nmonnt of galvanic action, which is intended to cxprt a remedial edlect upon the parts of the body to which they are alplieal. While one cannot speak with confidence as to the actual value of such, we canot condem them, for we have bat a very impertent umberstanding of principles, and for the larger proman of the curatives we possess we are indehted to empiries. This term ought not to be considured as one of reproach, for experiment has given us ahout all we have; rather look for the charlatans anong those who pretemb to have pelirtrated the arcana. Among the gavanic appliances may be cited hands, belts, chains, combs, rings, soles, spuectackes, rte.

Gal-van'ic Bat'ter-y. Galvani, of Bologna, first oherved the motion of the mus. les of a frog under dissection, when the latter, lying pron a colm per phate, were tonehed by a steel scalpel, excitiug an electric current. He pursned the sulyject by specific experiments. Voita, of cono, repatel then, and originated the voltaic pide in 1800; also demonstrating that the inthence was incident to the artion of the metals, and dill not abide in nerves ; in lact that it was a current of electricity passing along the nerves ami muscless. Duvernay in 1702 had ohservel and treated of the peculiar netion of elentricity, now known as galvanism.

Bleatricity, as developed by the galvanic pile, is great in 'quantity and woak in intensity. In this respect it is the inversis of the frictional electricity as excited by the ele etrical machine.
Gialvanie "lectricity is also a stealy current, while that of the eloctrical machine - as taken from tha prime conductor - is intemittent and explosive.

From the proceedings of the National Institute of France, duly 4, $179 \mathbf{s}^{5}$: -
"Many of the members have heen principully aceunied with the care of ascertaning by a multipilicity
of experiments the phenontena of galvanism. This name is given to a diseovery which Dr. Galvani, a member of the Institute of Bologna, male many years ago, and from which it results that when a contiguous series of metals, conmonly diflerent from one another, are put iuto contact on the one side of a nerve, and on the other with a musele, or even with eliflerent and distinct parts of the same nerve, at the instant of the domble contact a rapid and couvulsive motion takes place in the muscle into whinh the nerve is distributed. This phenomena seems to present to the mind the ideal of a circle, a portion of whieh is formed by the excitatory metals, anel the other by the neroons and museular organs. The rapility of the effect, and the promptness of the communication, the nature and the participation of the exeiting and intermpting sulostanees, present very semsible analogies letween the phenomema of galvanism and those of electricity. Some essential differences, however, appear to militate against this analogy, and will not sutler us to admit, at least for the present, thee illentity of a common principle."
A simple galvanic hattry a eousists of two bodies relatively electro positive and negative, immersed (or partially sol in a thuid which tends to act chemically nuon one or both; the metals touching each other or having a conducting circuit connection.

Or : A current may be abtained from twa liquids and one metal (or other substances) : the respective sides of the metal being exposel to lipuils of varying chenical energy upon the metal so presenterl.
Chemical action in all batteries ilevelops electric energy or electro-motive force. This power is derived from the expenditure of metal, ete., and the actual value of the materials used is the principal item in determining the economic value of the process as a means of developing power. Its usual appplication as a mutor has been in the form of the elec-tro-magnetie engine, with coils and armatures. See Electiou-Magetic Engine.
Two substances, which are condnctors of electrieity, heiug placed in contact and suhject to chemical action hy the presence of a lluil, will develop electric action; negative electricity passing from the bolly which is acted upon most powerfully, - the more easily oxilizable metal, - aml positive electrieity from the other substance. This is not stated as a principle, but a fiet.

The metals, etc., are arranged in a series, each one of wieh is positive to all below it in the seale. The order is as follows : -

Zine.	Iron.	Cold.
Leal.	Brass.	Platinum.
Tin.	Copper.	Griphite.
Antimony.	Silver.	Chareoal.

The more remote they stand from eaeh other in the series, the nore energetic will be the clectrie action developed by their contact under circumstances to excite chemical action.
In the formation of a simple galvanic circuit, the chemical action which excites electrieity takes place through a decomposition of the liguid.

For instance, when a plate of zine and one of conper are plunged in a weak solution of sulphuric aciu, oxygen, and hydrogen, the elements of the water are separated from each other: the oxysen mites with the electro-positive zinc, forming sulphate of zind, aud levelops hegative eleetricity therein; while elec-tro-negative copper is contrarily exeitel, and positive electricity is said to flow therefrom.

Some misconeeption may arise in the mind when it is said so frequently in a deseription that electric
currents fow, but this mode of expression is perhats as goul as has been devised, and is certainly rulte common. This eurious agent or excitement is so imperfectly understood, that Professor Faralay remarked: "There was a time when I thought that I knew something about this matter; but the longer I live and the more earefully I study the subject, the mure convinced I ans of my total ignorance of electricity." The terms flow, current, etc., must, therefore, be considered merely as convenient conventional expressions.
This much seems to he admitted, that the positive and negative currents are conincilent, anul pass in opposite directions to restore equilihrimm. In loing this they possess a certain energy which some ingenious men have made arailahle as a positive force. In other eases the converse of the proposition is elucidated; as in eleetro-plating, where the energy derived from chemical action is made to exvite eleetrical action ; this again being transferred to a bath, where ehemical decomposition is again effected and the equilibrinm restored.

Volta discovered that by a repetition of the simple eombinations, or, in other worls, lyy a multiphication of the pains of excited plates, the effect might be inereased. His pile of plates arranged in pairs is lont a multiplieation of the single pair of plates, iron and copper, which caused the museular action in the moist anatomical preparation of a frog with which they were casually brought in contact.

The cumulative effect of a number of simple hatteries b (Fig. 2148) may be obtained ly bringing them all into one circuit. Ea h copper phate is conuceted by a eopper wire to the zinc of the next glass, and each transmits the eleetric current derived from the chemieal artion in its own glass, in aldition to that derived from the aetion in the preceding glasses.
The trongh-battery $c c^{\prime}$ was used by Sir Humphry Davy in his series of magnifient dispoveries, 1806-8, when he isolated the metallic hases, calcium, solimm, potassium, ete. His trongh haul 2,000 double plates of copper and zinc, each having a surface of 32 square inches.
It is like the compound battery just eiterl, except that instead of separate glassers, a low of water-tight eells are made in a single trongh i, anil the plates are united to a bar of woold cand comected hy wires, the copper of each to the zine of the next pair, and so on all through. This arrangemunt of the phates enalles them to be withdrawn in a body from the dilute acid when desired.

The elements of the first galvanic batteries, conper and zius plates immersed in a trough containing dilute acid, soon berame sluggish and inert, and were capable of exerting theis power for but a limiteal time without eleansing or renewal.

In 1836, Daniell's, the first permanent battery, was invented. This consists of a zine and a copper element, each immersel in a seprate saline solution, and separated by a diaphragn, originally of leather or animal membrane, but afterwards of porous earthenware. Smee sulsequeutly substituted, for copper, silver upon which a roating of platinum was eleetrically deposited. Silver coated with platinum being cheaper and affording equally good results has been very senerally employed, and latterly iron similarly coatell has been usel.
In the Austrian section of the l'aris Exposition of $186{ }^{-}$there was exhibiterl a hattery on the Smee prinriple, in which the positive element was fragments of amalgamated zinc, and the negative lead eoaterl with platinum. This is said to be nsel in the Anstrian telegraph-offices. Weak sulphuric aciu is used as the bath in this battery.

A very permanent battery of low intensity has been levised by M. Gr. Farmer of Boston. It consists of an oval copper vessel forming the negrative element, and which is nearly filled with a saturated solution of sulphate.

At one end is a porous chp within which is placed a smaller porous cup, which receives a cylinder of amalganated zinc. The interior porous cup contains pure water, and the exterior cup a weak solution of sulphate of copper. The saturation of the liquid in the onter copper vessel is maintained by placing at the opposite end a third porous cup contaming crystals of sulphate of copper, which are replenished as they are dissolved. If eare be tiken not to allow the water to fall too low, this battery will maintain its energy for many months.

Analogous to this is the battery of Fr. Serehi of Rome, which consists of a hollow cylinder of rop$1+1$. laving notches below to allow the liquill within ind without to communicate freely, placed in the middle of a glass or earthenware enp, the bottom of which is covered with crystals of sulphate of coplycr. Orel this is placed bibulous paper, fitting the ann thar space, over which is a stratum of samil on which rests a hollow eylinder of zine surroundiner the eopper cylinder. This is filled with pulverized suphate of copper. The space around the zine is filled with sami. The whole is then moistened with water. According to the inventor, this hattery acts for an entire year, water and sulpbate of copper being adiled occasionally.

The gravity battery of M. Calland of Nantes lias a single cell, the sepraration of the liquids bring effected by the difference in their specitie gravities. The copper element is in the bottom, in the solution of sulphate of copper; and the zine element is suspended in an upper jart of the cell, in its own supernatant liquid. See Callaud Battery; Graviry Battery.
M. Leclanche employs in a carbon battery peroxile of manganese ; subsentuently he arlded cartion to the peroxitle, the whole being ground into a paste.

Protessor Bunsen, a fiew years since, introduced bichromate of jotash instead of nitric acid in the lattery bearing his name. This performs well for a time, but in conserpuence of the precipitation of sesyuioxide of chromium upon the zine it gradually loses power. Another modification dispenses with the porons cup, using the two liquids in mixture. The same objection attaches to this as to the former.
ln the battery of Prolessor Thomsen of Copenhagen, a number of plates of platinum are immersed in Tilute sulphuric aeid, and ure, by means of an clec-tro-magnetic motor, successively brought into contact with the poles of a single cell of Daniell. The plates become covered by the decomposition of water with oxygen on one sille and hylrogen on the other, giving rise to a powerful current in the platinum combination, which is maintained nearly constant when the contacts succeed one another rapidly and regularly.

To describe them more in detail:-
Smee's battery (cl) has a plate of silver coated with platinum suspended betwern two plates of zine, the surfaces of which have been amalgamated; that is, coated with nereury. The three plates are supported by a wooden bar, and depend within a jar partially filled with the usual acilnlated solution,- llilute sulphurie acid. The wires and poles are connected with the zinc and platinum plates by small screw caps. The amalgamation of the zine preserves the latter metal from active corrosion by the acid when the battery is not in usp.

The sulphate-of-copper battery (e) has two concen-
tric cylinders of copper joined to a bottom of the same nutal. The middle cylinder is of zinc, and sets within the annular trough, which has a solution of sulplate of copper as an exciting liguid.

The screw caps are for attachment of the wires to the respective metals. A partition in the bath may be introduced, to allow the solution to pass, but restruin the passage of thr solid products of the chemical decomposition. This would keep the metals free lrom a deposition which soon renders them inactive. The partition may be bladder or biscuitporcelain.

Diniell's constant battery (f) is of the class of the sulphate-of-copper batteries. It differs from the preeding in having the sulphate of copler acidulated with one eighth of its bulk of sulphuric acid; in laviug a purous porcelain eylimber containing a solution of acid, 1 part; water, 7 parts ; and in having a reserve of crystals of sulphate of copper on an

Fig. 214.

Galvanic Batteries.

annular shelf in the bath. The reserve of acid and the salt of copper gives the battery a longer vitality and accounts for the name constant ; and its continued effectiveness and evenness of action is due to the preservation of a clear metallic surface to the copper. The action is similar to the ordinary battery; the oxide of zinc formed is dissolved by the acid set free, but the hydrogen, instead of being set free at the copper plate, combines with the oxygen of the sulphate of copper, and the copper, thus set free from the acid, combines with the copper plate of the battery, and keens a clear metallic surface thereon.

Grove's battery (h) is used for telegraphing and otherwhere when a powerful action is required. The glass jar has a cylinder of amalgamated zinc with an opening through one side to permit free circulation of the dilute sulphuric acil. Within this cylinder is a porous cup of biscuit-porcelain, containing strong nitric aricl, in which is suspended a strip of platinum fastened to the end of a zinc arm projecting from the adjoining zinc cylinder.
An oljection to this battery consists in its emission of corrosive nitrous-acid fumes.

In Bursen's battery, the platinum of Grove's battery is replaced by carbon. The Bunsen cell, properly so called, has a cylinder of carbon immersed in nitric acid, and the porons cell, containing zinc and sulphuric acid, is placed within it. In another form, introduced by Archerau, the zine and sulphuric acill surround the carbon cylinder and nitric acid, which are contained in an interior porous cell : in consequence of the greater proprtion of positive surface, this latter form evolves a greater amomit of electicity thau the former. Bunsen's battery is more powerful, though less compact, than Grove's.
In the Leclanche battery, the porous vase has a graphite plate to form the positive pole, and is filled up with a mixture of powdered graphite and peroxide of manganese. The inclosiner jar has a plate of zine and is filled with sand or sawdust moistened with a concentrated solution of sal-zmmoniac. The cork has a central glass tube, and over this is a disk of rubler, whose edges are secured to the wax, its middle slit forming a gas-escape valre.
A newspraper item gives an account of the " smallest battery," as follows: "Mr. Collett urites from Heart's Content, 'I have just sent my conpliments to Dr. Gould of Cambridge, who is in Valentia, with a battery composed of a gun-cap, with a strip of zinc, excited by a drop of water, the simple bulk of a tear." " A telegraph that will do that must be nearly perfect.

The principal galranic batteries are known as, -

Bunsen battery.
Callaud battery.
Carhon battery:
Daniell battery.
Donble-fluid battery.
Electropoion battery.

Gravity battery.
Grove battery:
Leclanche battery.
Single-huid hattery.
smee hattery.
Thermo-electric battery.

See Deschanel's "Natural Philosophy," Part TII. Appleton \& Co.

Gal-van'ic Mox'a. A term appliel by Fabré Palaprat to the application of platinum rendered incandescent by a gralvanic current, as a canterizing agent of the nature of a moxa.

Gal-van'ic Pile. A column of alternate plates, such as zinc and copper. See Toltaic Pile.

Gal'van-ized I'ron. The iron is cleaned by dilute acid and friction, is heated and plungeel into a bath of melted zinc covered with sal-ammoniac, and is stirred about nntil the surface becomes alloyed with zinc. Small articles are treated in the same way, and, as they are found to be soldered together by the metal when dipped therefrom by the skimmer, they are placed in a crucible with charcoal powder, heated and shaken. Chains taken out of the zinc are shaken to separate the links. Wire is reeled through the zinc. Mallett recommends an amalgan of zinc, 2,292; mercury, 202 ; and about 1 of sodium or potassium ; this melts at $680^{\circ} \mathrm{F}$. The cleansed iron is dippeed in this, and remored as soon as it reaches the temperature of the allor.

Dlorewool and Rogers's method. The plates are tinned by placing them in. a solution of muriate of tin in a bath, the plates alternating with granulated zinc, and thus forming a weak battery by which tin is deposited on the iron. The plates are then passed through a bath of melted zinc.

Gal-van'o-graph. (Engraving.) An Austrian process. A plate of silvered copper is covered hy an artist with different coats of a somewhat transparent pigment, so that on the dark portions the paint is thick and raisel, and the surface is relatively depressed in the light tints. A copy of this is made by the electrotyju proceso, the darker being now the deeper portions, the whole forming an intaglio, like a colyperplate, and is printed from by the copperplateprinting process.

Gal-van'o-glyph. A form of engraving. A ground is suread on a clean zinc plate and etched. Succeeding coats of varnish are spread ly a roller on the gromm, avoiding the obliteration of the lines, which become deeper with each cuat. The finished plate becomes a matrix for a reverse impression obtained in the electro-bath, and this reverse is used to print from in the ordinary manuer.

Gal'va-nom'e-ter. An instrument for neasuring the strength of magnetic currents.

The instrument as ustally constructed consists of a magnetized ueedle placed parallel to a wire, which, when electrically excited, canses the deflection of the needle. Sve Electiometer; Electroscupe.

The discorery of this property in an electric current was hy Ersted of Denubirk, in 1819. The principle was soon adouted by electricians in the construction of the indicator telegraph. Ampere, Arago, schilling, Ganss, Weber, and Alexander all used the principle, but it received its perfected form by Cooke and Wheatstone, English patent, 1837. See Indicatoh-tellghaph.
The tendency of the magnetic needle in the

vicinity of an eleetrically excited needle held parallel to it is to assume a position at right angles to the wire conveying the courmont. By making the meulle astatic, that in, by placing two needles witl their jrules in opposition to each other, they are not aftected by the magretism of the earth, and when thus arranged aml surrounded by coils of wire the eflect of the electric enrrent is multiplied.
a (Fig. 2150) represents an apparatus for illustrating (Elsted's discovery. Two insulated wires are placed one above and one bclow a magnetized needle, and in a direction prabllel to the masnetic meridian, and a current is passed through the wires; in the illustration, the current in the upper wire is represputed as llowing from south to north, eansing the north end of the needle to move to the west, and the south end to the east. A reversal of the enrrent causes the needle to move in a reverse direction.

The astatic galyanometer comprises an astatic needle suspunded by a tilament above a gradnated plate, showing the degree of deflection. It is provided with set strews for attaching wires from an electro-minget to the multiplying coil beneath the plate.
d is an instrmment on the principle of the torsion balance of Conlomb, for observing the attraction or repulsion between the pole of a suspended bar magnet and that of a verticill magnet h. See lndicatrustelegridpli ; ''olrsiun-bstLince.

Thomson's reflecting galvanometer, b, such as is employed in working the ocean cables, consists of a surtl mirror with a magnet laid across its back, both together weighing but $1 \frac{1}{2}$ gainins. The reflector is suspended by a silk filament in the midst of a small circular coil of insulated copper wires f. A current transmitted through the cable and the coil induces a current which deflects the needle, and directs a little beam of reflected light from a lamp lohend the lorizontal seale g upon its gralnated front; when the current is reversed, it sends the neudle just so fir in the other direction, and so by a combination of right and left notions and panses the message is smollel out.

Gal'va-no-met'ric Mul'ti-pli-er. An instrument for inereasing by reputition the intensity of the force of an electric current, as in the serios of coils around the astatic needle of the neetlletelegraph.

The convolutions of the wire carry the magnetic current a number of times around the needle, so as to increase its reflection, prolueing a consideralifr effect by a compuratively feeble curreut.
Gal'va-no-plas'tic Pro'cess. One in which the obtaining of casts by electrodeposition forms an adjunct in the process of multiplying printing surfaces, or obtaining copies of articles of " lig^{-} ot;y and virtue." Spe list under Lingraving ; FineAl:Ts.

Gal-van'o-scope. An instrument for testing the presence of uluetrical forces.

It differs from a galvanometer in being merely qualitative, not quantitative, having no movision for determining the extent of the foree.

Gam-ba'do. A leather legging for equestrians. It is wrapped around the leg, reaching from the
knee to the foot, and is fastened at the side by clasjs.
Gam'brel. 1. Originally, a bent stick like a horse's hind les; used for sinspruling carcasses.
2. A roof with two pitches. A Mansard or curb roof.
Gam'brel-roof. (Butlding.) A roof with two sets of mafters at eliflerent inctinations. A Mansural roof. Sre C'vin-lwof.

Gam-broon'. (Fubric.) A kind of twilled linen cloth for linings.

Gam'mon-ing. (Nautical.) A lashing of ropes by which the bowsprit is hound to the cutwater to oppose the lifting action of the fore-stays.

Gam'mon-ing-hole. A hole cut through the knee of the head, for the gammoning.

Gang. 1. The rock enclosing a vin. Gunguc.
2. A term applied to a set of tools so attached together or to a common stock as to act together; as a gang of bits, a ganct-plow, a gang-saw, ete.

Gang-board. (Netticul.) \quad. A hourd with cleats, forming a brilge reaching from the gangway of a vessel to the wharf. A gray-plunk:
b. A plank within or without the waist for a sentinel to pace.

Gang-cask. (Nuutical.) a. A smetll cask for bringing off water in boats.
b. The eask in whiclı drinking-water for immediate use is kept on deck.

Gang-cul'ti-va'tor. (Husbandry.) One in which a number of enltivator-shates are stocked in sueh a way as to be driven in a set; usually attached to a carriage portion on which the driver is mounted. See Cullivatolk.

Gang-edg'er. A machine in which a movable and a stationary cireular saw are mounted on one arbor for the purpose of dressing boards to uniform wilth, as they conne from the log.

Gang-plow. Several plows stocked in one frame, generally supported on wheels and ridden by the oferator.

Gangs of plows have been arranged for work liy attaching a number of plows to a bar at propre distances, the motor being comnected to the bar. The more usmal form, however, consists of a munher of plows attached to a frame which rums on wheels ; the plows being the width of a furrow aphrt, and arranged in a receding order, so that the furrow slice, as it is raised, does not become jammed between the plows.

The wheeled frame, as used in the United States, is generally arranged with a tomone, so as to attach two or four horses, and when the jlow is lighthamled the off-wheel is the larger, as it rums in the furrow while the near wheel runs on the land.

The originator of the double plow seems to have

been Lord Somerville, who devoted much attention to the practical letails of agriculture (1799).

His plow, which he called a double furrow plow, consisterl of a beam suitaliy bent for the attachment of two plows, one placed laterally and to the rear of the other, as usual. Mr. Ducket of Esper, England, used, in 1797, a double plow, drawa by four horses, and turning two furrows.

The plow was not commended in England, especially in those places where it took and yet takes two persons to manage one plow. The ideal of making one man operate two plows was preposterous.
Lord Somerville inventer a movable-Hap moldboard, by which the hinged rear portion might be set out or in, according to the width required for stubble or sod plowing. A set serew at the back secured the Hap at the desired adjustment. It is shown in the illustration of his grug-plow.

In the example (Fig. 2153), the plows are moved rertically by levers. The axle is bent to depress the

Fig. 2153.

Gang-Plout.
furrow-wheel. The tongue is attached to one side of the center, to suit the position of the horses.
In Fig. 2151, the plows are raised or lowered hy a lever and pawb attached to the axle, which has i toothed wheel, and has a crank near the hub for receiving the axle of the furrow-wheel, the tongue also being aljusted for the line of drauglit by a bolt through the cleris, and made fast to its rear end.

The crank-shaperl plom-standards, proridel with a slot and set screw which passes through the boss and rests on the bed, are piroted on bolts passing through a hole in the torn of the standird. The illustration shows a side elevation and a plan-riew.
In the plow shown in Fig. 2150, the arrangement of the whiffletrees is designed to equalize the work of the horses. The levers, short axles, and sway
bar are arranged to vibrate unou the ends of the axletree, for the purpose of raising and lowering the

plow-frame. When the machine is at work the sway-lvar rest upion the folding frame, lut when it is devitable to depress the plows the folding frame is drawn from beneath the sway-har, which then assumes a lower position aud rests upon the plowframe.

Gang-punch. An arrangement of a number of punclues in a
single stock for punching fish. plates, or other things.

Gang-saw. An arrangement of saws placed parallel in a gate, so as to make a num. ber of kerfs simult aneously,

Fig. 2156.

Gang-Punch. ripling up the log into lumber at one passage along the ways.

In the large saw-mills of the lumber regions, these saws are known as slebling-menys, stock-grengs, Fenkce-grugs, lice-ganys, differing in certain particulars and purposes. See those heals. The arrangenrent of several blades in one gate was introduced as early as the sixtecuth century.

The illustration shows an Englisli form of the gang-saw. a a is a cast-iron framework bilted to the foundation; b, the saw-mill Hoor; c, drivingshaft ; $d d^{\prime}$, fast and loose pulleys ; c, lly-wheel: h, pitman; $g g$, saw-gate, whicb runs on slides $l l$. The \log is represented as lying upon the bearer l, which is a part of the log-carriage, which runs num rails on the timbers $m m$, the \log being held down by the bearer above. The feed is by means of the eecentrie $r \prime$, rod h^{\prime}, and ratchet-wheel p^{\prime}. Ther, rumning-lack motion is byeans of the pulleys l^{\prime} and spur-wheel q. The other parts perhaps require no detailed ilescription.

Gangue. 1. (Sincliing.) The supertluous earthy matter of a smelting-furnace.
2. (Mining.) The mineral matters in which metalli. nres are imbeduled.

Gang'way. (Foufical.) The opening in the bulwarks of a vessel ly which persons come on board or lisembark.

Gan'is-ter. (Metallurgy.) A refrartory material used for lining the Bessemer" "convertors." It consists of erushed or grouml silicious stone mixed with fire-clay. Its object is to save the iron convertor from destruction by the heat of the charge. Ground quartz, sand, and fire-clay.

Fig. 2150.

Atwool's compount for lining the hottoms of Bessemer converters consists of carhon, preferably that obtained from ohl crucibles, although authracite or hituminous coal may be used, German, or other plastic clay, old ground fire-hinck, Mount Savage stone-clay, and burned, or unburned sand.

These materials are ground together, and tampel into the moll.

Gap-win'dow. (Architecture.) A long and narrow winlow.

Gar'board-strake. (Shipurrighting.) The range of planks nearest to the keel. In the merchant service, the rabbet to receive the garboard-strake is made along the upper edge of the keel. In the nary, a groove is made half-way down the keel to recuive the garbord-strake.

Gar'den-en'gine. A whellbarow tank and pump for watering gardens. Sue Bationow-prop.

Gar'den-er's-knife. A knife with a hooking blade suitable for pruning by a draw-cut.

Gar'den-er's-lad'der. A light lielder used in gathering fruit, pruning trees, or nailing up ereepers or vines. See Extenion-Lahuld ; lielth-Ladinen.

Gar'den-lounge. A seat of ristic work, or its imitation in irom, with an awuing for summer Weather. See Galden-seht:

Gar'den-nail. A cast nail with a pramidal hed, used for nailing up climbing plants, vines, and wall-fruit trees to brick walls.

Gar'den-plow. A small ,low to be Iriven by hand in plowing between rows of garken plants.

Gar'den-Pump. A larrow-pump for watering gardens, washing carriages and windows. It has a

suction-hose and a discharging hose and nozzle. A Baninow-prap.

Gar'den-seat. A seat for croquet grounds or garden walks.

Garden-Seat.
Gar'den-shears. Large shears for clipping herleres and trees and for pruning.

Gar'den-syr'inge. A form of syringe for watering plants, primkling them with insect-destroying solutions, and so on. See Gabden-pymp.

Gar'goyle. A quaintly formed head of a man or animal, employed as a decorative spout for the rainwater from a rool.

Gar'land. 1. (Nautical.) a. A grommet or ring of rope, made selvage fashion, and nsed to place aroume a mast or spar when taking ahoard or stepping a mast.
b. A bag-net used by sailors to loold provisions.
2. An ornamental hand used in Gothic work.

Gar'lic-sep/a-ra'tor. A machine for extracting the corms of garlie from wheat in those States which are infested with the plant. The derice is usually an apron or roller of a somewhat viscid surface, to which the corm will adhere.

Gar'ment-cut'ter. A machine having a descending eutter of a given shape, which cuts from a pile of eloth lneneath it a number of pieces of its own size. The die is shifted for the next piece, and so on for each piece which goes to make up the garment. Usel in large clothing manufactories.

Gar'ment-meas'ur-er. A measuring scale for laying out garments. The vertical and lateral scales are graduated for obtaining the sizes and proportions of the fig. ure, being adjusted to agree with the measures as taken in the usual manner. At the upper end are scales adanted to the width of the back and the hight of the shoulder.

Gar'net. 1 (Nantical.) A sort of purchase. Fixed to the main-stay as a hoisting-in tackle, but usefuł in other positions indicated by names, such as clew-yarnet, etc.
2. A hinge of T. shape, the crossbar being attached to the hanging stile or post.

Gar'nish-bolt. (Building.) A bolt having a chaufered or faceted head.
Ga-rook'uh. - vessel of the Persian Gulf, having a length of from 50 to 100 feet, a short keel, and a long overhanging prow and stern.
Gar'ret. An upper apartment of a house, immediately under the roof.

Gar'ret-ing. Small splinters of stone insertel in the joints of coarse masonry.

Gar'rot. (Suryicel.) A tonrnicpet formed of a band and a stick, the former being twisted by the revolution of the latter.
Gar-rote'. A Spanish instrument of execution. The victim is fastened by an iron collar to an upright post, usually in a sitting posture, and a kuob operated by a screw or lever dislocates the spinal columu, or a small blade severs the spinal cord at the base of the brain.

Gar'ter. A semicircular plate, acting as a key, which passes throngh a slot in the woolen jaw of a bench-sise, and enters an annular groove in the cylindrical neck of the bench-serew, so that when the latter is unscrewed it bings out the jaw.

Garth. A fish-weir.
Gas. Exudations of gas from the earth have been noticed in aucient and molern tintes, and in many countries.
In China, these exudations, either natural or resulting from deep horing, have been utilized from time immemorial for lighting towns in the neighborhood of these jets. In boing for salt water, imprisoned reservoirs of carbureted hyilrogen have been reached, and the gas thus obtained has been utilized in China, and in the valler of the Kanawha, West Virginia, in evaporating the brine.
Gas llowing naturally is or has been used in the neighborhood of Fredonia, New York; Portland, on

Lake Eric ; Wigan, Great Britain (in 1667) ; and in many other phaces.

The uses made of it by the Nagi, or fire-worshippers of Persia, have not been properly examined or determined; But the holy fires of Baku, on the shore of the Caspian, have attained some celdhrity, and are maintained ly a natumal strean of carbureted lydrogen.

Paracelsus remarked the disengagement of gas when iron was dissolved in sulphuric acil. Van Ifelmont, a Belgian chemist, gave it the name of " gas," and distinguished gases from atmospheric air, and also, on account of their non-condensibility, from rapars. Tan Helmont died in 1644.

Uxygen was first discovered ly Dr. Priestley in 1774; he obtained it by heating red oxide of mercury, and called it dephlogisticated air.

Scheele and Lavoisier a year or two later made the same discovery, independently of the linglish inrentor, as Humboldt thinks. 1 t was termed cmpyreal air by Schecle; rital air by Cordorcet. The name oxygen was given to it br Lavoisier.

Black and Cavendish, in $1 \dot{1} 66$, showed that carlonic acid (fixed air) and hydrogen gas (comurstible air) are specifically distinct aieiform Huids.

Gas was distilled from wonl in l'aris in 1802; from oil by Dr. Henrs, in 1805 ; from refuse, oily, and fatty matter by Taylor, and patunted in 1815 .

The operations of the Chinese heing unknown to the "outside barbarians," the streams of iuflammal,le gas wrere for many centuries only objects of wonder and conjecture in the various countries of Europe where they issued from the soil. Oceasionally, small bladders of gas had heen collected and bumed, but no suspicion seems to have entered the minds of the observers that there was anything valuable involved.

The artificial ${ }^{\text {wod }}$, the seventeenth century, and the early examples of its manufacture and use are as follows : -

Dr. Clayton, rector of Crofton, England, distilled ilhminating gas from coal, and detailed the experiment to his friend Dr. Moyle, in 1688 . Dr. Poyle amounced it to the lioyal Society Liefore his death, which happened in 1691. Dr. ('layton olitained what he called an "uncondensahle spinit," which, as it issued in a jet, was canght in a bladder and nserl for experiments; the gas being repeatedly lighted and blown ont.

About fifty years altelwards the account was published in the " lhilosophical Transactions." and appears to have drawn attention to the sulject, as from this point we find a chain of experimenters and then a line of jractical developers.

If the series is to be briefly stated, we shall give it thus: Dr. Clayton, Pishop Watson, Murdoch, Winsor, Clegg ; a "lergyman, a bishop, an engineer, an enthnsiast, a mechanic.
$\ln 1726$, Dr. Hales, in his work on "Yegetable Staties," states that 150 grains of coal yietd 180 culic inches of gas.
In 1750, Watson, Bishop of Llandaff, distilled coal, passed the gas through water, and conveyed it in pipes from one place to another.
$\ln 1786$. Lord Dundonald erected ovens or retarts in which he distilled coal and tar, and burned the issuing gas. He seems to have considered it an ammsing expriment, and no more.
in 1792, Mr. Muriloch, of Reedreth, Comwall, England, erectel a gas-distilling apparatus and lighted his honse and offices by gisis distrihuted throngh service-pipes.

Zu 1798, Murdoch lighted with gas the works of Boulton and Watt, Soho, near Birmingham. On the occasion of a public rejoicing for peace, 1802,
he made an illumination of the Works ; probably an outside exhibition of his pet, on the walls of the estallishment. Trafilgar, Austerlitz, and Jema, within four ypars afterwards, is a curions commentary.

In 1801, Le Bon, of l'aric, lighten his house and garlen, and propused to light the rity of laris.
The English premiodicals of 1803 and thereabout refer to the propusition of Murdorls to use the gas olitained ly the distillation of coal, and state that the use of the gas for light, heat, ammonia, or oil wond he an intringement of the patent of the Earl of Dumbonalu; farther, thast the amonnt of water producel by the combination of the hyelregen of the gas and the oxygun of the air would sullime the curtains of a roone with moisture, aud woubl remerer it necessary" to wring ont the curtains and other linen furniture of the apartmuts on the morming subseguent to the illumination liy the buming of the coal smoke." - Monthly Mrug iviu, London, June 1, 1805.

In 1803-4, Winsor lighted the Lycenm Theater and took out a patent for lighting streets by gas. He establishod the first gas-company.
ln 1804-5, Murdoch lightel the eoton-factory of Philips and Lee, Dlanchester, the light being estimaterlas eymal to 3,000 cantles. This was the largest undertaking up to that date.

In 1807, Winsor lighterl oneside of Pall Mlall, London ; the first street lighting.

Westminster Bridge was lighted in 1813.

Honses of P'arliament, Lomlen, in the same year. strects of Lomdongernprally, 1815 . Streets of l'aris, the same yar.

James MeMluntrie proposed to light strects of Philaletphia, 1815.

Baltimore commenced the use of gas, 1816 .
Roston, 1823.
New York City, 1825.
The Newton gas-well, six miles from Titnsville, Pa., diselarges at the rate of three millions of eubine fret of gas every day of twenty-four homs. The gas issurs muler a pressure of from twenty to thity founts per spuare inch, and for the mont part gors to waste. l'ipes have heen laid to Titusville, and two hundred and lifty dwelling-honses, shops, ete., are now supplied with the gas for illuminatio: and fuel. For heating purposes it is almirable, hut for illumination it requires to be passed throug' naphtha, as it is deficient in carbon.

If the owners could satisfy themselves of the continuity of the gas flow, we presume that pipes would be laid from the well to several of the harge cities, such as Pittshurg, Cleveland, and Buthalo.

The prowess of making gas consists in the distillation of coal, though other forms of hydrocartion will yield it , and the subsequent purification of the same to purge it of noxious matters, - tar, ammonia, and sulphur. These operations are rombucterl respectively in the Gas-Retort, Condesser, Wasier, and Perififr (which see).

The coal is placed in the retort a by means of long scoms, which are handen by three men, two sroopfuls forming a charge, - 220 pounds. Theretort is of iron or clay; the latter is now prifired. The retort has its'open end exposed at the furnacewall, so as to receive the chatre, and is surromaled by the flames and heat of the furnace. Each retort
is connected by its branch pipe b with the main c, Which eomlucts the gas evolved to the condenser d. The opration of charging the retort is quickly ami skillfully performed, so as to liunt the escape of gas. When the charge is introulaced, the cap is mpared and luted to make the joint gas-tight. The fire expels the gits from the coal in the course of five hours, and the coke is then ready to be withulawn. This is done loy long takes, and it is wetted to prevent its burning. The coker weighs less than the coal by the anount of gas evolved, liut is nearly double the bulk.
Thw gas thows in company with other rapers fiom the retort, aml these impurities are removed by successive operations. It is first conlucted through the convolutel pipes of the condenser d, ly which the gas is cooled and the tar puecipitated. From thence it pasmes to the urasher c, in which it is lirought into intimate contact with water to remove the ammonia, which has so great an atfinity for water that it leaves the gas. From thence the gas is conducted to the purifier f, where it is passided between layers of damp, powdered lime, amanged in a tier of shelves on a box. Tlie lime absoms the sulphur and permits the gas to pass ofl in a purified state, fit for consumption. Dee also Gas-ptilifier.

Gas-Manufactory.

The holiler g, in which the gas is stored, consists of inverted shewt-iron cylinders, which are surported ly chains and romuterwejghts fom pillars of iron. The eylinder is on'm at its lower end, aml the elge dips into a tank of water, so that the cylinder rises as the gas is driven into it and sinks as it is withdianim by consumption. The inlet and outlet of the gas is hy pipes whose terminations are above the surface of the water. From the loolder the gas proceeds to the mains and service-jipes. Sce GasHulder.

To govern the flow of the gas, a regulator or governor is applied (see Gas-isegtlatmis), whose duty it is to limit the flow, accorling to the elevation of the locality to which the gats is supplical, and also to maintain an equable pressure to avord fli kering and inequalities in the light. One form of regulator is a hell-shaperl chamber suspended from a twem whose other end has a balance-weight, being in construction similar to a gas-holder. Gas is adnutter to the interior of the "hell" by a piple whose end is above the surface of the water in the tank into which the bell is inverterl, and a similar pipe conveys the gas away. Over the uptumed mouth of the inlet- $1 \mathrm{lip}^{4}$ is suspenled a cone whirh prartially closes the aperture when the pressure of gas is gratest, and uncloses the opening when the pressure diminishes, so that the size of the orifice is in the inverse ratio of the pressure, and the consequent spued of the passing fluil. Valves working on the principle of the frillows, and actuated by the ascending and descending bell, are eflective for this purpose.

In the distribution, valies are used to cut off the

$$
\begin{aligned}
& \text { i, in }
\end{aligned}
$$

[^0]: Agricultural and Husbandry Implements. Air Appliances and Dachinery.
 Alarms.
 Alloys.
 Artificial and Prosthetic Appliances.
 Astronomical Instruments.
 Axes.
 Baths.
 Batteries.
 Bits, Boring.
 Blacksmith's Tools and Appliances.
 Blocks, Nautical.
 Boats.
 Boilers.
 Bolts.
 Bookbinder's Tools and Processes.
 Boxes.
 Bridges.
 Brushes.
 Calculating and Measuring Instruments.
 Carpentry.
 Carpets.
 Carriages (see Vehicles).
 Cars.
 Cements.
 Chairs.
 Chisels.
 Civil Engineering.
 Clamps.
 Compasses.
 Cooprer's Tools.
 Cotton, Flax, Wool, Hemp, and Silk.
 Couplings.
 Currier's Tools.
 Dental Apparatus and Appliances.
 Dilators.
 Docks.
 Domestic Appliances.
 Drafting Instruments and Appliances.
 Drills.
 Dryers.
 Electrical and Magnetical Appliances.
 Engraving.
 Escapements.
 Fabrics.
 Faucets.
 Files.
 Filters.
 Fine Arts.
 Fire-arms.
 Forceps.
 Forks.
 Fortification.
 Founding.
 Furnaces.

[^1]: \qquad

[^2]:

[^3]: Forms of Arrlies.

[^4]: "He knew, because he saw, the moon was round, Also was certain that the earth was square." - Don Juan.

[^5]: "Keeping time, time, time,"
 In a sort of Runic rhyme."

[^6]: Caplenter:s Boring-Machine.

[^7]: A, evlinder.
 C, piston-rol.
 B, piston.
 G, pitnan.

[^8]: 1. Slicling longitudinally forward.
 2. Tilling.
 (r.) Down at muzzle aud up at breech.
 (b.) With muz\%le upward.
 (c.) On linged joint.
 3. Swinging laterally an vertient pin.
 4. Ratating on parallel lanyitudinal pin.
 (a.) Operated by a lever.
 5. Siiding longitudinally backward.
 (b.) Withdrawn by hand by a thumb or spring catch, or by a handle, and fistened by a bayonet-catch.
 6. Swinging or tilting.
 (a.) Hingel to top of barrel and turning npward and forward.
 (i.) Hinged to side of barrel and swinging laterally forward.
 (c.) Hinged beneath barrel and swinging forwald and downward through mortise.
 (d.) Swinging on centers or trumnions.
 (c.) Hinged at rear, to swing upward and backward.
 (f.) Hinged at rear and swinging laterally.
 (g.) Hinged at rear and swinging downward and backward through mortise.
 7. Stiding transverscly through mortisc......... (n.) Moving vertically.
 (b.) Moving laterally.
 8. Swinging or ratating laterally.................
 (c.) On a longitudinal pin or hinge.
 (b.) Having the form of a rotating sleeve.
 (a.) Having chamber in the fancet.
 (b.) Having chamber in the barrel in front of faucet.
 (a.) Behind a barrel ; cylinder charged in front.
 (b.) Behind a barrel; cylinder charged at rear.
 (c.) Cylinder without other barrel ("pepper-box ").

 ## 1. Chambered cylinder revolving an purallel

 axis..(c.) Cylinder wit
 2. Chrmbered eylinder revalving an vertical. axis, behind a burrel.
 3. Chambered eylinder revolving on horizantal transverse a
 4. Levolving hammer aeting on several stationary barvels.

